
ABC

PDFlib, PDFlib+PDI, PPS
A library for generating PDF on the fly
PDFlib 9.3.1

Tutorial
For use with C, C++, Java, .NET, .NET Core, Objective-C,
Perl, PHP, Python, RPG, Ruby

Copyright © 1997–2021 PDFlib GmbH and Thomas Merz. All rights reserved.
PDFlib users are granted permission to reproduce printed or digital copies of this manual for internal use.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0

sales@pdflib.com
support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

PANTONE® colors displayed in the software application or in the user documentation may not match
PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color. PANTONE®
and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2003.
Pantone, Inc. is the copyright owner of color data and/or software which are licensed to PDFlib GmbH to
distribute for use only in combination with PDFlib Software. PANTONE Color Data and/or Software shall
not be copied onto another disk or into memory unless as part of the execution of PDFlib Software.

PDFlib contains the following third-party components:

Adobe CMap resources, Copyright © 1990-2019 Adobe
AES, Arcfour and SHA algorithms, Copyright © 1995-1998 Eric Young
Expat XML parser, Copyright © 2001-2017 Expat maintainers
ICClib, Copyright © 1997-2002 Graeme W. Gill
ICU International Components for Unicode, Copyright © 1995-2012 IBM
Koblas GIF image decoder, Copyright © 1990-1994 David Koblas
libjpeg, Copyright © 1991-2019, Thomas G. Lane, Guido Vollbeding
libpng, Copyright © 1998-2002, 2004, 2006-2017 Glenn Randers-Pehrson
TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
MD5 message digest, Copyright © 1991-2, RSA Data Security, Inc.
sRGB ICC profile, Copyright © 1998 Hewlett-Packard Company
Zlib compression library, Copyright © 1995-2017 Jean-loup Gailly and Mark Adler

The PDFlib Block Plugin contains the following additional third-party component:
wxWidgets Cross-Platform GUI Library, Copyright © 2018 © 1998 Julian Smart, © 2018 wxWidgets

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
0 Applying the PDFlib License Key 11

1 Introduction 15

1.1 Roadmap to Documentation and Samples 15
1.2 PDFlib Programming 17
1.3 What’s new in PDFlib/PDFlib+PDI/PPS 9.0? 19
1.4 What’s new in PDFlib/PDFlib+PDI/PPS 9.1? 21
1.5 What’s new in PDFlib/PDFlib+PDI/PPS 9.2? 21
1.6 What’s new in PDFlib/PDFlib+PDI/PPS 9.3? 21
1.7 Features in PDFlib 23
1.8 Additional Features in PDFlib+PDI 26
1.9 Additional Features in PPS 27
1.10 Availability of Features in different Products 28

2 PDFlib Language Bindings 29

2.1 C Binding 29
2.2 C++ Binding 32
2.3 Java Binding 34
2.4 .NET Binding 36

2.4.1 .NET Binding Variants 36
2.4.2 .NET Core Binding 36
2.4.3 Classic .NET Binding 37
2.4.4 Using the .NET Binding in Applications 38

2.5 Objective-C Binding 39
2.6 Perl Binding 41
2.7 PHP Binding 43
2.8 Python Binding 45
2.9 RPG Binding 46
2.10 Ruby Binding 48

3 Creating PDF Documents 51

3.1 General PDFlib Programming Aspects 51
3.1.1 Exception Handling 51
3.1.2 Logging 53
3.1.3 The PDFlib Virtual File System (PVF) 53
3.1.4 Resource Configuration and File Search 55
3.1.5 Generating PDF Documents in Memory 60
3.1.6 Maximum Size of PDF Documents and other Limits 61
3.1.7 Multi-threaded Programming 61

4 Contents

3.1.8 Using PDFlib on EBCDIC-based Platforms 62
3.2 Page Descriptions 63

3.2.1 Coordinate Systems 63
3.2.2 Page Size 65
3.2.3 Direct Paths and Path Objects 66
3.2.4 Templates (Form XObjects) 68

3.3 PDF Password Security 70
3.3.1 Password Security in PDF 70
3.3.2 Password-Protecting PDF Documents with PDFlib 73

4 Color Spaces 77

4.1 Device Color Spaces 77
4.2 Color Management with ICC Profiles 79
4.3 Device-Independent CIE L*a*b* Color 83
4.4 Pantone, HKS, and custom Spot Colors 84
4.5 DeviceN Colors 88
4.6 Shadings and Shading Patterns 92
4.7 Tiling Patterns 94
4.8 Transparency Blend Modes 95
4.9 Changing the Color of Objects 98

4.9.1 Changing the Color with Blend Modes 98
4.9.2 Changing the Color with Soft Masks 99

4.10 Rendering Intents 101
4.11 Overprint Control 102

5 Unicode and Legacy Encodings 105

5.1 Important Unicode Concepts 105
5.2 Unicode-capable Language Bindings 107

5.2.1 Language Bindings with native Unicode Strings 107
5.2.2 Language Bindings with UTF-8 Support 107

5.3 Non-Unicode-capable Language Bindings 109
5.4 Single-Byte (8-Bit) Encodings 113
5.5 Chinese, Japanese, and Korean CMaps 116
5.6 Addressing Characters 118

5.6.1 Escape Sequences 118
5.6.2 Character References 119

6 Font Handling 123

6.1 Font Formats 123
6.1.1 TrueType Fonts 123
6.1.2 OpenType Fonts 123
6.1.3 WOFF Fonts 124

Contents 5

6.1.4 PostScript Type 1 Fonts 124
6.1.5 SING Fonts (Glyphlets) 125
6.1.6 Type 3 Fonts 125

6.2 Unicode Characters and Glyphs 127
6.2.1 Glyph IDs 127
6.2.2 Unicode Mappings for Glyphs 127
6.2.3 Unicode Control Characters 129

6.3 The Text Processing Pipeline 130
6.3.1 Normalizing Input Strings to Unicode 130
6.3.2 Converting Unicode Values to Glyph IDs 131
6.3.3 Transforming Glyph IDs 132

6.4 Loading Fonts 133
6.4.1 Selecting an Encoding for Text Fonts 133
6.4.2 Selecting an Encoding for symbolic Fonts 135
6.4.3 Example: Selecting a Glyph from the Wingdings Symbol Font 137
6.4.4 Searching for Fonts 140
6.4.5 Host Fonts on Windows and macOS 144
6.4.6 Fallback Fonts 146

6.5 Font Embedding and Subsetting 149
6.5.1 Font Embedding 149
6.5.2 Font Subsetting 150

6.6 Querying Font Information 152
6.6.1 Font-independent Encoding, Unicode, and Glyph Name Queries 152
6.6.2 Font-specific Encoding, Unicode, and Glyph Name Queries 153
6.6.3 Querying Codepage Coverage and Fallback Fonts 154

7 Text Output 159

7.1 Text Output Methods 159
7.2 Font Metrics and Text Variations 160

7.2.1 Font and Glyph Metrics 160
7.2.2 Kerning 161
7.2.3 Text Variations 161

7.3 OpenType Layout Features 164
7.3.1 Supported OpenType Layout Features 164
7.3.2 OpenType Layout Features with Textlines and Textflows 166

7.4 Complex Script Output 170
7.4.1 Complex Scripts 170
7.4.2 Script and Language 172
7.4.3 Complex Script Shaping 173
7.4.4 Bidirectional Formatting 174
7.4.5 Arabic Text Formatting 176

7.5 Chinese, Japanese, and Korean Text Output 177
7.5.1 Using TrueType and OpenType CJK Fonts 177
7.5.2 Horizontal and Vertical Writing Mode 177
7.5.3 EUDC and SING Fonts for Gaiji Characters 178
7.5.4 OpenType Layout Features for advanced CJK Text Output 179

6 Contents

7.5.5 Unicode Variation Selectors and Variation Sequences 181
7.5.6 Standard CJK Fonts 182

8 Importing Images, SVG Graphics and PDF Pages 185

8.1 Raster Images 185
8.1.1 Basic Image Handling 185
8.1.2 Supported Image File Formats 186
8.1.3 Clipping Paths 190
8.1.4 Image Transparency 191
8.1.5 Colorize Images with Spot or DeviceN Color 194
8.1.6 Modifying Color Values with a Decode Array 195

8.2 SVG Graphics 197
8.2.1 Supported SVG Flavors 197
8.2.2 SVG Processing Considerations 197
8.2.3 Visible Size of SVG Graphics 199
8.2.4 Font Selection 199
8.2.5 Dealing with missing Fonts and missing Glyphs 202
8.2.6 SVG Color Extension 203
8.2.7 SVG Contents beyond Vector Graphics and Text 205
8.2.8 Unsupported SVG Features 206

8.3 Importing PDF Pages with PDI 208
8.3.1 PDI Features and Applications 208
8.3.2 Using PDFlib+PDI 208
8.3.3 Document and Page-related Checks 210
8.3.4 Specific Aspects of imported PDF Documents 210

8.4 Placing Images, Graphics, and imported PDF Pages 213
8.4.1 Simple Object Placement 213
8.4.2 Placing an Object at a Point or Line or in a Box 213
8.4.3 Orientating an Object 215
8.4.4 Rotating an Object 216
8.4.5 Adjusting the Page Size 217
8.4.6 Querying Information about placed Images and PDF Pages 218

9 Text and Table Formatting 221

9.1 Placing and Fitting Textlines 221
9.1.1 Simple Textline Placement 221
9.1.2 Positioning Text in a Box 222
9.1.3 Fitting Text into a Box 223
9.1.4 Aligning Text at a Character 225
9.1.5 Placing a Stamp 226
9.1.6 Using Leaders 226
9.1.7 Text on a Path 227
9.1.8 Shadowed Text 228
9.1.9 Watermarks which can be edited in Acrobat 229

9.2 Multi-Line Textflows 231
9.2.1 Placing Textflows in the Fitbox 232

Contents 7

9.2.2 Paragraph Formatting Options 234
9.2.3 Inline Option Lists and Macros 234
9.2.4 Tab Stops 237
9.2.5 Numbered Lists and Paragraph Spacing 238
9.2.6 Control Characters and Character Mapping 239
9.2.7 Hyphenation 242
9.2.8 Widow and Orphan Lines 243
9.2.9 Controlling the standard Linebreak Algorithm 243
9.2.10 Advanced script-specific Line Breaking 246
9.2.11 Wrapping Text around Paths and Images 247

9.3 Table Formatting 251
9.3.1 Placing a Simple Table 252
9.3.2 Contents of a Table Cell 255
9.3.3 Table and Column Widths 257
9.3.4 Mixed Table Contents 258
9.3.5 Table Instances 261
9.3.6 Table Formatting Algorithm 263

9.4 Matchboxes 267
9.4.1 Decorating a Textline 267
9.4.2 Using Matchboxes in a Textflow 268
9.4.3 Matchboxes and Images 269

10 Interactive Features 271

10.1 Links, Bookmarks, and Annotations 271
10.2 Form Fields and JavaScript 274
10.3 Geospatial PDF 279

10.3.1 Using georeferenced PDF in Acrobat 279
10.3.2 Geographic and projected Coordinate Systems 279
10.3.3 Coordinate System Examples 280
10.3.4 Georeferenced PDF Restrictions in Acrobat 281

11 Document Interchange 283

11.1 XMP Metadata 283
11.2 Web-Optimized (Linearized) PDF 284

11.3 Tagged PDF Basics 285
11.3.1 The Logical Structure Tree (Structure Hierarchy) 285
11.3.2 Standard and custom Element Types 288
11.3.3 Artifacts 294
11.3.4 Text Handling 296
11.3.5 Alternate Description, Replacement Text and Abbreviation Expansion 297
11.3.6 Print Stream Order and Logical Reading Order 298
11.3.7 Tagged PDF Problems in Adobe Acrobat 300

11.4 Advanced Tagged PDF Topics 301
11.4.1 Automatic Table Tagging 301
11.4.2 Tagging Interactive Elements 304

8 Contents

11.4.3 Lists 307
11.4.4 Creating Contents out of Order 309
11.4.5 Importing Tagged PDF Pages with PDI 310

12 PDF Versions and Standards 315

12.1 Acrobat and PDF Versions 315
12.2 The PDF Standard ISO 32 000 318
12.3 PDF/A for Archiving 319

12.3.1 The PDF/A Standards 319
12.3.2 General Requirements 320
12.3.3 Color and Image Requirements 321
12.3.4 Requirements for Interactive Features 324
12.3.5 Additional PDF/A Requirements for Level U Conformance 325
12.3.6 Additional PDF/A Requirements for Level A Conformance 325
12.3.7 Importing PDF/A Documents with PDI 326
12.3.8 XMP Metadata for PDF/A 328

12.4 PDF/X for Print Production 331
12.4.1 The PDF/X Family of Standards 331
12.4.2 General Requirements 332
12.4.3 Output Intent and Color Requirements 333
12.4.4 Image and Transparency Requirements 336
12.4.5 Requirements for interactive Features 338
12.4.6 Importing PDF/X Documents with PDI 338

12.5 PDF/VT for Variable and Transactional Printing 340
12.5.1 The PDF/VT Standard 340
12.5.2 PDF/VT Concepts 340
12.5.3 Summary of Rules for generating PDF/VT-1 and PDF/VT-2 342
12.5.4 Document Part Hierarchy and Document Part Metadata (DPM) 343
12.5.5 Scope Hints for recurring Graphical Content 345
12.5.6 Encapsulated XObjects 346
12.5.7 Importing PDF/X and PDF/VT Documents with PDI 347

12.6 PDF/UA for Universal Accessibility 348
12.6.1 The PDF/UA-1 Standard 348
12.6.2 Tagging Requirements 349
12.6.3 Additional Requirements for specific Content Types 351
12.6.4 Importing PDF/UA Documents with PDI 352

13 PPS and the PDFlib Block Plugin 355

13.1 Installing the PDFlib Block Plugin 355
13.2 Overview of the Block Concept 358

13.2.1 Separation of Document Design and Program Code 358
13.2.2 Block Properties 358
13.2.3 Why not use PDF Form Fields? 359

13.3 Editing Blocks with the Block Plugin 361
13.3.1 Creating Blocks 361

Contents 9

13.3.2 Editing Block Properties 364
13.3.3 Copying Blocks between Pages and Documents 366
13.3.4 Customizing the Block Plugin User Interface with XML 367

13.4 Converting PDF Form Fields to PDFlib Blocks 369
13.5 Previewing Blocks in Acrobat 372
13.6 Filling Blocks with PPS 377
13.7 Block Properties 382

13.7.1 Administrative Properties 382
13.7.2 Rectangle Properties 383
13.7.3 Appearance Properties 384
13.7.4 Text Preparation Properties 386
13.7.5 Text Formatting Properties 387
13.7.6 Object Fitting Properties 390
13.7.7 Properties for default Contents 393
13.7.8 Custom Properties 393

13.8 Querying Block Names and Properties with pCOS 394
13.9 Creating and Importing Blocks programmatically 396

13.9.1 Creating PDFlib Blocks with POCA 396
13.9.2 Importing PDFlib Blocks 397

13.10 PDFlib Block Specification 398

A Revision History 401

Index 403

 11

0 Applying the PDFlib License Key
Restrictions of the evaluation version. All binary versions of PDFlib, PDFlib+PDI, and
PPS supplied by PDFlib GmbH can be used as fully functional evaluation versions re-
gardless of whether or not you obtained a commercial license. However, unlicensed ver-
sions display a www.pdflib.com demo stamp across all generated pages, and the inte-
grated pCOS interface is limited to small documents (up to 10 pages and 1 MB file size).
Unlicensed binaries must not be used for production purposes, but only for evaluating
the product. Using any PDFlib GmbH product for production purposes requires a valid
license.

Companies which are interested in PDFlib licensing and wish to get rid of the evalua-
tion restrictions during the evaluation phase or for prototype demos can submit their
company and project details with a brief explanation to sales@pdflib.com, and apply for
a temporary license key (we reserve the right to refuse evaluation key requests, e.g. for
anonymous requests).

PDFlib, PDFlib+PDI, and PDFlib Personalization Server (PPS) are different products
which require different license keys although they are delivered in a single package.
PDFlib+PDI license keys will also be valid for PDFlib, but not vice versa, and PPS license
keys will be valid for PDFlib+PDI and PDFlib. All license keys are platform-dependent,
and can only be used on the platform for which they have been purchased.

Once you purchased a license key you must apply it in order to get rid of the demo
stamp. Several methods are supported for setting the license key; they are detailed be-
low.

Cookbook A full code sample can be found in the Cookbook topic general/license_key.

Windows installer. If you are working with the Windows installer you can enter the li-
cense key when you install the product. The installer will add the license key to the reg-
istry (see below).

Applying a license key with an API call at runtime. Add a line to your script or pro-
gram which sets the license key at runtime. The license option must be set immediately
after instantiating the PDFlib object (in C: after PDF_new()). The exact syntax depends
on your programming language:

> In C++, Java, .NET/C#, Python and Ruby:

p.set_option("license=...your license key...")

> In C:

PDF_set_option(p, "license=...your license key...")

> In Objective-C:

[pdflib set_option: @"license=...your license key..."];

> In Perl and PHP:

$p->set_option("license=...your license key...")

> In RPG:

c callp PDF_set_option(p:%ucs2('license=...your license key...')

http://www.pdflib.com/pdflib-cookbook/general/license_key/

12 Chapter 0: Applying the PDFlib License Key

Working with a license file. As an alternative to supplying the license key with a run-
time call, you can enter the license key in a text file according to the following format
(you can use the license file template licensekeys.txt which is contained in all PDFlib dis-
tributions). Lines beginning with a ’#’ character contain comments and will be ignored;
the second line contains version information for the license file itself:

Licensing information for PDFlib GmbH products
PDFlib license file 1.0
PDFlib 9.3.1 ...your license key...

The license file may contain license keys for multiple PDFlib GmbH products on sepa-
rate lines. It may also contain license keys for multiple platforms so that the same li-
cense file can be shared among platforms. License files can be configured in the follow-
ing ways:

> A file called licensekeys.txt will be searched in all default locations (see »Default file
search paths«, page 13).

> You can specify the licensefile option with the set_option() API function:

p.set_option("licensefile={/path/to/licensekeys.txt}");

> You can set an environment (shell) variable which points to a license file. On Win-
dows use the system control panel and choose System, Advanced, Environment
Variables.; on Unix apply a command similar to the following:

export PDFLIBLICENSEFILE=/path/to/licensekeys.txt

> On IBM System i the license file must be encoded in ASCII (see asciifile option). The li-
cense file can be specified as follows (this command can be specified in the startup
program QSTRUP and works for all PDFlib GmbH products):

ADDENVVAR ENVVAR(PDFLIBLICENSEFILE) VALUE('/PDFlib/9.3/licensefile.txt') LEVEL(*SYS)

License keys in the registry. On Windows you can also enter the name of the license
file in the following registry value:

HKLM\SOFTWARE\PDFlib\PDFLIBLICENSEFILE

As another alternative you can enter the license key directly in one of the following reg-
istry values:

HKLM\SOFTWARE\PDFlib\PDFlib9\license
HKLM\SOFTWARE\PDFlib\PDFlib9\9.3.1\license

The installer writes the license key to the last of these entries.

Note Be careful when manually accessing the registry on 64-bit Windows systems: as usual, 64-bit
PDFlib binaries work with the 64-bit view of the Windows registry, while 32-bit PDFlib binaries
running on a 64-bit system work with the 32-bit view of the registry. If you must add registry
keys for a 32-bit product manually, make sure to use the 32-bit version of the regedit tool. It
can be invoked as follows from the Start dialog:

%systemroot%\syswow64\regedit

 13

Default file search paths. On Unix, Linux, macOS and IBM System i some directories
will be searched for files by default even without specifying any path and directory
names. Before searching and reading the UPR file (which may contain additional search
paths), the following directories will be searched:

<rootpath>/PDFlib/PDFlib/9.3/resource/cmap
<rootpath>/PDFlib/PDFlib/9.3/resource/codelist
<rootpath>/PDFlib/PDFlib/9.3/resource/glyphlst
<rootpath>/PDFlib/PDFlib/9.3/resource/fonts
<rootpath>/PDFlib/PDFlib/9.3/resource/icc
<rootpath>/PDFlib/PDFlib/9.3
<rootpath>/PDFlib/PDFlib
<rootpath>/PDFlib

On Unix, Linux, and macOS <rootpath> will first be replaced with /usr/local and then
with the HOME directory. On IBM System i <roothpath> is empty.

Default file names for license and resource files. By default, the following file names
will be searched for in the default search path directories:

licensekeys.txt (license file)
pdflib.upr (resource file)

This feature can be used to work with a license file without setting any environment
variable or runtime option.

Updates and Upgrades. If you purchased an update (change from an older version of a
product to a newer version of the same product) or an upgrade (change from PDFlib to
PDFlib+PDI or PPS, or from PDFlib+PDI to PPS), or received a new license key as part of
your support contract, you must apply the new license key that you received for your
update or upgrade. The old license key for the previous product must no longer be used.

Evaluating features which are not yet licensed. You can fully evaluate all features by
using the software without any license key applied. However, once you applied a valid
license key for a particular product using features of a higher category will no longer be
available. For example, if you installed a valid PDFlib license key the PDI functionality
will no longer be available for testing. Similarly, after installing a PDFlib+PDI license key
the personalization features (block functions) will no longer be available.

When a license key for a product has already been installed, you can replace it with
the dummy license string »0« (digit zero) to enable functionality of a higher product
class for evaluation. This will enable the previously disabled functions, and re-activate
the demo stamp across all pages.

Licensing options. Different licensing options are available for PDFlib use on one or
more servers and for redistributing PDFlib with your own products. We also offer sup-
port and source code contracts. Licensing details and the PDFlib purchase order form
can be found in the PDFlib distribution. Please contact us if you are interested in obtain-
ing a PDFlib license or have any questions.

14 Chapter 0: Applying the PDFlib License Key

1.1 Roadmap to Documentation and Samples 15

1 Introduction
1.1 Roadmap to Documentation and Samples

We provide the material listed below to assist you in using PDFlib products successfully.

Mini samples for all language bindings. The hello and image mini samples are avail-
able in all packages and for all language bindings. They provide minimal sample code
for text output, images. The mini samples are mainly useful for testing your PDFlib in-
stallation and for getting a very quick overview of PDFlib applications.

Starter samples for all language bindings. The starter samples are contained in all
packages and are available for a variety of language bindings. They provide a useful ge-
neric starting point for important topics and cover simple text and image output, Text-
flow and table formatting, PDF/A, PDF/X, PDF/VT and PDF/UA creation, and many other
topics. The starter samples demonstrate basic techniques for achieving a particular goal
with PDFlib products. It is strongly recommended to take a look at the starter samples.

PDFlib Tutorial. The PDFlib Tutorial (this manual), which is contained in all packages
as a single PDF document, explains important programming concepts in more detail,
including small code fragments. If you start extending your code beyond the starter
samples you should read up on relevant topics in the PDFlib Tutorial.

Note Most examples in this PDFlib Tutorial are provided in the Java language. Although syntax
details vary with each language, the basic concepts of PDFlib programming are the same for all
language bindings.

PDFlib API Reference. The PDFlib API Reference, which is contained in all packages as a
single PDF document, contains a concise description of all functions and options which
together comprise the PDFlib application programming interface (API). The PDFlib API
Reference is the definitive source for looking up supported options, input conditions,
and other programming rules which must be obeyed. Note that some other reference
documents are incomplete, e.g. the Javadoc API listing. Make sure to always use the full
PDFlib API Reference when working with PDFlib.

pCOS Path Reference. The pCOS interface can be used to query a variety of properties
from PDF documents. pCOS is included in PDFlib+PDI and PPS. The pCOS Path Reference
contains a description of the path syntax used to address individual objects within a
PDF document in order to retrieve the corresponding values.

PDFlib Cookbook. The PDFlib Cookbook contains hundreds of PDFlib coding fragments
for solving specific problems. The Cookbook topics are available for Java and PHP, but
can easily be adjusted to other programming languages since the PDFlib API is identical
for all supported language bindings. The PDFlib Cookbook is available at the following
URL:

www.pdflib.com/pdflib-cookbook/

http://www.pdflib.com/pdflib-cookbook/

16 Chapter 1: Introduction

pCOS Cookbook. The pCOS Cookbook is a collection of code fragments for the pCOS in-
terface which is contained in PDFlib+PDI and PPS. The pCOS interface can be used to
query a variety of properties from PDF documents. It is available at the following URL:

www.pdflib.com/pcos-cookbook/

TET Cookbook. PDFlib TET (Text and Image Extraction Toolkit) is a separate product
for extracting text and images from PDF documents. It can be combined with
PDFlib+PDI to process PDF documents based on their contents. The TET Cookbook is a col-
lection of code fragments for TET. It contains a group of samples which demonstrate the
combination of TET and PDFlib+PDI, e.g. add Web links or bookmarks based on the text
on the page, highlight search terms, split documents based on text, create a table of con-
tents, etc. The TET Cookbook is available at the following URL:

www.pdflib.com/tet-cookbook/

http://www.pdflib.com/pcos-cookbook/
http://www.pdflib.com/tet-cookbook/

1.2 PDFlib Programming 17

1.2 PDFlib Programming
What is PDFlib? PDFlib is a development component which allows you to generate
files in the Portable Document Format (PDF). PDFlib acts as a backend to your own pro-
grams. While the application programmer is responsible for retrieving the data to be
processed, PDFlib takes over the task of generating the PDF output which graphically
represents the data. PDFlib frees you from the internal details of PDF, and offers various
methods which help you formatting the output. The distribution packages contain dif-
ferent products in a single binary:

> PDFlib contains all functions required to create PDF output containing text, vector
graphics and images plus hypertext elements. PDFlib offers powerful formatting
features for placing single- or multi-line text, images, and creating tables.

> PDFlib+PDI includes all PDFlib functions, plus the PDF Import Library (PDI) for in-
cluding pages from existing PDF documents in the generated output, and the pCOS
interface for querying arbitrary PDF objects from an imported document (e.g. list all
fonts on page, query metadata, and many more).

> PDFlib Personalization Server (PPS) includes PDFlib+PDI, plus additional functions
for automatically filling PDFlib blocks. Blocks are placeholders on the page which
can be filled with text, images, or PDF pages. They can be created interactively with
the PDFlib Block Plugin for Adobe Acrobat (macOS or Windows), and will be filled au-
tomatically with PPS. The plugin is included in PPS.

How can I use PDFlib? PDFlib is available on a variety of platforms, including Unix,
Windows, macOS and EBCDIC-based systems such as IBM System i and IBM Z. PDFlib is
written in the C language, but it can be also accessed from several other languages and
programming environments which are called language bindings. These language bind-
ings cover all current Web and stand-alone application environments. The Application
Programming Interface (API) is easy to learn, and is identical for all bindings. Currently
the following bindings are supported:

> C and C++
> Java
> .NET and .NET Core
> Objective-C
> Perl
> PHP
> Python
> RPG (IBM System i)
> Ruby

What can I use PDFlib for? PDFlib’s primary target is dynamic PDF creation within
your own software or on a Web server. Similar to HTML pages dynamically generated on
a Web server, you can use a PDFlib program for dynamically generating PDF reflecting
user input or some other dynamic data, e.g. data retrieved from the Web server’s data-
base. The PDFlib approach offers several advantages:

> PDFlib can be integrated directly in the application generating the data.
> As an implication of this straightforward process, PDFlib is the fastest PDF-generat-

ing method, making it perfectly suited for the Web.
> PDFlib’s thread-safety as well as its robust memory and error handling support the

implementation of high-performance server applications.

18 Chapter 1: Introduction

> PDFlib is available for a variety of operating systems and development environ-
ments.

Requirements for using PDFlib. PDFlib makes PDF generation possible without wading
through the PDF specification. While PDFlib tries to hide technical PDF details from the
user, a general understanding of PDF is useful. In order to make the best use of PDFlib,
application programmers should ideally be familiar with the basic graphics model of
PDF. However, a reasonably experienced application programmer who has dealt with
any graphics API for screen display or printing shouldn’t have much trouble adapting to
the PDFlib API.

1.3 What’s new in PDFlib/PDFlib+PDI/PPS 9.0? 19

1.3 What’s new in PDFlib/PDFlib+PDI/PPS 9.0?
The following list discusses the most important new or improved features in PDFlib/
PDFlib+PDI/PPS 9.0 and Block Plugin 5. There are many more new features; see Table 1.1
and the PDFlib API Reference for details.

Create PDF/A-2 and PDF/A-3. PDFlib supports two new parts of the PDF/A standard for
archiving. PDF/A-2 is based on PDF 1.7 and supports transparency, JPEG 2000 compres-
sion, layers, and many other features. While PDF/A-2 allows embedding of PDF/A-1 and
PDF/A-2 documents, PDF/A-3 allows embedding of arbitrary file types.

Create Tagged PDF and PDF/UA. Creating Tagged PDF is much easier through various
convenience features, such as abbreviated tagging and automatic tagging of Artifacts.
PDFlib’s table formatter automatically tags tables. Tagged PDF documents including
structure elements can be imported with PDI.

Accessible documents can be created according to the PDF/UA standard (Universal
Accessibility). PDF/UA is based on PDF 1.7 and improves Tagged PDF for accessibility.

Create PDF/VT. PDF/VT is a standard for optimized PDF for variable and transactional
printing. PDFlib can create output according to ISO 16612-2 for Variable Document
Printing (VDP). Document Part Metadata (DPM) can be attached according to the PDF/VT
standard.

Import Scalable Vector Graphics (SVG). PDFlib imports vector graphics in the SVG for-
mat. SVG is the standard format for vector graphics on the Web.

Font handling and text output. PDFlib’s font engine and text processing have been en-
hanced in several ways:

> ideographic variation sequences (IVS) for CJK variant glyphs
> WOFF fonts (Web Open Font Format), a new container format for TrueType and

OpenType fonts specified by the W3C
> SVG fonts, i.e. vector fonts specified in SVG format
> CEF fonts (Compact Embedded Font), a variant of OpenType used for embedding

fonts in SVG graphics
> automatically create UPR font configuration files with all fonts found in an arbitrary

number of directories

Import PDF documents with PDFlib+PDI. The following features are new in the PDF
Import library PDI:

> Tagged PDF documents including structure elements can be imported.
> Layer definitions can be imported.

PDFlib Personalization Server (PPS) and Block Plugin. The following features are new
in PPS:

> The new Block type »Graphics« can be used to fill PDFlib Blocks with SVG graphics.
> PDFlib Blocks can not only be filled with PPS, but also imported into the output PDF.
> A few new Block properties have been introduced.

20 Chapter 1: Introduction

Create PDFlib Blocks programmatically. In addition to creating PDFlib Blocks interac-
tively with the PDFlib Block Plugin, PDFlib Blocks can be created programmatically with
PPS. Existing PDFlib Blocks in imported documents can be copied to the generated PDF
output. These features enable advanced document composition workflows where tem-
plates for PPS can themselves be built programmatically.

PDF Object Creation API (POCA). POCA provides a set of methods for creating low-level
PDF objects which are included in the generated PDF output. POCA can be used for the
following purposes:

> create Document Part Metadata (DPM) for PDF/VT
> programmatically create PDFlib Blocks for use with PPS

Embed multimedia content. PDFlib can create rich media annotations with Sound,
Movie, or 3D content. The multimedia content can be controlled with JavaScript and
PDF actions. The following new multimedia features are available:

> rich media annotations
> rich media execute actions

Enhanced encryption algorithm. PDFlib supports PDF document encryption according
to Acrobat X/XI/DC. This encryption scheme is based on AES-256 and is specified in
PDF 1.7 Adobe extension level 8 and PDF 2.0 according to ISO 32000-2.

Other enhancements. The following enhancements have been implemented:
> improvements in the Table and Textflow formatters
> convenience functions for creating path objects with geometric shapes
> enhanced support for importing JPEG 2000 raster images
> query details of files in the PDFlib Virtual Filesystem (PVF)
> Removed most restrictions related to function scopes, e.g. pages, patterns and tem-

plates can now be nested arbitrarily.

1.4 What’s new in PDFlib/PDFlib+PDI/PPS 9.1? 21

1.4 What’s new in PDFlib/PDFlib+PDI/PPS 9.1?
PDFlib/PDFlib+PDI/PPS 9.1 introduces new features related to color handling:

> support for DeviceN and NChannel color spaces with an arbitrary number of colorants
> PDF/X-5n for exchange of n-colorant production files, e.g. in the packaging industry
> SVG color extension for ICC profiles, spot and DeviceN color as well as Gray/RGB/

CMYK device color for increased usability of SVG for print production.
> Pantone Extended Gamut Coated (XGC) spot colors and Pantone Plus 2016 update
> color shadings with an arbitrary number of stop colors for flexible color blends
> color shadings between different spot colors, e.g. blends of Pantone colors
> default color spaces for pattern, templates and Type 3 font glyphs
> extended treatment of color-related topics in the PDFlib Tutorial and Cookbook

PDFlib/PDFlib+PDI/PPS 9.1 also updates support for several language bindings.

1.5 What’s new in PDFlib/PDFlib+PDI/PPS 9.2?
PDFlib/PDFlib+PDI/PPS 9.2 contains many bug fixes and improvements including the
following:

> updates for most language bindings
> new language binding for .NET Core
> clarifications of structure element nesting rules in anticipation of PDF 2.0
> PDF/UA-1 implementation aligned to latest recommendations and validators
> improved import of Tagged PDF pages
> new options for modifying the color of raster images (chromakey, decode)
> improved color controls for non-sRGB colors in SVG
> PDF/X-4/5 convenience features for handling conflicts with identical CMYK profiles
> identify several non-standard JPEG flavors
> improved PDF/VT encapsulation of Form XObjects for better RIP performance
> optimized subsetting of TrueType fonts significantly reduces output file size, espe-

cially for fonts with a large number of unused glyphs
> identification of deprecated API functions at compile-time for C, C++, .NET, Java or at

run-time for Perl and PHP (see PDFlib Migration Guide)
> overhauled the coding samples for all language bindings
> updated and extended the sample applications in the PDFlib Cookbook
> reduced memory requirements for PDFlib Mini Edition (ME) for embedded systems

1.6 What’s new in PDFlib/PDFlib+PDI/PPS 9.3?
> create form field appearances as a requirement for using fields in PDF/A
> improved Tagged PDF import to correctly handle certain rare constructs which pre-

viously triggered errors in PDF/UA validators
> Tagged PDF and PDF/UA-1 enhancements according to the »Tagged PDF Best Practice

Guide« published by the PDF Association
> identify all deprecated API features in anticipation of their future removal (see

PDFlib Migration Guide for details)
> adjustments for new versions of operating systems and development environments
> updated and extended the sample applications in the PDFlib Cookbook
> updates for most language bindings

22 Chapter 1: Introduction

> bug fixes and improvements in many areas
> adjusted the Block Plugin to latest Acrobat versions and implemented several bug

fixes

1.7 Features in PDFlib 23

1.7 Features in PDFlib
Table 1.1 lists features for generating PDF. New and improved features are marked.

Table 1.1 Feature list for PDFlib

topic features
PDF flavors PDF 1.4 – PDF 1.7 extension level 8 and PDF 2.0

Linearized (web-optimized) PDF for byteserving over the Web
High-volume output and arbitrary PDF file size (beyond 10 GB)

ISO standards
for PDF

ISO 32000-1: standardized version of PDF 1.7
ISO 32000-2: PDF 2.0 (including dated revision ISO 32000-2:2020)
ISO 15930: PDF/X-3/4/5 for the graphic arts industry
ISO 19005-1/2/3: PDF/A-1/2/3 for archiving
ISO 16612-2: PDF/VT-1 for variable and transactional printing
ISO 14289-1: PDF/UA-1 for universal accessibility

Fonts TrueType (TTF and TTC) and PostScript Type 1 fonts
OpenType fonts with PostScript or TrueType outlines (TTF, OTF, OTC)
WOFF fonts (Web Open Font Format)
Support for dozens of OpenType layout features for Western and CJK text output, e.g. ligatures,
small caps, old-style numerals, swash characters, simplified/traditional forms, vertical alternates
Access fonts which are installed on Windows or macOS
Font embedding for all font types; subsetting for TrueType, OpenType, and Type 3 fonts
User-defined (Type 3) fonts for bitmap fonts or custom logos
EUDC and SING fonts (glyphlets) for CJK Gaiji characters
Fallback fonts (use missing glyphs from another font)

Text output Text output in different fonts; underlined, overlined, and strikeout text
Glyphs in a font can be addressed by numerical value, Unicode value or glyph name
Kerning for improved character spacing
Artificial bold, italic, and shadow text
Text on a path
Configurable replacement of missing glyphs

Accessibility Create Tagged PDF for accessibility
Tagging of interactive elements, e.g. annotations and form fields
Automatic table and artifact tagging
PDF/UA-1 for universal accessibility
Additional structure element types and attributes

Internationalization Full Unicode support
CJK fonts and CMaps for Chinese, Japanese, and Korean text
Support for a variety of 8-bit and legacy multi-byte CJK encodings (e.g. Shift-JIS; Big5)
Ideographic variation sequences (IVS) for CJK variant glyphs
Vertical writing mode for Chinese, Japanese, and Korean text
Character shaping for complex scripts, e.g. Arabic, Thai, Devanagari
Bidirectional text formatting for right-to-left scripts, e.g. Arabic and Hebrew

SVG vector graphics Import vector graphics in SVG format; ICC profiles; CMYK and spot colors in SVG, CSS
Images Load BMP, GIF, PNG, TIFF, JBIG2, JPEG, JPEG 2000, and CCITT raster images

Query image information (pixel size, resolution, ICC profile, clipping path, etc.)

24 Chapter 1: Introduction

Use clipping path in TIFF and JPEG images
Use alpha channel (transparency) in TIFF and PNG images
Image masks (transparent images with a color applied), colorize images with a spot or DeviceN
color

Color Grayscale, RGB (numerical, hexadecimal, HTML color names), CMYK, CIE L*a*b* color
Integrated support for PANTONE® and HKS® colors
DeviceN (n-colorant) color space based on process or spot colors
User-defined spot colors
Color shadings (smooth shadings) between process colors or spot colors; pattern fills and strokes

Color management ICC-based color with ICC profiles
Rendering intent for text, graphics, and raster images
ICC profiles as output intent for PDF/A and PDF/X; multi-colorant profiles for PDF/X-5n

Archiving PDF/A-1a/1b, PDF/A-2a/b/u and PDF/A-3a/b/u
XMP extension schemas for PDF/A

Graphic arts PDF/X-3, PDF/X-4, PDF/X-4p, PDF/X-5n
Embedded or externally referenced output intent ICC profile
External graphical content (referenced pages) for PDF/X-5p and PDF/X-5pg
Overprint and text knockout

Variable Document
Printing (VDP)

PDF/VT-1 for variable and transactional printing

Textflow
Formatting

Format text into one or more rectangular or arbitrarily shaped areas with hyphenation (user-sup-
plied hyphenation points required), font and color changes, justification methods, tabs, leaders
Advanced line-breaking with language-specific processing
Flexible image placement and formatting
Wrap text around images or image clipping paths

Table formatting Table formatter places rows and columns, and automatically calculates their sizes according to a
variety of user preferences. Tables can be split across multiple pages.
Table cells can hold single- or multi-line text, images, SVG graphics, PDF pages, path objects, an-
notations, and form fields
Table cells can be formatted with ruling and shading options
Flexible stamping function
Matchbox concept for referencing the coordinates of placed images or other objects

Vector graphics Common vector graphics primitives: lines, curves, arcs, ellipses, rectangles, etc.
Transparency (opacity) and blend modes
Reusable path objects and clipping paths imported from images

Layers Optional page content which can selectively be displayed
Annotations and form fields can be placed on layers

Security Encrypt PDF document or attachments
Unicode passwords
Document permission settings, e.g. printing or copying not allowed

Interactive elements Create form fields with all field options and JavaScript
Create actions for bookmarks, annotations, page open/close and other events
Create bookmarks with a variety of options and controls
Page transition effects, such as shades and mosaic

Table 1.1 Feature list for PDFlib

topic features

1.7 Features in PDFlib 25

Create PDF annotations (comments) such as PDF links, launch links (other document types), Web
links
Named destinations for links, bookmarks, and document open action
Create page labels (symbolic names for pages)

Multimedia Embed 3D animations in PDF
Embed Sound and Movie in PDF and control it with JavaScript

Georeferenced PDF Create PDF with geospatial reference information
Metadata Document information: common fields (Title, Subject, Author, Keywords) and user-defined fields

Create XMP metadata from document info fields or XMP streams
User-supplied custom XMP metadata
Process XMP image metadata in TIFF, JPEG, JPEG 2000 and SVG graphics

Programming Language bindings for C, C++, Java, .NET and .NET Core, Objective-C, Perl, PHP, Python, RPG, Ruby
Virtual file system for supplying data in memory, e.g., images from a database
Generate PDF documents on disk file or directly in memory

Embedded Systems PDFlib Mini Edition (ME) for embedded systems with reduced resource requirements

Table 1.1 Feature list for PDFlib

topic features

26 Chapter 1: Introduction

1.8 Additional Features in PDFlib+PDI
Table 1.2 lists features in PDFlib+PDI and PPS in addition to the basic PDF generation fea-
tures in Table 1.1.

Table 1.2 Additional features in PDFlib+PDI

topic features
PDF input (PDI) Import pages from existing PDF documents

Import all PDF versions up to PDF 1.7 extension level 8 (Acrobat X/XI/DC) and PDF 2.0
Import documents which are encrypted with any of PDF’s standard encryption algorithms
Query information about imported pages
Clone page geometry of imported pages (e.g. BleedBox, TrimBox, CropBox)
Delete redundant objects (e.g. identical fonts) across multiple imported PDF documents
Repair malformed input PDF documents
Copy PDF/A or PDF/X output intent from imported PDF documents
Import pages from Tagged PDF documents including structure elements
Import layer definitions (optional content)

pCOS interface pCOS interface for querying details about imported PDF documents

1.9 Additional Features in PPS 27

1.9 Additional Features in PPS
Table 1.3 lists features which are only available in the PDFlib Personalization Server (PPS)
(in addition to the basic PDF generation features in Table 1.1 and the PDF import fea-
tures in Table 1.2).

Table 1.3 Additional features in the PDFlib Personalization Server (PPS)

topic features
Variable Document
Printing (VDP)

PDF personalization with PDFlib Blocks for text, image, PDF data or SVG vector graphics

Create PDFlib Blocks programmatically with PPS
Copy PDFlib Blocks from imported documents

PDFlib Block Plugin PDFlib Block Plugin for creating PDFlib Blocks interactively in Acrobat on Windows and macOS
Preview PPS Block filling in Acrobat
Copy Blocks to Preview file
Snap-to-grid for interactively creating or editing Blocks in Acrobat
Clone PDF/X or PDF/A properties of the Block container
Convert PDF form fields to PDFlib Blocks for automated filling
Textflow Blocks can be linked so that one Block holds the overflow text of a previous Block
PANTONE® and HKS® spot color names integrated in the Block plugin
Support for Retina displays on macOS

1.10 Availability of Features in different Products
Table 1.4 details the availability of features in different products with the PDFlib family.

Table 1.4 Availability of features in different products

feature API functions and options PD
Fl

ib

PD
Fl

ib
+P

DI

PP
S

basic PDF generation all except those listed below X X X

linearized (Web-optimized) PDF linearize option in PDF_begin_document() X1

1. Not available in PDFlib source code packages since PDI is required internally for this feature

X X

optimize PDF (only relevant for inefficient
client code and non-optimized imported
PDF documents)

optimize option in PDF_end_document() X1 X X

Parsing attachments for PDF/A confor-
mance

PDF_load_asset() with type=Attachment in PDF/A-
2 mode

X1 X X

Parsing PDF documents for Portfolio cre-
ation

password option in PDF_add_portfolio_file() X1 X X

PDF import (PDI) all PDI functions – X X

Query information from PDF with pCOS all pCOS functions – X X

Fill Blocks with variable data PDF_fill_*block() – – X

Create Blocks programmatically PDF_poca_new(): option usage=blocks
PDF_begin/end_page_ext(): option blocks

– – X

Copy Blocks to generated output PDF_process_pdi(): option action=copyblock or
action=copyallblocks

– – X

interactively create PDFlib Blocks for use
with PPS

PDFlib Block Plugin for Acrobat – – X

2.1 C Binding 29

2 PDFlib Language Bindings
Note It is strongly recommended to take a look at the starter examples which are contained in all

PDFlib packages. They provide a convenient starting point for your own application develop-
ment, and cover many important aspects of PDFlib programming.

2.1 C Binding
PDFlib is written in C with some C++ modules. In order to use the PDFlib C binding, you
can use a static or shared library (DLL on Windows and MVS), and you need the central
PDFlib include file pdflib.h for inclusion in your PDFlib client source modules. Alterna-
tively, pdflibdl.h can be used for dynamically loading the PDFlib DLL at runtime (see next
section for details).

Note Applications which use the PDFlib binding for C must be linked with a C++ linker since PDFlib
includes some parts which are implemented in C++. Using a C linker may result in unresolved
externals unless the application is explicitly linked against the required C++ support libraries.

Error handling in C. PDFlib supports structured exception handling with try/catch
clauses. This allows C and C++ clients to catch exceptions which are thrown by PDFlib,
and react on the exception in an adequate way. In the catch clause the client will have
access to a string describing the exact nature of the problem, a unique exception num-
ber, and the name of the PDFlib API function which threw the exception. The general
structure of a PDFlib C client program with exception handling looks as follows:

PDF_TRY(p)
{

...PDFlib instructions...
}
PDF_CATCH(p)
{
 printf("PDFlib exception occurred in hello sample:\n");
 printf("[%d] %s: %s\n",
 PDF_get_errnum(p), PDF_get_apiname(p), PDF_get_errmsg(p));
 PDF_delete(p);
 return(2);
}

PDF_delete(p);

PDF_TRY/PDF_CATCH are implemented as tricky preprocessor macros. Accidentally omit-
ting one of these will result in compiler error messages which may be difficult to com-
prehend. Make sure to use the macros exactly as shown above, with no additional code
between the TRY and CATCH clauses (except PDF_CATCH()).

An important task of the catch clause is to clean up PDFlib internals using PDF_
delete() and the pointer to the PDFlib object. PDF_delete() will also close the output file if
necessary. After an exception the PDF document cannot be used, and will be left in an
incomplete and inconsistent state. Obviously, the appropriate action when an excep-
tion occurs is application-specific.

For C and C++ clients which do not catch exceptions, the default action upon excep-
tions is to issue an appropriate message on the standard error channel and exit. The PDF

30 Chapter 2: PDFlib Language Bindings

output file is left in an incomplete state! Since this is not adequate for a library routine,
for serious PDFlib projects it is strongly advised to leverage PDFlib’s exception handling
facilities. A user-defined catch clause may, for example, present the error message in a
GUI dialog box, and take other measures instead of aborting.

Volatile variables. Special care must be taken regarding variables that are used in both
the PDF_TRY() and the PDF_CATCH() blocks. Since the compiler doesn’t know about the
control transfer from one block to the other, it might produce inappropriate code (e.g.,
register variable optimizations) in this situation. Fortunately, there is a simple rule to
avoid these problems:

Note Variables used in both the PDF_TRY() and PDF_CATCH() blocks should be declared volatile.

Using the volatile keyword signals to the compiler that it must not apply (potentially
dangerous) optimizations to the variable.

Nesting try/catch blocks and rethrowing exceptions. PDF_TRY() blocks may be nested
to an arbitrary depth. In the case of nested error handling, the inner catch block can acti-
vate the outer catch block by re-throwing the exception:

PDF_TRY(p) /* outer try block */
{

/* ... */

PDF_TRY(p) /* inner try block */
{
 /* ... */
}
PDF_CATCH(p) /* inner catch block */
{
 /* error cleanup */
 PDF_RETHROW(p);
}
/* ... */

}
PDF_CATCH(p) /* outer catch block */
{

/* more error cleanup */
PDF_delete(p);

}

The PDF_RETHROW() invocation in the inner error handler will transfer program execu-
tion to the first statement of the outer PDF_CATCH() block immediately.

Prematurely exiting a try block. If a PDF_TRY() block is left – e.g., by means of a return
statement –, thus bypassing the invocation of the corresponding PDF_CATCH() macro,
the PDF_EXIT_TRY() macro must be used to inform the exception machinery. No other li-
brary function must be called between this macro and the end of the try block:

PDF_TRY(p)
{

/* ... */

if (error_condition)
{

2.1 C Binding 31

PDF_EXIT_TRY(p);
return -1;

}
}
PDF_CATCH(p)
{

/* error cleanup */
PDF_RETHROW(p);

}

Using PDFlib as a DLL loaded at runtime. While most clients will use PDFlib as a stati-
cally bound library or a dynamic library which is bound at link time, you can also load
the PDFlib DLL at runtime and dynamically fetch pointers to all API functions. This is es-
pecially useful to load the PDFlib DLL only on demand, and on MVS where the library is
customarily loaded as a DLL at runtime without explicitly linking against PDFlib. PDFlib
supports a special mechanism to facilitate this dynamic usage. It works according to the
following rules:

> Include pdflibdl.h instead of pdflib.h.
> Use PDF_new_dl() and PDF_delete_dl() instead of PDF_new() and PDF_delete().
> Use PDF_TRY_DL() and PDF_CATCH_DL() instead of PDF_TRY() and PDF_CATCH().
> Use function pointers for all other PDFlib calls.
> PDF_get_opaque() must not be used.
> Compile the auxiliary module pdflibdl.c and link your application against it.

In order to create a shared library from the static library on Linux use the following
commands:

mkdir tmp
cd tmp
ar x ../libpdf.a
g++ -shared -o libpdf.so *

This results in a shared library which no longer requires the application to be linked
against the C++ runtime library.

32 Chapter 2: PDFlib Language Bindings

2.2 C++ Binding
In addition to the pdflib.h C header file, an object-oriented wrapper for C++ is supplied
for PDFlib clients. It requires the pdflib.hpp header file, which in turn includes pdflib.h.
Since pdflib.hpp contains a template-based implementation no corresponding .cpp mod-
ule is required.

String handling in C++. The new template-based C++ binding supports the following
usage patterns with respect to string handling:

> Strings of the C++ standard library type std::wstring are used as basic string type.
They can hold Unicode characters encoded as UTF-16 or UTF-32. This is the default be-
havior since PDFlib 8 and the recommended approach for new applications unless
custom data types (see next item) offer a significant advantage over wstrings.

> Custom (user-defined) data types for string handling can be used as long as the cus-
tom data type is an instantiation of the basic_string class template and can be con-
verted to and from Unicode via user-supplied converter methods. As an example a
custom string type implementation for UTF-8 strings is included in the PDFlib distri-
bution (pstring_utf8.cpp).

The interface assumes that all strings passed to and received from PDFlib methods are
native wstrings. Depending on the size of the wchar_t data type, wstrings are assumed to
contain Unicode strings encoded as UTF-16 (2-byte characters) or UTF-32 (4-byte charac-
ters). Literal strings in the source code must be prefixed with L to designate wide strings.
Unicode characters in literals can be created with the \u and \U syntax.

Note On EBCDIC-based systems the formatting of option list strings for the wstring-based interface
requires additional conversions to avoid a mixture of EBCDIC and UTF-16 wstrings in option
lists. Convenience code for this conversion and instructions are available in the auxiliary mod-
ule utf16num_ebcdic.hpp. Users should also take a look a the compiler option
CONVLIT(,UNICODE) which controls conversion of string literals in C++ code to Unicode.

Error handling in C++. PDFlib API functions throw a C++ exception in case of an error.
These exceptions must be caught in the client code by using C++ try/catch clauses. In or-
der to provide extended error information the PDFlib class provides a public
PDFlib::Exception class which exposes methods for retrieving the detailed error message,
the exception number, and the name of the API function which threw the exception.

Native C++ exceptions thrown by PDFlib routines behave as expected. The following
code fragment catches exceptions thrown by PDFlib:

try {
...PDFlib instructions...

catch (PDFlib::Exception &ex) {
wcerr << L"PDFlib exception occurred in hello sample: " << endl
 << L"[" << ex.get_errnum() << L"] " << ex.get_apiname()
 << L": " << ex.get_errmsg() << endl;

}

Using PDFlib as a DLL loaded at runtime. Similar to the C language binding the C++
binding allows you to dynamically attach PDFlib to your application at runtime (see
»Using PDFlib as a DLL loaded at runtime«, page 31). Dynamic loading can be enabled as
follows when compiling the application module which includes pdflib.hpp:

2.2 C++ Binding 33

#define PDFCPP_DL 1

In addition you must compile the auxiliary module pdflibdl.c and link your application
against the resulting object file. Since the details of dynamic loading are hidden in the
PDFlib object it does not affect the C++ API: all method calls look the same regardless of
whether or not dynamic loading is enabled.

34 Chapter 2: PDFlib Language Bindings

2.3 Java Binding
Java supports a portable mechanism for attaching native language code to Java pro-
grams, the Java Native Interface (JNI). The JNI provides programming conventions for
calling native C or C++ routines from within Java code, and vice versa. Each C routine
has to be wrapped with the appropriate code in order to be available to the Java VM, and
the resulting library has to be generated as a shared or dynamic object in order to be
loaded into the Java VM.

PDFlib supplies JNI wrapper code for using the library from Java. This technique al-
lows us to attach PDFlib to Java by loading the shared library from the Java VM. The ac-
tual loading of the library is accomplished via a static member function in the pdflib
Java class. Therefore, the Java client doesn’t have to bother with the specifics of shared
library handling.

Installing the PDFlib Java Edition. For the PDFlib binding to work, the Java VM must
have access to the PDFlib Java wrapper and the PDFlib Java package. PDFlib is organized
as a Java package with the following package name:

com.pdflib.pdflib

This package is available in the pdflib.jar file and contains the classes pdflib and PDFlib-
Exception. In order to supply this package to your application, you must add pdflib.jar to
your CLASSPATH environment variable, add the option -classpath pdflib.jar in your calls to
the Java compiler and runtime, or perform equivalent steps in your Java IDE. In the JDK
you can configure the Java VM to search for native libraries in a given directory by set-
ting the java.library.path property to the name of the directory, e.g.

java -Djava.library.path=. hello

You can check the value of this property as follows:

System.out.println(System.getProperty("java.library.path"));

In addition, the following platform-dependent steps must be performed:
> Unix: the library libpdflib_java.so (on macOS: libpdflib_java.jnilib) must be placed in

one of the default locations for shared libraries, or in an appropriately configured di-
rectory.

> Windows: the library pdflib_java.dll must be placed in the Windows system directory,
or a directory which is listed in the PATH environment variable.

Error handling in Java. The Java binding translates PDFlib errors to native Java excep-
tions. In case of an exception PDFlib will throw a native Java exception of the following
class:

PDFlibException

The Java exceptions can be dealt with by the usual try/catch technique:

try {

...PDFlib instructions...

} catch (PDFlibException e) {

2.3 Java Binding 35

 System.err.print("PDFlib exception occurred in hello sample:\n");
 System.err.print("[" + e.get_errnum() + "] " + e.get_apiname() +
 ": " + e.get_errmsg() + "\n");

} catch (Exception e) {
System.err.println(e.getMessage());

} finally {
if (p != null) {

p.delete(); /* delete the PDFlib object */
}

}

Since PDFlib declares appropriate throws clauses, client code must either catch all possi-
ble PDFlib exceptions, or declare those itself.

Unicode and legacy encoding conversion. For the convenience of PDFlib users we list
some useful string conversion methods here. Please refer to the Java documentation for
more details. The following constructor creates a Unicode string from a byte array, us-
ing the platform’s default encoding:

String(byte[] bytes)

The following constructor creates a Unicode string from a byte array, using the encod-
ing supplied in the enc parameter (e.g. SJIS, UTF8, UTF-16):

String(byte[] bytes, String enc)

The following method of the String class converts a Unicode string to a string according
to the encoding specified in the enc parameter:

byte[] getBytes(String enc)

Javadoc documentation for PDFlib. The PDFlib package contains Javadoc documenta-
tion for PDFlib. The Javadoc contains only abbreviated descriptions of all PDFlib API
methods; please refer to the PDFlib API Reference for more details.

In order to configure Javadoc for PDFlib in Eclipse proceed as follows:
> In the Package Explorer right-click on the Java project and select Javadoc Location.
> Click on Browse... and select the path where the Javadoc (which is part of the PDFlib

package) is located.

After these steps you can browse the Javadoc for PDFlib, e.g. with the Java Browsing per-
spective or via the Help menu.

36 Chapter 2: PDFlib Language Bindings

2.4 .NET Binding
2.4.1 .NET Binding Variants

The PDFlib binding for .NET is available in two variants:
> .NET Core binding based on C# Interop
> Classic .NET binding based on C++ Interop

Both .NET bindings differ in implementation details and supported target environ-
ments according to Table 2.1. Based on this information you can choose the binding
which is best suited for your application.

2.4.2 .NET Core Binding
Note The .NET Core binding is delivered as a universal package for all supported platforms. However,

it still requires a platform-specific license which cannot be transferred across platforms.

PDFlib for .NET Core supports the .NET Standard 2.0 which implies support for .NET Core
2.0, .NET Framework 4.6.1, Mono 5.4 and corresponding newer versions, as well as many
other environments. You need the .NET Core SDK for the desired target platform.

The version scheme used for the .NET Core binding conforms to .NET versioning
rules. The .NET Core version numbers are visible e.g. in the NuGet cache and .csproj proj-
ect files. These version numbers are not identical to PDFlib major and minor release
numbers. A mapping between both versioning schemes can be found in compatibili-
ty.txt.

The product is supplied as NuGet package which can be installed locally using any of
the following methods:

Table 2.1 Comparison of the classic .NET binding and .NET Core binding

 Classic .NET binding based on C++ Interop .NET Core binding based on C# Interop

download package Windows installer platform-specific zip or tar.gz package

package contents assembly, documentation, samples NuGet package with assembly, documenta-
tion, samples

implementation C++/CLI assembly pdflib_dotnet.dll with
unmanaged code

C# assembly PDFlib_dotnet.dll with
managed code and auxiliary DLL PDFlib_
dotnetcore_native.dll with unmanaged
code

.NET integration C++ Interop via implicit PInvoke C# Interop via explicit PInvoke

support for .NET Framework .NET Framework 4.x .NET Framework 4.6.1 and above

support for .NET Core n/a .NET Standard 2.0

target operating systems Windows x86 and x64 Windows x64, Linux x64, macOS, Alpine
Linux x64

Windows registry handling installer registers PDFlib and adds the li-
cense key to the registry

PDFlib registration not required; registry
entries for the license key must be added
manually

class name PDFlib_dotnet PDFlib_dotnet

support for deprecated
PDFlib 4-8 API methods

yes no

2.4 .NET Binding 37

> The dotnet command-line tool (all platforms). This method is detailed in the next
section.

> Visual Studio’s Package Manager UI (Windows and macOS)
> Visual Studio’s Package Manager Console (Windows)
> The nuget command-line tool (all platforms)

The project files for the supplied samples are prepared for target framework .NET Core
2.0 (target framework moniker TFM=netcoreapp2.0). You may want to adjust the TFM in
the project files if you want to target different frameworks (e.g. net471).

Installing PDFlib for .NET Core with the dotnet command-line tool. We describe the in-
stallation, configuration and build process with the dotnet utility, using the supplied
hello project as an example:

> Unpack the compressed product package in a directory of your choice.
> In a command shell cd to the hello project directory:

cd <installdir>\bind\dotnetcore\csharp\hello

> (This step is not required for the supplied samples which reference the package with
a local NuGet.Config file) Copy the NuGet package to the application’s project directo-
ry:

<installdir>/bind/dotnetcore/PDFlib_dotnet.X.Y.Z.nupkg

> (This step is not required for the supplied samples which already contain a reference
to PDFlib) Enter the following command with the appropriate version number:

dotnet add package PDFlib_dotnet.X.Y.Z

This command adds a PDFlib reference to the .csproj project file. It also installs PDFlib
in the local NuGet package cache if it is not yet present, e.g.

~/.nuget/packages/pdflib_dotnet/X.Y.Z

Because of this caching you must copy the *.nupkg only for the first project. Subse-
quent projects don’t require the package file since it is taken from the cache.

> Now you can build and run the hello project to test it:

dotnet build
dotnet run

As a result you will find the generated hello.pdf output document in the application
directory.

2.4.3 Classic .NET Binding
Note Detailed information about the classic .NET binding can be found in the PDFlib-in-.NET-

HowTo.pdf document which is contained in the distribution packages and also available on the
PDFlib Web site.

Installing the Classic .NET Binding. Install PDFlib with the supplied Windows Installer.
It installs the PDFlib assembly plus auxiliary data files, documentation and samples on
the machine interactively. The installer also registers PDFlib so that it can easily be ref-
erenced on the .NET tab in the Add Reference dialog box of Visual Studio.

38 Chapter 2: PDFlib Language Bindings

Referencing the .NET binding in a C# project. In order to use the .NET binding in a C#
project you must create a reference to the PDFlib assembly as follows in Visual C# .NET:
Project, Add Reference..., Browse..., and select pdflib_dotnet.dll from the installation direc-
tory. With the command line compiler you can reference PDFlib as in the following ex-
ample:

csc.exe /r:..\..\bin\pdflib_dotnet.dll hello.cs

2.4.4 Using the .NET Binding in Applications
This section applies to both variants of the .NET binding. Full examples with ready-to-
use configuration are included in all packages.

Once the .NET binding is properly referenced you can use the PDFlib_dotnet.PDFlib
and PDFlib_dotnet.PDFlibException classes.

Error handling in .NET. The .NET binding supports .NET exceptions and throws an ex-
ception with a detailed error message when a runtime problem occurs. The client is re-
sponsible for catching such an exception and properly reacting on it. Otherwise the
.NET framework will catch the exception and usually terminate the application.

In order to convey exception-related information PDFlib defines its own exception
class PDFlib_dotnet.PDFlibException with the members get_errnum, get_errmsg, and get_
apiname. PDFlib implements the IDisposable interface which means that clients can call
the Dispose() method for cleanup.

Client code can handle exceptions thrown by PDFlib with the usual try...catch con-
struct:

try {
...PDFlib instructions...

catch (PDFlibException e)
{

// caught exception thrown by PDFlib
Console.WriteLine("PDFlib exception occurred in hello sample:\n");
Console.WriteLine("[{0}] {1}: {2}\n",

e.get_errnum(), e.get_apiname(), e.get_errmsg());
} finally {

if (p != null) {
p.Dispose();

}
}

Unicode and legacy encoding conversion. For the convenience of PDFlib users we
show a useful C# string conversion method. Please refer to the .NET documentation for
more details. The following constructor creates a Unicode string from a byte array (at
the specified offset and length), using the encoding supplied in the Encoding parameter:

public String(sbyte*, int, int, Encoding)

2.5 Objective-C Binding 39

2.5 Objective-C Binding
Although the C and C++ language bindings can be used with Objective-C, a genuine lan-
guage binding for Objective-C is also available. The PDFlib framework is available in the
following flavors:

> PDFlib for use on macOS
> PDFlib_ios for use on iOS

Both frameworks contain language bindings for C, C++, and Objective-C.

Installing the PDFlib Edition for Objective-C. In order to use PDFlib in your application
you must copy PDFlib.framework or PDFlib_ios.framework to the directory /Library/
Frameworks. Installing the PDFlib framework in a different location is possible, but re-
quires use of Apple’s install_name_tool which is not described here. The PDFlib_objc.h
header file with PDFlib method declarations must be imported in the application source
code:

#import "PDFlib/PDFlib_objc.h"

or

#import "PDFlib_ios/PDFlib_objc.h"

In order to embed the PDFlib framework in an app XCode’s code signing expects a
framework with the version number A while PDFlib products use numeric version num-
bers. In order to get around this you can create an appropriately named framework fold-
er as follows:

cd PDFlib.framework/Versions
mv 9.3.1 A
rm Current
ln -s A Current

Parameter naming conventions. For PDFlib method calls you must supply parameters
according to the following conventions:

> The value of the first parameter is provided directly after the method name, separat-
ed by a colon character.

> For each subsequent parameter the parameter’s name and its value (again separated
from each other by a colon character) must be provided. The parameter names can
be found in the PDFlib API Reference or in PDFlib_objc.h.

For example, the following line in the PDFlib API Reference:

void begin_page_ext(double width, double height, String optlist)

corresponds to the following Objective-C method:

- (void) begin_page_ext: (double) width height: (double) height optlist: (NSString *) optlist;

This means your application must make a call similar to the following:

[pdflib begin_page_ext:595.0 height:842.0 optlist:@""];

XCode Code Sense for code completion can be used with the PDFlib framework.

40 Chapter 2: PDFlib Language Bindings

Error handling in Objective-C. The Objective-C binding translates PDFlib errors to na-
tive Objective-C exceptions. In case of a runtime problem PDFlib throws a native Objec-
tive-C exception of the class PDFlibException. These exceptions can be handled with the
usual try/catch mechanism:

@try {
...PDFlib instructions...

}
@catch (PDFlibException *ex) {

NSString * errorMessage =
[NSString stringWithFormat:@"PDFlib error %d in '%@': %@",
[ex get_errnum], [ex get_apiname], [ex get_errmsg]];

NSAlert *alert = [[NSAlert alloc] init];
[alert setMessageText: errorMessage];
[alert runModal];
[alert release];

}
@catch (NSException *ex) {

NSAlert *alert = [[NSAlert alloc] init];
[alert setMessageText: [ex reason]];
[alert runModal];
[alert release];

}
@finally {

[pdflib release];
}

In addition to the get_errmsg method you can also use the reason field of the exception
object to retrieve the error message.

2.6 Perl Binding 41

2.6 Perl Binding
The PDFlib wrapper for Perl consists of a C wrapper file and two Perl package modules,
one for providing a Perl equivalent for each PDFlib API function and another one for the
PDFlib object. The C module is used to build a shared library which the Perl interpreter
loads at runtime, with some help from the package file. Perl scripts refer to the shared li-
brary module via a use statement.

Installing the PDFlib Perl Edition. The Perl extension mechanism loads shared libraries
at runtime through the DynaLoader module. The Perl executable must have been com-
piled with support for shared libraries (this is true for the majority of Perl configura-
tions).

For the PDFlib binding to work, the Perl interpreter must access the PDFlib Perl wrap-
per and the modules pdflib_pl.pm and PDFlib/PDFlib.pm. In addition to the platform-spe-
cific methods described below you can add a directory to Perl’s @INC module search
path using the -I command line option:

perl -I/path/to/pdflib hello.pl

Unix. Perl will search pdflib_pl.so (on macOS: pdflib_pl.bundle), pdflib_pl.pm and PDFlib/
PDFlib.pm in the current directory or the directory printed by the following Perl com-
mand:

perl -e 'use Config; print $Config{sitearchexp};'

Perl will also search the subdirectory auto/pdflib_pl. Typical output of the above com-
mand looks like

/usr/lib/perl5/site_perl/5.32/i686-linux

Windows. The DLL pdflib_pl.dll and the modules pdflib_pl.pm and PDFlib/PDFlib.pm will
be searched in the current directory or the directory printed by the following Perl com-
mand:

perl -e "use Config; print $Config{sitearchexp};"

Typical output of the above command looks like

C:\Program Files\Perl5.32\site\lib

Error Handling in Perl. The Perl binding translates PDFlib errors to native Perl excep-
tions. The Perl exceptions can be dealt with by applying the appropriate language con-
structs, i.e., by bracketing critical sections:

eval {
...PDFlib instructions...

};
if ($@) {

die("$0: PDFlib Exception occurred:\n$@");
}

42 Chapter 2: PDFlib Language Bindings

More than one way of String handling. Depending on the requirements of your appli-
cation you can work with UTF-8, UTF-16, or legacy encodings. The following code snip-
pets demonstrate all three variants. All examples create the same Japanese output, but
accept the string input in different formats.

The first example works with Unicode UTF-8 and uses the Unicode::String module
which is part of most modern Perl distributions, and available on CPAN). Since Perl
works with UTF-8 internally no explicit UTF-8 conversion is required:

use Unicode::String qw(utf8 utf16 uhex);
...
$p->set_option("stringformat=utf8");
$font = $p->load_font("Arial Unicode MS", "unicode", "");
$p->setfont($font, 24.0);
$p->fit_textline(uhex("U+65E5 U+672C U+8A9E"), $x, $y, "");

The second example works with Unicode UTF-16 and little-endian byte order:

$p->set_option("textformat=utf16le");
$font = $p->load_font("Arial Unicode MS", "unicode", "");
$p->setfont($font, 24.0);
$p->fit_textline("\xE5\x65\x2C\x67\x9E\x8A", $x, $y, "");

The third example works with Shift-JIS. Except on Windows systems it requires access to
the 90ms-RKSJ-H CMap for string conversion:

$p->set_option("searchpath={{../../../resource/cmap}}");
$font = $p->load_font("Arial Unicode MS", "cp932", "");
$p->setfont($font, 24.0);
$p->fit_textline("\x93\xFA\x96\x7B\x8C\xEA", $x, $y, "");

Unicode and legacy encoding conversion. For the convenience of PDFlib users we list
useful string conversion methods here. Please refer to the Perl documentation for more
details. The following constructor creates a UTF-16 Unicode string from a byte array:

$logos="\x{039b}\x{03bf}\x{03b3}\x{03bf}\x{03c3}\x{0020}" ;

The following constructor creates a Unicode string from the Unicode character name:

$delta = "\N{GREEK CAPITAL LETTER DELTA}";

The Encode module supports many encodings and has interfaces for converting be-
tween those encodings:

use Encode 'decode';
$data = decode("iso-8859-3", $data); # convert from legacy to UTF-8

2.7 PHP Binding 43

2.7 PHP Binding
Installing the PDFlib PHP Edition. Detailed information about the various flavors and
options for using PDFlib with PHP can be found in the PDFlib-in-PHP-HowTo.pdf docu-
ment which is contained in the distribution packages and also available on the PDFlib
Web site.

You must configure PHP so that it knows about the external PDFlib library. You have
two choices:

> Add one of the following lines in php.ini:

extension=php_pdflib.so ; for Unix and macOS
extension=php_pdflib.dll ; for Windows

PHP will search the library in the directory specified in the extension_dir variable in
php.ini on Unix, and additionally in the standard system directories on Windows.
You can test which version of the PHP PDFlib binding you have installed with the fol-
lowing one-line PHP script:

<?phpinfo()?>

This will display a long info page about your current PHP configuration. On this page
check the section titled PDFlib.

> Load PDFlib at runtime with one of the following lines at the start of your script:

dl("php_pdflib.so"); # for Unix
dl("php_pdflib.dll"); # for Windows

Modified error return for PDFlib functions in PHP. Since PHP uses the convention of
returning the value 0 (FALSE) when an error occurs within a function, all PDFlib func-
tions have been adjusted to return 0 instead of -1 in case of an error. This difference is
noted in the function descriptions in the PDFlib API Reference. However, take care when
reading the code fragment examples in Section 3, »Creating PDF Documents«, page 51,
since they use the usual PDFlib convention of returning -1 in case of an error.

File name handling in PHP. Unqualified file names (without any path component) and
relative file names for PDF, image, font and other disk files are handled differently in
Unix and Windows versions of PHP:

> PHP on Unix systems will find files without any path component in the directory
where the script is located.

> PHP on Windows will find files without any path component only in the directory
where the PHP DLL is located. Note that PDFlib expects UTF-8-encoded file names,
while PHP’s dirname() function usually returns WinAnsi or some other host encoding.
In this case you must convert directory or file names to UTF-8; see Section 5.2.2, »Lan-
guage Bindings with UTF-8 Support«, page 107, for details. Example:

$searchpath = dirname(dirname(__FILE__)).'/data';
$searchpath = $p->convert_to_unicode("auto", $searchpath, "outputformat=utf8");

In order to provide platform-independent file name handling the use of PDFlib’s
SearchPath facility is strongly recommended (see Section 3.1.4, »Resource Configuration
and File Search«, page 55).

44 Chapter 2: PDFlib Language Bindings

Exception handling in PHP. Since PHP supports structured exception handling, PDFlib
exceptions will be propagated as PHP exceptions. PDFlib will throw an exception of the
class PDFlibException, which is derived from PHP’s standard Exception class. You can use
the standard try/catch technique to deal with PDFlib exceptions:

try {
$p = new PDFlib();
...PDFlib instructions...

} catch (PDFlibException $e) {
print "PDFlib exception occurred:\n";
print "[" . $e->get_errnum() . "] " . $e->get_apiname() . ": "

$e->get_errmsg() . "\n";
}
catch (Throwable $e) {

die("PHP exception occurred: " . $e->getMessage() . "\n");
}

Unicode and legacy encoding conversion. The iconv module can be used for string con-
versions. Please refer to the PHP documentation for more details.

Developing with Eclipse and Zend Studio. The PHP Development Tools (PDT) support
PHP development with Eclipse and Zend Studio. PDT can be configured to support con-
text-sensitive help with the steps outlined below.

Add PDFlib to the Eclipse preferences so that it will be known to all PHP projects:
> Select Window, Preferences, PHP, Source Paths,Libraries, New... to launch a wizard.
> In User library name enter PDFlib, click Add External folder... and select the folder

bind\php\Eclipse PDT.

In an existing or new PHP project you can add a reference to the PDFlib library as fol-
lows:

> In the PHP Explorer right-click on the PHP project and select Include Path, Configure
Include Path...

> Go to the Libraries tab, click Add Library..., and select User Library, PDFlib.

After these steps you can explore the list of PDFlib methods under the PHP Include Path/
PDFlib/PDFlib node in the PHP Explorer view. When writing new PHP code Eclipse will as-
sist with code completion and context-sensitive help for all PDFlib methods.

2.8 Python Binding 45

2.8 Python Binding
Installing the PDFlib Python Edition. The Python extension mechanism works by load-
ing shared libraries at runtime. For the PDFlib binding to work, the Python interpreter
must have access to the PDFlib library for Python which will be searched in the directo-
ries listed in the PYTHONPATH environment variable. The name of the Python wrapper
depends on the platform:

> Unix and macOS: pdflib_py.so
> Windows: pdflib_py.pyd

In addition to the PDFlib library the following files must be available in the same direc-
tory where the library sits:

> PDFlib/PDFlib.py
> PDFlib/__init__.py (only for Python 2.7)

Error Handling in Python. The Python binding throws a PDFlibException in case of an
error. The Python exceptions can be dealt with by the usual try/catch technique:

try:
p = PDFlib()

...PDFlib instructions...

except PDFlibException:
print("PDFlib exception occurred:"
print("[%d] %s: %s" % (ex.errnum, ex.apiname, ex.errmsg))

except Exception:
print(ex)

finally:
if p:

p.delete()

46 Chapter 2: PDFlib Language Bindings

2.9 RPG Binding
PDFlib provides a /copy module that defines all prototypes and some useful constants
needed to compile ILE-RPG programs with embedded PDFlib functions.

Unicode string handling. Since all functions provided by PDFlib use Unicode strings
with variable length as parameters, you have to use the %UCS2 builtin function to con-
vert a single-byte string to a Unicode string. All strings returned by PDFlib functions are
Unicode strings with variable length. Use the %CHAR builtin function to convert these
Unicode strings to single-byte strings.

Note The %CHAR and %UCS2 functions use the current job’s CCSID to convert strings from and to Uni-
code. The examples provided with PDFlib are based on CCSID 37 (US EBCDIC). This codepage can
be set with CHGJOB CCSID(37). Some characters in option lists (e.g. { [] }) may not be translated
correctly if you run the examples under other code pages.

Since all strings are passed as variable length strings you must not pass the length pa-
rameters in various functions which expect explicit string lengths (the length of a vari-
able length string is stored in the first two bytes of the string).

Compiling and binding RPG Programs for PDFlib. Using PDFlib functions from RPG re-
quires the compiled PDFLIB and PDFLIB_RPG service programs. To include the PDFlib
definitions at compile time you have to specify the name of the /copy member in the D
specs of your ILE-RPG program:

d/copy QRPGLESRC,PDFLIB

If the PDFlib source file library is not on top of your library list you have to specify the li-
brary as well:

d/copy PDFsrclib/QRPGLESRC,PDFLIB

Before you start compiling your ILE-RPG program you have to create a binding directory
that includes the PDFLIB and PDFLIB_RPG service programs shipped with PDFlib. The
following example assumes that you want to create a binding directory called PDFLIB in
the library PDFLIB:

CRTBNDDIR BNDDIR(PDFLIB/PDFLIB) TEXT('PDFlib Binding Directory')

After creating the binding directory you need to add the PDFLIB and PDFLIB_RPG service
programs to your binding directory. The following example assumes that you want to
add the service program PDFLIB in the library PDFLIB to the binding directory created
earlier.

ADDBNDDIRE BNDDIR(PDFLIB/PDFLIB) OBJ((PDFLIB/PDFLIB *SRVPGM))

Now you can compile your program using the CRTBNDRPG command (or option 14 in
PDM):

ADDLIBLE LIB(PDFLIB)
CRTBNDRPG PGM(PDFLIB/HELLO) SRCFILE(PDFLIB/QRPGLESRC) SRCMBR(*PGM) DFTACTGRP(*NO)
BNDDIR(PDFLIB/PDFLIB)

Before executing the generated program you should apply the following command:

2.9 RPG Binding 47

chgcurdir '/pdflib/pdflib/x.y/x.y.z/bind/rpg'

The generated PDF documents can be found in the same directory.
Parameters must be passed to the PDFlib API according to the data types listed in Ta-

ble 2.2.

Error Handling in RPG. PDFlib clients written in ILE-RPG can use the monitor/on-error/
endmon error handling mechanism that ILE-RPG provides. Another way to monitor for
exceptions is to use the *PSSR global error handling subroutine in ILE-RPG. If an excep-
tion occurs, the job log shows the error number, the function that failed and the reason
for the exception. PDFlib sends an escape message to the calling program.

c eval p=PDF_new
*
c monitor
*
c eval doc=PDF_begin_document(p:%ucs2(’/tmp/my.pdf’):docoptlist)
:
:
* Error Handling
c on-error
* Do something with this error
* don’t forget to free the PDFlib object
c callp PDF_delete(p)
c endmon

Table 2.2 Data types in the RPG binding

API data type data types in the RPG binding

string data type Unicode string (use %ucs2)

binary data type data

48 Chapter 2: PDFlib Language Bindings

2.10 Ruby Binding
Installing the PDFlib Ruby edition. The Ruby extension mechanism works by loading a
shared library at runtime. For the PDFlib binding to work, the Ruby interpreter must
have access to the PDFlib extension library for Ruby. This library (on Windows and Unix:
PDFlib.so; on macOS: PDFlib.bundle) will usually be installed in the site_ruby branch of the
local ruby installation directory, i.e. in a directory with a name similar to the following:

/usr/local/lib/ruby/site_ruby/<version>/

However, Ruby will search other directories for extensions as well. In order to retrieve a
list of these directories you can use the following ruby call:

ruby -e "puts $:"

This list will usually include the current directory, so for testing purposes you can sim-
ply place the PDFlib extension library and the scripts in the same directory.

Error Handling in Ruby. The Ruby binding installs an error handler which translates
PDFlib exceptions to native Ruby exceptions. The Ruby exceptions can be dealt with by
the usual rescue technique:

begin
...PDFlib instructions...

rescue PDFlibException => pe
print "PDFlib exception occurred in hello sample:\n"
print "[" + pe.get_errnum.to_s + "] " + pe.get_apiname + ": " + pe.get_errmsg + "\n"

end

Ruby on Rails. Ruby on Rails is an open-source framework which facilitates Web devel-
opment with Ruby. The PDFlib extension for Ruby can be used with Ruby on Rails. Fol-
low these steps to run the PDFlib examples for Ruby on Rails:

> Install Ruby and Ruby on Rails.
> Set up a new controller from the command line:

$ rails new pdflibdemo
$ cd pdflibdemo
$ cp <PDFlib dir>/bind/ruby/<version>/PDFlib.so vendor/ # use .so/.dll/.bundle
$ rails generate controller home demo
$ rm public/index.html

> Edit config/routes.rb:

...
remember to delete public/index.html
root :to => "home#demo"

> Edit app/controllers/home_controller.rb as follows and insert PDFlib code for creating
PDF contents. Keep in mind that the PDF output must be generated in memory, i.e.
an empty file name must be supplied to begin_document(). As a starting point you
can use the code in the hello-rails.rb sample:

class HomeController < ApplicationController
def demo
require "PDFlib"

2.10 Ruby Binding 49

begin
p = PDFlib.new
...
...PDFlib application code, see hello-rails.rb...
...
send_data p.get_buffer(), :filename => "hello.pdf",
:type => "application/pdf", :disposition => "inline"
rescue PDFlibException => pe
error handling

end
end
end

> In order to test your installation start the WEBrick server with the command

$ rails server

and point your browser to http://0.0.0.0:3000. The generated PDF document will be
displayed in the browser.

Local PDFlib installation. If you want to use PDFlib only with Ruby on Rails, but cannot
install it globally for general use with Ruby, you can install PDFlib locally in the vendors
directory within the Rails tree. This is particularly useful if you do not have permission
to install Ruby extensions for general use, but want to work with PDFlib in Rails never-
theless.

50 Chapter 2: PDFlib Language Bindings

3.1 General PDFlib Programming Aspects 51

3 Creating PDF Documents
3.1 General PDFlib Programming Aspects

Cookbook Code samples regarding general programming issues can be found in the general category of
the PDFlib Cookbook.

3.1.1 Exception Handling
Errors of a certain kind are called exceptions in many languages for good reasons – they
are mere exceptions, and are not expected to occur very often during the lifetime of a
program. The general strategy is to use conventional error reporting mechanisms (i.e.
special error return codes such as -1) for function calls which may often fail, and use a
special exception mechanism for those rare occasions which don’t warrant cluttering
the code with conditionals. This is exactly the path that PDFlib goes: Some operations
can be expected to go wrong rather frequently, for example:

> Trying to open an output file for which one doesn’t have permission
> Trying to open an input PDF with a wrong file name
> Trying to open a corrupt image file

PDFlib signals such errors by returning a special value (usually –1, but 0 in the PHP
binding) as documented in the PDFlib API Reference. This error code must be checked by
the application developer for all functions which are documented to return -1 on error.

Other events may be considered harmful, but will occur rather infrequently, e.g.
> running out of virtual memory
> scope violations (e.g., closing a document before opening it)
> supplying wrong parameters to PDFlib API functions (e.g., trying to draw a circle with

negative radius), or supplying wrong options.

When PDFlib detects such a situation, an exception will be thrown instead of passing a
special error return value to the caller. It is important to understand that the generated
PDF document cannot be finished when an exception occurred. The only methods
which can safely be called after an exception are PDF_delete(), PDF_get_apiname(), PDF_
get_errnum(), and PDF_get_errmsg(). Calling any other PDFlib method after an exception
may lead to unexpected results. The exception will contain the following information:

> A unique error number;
> The name of the PDFlib API function which caused the exception;
> A descriptive text containing details of the problem.

Querying the reason of a failed function call. As noted above, the generated PDF out-
put document must always be abandoned when an exception occurs. However, when a
function reports a non-fatal problem by returning an error value, the document can be
continued. The client application is free to continue the document by adjusting the pro-
gram flow or supplying different data. For example, when a particular font cannot be
loaded most clients will give up the document, while others may prefer to work with a
different font. In this case it may be desirable to retrieve an error message which de-
scribes the problem in more detail. In this situation the functions PDF_get_errnum(),
PDF_get_errmsg(), and PDF_get_apiname() can be called immediately after a failed func-
tion call, i.e., a function call which returned a -1 (in PHP: 0) error value.

http://www.pdflib.com/pdflib-cookbook/general/

52 Chapter 3: Creating PDF Documents

Error policies. When PDFlib detects an error condition, it will react according to one of
several strategies which can be configured with the errorpolicy option. All functions
which can return error codes also support an errorpolicy option. The following error pol-
icies are supported:

> errorpolicy=legacy: this deprecated setting ensures behavior which is compatible to
earlier versions of PDFlib. Some functions return an error code, while others throw
an exception according to the respective API description. The legacy setting is the de-
fault error policy.

> errorpolicy=return: when an error condition is detected the function returns with a -1
(in PHP: 0) error value. The application developer must check the return value to
identify problems, and must react on the problem in whatever way is appropriate
for the application. This is the recommended approach since it allows a unified ap-
proach to error handling.

> errorpolicy=exception: an exception is thrown when an error condition is detected.
The output document will be incomplete and unusable after an exception. This can
be used for lazy programming without any error conditionals at the expense of sac-
rificing the output document even for problems which may be fixable by the appli-
cation.

The following code fragments demonstrate different strategies with respect to excep-
tion handling. The examples try to load a font which may or may not be available.

If errorpolicy=return the return value must be checked for an error. If it indicates fail-
ure, the reason of the failure can be queried in order to properly deal with the situation:

font = p.load_font("MyFontName", "unicode", "errorpolicy=return");
if (font == -1)
{

/* font handle is invalid; find out what happened. */
errmsg = p.get_errmsg());
/* Try a different font or give up */
...

}
/* font handle is valid; continue */

If errorpolicy=exception the document must be abandoned if an error occurs:

font = p.load_font("MyFontName", "unicode", "errorpolicy=exception");
/* Unless an exception was thrown the font handle is valid;
* if an exception occurred, the PDF output cannot be continued
*/

Cookbook A full code sample can be found in the Cookbook topic general/error_handling.

Warnings. Some problem conditions are detected by PDFlib internally, but do not jus-
tify interrupting the program flow by throwing an exception. Instead of throwing an
exception, a description of the condition is logged (see Section 3.1.2, »Logging«, page 53,
for more details about the logging feature). We recommend the following approach
with respect to warnings:

> Enable warning logging in the development phase and carefully study any warning
messages in the log file. They may point to potential problems in your code or data,
and you should try to understand or eliminate the reason for those warnings.

http://www.pdflib.com/pdflib-cookbook/general/error_handling/

3.1 General PDFlib Programming Aspects 53

> Disable warning logging in the production phase, and re-enable it only in case of
problems.

3.1.2 Logging
PDFlib can create a log file which records the following items:

> all API calls with corresponding parameters and options; note that logging may con-
tain additional API calls issued by the PDFlib language wrapper (e.g. for string con-
version).

> return values and handles returned by API functions;
> a timestamp for each call;
> information regarding the use of deprecated API features;
> warning messages which don’t justify an exception, but should be examined during

the development phase of an application;
> details about internal operation which may be useful for investigating support cas-

es.

The contents of a log file may can be an important aid for application developers for
identifying problems in the program flow. Logging can be enabled at runtime as fol-
lows:

p.set_option("logging={filename={mylogfile.log}}");

Alternatively, logging can be enabled via environment variables. The amount of logged
information can be controlled with various logging classes and levels for each class; see
PDFlib API Reference for details.

Logging should not normally be enabled in production situations, but only during
the development phase and when problems need to be analyzed. PDFlib GmbH support
may request log files to discuss user problems.

The following excerpt shows lines from a typical log file with default logging classes:

PDF_load_image(p_0x2201c20, "auto", "nesrin.jpg", /*c*/0, "")
[0]

PDF_begin_page_ext(p_0x2201c20, 10.000000, 10.000000, "")
[Begin page #1]
PDF_fit_image(p_0x2201c20, 0, 0.000000, 0.000000, "adjustpage")
PDF_close_image(p_0x2201c20, 0)
PDF_end_page_ext(p_0x2201c20, "")
[End page #1]

PDF_end_document(p_0x2201c20, "")
[Full product name: "PDFlib Personalization Server"]
[Document ID: <C98301CB2D4EAC2972D34CAAAE929021> <C98301CB2D4EAC2972D34CAAAE929021>]
[Size of document: 34842 bytes]
[End document #1]

3.1.3 The PDFlib Virtual File System (PVF)
Cookbook A full code sample can be found in the Cookbook topic general/starter_pvf.

In addition to disk files a facility called PDFlib Virtual File System (PVF) allows clients to di-
rectly supply data in memory without any disk files involved. This offers performance
benefits and can be used for data fetched from a database which does not even exist on

http://www.pdflib.com/pdflib-cookbook/general/starter_pvf/

54 Chapter 3: Creating PDF Documents

an isolated disk file, as well as other situations where the client already has the required
data available in memory as a result of some processing.

PVF is based on the concept of named virtual read-only files which can be used just
like regular file names with any API function. They can even be used in UPR configura-
tion files. Virtual file names can be generated in an arbitrary way by the client. Obvious-
ly, virtual file names must be chosen such that name clashes with regular disk files are
avoided. For this reason a hierarchical naming convention for virtual file names is rec-
ommended as follows (filename refers to a name chosen by the client which is unique in
the respective category). It is also recommended to keep standard file name suffixes:

> Raster image files: /pvf/image/filename
> font outline and metrics files (it is recommended to use the actual font name as the

base portion of the file name): /pvf/font/filename
> ICC profiles: /pvf/iccprofile/filename
> PDF documents: /pvf/pdf/filename

When searching for a named file PDFlib will first check whether the supplied file name
refers to a known virtual file, and then try to open the named file on disk.

Lifetime of virtual files. Some functions will immediately consume the data supplied
in a virtual file, while others will read only parts of the file, with other fragments being
used at a later point in time. For this reason close attention must be paid to the lifetime
of virtual files. PDFlib will place an internal lock on every virtual file, and remove the
lock only when the contents are no longer needed. Unless the client requested PDFlib to
make an immediate copy of the data (using the copy option in PDF_create_pvf()), the vir-
tual file’s contents must only be modified, deleted, or freed by the client when it is no
longer locked by PDFlib. PDFlib will automatically delete all virtual files in PDF_delete().
However, the actual file contents (the data comprising a virtual file) must always be
freed by the client.

Different strategies. PVF supports different approaches with respect to managing the
memory required for virtual files. These are governed by the fact that PDFlib may need
access to a virtual file’s contents after the API call which accepted the virtual file name,
but never needs access to the contents after PDF_end_document(). Remember that call-
ing PDF_delete_pvf() does not free the actual file contents (unless the copy option has
been supplied), but only the corresponding data structures used for PVF file name ad-
ministration. This gives rise to the following strategies:

> Minimize memory usage: it is recommended to call PDF_delete_pvf() immediately af-
ter the API call which accepted the virtual file name, and another time after PDF_end_
document(). The second call is required because PDFlib may still need access to the
data so that the first call refuses to unlock the virtual file. However, in some cases the
first call will already free the data, and the second call doesn’t do any harm. The cli-
ent may free the file contents only when PDF_delete_pvf() succeeded.

> Optimize performance by reusing virtual files: some clients may wish to reuse some
data (e.g., font definitions) within various output documents, and avoid multiple
create/delete cycles for the same file contents. In this case it is recommended not to
call PDF_delete_pvf() as long as more PDF output documents using the virtual file
will be generated.

3.1 General PDFlib Programming Aspects 55

> Lazy programming: if memory usage is not a concern the client may elect not to call
PDF_delete_pvf() at all. In this case PDFlib will internally delete all pending virtual
files in PDF_delete().

In all cases the client may free the corresponding data only when PDF_delete_pvf() re-
turned successfully, or after PDF_delete().

Creating PDF output in a virtual file. In addition to supplying user data to PDFlib, PVF
can also hold the PDF document data generated by PDFlib. This can be achieved by sup-
plying the createpvf option to PDF_begin_document(). The PVF file name can later be sup-
plied to other PDFlib API functions. This is useful, for example, when generating PDF
documents for inclusion in a PDF Portfolio. It is not possible to directly retrieve the PVF
data created by PDFlib; use the active or passive in-core PDF generation interface to
fetch PDF data from memory (see Section 3.1.5, »Generating PDF Documents in Memo-
ry«, page 60).

3.1.4 Resource Configuration and File Search
In most advanced applications PDFlib needs access to resources such as font files, ICC
color profiles, etc. In order to make PDFlib’s resource handling platform-independent
and customizable, a configuration file can be supplied for describing the available re-
sources along with the names of their corresponding disk files. In addition to a static
configuration file, dynamic configuration can be accomplished at runtime by adding
resources with PDF_set_option(). For the configuration file PDFlib uses a simple text for-
mat called Unix PostScript Resource (UPR). We extended the original UPR format for our
purposes. The UPR file format as used by PDFlib is described below.

With the enumeratefonts option PDFlib can be instructed to collect all fonts which are
accessible on the search path (see »File search and the SearchPath resource category«,
page 56). Using the saveresources option the current list of PDFlib resources can be writ-
ten to a file:

/* add font directory to the search path */
p.set_option("searchpath={{C:/fonts}}");

/* enumerate all fonts on the searchpath and create a UPR file */
p.set_option("enumeratefonts saveresources={filename={C:/fonts/pdflib.upr}}");

Resource categories. The resource categories supported by PDFlib are listed in Table
3.1. Most categories map a resource name (to be used in the PDFlib API) to the name of a
virtual or disk-based file. Resource categories other than those in Table 3.1 are ignored.
Category names are case-insensitive. The values are treated as name strings; they can be
encoded in ASCII or UTF-8 (with BOM at the start of a line), or in EBCDIC-UTF-8 on IBM Z.
Unicode values may be useful for localized font names with the HostFont resource.

The UPR file format. UPR files are text files with a very simple structure that can easily
be written in a text editor or generated automatically. To start with, let’s take a look at
some syntactical issues:

> Lines can have a maximum of 1023 characters.
> A backslash character ’\’ at the end of a line cancels the line end. This may be used to

extend lines.

56 Chapter 3: Creating PDF Documents

> A percent ’%’ character introduces a comment until the end of the line. Percent char-
acters which are part of the line data (i.e. which do not start a comment) must be pro-
tected with a preceding backslash character.

> Backslash characters in front of a backslash which protects the line end and back-
slash characters which protect a percent character must be duplicated if they are
part of the line data.

> An isolated period character ’ . ’ serves as a section terminator.
> All entries are case-sensitive.
> Whitespace is ignored everywhere except in resource names and file names.
> Resource names and values must not contain any equal character ’=’.
> If a resource is defined more than once, the last definition will overwrite earlier defi-

nitions.

UPR files consist of the following components:
> A magic line for identifying the file. It has the following form:

PS-Resources-1.0

> An optional section listing all resource categories described in the file. Each line de-
scribes one resource category. The list is terminated by a line with a single period
character. Available resource categories are described below. If this optional section
is not present, a single period character must be present nevertheless.

> A section for each of the resource categories listed at the beginning of the file. Each
section starts with a line showing the resource category, followed by an arbitrary
number of lines describing available resources. The list is terminated by a line with a
single period character. Each resource data line contains the name of the resource
(equal signs have to be quoted). If the resource requires a file name, this name has to
be added after an equal sign. The SearchPath (see below) will be applied when PDFlib
searches for files listed in resource entries.

File search and the SearchPath resource category. PDFlib reads a variety of data items,
such as raster images, font outline and metrics information, PDF documents, and ICC
color profiles from disk files. In addition to relative or absolute path names you can also
use file names without any path specification. The SearchPath resource category can be

Table 3.1 Resource categories supported in PDFlib

category format explanation

SearchPath pathname relative or absolute path name of directories containing data files

CMap cmapname=filename CMap file for CJK encoding

FontAFM fontname=filename PostScript font metrics file in AFM format

FontPFM fontname=filename PostScript font metrics file in PFM format

FontOutline fontname=filename PostScript, TrueType, OpenType, WOFF, or CEF font outline file

Encoding encodingname=filename text file containing an 8-bit encoding or code page table

HostFont fontname=hostfontname name of a font installed on the system (usually both font names
are identical)

FontnameAlias aliasname=fontname create an alias for a font which is already known to PDFlib

ICCProfile profilename=filename name of an ICC color profile

3.1 General PDFlib Programming Aspects 57

used to specify a list of path names for directories containing the required data files.
When PDFlib must open a file it will first use the file name exactly as supplied and try to
open the file. If this attempt fails, PDFlib tries to open the file in the directories specified
in the SearchPath resource category one after another until it succeeds. SearchPath en-
tries can be accumulated, and are searched in reverse order (paths set at a later point in
time will searched before earlier ones). This feature can be used to free PDFlib applica-
tions from platform-specific file system schemes. You can set search path entries as fol-
lows:

p.set_option("SearchPath={{/path/to/dir1} {/path/to/dir2}}");

The search path can be set multiply, and multiple directory names can be supplied in a
single call. It is recommended to use double braces even for a single entry to avoid prob-
lems with directory names containing space characters. An empty string list (i.e. {{}})
deletes all existing search path entries including the default entries.

In order to disable the search you can use a fully specified path name in the PDFlib
functions. Note the following platform-specific features of the SearchPath resource cate-
gory:

> On Windows PDFlib initializes the SearchPath with entries from the registry. The fol-
lowing registry entries may contain a list of path names separated by a semicolon ’;’
character. They will be searched in the order provided below:

HKLM\SOFTWARE\PDFlib\PDFlib9\9.3.1\SearchPath
HKLM\SOFTWARE\PDFlib\PDFlib9\SearchPath
HKLM\SOFTWARE\PDFlib\SearchPath

> On IBM System i the SearchPath resource category will be initialized with the follow-
ing values:

/PDFlib/PDFlib/9.3/resource/icc
/PDFlib/PDFlib/9.3/resource/fonts
/PDFlib/PDFlib/9.3/resource/cmap
/PDFlib/PDFlib/9.3
/PDFlib/PDFlib
/PDFlib

The last of these entries is especially useful for storing a license file for multiple
products.

Default file search paths. On Unix, Linux, macOS and IBM System i systems some di-
rectories will be searched for files by default even without specifying any path and di-
rectory names. Before searching and reading the UPR file (which may contain additional
search paths), the following directories will be searched:

<rootpath>/PDFlib/PDFlib/9.3/resource/cmap
<rootpath>/PDFlib/PDFlib/9.3/resource/codelist
<rootpath>/PDFlib/PDFlib/9.3/resource/glyphlst
<rootpath>/PDFlib/PDFlib/9.3/resource/fonts
<rootpath>/PDFlib/PDFlib/9.3/resource/icc
<rootpath>/PDFlib/PDFlib/9.3
<rootpath>/PDFlib/PDFlib
<rootpath>/PDFlib

58 Chapter 3: Creating PDF Documents

On Unix, Linux, and macOS <roothpath> will first be replaced with /usr/local and then
with the HOME directory. On IBM System i <roothpath> is empty.

Default file names for license and resource files. By default, the following file names
are searched for in the default search path directories:

licensekeys.txt (license file; on MVS: license)
pdflib.upr (resource file; on MVS: upr)

This feature can be used to work with a license file without setting any environment
variable or runtime option.

Sample UPR file. The following listing gives an example of a UPR configuration file:

PS-Resources-1.0
.
SearchPath
/usr/local/lib/fonts
C:/psfonts/pfm
/users/kurt/my_images
.
FontOutline
ArialMT=Arial.ttf
.
HostFont
Wingdings=Wingdings
.
ICCProfile
highspeedprinter=cmykhighspeed.icc
.

Searching for the UPR resource file. If only the built-in resources (e.g., PDF core font,
sRGB ICC profile) or system resources (host fonts) are to be used, a UPR configuration
file is not required since PDFlib will find all necessary resources without any additional
configuration.

If other resources are to be used you can specify such resources via calls to PDF_set_
option() (see below) or in a UPR resource file. PDFlib reads this file automatically when
the first resource is requested. The detailed process is as follows:

> On Unix systems, macOS and IBM System i some directories will be searched by de-
fault for license and resource files even without specifying any path and directory
names. Before searching and reading the UPR file, the following directories will be
searched (in this order):

<rootpath>/PDFlib/PDFlib/9.3/resource/icc

<rootpath>/PDFlib/PDFlib/9.3/resource/fonts

<rootpath>/PDFlib/PDFlib/9.3/resource/cmap

<rootpath>/PDFlib/PDFlib/9.3

<rootpath>/PDFlib/PDFlib

<rootpath>/PDFlib

On Unix systems and macOS <roothpath> will first be replaced with /usr/local and
then with the HOME directory. On IBM System i <roothpath> is empty. This feature
can be used to work with a license file, UPR file, or resources without setting any en-
vironment variables or runtime options.

3.1 General PDFlib Programming Aspects 59

> If the environment variable PDFLIBRESOURCEFILE is defined PDFlib takes its value as
the name of the UPR file to be read. If this file cannot be read an exception will be
thrown.

> If the environment variable PDFLIBRESOURCEFILE is not defined PDFlib tries to open a
file with the following name:

upr (on MVS; a dataset is expected)
pdflib/<version>/fonts/pdflib.upr (on IBM System i)
pdflib.upr (Windows, Unix, and all other systems)

If this file cannot be read no exception will be thrown.
> On Windows PDFlib will additionally try to read the following registry entries which

will be searched in the order provided below:

HKLM\Software\PDFlib\PDFlib9\9.3.1\resourcefile
HKLM\Software\PDFlib\PDFlib9\resourcefile
HKLM\Software\PDFlib\resourcefile

The values of these entries will be taken as the name of the resource file to be used. If
this file cannot be read an exception will be thrown. Be careful when manually ac-
cessing the registry on 64-bit Windows systems: as usual, 64-bit PDFlib binaries will
work with the 64-bit view of the Windows registry, while 32-bit PDFlib binaries run-
ning on a 64-bit system will work with the 32-bit view of the registry. If you must add
registry keys for a 32-bit product manually, make sure to use the 32-bit version of the
regedit tool. It can be invoked as follows from the Start dialog:

%systemroot%\syswow64\regedit

> The client can force PDFlib to read a resource file at runtime by explicitly setting the
resourcefile option:

p.set_option("resourcefile={/path/to/pdflib.upr}");

This call can be repeated arbitrarily often; the resource entries will be accumulated.

Configuring resources at runtime. In addition to using a UPR file for the configuration,
it is also possible to directly configure individual resources within the source code via
PDF_set_option(). This function takes a category name and a corresponding resource en-
try as it would appear in the respective section of this category in a UPR resource file, for
example:

p.set_option("FontOutline={Foobar-Bold=foobb.otf}");

Note Font configuration is discussed in more detail in Section 6.4.4, »Searching for Fonts«, page 140.

Querying resource values. In addition to setting resource entries you can query values
using PDF_get_option(). Specify the category name as key and the number of the re-
source (starting at 1) as option. For example, the following call:

idx = p.get_option("SearchPath", "resourcenumber=" + n);
sp = p.get_string(idx, "");

retrieves the n-th entry in the SearchPath list. If n is larger than the number of available
entries for the requested category an empty string will be returned. The returned string
is valid until the next call to any API function.

60 Chapter 3: Creating PDF Documents

3.1.5 Generating PDF Documents in Memory
In addition to generating PDF documents on a file, PDFlib can also be instructed to gen-
erate the PDF directly in memory (in-core). This technique offers performance benefits
since no disk-based I/O is involved, and the PDF document can, for example, directly be
streamed via HTTP. Webmasters will be especially happy to hear that their server will
not be cluttered with temporary PDF files.

You may, at your option, periodically collect partial data (e.g., every time a page has
been finished), or fetch the complete PDF document in a single chunk at the end (after
PDF_end_document()). Interleaving production and consumption of the PDF data has
several advantages. Firstly, since not all data must be kept in memory, the memory re-
quirements are reduced. Secondly, such a scheme can boost performance since the first
chunk of data can be transmitted over a slow link while the next chunk is still being
generated. However, the total length of the generated data will only be known when the
complete document is finished.

You can use the createpvf option to create PDF data in memory and subsequently
pass it to PDFlib without writing a disk file (see »Creating PDF output in a virtual file«,
page 55).

The active in-core PDF generation interface. In order to generate PDF data in memory,
simply supply an empty filename to PDF_begin_document(), and retrieve the data with
PDF_get_buffer():

p.begin_document("", "");
...create document...
p.end_document("");

buf = p.get_buffer();
... use the PDF data contained in the buffer ...
p.delete();

Note The PDF data in the buffer must be treated as binary data.

This is considered »active« mode since the client decides when he wishes to fetch the
buffer contents. Active mode is available for all supported language bindings.

Note C and C++ clients must not free the returned buffer.

The passive in-core PDF generation interface. In »passive« mode, which is only avail-
able in the C and C++ language bindings, the user installs (via PDF_open_document_
callback()) a callback function which will be called at unpredictable times by PDFlib
whenever PDF data is waiting to be consumed. Timing and buffer size constraints relat-
ed to flushing (transferring the PDF data from the library to the client) can be config-
ured by the client in order to provide for maximum flexibility. Depending on the envi-
ronment, it may be advantageous to fetch the complete PDF document at once, in
multiple chunks, or in many small segments in order to prevent PDFlib from increasing
the internal document buffer. The flushing strategy can be set using the flush option of
PDF_open_document_callback()).

3.1 General PDFlib Programming Aspects 61

3.1.6 Maximum Size of PDF Documents and other Limits

Size of PDF documents. Although most users won’t see any need for PDF documents
in the range of Gigabytes, some enterprise applications must create or process docu-
ments containing a large number of, say, invoices or statements. While PDFlib itself
does not impose any limits on the size of the generated documents, there are several re-
strictions mandated by the PDF Reference and some PDF standards:

> 10 GB file size limit: PDF 1.4 documents are limited by the cross-reference table to 10
decimal digits and therefore 1010-1 bytes, which equates to roughly 9.3 GB. If you plan
to create output documents beyond 10 GB you must use PDF 1.5 or above. This ver-
sion supports cross-reference streams which are no longer subject to the 10-digits
limit and therefore allow creation of PDF documents beyond 10 GB.

> Number of objects: while the object count in a document is not limited by PDF in
general, the PDF/A, PDF/X-4 and PDF/X-5 standards limit the number of indirect ob-
jects in a document to 8.388.607. If a document requires objects beyond this limit
PDFlib will throw an exception in PDF/A, PDF/X-4 and PDF/X-5 mode. In other modes
documents with more objects can always be created. This check can be disabled with
the document option limitcheck=false.
The number of objects in PDF depends on the complexity of the page contents, num-
ber of interactive elements, etc. Since typical high-volume documents with simple
contents require ca. 4-10 objects per page on average, documents with ca. 1-2 million
pages can be created without exceeding the object limit mandated by the standards.

PDF limits. PDFlib imposes limits on certain entities in order to create PDF output
which conforms to the limitations imposed by the PDF Reference, Acrobat, or some PDF
standard. These limits are documented below.
The following limits are enforced by suitably modifying the values:

> Smallest absolute floating point value in PDF: 0.000015. Numbers with a smaller ab-
solute value are replaced with 0.

> (PDF 1.4, but not newer PDF versions) Largest absolute value which can be expressed
as floating point number in PDF: 32767.0. Numbers with a larger absolute value are
replaced with the closest integer.

The PDF format imposes certain restrictions. Exceeding one of the following limits re-
sults in an exception:

> Largest allowed numerical value in PDF: 2.147.483.647
> Maximum length of hypertext strings: 65535
> Maximum length of text strings on the page: 32.763 bytes (i.e. 16.381 characters for

CID fonts) if kerning=false and wordspacing=0; otherwise 4095 characters
> The following options are limited to a maximum of 8191 list entries:

views, namelist, polylinelist, fieldnamelist, itemnamelist, itemtextlist, children, group
> Maximum number of indirect objects in PDF/A-1/2/3 and PDF/X-4/5: 8.388.607

3.1.7 Multi-threaded Programming
The threading behavior of PDFlib can be characterized as follows: While PDFlib itself is
single-threaded, it can safely be used in multi-threaded applications. In the common
situation that a PDFlib object is only used within one thread, no particular multi-
threading precautions are necessary. If the same PDFlib object will be used within mul-
tiple threads the application must synchronize the threads to make sure that the PDFlib

62 Chapter 3: Creating PDF Documents

object is not accessed simultaneously by more than one thread. A typical scenario
would involve a pool of PDFlib objects where each thread fetches an existing PDFlib ob-
ject from the pool instead of creating a new one, and returns it to the pool after creating
a document if the object is no longer needed. Using the same PDFlib object in another
thread before the output document is finished will rarely provide any advantage for the
application, and is not recommended.

3.1.8 Using PDFlib on EBCDIC-based Platforms
The operators and structure elements in the PDF file format are based on ASCII which
doesn’t work well with EBCDIC-based platforms such as IBM System i and IBM Z (but not
zLinux which is based on ASCII). However, a special mainframe version of PDFlib is
available in order to allow mixing of ASCII-based PDF operators and EBCDIC (or other)
text output. The EBCDIC-safe version of PDFlib is available for various operating sys-
tems and machine architectures.

In order to leverage PDFlib’s features on EBCDIC-based platforms the following items
are expected to be supplied in EBCDIC text format (more specifically, in code page 037
on IBM System i, and code page 1047 on IBM Z):

> PFA font files, UPR configuration files, AFM font metrics files
> encoding and code page files
> string parameters to PDFlib functions
> input and output file names
> environment variables (if supported by the runtime environment)
> PDFlib error messages will also be generated in EBCDIC format (except in Java).

If you prefer to use input text files in ASCII format you can set the asciifile option to true
(default is false on IBM Z and true on IBM System i). PDFlib will then expect these files in
ASCII encoding. String parameters are still expected in EBCDIC encoding, however.

In contrast, the following items must always be treated in binary mode (i.e., any con-
version must be avoided):

> PDF input and output files
> PFB font outline and PFM font metrics files
> TrueType and OpenType font files
> image files and ICC profiles

3.2 Page Descriptions 63

3.2 Page Descriptions
3.2.1 Coordinate Systems

PDF’s default coordinate system is used within PDFlib. The default coordinate system
(or default user space) has the origin in the lower left corner of the page, and uses the
DTP point as unit:

1 pt = 1/72 inch = 25.4/72 mm = 0.3528 mm

The first coordinate increases to the right, the second coordinate increases upwards.
PDFlib client programs may change the default user space by rotating, scaling, translat-
ing, or skewing, resulting in new user coordinates. The respective functions for these
transformations are PDF_rotate(), PDF_scale(), PDF_translate(), and PDF_skew(). If the co-
ordinate system has been transformed, all coordinates in graphics and text functions
must be supplied according to the new coordinate system. The coordinate system is re-
set to the default coordinate system at the start of each page.

Using metric coordinates. Metric coordinates can easily be used by scaling the coor-
dinate system. The scaling factor is derived from the definition of the DTP point given
above:

p.scale(28.3465, 28.3465);

After this call PDFlib will interpret all coordinates (except for interactive features, see
below) in centimeters since 72/2.54 = 28.3465.

As a related feature, the userunit option in PDF_begin/end_page_ext() (PDF 1.6) can be
specified to supply a scaling factor for the whole page. Note that user units will only af-
fect final page display in Acrobat, but not any coordinate scaling in PDFlib.

Cookbook A full code sample can be found in the Cookbook topic general/metric_topdown_coordinates.

Coordinates for interactive elements. PDF always expects coordinates for interactive
functions, such as the rectangle coordinates for creating text annotations, links, and file
annotations in the default coordinate system, and not in the (possibly transformed)
user coordinate system. Since this is very cumbersome PDFlib offers automatic conver-
sion of user coordinates to the format expected by PDF. This automatic conversion is ac-
tivated by setting the usercoordinates option to true:

p.set_option("usercoordinates=true");

Since PDF supports only link and field rectangles with edges parallel to the page edges,
the supplied rectangles must be modified when the coordinate system has been trans-
formed by scaling, rotating, translating, or skewing it. In this case PDFlib calculates the
smallest enclosing rectangle with edges parallel to the page edges, transform it to de-
fault coordinates, and use the resulting values instead of the supplied coordinates.

The overall effect is that you can use the same coordinate systems for both page con-
tent and interactive elements when the usercoordinates option has been set to true.

http://www.pdflib.com/pdflib-cookbook/general/metric_topdown_coordinates/

64 Chapter 3: Creating PDF Documents

Visualizing coordinates. In order to assist PDFlib users in working with PDF’s coordi-
nate system, the PDFlib distribution contains the PDF file grid.pdf which visualizes the
coordinates for several common page sizes. Printing the appropriately sized page on
transparent material may provide a useful tool for preparing PDFlib development.

You can visualize page coordinates in Acrobat as follows:
> To display cursor coordinates use the following:

Acrobat X/XI/DC: View, Show/Hide, Cursor Coordinates
> The coordinates will be displayed in the unit which is currently selected in Acrobat.

To change the display units in Acrobat X/XI/DC proceed as follows: go to Edit, Prefer-
ences, [General...], Units & Guides and choose one of Points, Inches, Millimeters, Picas,
Centimeters.

Note that the coordinates displayed refer to an origin in the top left corner of the page,
and not PDF’s default origin in the lower left corner. See »Using top-down coordinates«,
page 64, for details on selecting a coordinate system which aligns with Acrobat’s coordi-
nate display.

Rotating objects. It is important to understand that objects cannot be modified once
they have been drawn on the page. Although there are PDFlib functions for rotating,
translating, scaling, and skewing the coordinate system, these do not affect existing ob-
jects on the page but only subsequently drawn objects.

Rotating text, images, and imported PDF pages can easily be achieved with the rotate
option of PDF_fit_textline(), PDF_fit_textflow(), PDF_fit_image(), and PDF_fit_pdi_page().
Rotating such objects by multiples of 90 degrees inside the respective fitbox can be ac-
complished with the orientate option of these functions. The following example gener-
ates some text at an angle of 45˚ degrees:

p.fit_textline("Rotated text", 50.0, 700.0, "rotate=45");

Cookbook A full code sample can be found in the Cookbook topic textflow/rotated_text.

Rotation for vector graphics can be achieved by applying the general coordinate trans-
formation functions PDF_translate() and PDF_rotate(). The following example creates a
rotated rectangle with lower left corner at (200, 100). It translates the coordinate origin
to the desired corner of the rectangle, rotates the coordinate system, and places the rect-
angle at (0, 0). The save/restore nesting makes it easy to continue placing objects in the
original coordinate system after the rotated rectangle is done:

p.save();
p.translate(200, 100); /* move origin to corner of rectangle*/
p.rotate(45.0); /* rotate coordinates */
p.rect(0.0, 0.0, 75.0, 25.0); /* draw rotated rectangle */
p.stroke();

p.restore();

Using top-down coordinates. Unlike PDF’s bottom-up coordinate system some graph-
ics environments use top-down coordinates which may be preferred by some develop-
ers. Such a coordinate system can easily be established using PDFlib’s transformation
functions. However, since the transformations will also affect text output (text easily
appears bottom-up), additional calls are required in order to avoid text being displayed
in a mirrored sense.

http://www.pdflib.com/pdflib-cookbook/textflow/rotated_text/

3.2 Page Descriptions 65

In order to facilitate the use of top-down coordinates PDFlib supports a special mode
in which all relevant coordinates will be interpreted differently. The topdown feature
has been designed to make it quite natural for PDFlib users to work in a top-down coor-
dinate system. Instead of working with the default PDF coordinate system with the ori-
gin (0, 0) at the lower left corner of the page and y coordinates increasing upwards, a
modified coordinate system will be used which has its origin at the upper left corner of
the page with y coordinates increasing downwards. This top-down coordinate system
for a page can be activated with the topdown option of PDF_begin_page_ext():

p.begin_page_ext(595.0, 842.0, "topdown");

For the sake of completeness we’ll list the detailed consequences of establishing a top-
down coordinate system below.

»Absolute« coordinates will be interpreted in the user coordinate system without
any modification:

> All function parameters which are designated as »coordinates« in the function de-
scriptions. Some examples: x, y in PDF_moveto(); x, y in PDF_circle(), x, y (but not width
and height!) in PDF_rect(); llx, lly, urx, ury in PDF_create_annotation()).

»Relative« coordinate values will be modified internally to match the top-down system:
> Text (with positive font size) will be oriented towards the top of the page;
> When the manual talks about »lower left« corner of a rectangle, box etc. this will be

interpreted as you see it on the page;
> When a rotation angle is specified the center of the rotation is still the origin (0, 0) of

the user coordinate system. The visual result of a clockwise rotation will still be
clockwise.

Cookbook A full code sample can be found in the Cookbook topic general/metric_topdown_coordinates.

3.2.2 Page Size
Cookbook A full code sample can be found in the Cookbook topic pagination/page_sizes.

Standard page formats. Absolute values and symbolic page size names may be used
for the width and height options in PDF_begin/end_page_ext(). The latter are called
<format>.width and <format>.height, where <format> is one of the standard page formats
(in lowercase, e.g. a4.width).

Page size limits. Although PDF and PDFlib don’t impose any restrictions on the usable
page size, Acrobat implementations suffer from architectural limits regarding the page
size. Other PDF interpreters may be able to deal with larger or smaller document for-
mats. The page size limits for Acrobat are shown in Table 3.2. In PDF 1.6 and above the
userunit option in PDF_begin/end_page_ext() can be used to specify a global scaling fac-
tor for the page.

Different page size boxes. While many PDFlib developers only specify the width and
height of a page, some advanced applications (especially for prepress work) may want
to specify one or more of PDF’s additional box entries. PDFlib supports all of PDF’s box
entries. The following entries, which may be useful in certain environments, can be
specified by PDFlib clients (definitions taken from the PDF reference):

http://www.pdflib.com/pdflib-cookbook/general/metric_topdown_coordinates/
http://www.pdflib.com/pdflib-cookbook/pagination/page_sizes/

66 Chapter 3: Creating PDF Documents

> MediaBox: this is used to specify the width and height of a page, and describes what
we usually consider the page size.

> CropBox: the region to which the page contents are to be clipped; Acrobat uses this
size for screen display and printing.

> TrimBox: the intended dimensions of the finished (possibly cropped) page;
> ArtBox: extent of the page’s meaningful content. It is rarely used by application soft-

ware;
> BleedBox: the region to which the page contents are to be clipped when output in a

production environment. It may encompass additional bleed areas to account for in-
accuracies in the production process.

PDFlib will not use any of these values apart from recording it in the output file. By de-
fault PDFlib generates a MediaBox according to the specified width and height of the
page, but does not generate any of the other entries. The following code fragment will
start a new page and set the four values of the CropBox:

/* start a new page with custom CropBox */
p.begin_page_ext(595, 842, "cropbox={10 10 500 800}");

3.2.3 Direct Paths and Path Objects
A path is a shape made of an arbitrary number of straight lines, rectangles, circles, Bézi-
er curves, or elliptical segments. A path may consist of several disconnected section-
scalled subpaths. There are several operations which can be applied to a path:

> Stroking draws a line along the path, using client-supplied options (e.g., color, line
width) for drawing.

> Filling paints the entire region enclosed by the path, using client-supplied options
for filling.

> Clipping reduces the imageable area for subsequent drawing operations by replacing
the current clipping area (which is unlimited by default) with the intersection of the
current clipping area and the area enclosed by the path.

> Merely terminating the path results in an invisible path, which will nevertheless be
present in the PDF file. This will only rarely be useful.

Direct Paths. Using the path functions PDF_moveto(), PDF_lineto(), PDF_rect() etc. you
can construct a direct path which is written to the current page or another content
stream (e.g. a template or Type 3 glyph description). Immediately after constructing the
path it must be processed with one of PDF_stroke (), PDF_fill(), PDF_clip() and related
functions. These functions consume and delete the path. The only way to use a path
multiply is with PDF_save() and PDF_restore().

It is an error to construct a direct path without applying any of the above operations
to it. PDFlib’s scoping system ensures that clients obey to this restriction. If you want to

Table 3.2 Minimum and maximum page size of Acrobat

PDF viewer minimum page size maximum page size

without userunit option
(default)

1/24" = 3 pt = 0.106 cm 200" = 14400 pt = 508 cm

with userunit option 3 user units 14 400 user units
The maximum value 75 000 for userunit allows page sizes
up to 14 400 * 75 000 = 1 080 000 000 points = 381 km

3.2 Page Descriptions 67

set appearance properties (e.g. color, line width) of a path you must do so before starting
any drawing operations. These rules can be summarized as »don’t change the appear-
ance within a path description«.

Merely constructing a path doesn’t result in anything showing up on the page; you
must either fill or stroke the path in order to get visible results:

p.set_graphics_option("strokecolor=red");
p.moveto(100, 100);
p.lineto(200, 100);
p.stroke();

Most graphics functions make use of the concept of a current point, which can be
thought of as the location of the pen used for drawing.

Cookbook A full code sample can be found in the Cookbook topic graphics/starter_graphics.

Path objects. Path objects are a convenient and powerful alternative to direct paths.
They encapsulate all drawing operations for constructing a path. Path objects can be
created in different ways:

> PDF_add_path_point() adds a point and associated path element to a path object. This
function can also add a reference to an existing path object to a newly constructed
path. PDF_add_path_point() supports several convenience options to facilitate path
construction. The function also accepts SVG path descriptions. The following code
fragment creates a simple path object with a circle, strokes it at two different loca-
tions on the page, and finally deletes it:

path = p.add_path_point(-1, 0, 100, "move", "");
path = p.add_path_point(path, 200, 100, "control", "");
path = p.add_path_point(path, 0, 100, "circular", "");

p.draw_path(path, 0, 0, "stroke");
p.draw_path(path, 400, 500, "stroke");
p.delete_path(path);

> A clipping path contained in a raster image can be retrieved with PDF_info_image()
and the keyword clippingpath:

image = p.load_image("auto", "image.tif", "clippingpathname={path 1}");

path = (int) p.info_image(image, "clippingpath", "");
if (path == -1)

throw new Exception("Error: clipping path not found!");

p.draw_path(path, 0, 0, "stroke");

> The enclosing rectangle (bounding box) of a placed PDF page, SVG graphics, path, ras-
ter image, table, matchbox, Textflow or Textline can be retrieved with the corre-
sponding PDF_info_*() function:

optlist = "boxsize={400 300} fitmethod=clip matchbox={name=border}";
p.fit_image(image, 200, 150, optlist);

int path = (int) p.info_matchbox("border", 1, "boundingbox");
p.draw_path(path, 0, 0, "close stroke linewidth=10 strokecolor=red");
p.delete_path(path);

http://www.pdflib.com/pdflib-cookbook/graphics/starter_graphics/

68 Chapter 3: Creating PDF Documents

Once a path object has been created or retrieved it can be used for different purposes:
> PDF_draw_path() can be used to fill or stroke the path on the page, or use it as a clip-

ping path.
> Wrap multi-line Text around the text with PDF_fit_textflow(): the text is formatted so

that it wraps inside or outside of an arbitrary shape (see Section 9.2.11, »Wrapping
Text around Paths and Images«, page 247).

> Place text on the path with PDF_fit_textline(), i.e. the characters follow the curves of
the path (see Section 9.1.7, »Text on a Path«, page 227).

> Place path objects in table cells with PDF_add_table_cell().

Unlike direct paths, path objects can be used multiply until they are explicitly de-
stroyed with PDF_delete_path(). Information about a path can be retrieved with PDF_
info_path().

3.2.4 Templates (Form XObjects)

Templates (Form XObjects). PDFlib supports a PDF feature with the technical name
Form XObjects. However, since this term conflicts with interactive forms we refer to this
feature as templates. A PDFlib template can be thought of as an off-page buffer into
which text, vector, and image operations are redirected (instead of directly acting on a
page). When the template is finished it can be used like a raster image, and placed an ar-
bitrary number of times on arbitrary pages. Like images, templates can be subjected to
geometrical transformations such as scaling or skewing. When a template is used on
multiple pages (or multiply on the same page), the actual PDF operators for construct-
ing the template are only included once in the PDF file, thereby saving PDF output file
size. Templates are recommended for elements which appear repeatedly on several pag-
es, such as a constant background, a company logo, or graphical elements emitted by
CAD and geographical mapping software. Templates are also recommended for raster
images with a clipping path if the image is placed more than once. Templates can be
created in the following ways:

> directly with PDF_begin_template_ext();
> indirectly from vector graphics with PDF_load_graphics() and the templateoptions op-

tion;
> indirectly from raster images with PDF_load_image() and the templateoptions option;

without this option PDF_load_image() creates a similar PDF construct called Image
XObject.

Note PDF pages imported with PDF_open_pdi_page() also create PDF Form XObjects, but these are
handled with PDI functions, not template functions.

Templates can be used in the following ways:
> place the template on a page or another content stream with PDF_fit_image() (see be-

low);
> create a graphics state with a luminosity soft mask defined by the template (subop-

tion template of option softmask of PDF_create_gstate(), see Section 4.9.2, »Changing
the Color with Soft Masks«, page 99);

> as fallback (background) for loading SVG graphics (option fallbackimage of PDF_load_
graphics());

> as appearance of annotations (suboptions normal/rollover/down of option template of
PDF_create_annotation());

3.2 Page Descriptions 69

> as appearance of pushbutton form fields (options icon/icondown/iconrollover of PDF_
create_field())

Creating and using templates. A template can be placed on the page or on another
template with the PDF_fit_image() function just like raster images (see Section 8.4,
»Placing Images, Graphics, and imported PDF Pages«, page 213). The general idiom for
creating and using templates in PDFlib looks as follows:

/* define the template */
template = p.begin_template_ext(template_width, template_height, "");
...place marks on the template using text, vector, and image functions...
p.end_template_ext(0, 0);
...
p.begin_page(page_width, page_height);
/* use the template */
p.fit_image(template, 0.0, 0.0, "");
...more page marking operations...
p.end_page();
...
p.close_image(template);

All text, graphics, and color functions can be used on a template. However, the follow-
ing functions must not be used while constructing a template:

> PDF_begin_item() and the tag option of various functions: structure elements cannot
be created within a template.

> All interactive functions: these must be defined on the page where they should ap-
pear in the document, and cannot be generated as part of a template.

Cookbook A full code sample can be found in the Cookbook topic general/repeated_contents.

http://www.pdflib.com/pdflib-cookbook/general/repeated_contents/

70 Chapter 3: Creating PDF Documents

3.3 PDF Password Security
3.3.1 Password Security in PDF

PDF password security offers the following protection features:
> The user password (also referred to as open password) is required to open the file for

viewing. Only files with a user password are safe from cracking!
> The master password (also referred to as owner or permissions password) is required

to change any security settings, i.e. permissions, user or master password. Files with
user and master passwords can be opened for viewing by supplying either password.

> Permission settings restrict certain actions for the PDF document, such as printing
or extracting text.

> An attachment password can be specified to encrypt only file attachments, but not
the actual contents of the document itself.

If a PDF document uses any of these protection features it will be encrypted. In order to
display or modify a document’s security settings with Acrobat, click File, Properties...,
Security, Show Details... or Change Settings..., respectively.

Encryption algorithms and key lengths. PDF encryption makes use of the following
encryption algorithms:

> RC4, a symmetric stream cipher (i.e. the same algorithm can be used to encrypt and
decrypt). RC4 no longer offers adequate security and has been deprecated in PDF 2.0.

> AES (Advanced Encryption Standard) as specified in the standard FIPS-197. AES is a
modern block cipher which is used in a variety of applications.

Since the actual encryption keys are unwieldy binary sequences, they are derived from
more user-friendly passwords which consist of plain characters. In the course of PDF
and Acrobat development the PDF encryption methods have been enhanced to use
stronger algorithms, longer encryption keys, and more sophisticated passwords. Table
3.3 details encryption, key and password characteristics for all PDF versions.

Table 3.3 Encryption algorithms, key length, and password length in PDF versions

PDF and Acrobat version,
pCOS algorithm number encryption algorithm and key length

max. password length and
password encoding

PDF 1.1 - 1.3 (Acrobat 2-4),
pCOS algorithm 1

RC4 40-bit (weak; deprecated in PDF 2.0) 32 characters (Latin-1)

PDF 1.4 (Acrobat 5),
pCOS algorithm 2

RC4 128-bit (weak; deprecated in PDF 2.0) 32 characters (Latin-1)

PDF 1.5 (Acrobat 6),
pCOS algorithm 3

same as PDF 1.4, but different application of
encryption method (weak, deprecated in PDF 2.0)

32 characters (Latin-1)

PDF 1.6 (Acrobat 7) and
PDF 1.7 = ISO 32000-1 (Acrobat 8),
pCOS algorithm 4

AES-128 (weak; deprecated in PDF 2.0) 32 characters (Latin-1)

PDF 1.7ext3 (Acrobat 9),
pCOS algorithm 9

AES-256 with shortcomings in password handling
(weak,; deprecated in PDF 2.0)

127 UTF-8 bytes (Unicode)

PDF 1.7ext8 (Acrobat X/XI/DC) and
PDF 2.0 = ISO 32000-2,
pCOS algorithm 11

AES-256 with improved password handling 127 UTF-8 bytes (Unicode)

3.3 PDF Password Security 71

Passwords. PDF encryption internally works with encryption keys of 40, 128, or 256 bit
depending on the PDF version. The binary encryption key is derived from a password
provided by the user. The password is subject to length and encoding constraints:

> Up to PDF 1.7 (ISO 32000-1) passwords were restricted to a maximum length of 32
characters and could contain only characters from the Latin-1 encoding.

> PDF 1.7ext3 introduced Unicode characters and bumped the maximum length to 127
bytes in the UTF-8 representation of the password. Since UTF-8 encodes characters
with a variable length of 1-4 bytes the allowed number of Unicode characters in the
password is less than 127 if it contains non-ASCII characters. For example, since Japa-
nese characters usually require 3 bytes in UTF-8 representation, up to 42 Japanese
characters can be used in passwords.

In order to avoid ambiguities, Unicode passwords are normalized by a process called
SASLprep (specified in RFC 4013 based on Stringprep in RFC 3454). This process eliminates
non-text characters and normalizes certain character classes (e.g. non-ASCII space char-
acters are mapped to the ASCII space character U+0020). The password is normalized to
Unicode normalization form NFKC, and special bidirectional processing is applied to
avoid ambiguities which may otherwise arise if right-to-left and left-to-right characters
are mixed in a password.

The strength of PDF encryption is not only determined by the length of the encryp-
tion key, but also by the length and quality of the password. It is widely known that
names, plain words, etc. should not be used as passwords since these can easily be
guessed or systematically tried using a so-called dictionary attack. Surveys have shown
that a significant number of passwords are chosen to be the spouse’s or pet’s name, the
user’s birthday, the children’s nickname etc., and can therefore easily be guessed.

Permission restrictions. PDF can encode various restrictions on document operations
which can be granted or denied individually:

> Printing Allowed: If printing is not allowed, the print button in Acrobat remains dis-
abled. Acrobat supports a distinction between Low Resolution (150 dpi) and High Reso-
lution printing. Low-resolution printing generates a raster image of the page which
is suitable only for personal use, but prevents high-quality reproduction. Note that
image-based printing not only results in low output quality, but also considerably
slows down the printing process.

> Changes Allowed: the corresponding list provides control over various document
modification operations:

Inserting, deleting, and rotating pages
Filling in form fields and signing existing signature fields
Commenting, filling in form fields, and signing existing signature fields
Any except extracting pages

Note that Adobe Reader does not reliably display permission restrictions. For exam-
ple, since it does not include assembly functions, it always displays Document
Assembly: Not allowed regardless of the actually permission settings in a document.

> Content copying is controlled via Enable copying of text, images, and other content.
While this can be enabled for accessibility with Enable text access for screen reader
devices for the visually impaired, this setting is deprecated in PDF 2.0 since a PDF reader
should always support accessibility.

72 Chapter 3: Creating PDF Documents

Specifying access restrictions for a document, such as Printing allowed: None will disable
the respective function in Acrobat. However, this not necessarily holds true for third-
party PDF viewers or other software. It is up to the developer of PDF tools whether or not
access permissions are honored. Indeed, several PDF tools are known to ignore permis-
sion settings altogether; commercially available PDF cracking tools can be used to dis-
able all access restrictions. This has nothing to do with cracking the encryption; there is
simply no way that a PDF file can make sure it won’t be printed while it still remains
viewable. This is described as follows in ISO 32000-1:

»Once the document has been opened and decrypted successfully, a conforming reader
technically has access to the entire contents of the document. There is nothing inherent in PDF
encryption that enforces the document permissions specified in the encryption dictionary.«

Encrypted document components. By default, PDF encryption always covers all com-
ponents of a document. However, there are use cases where it is desirable to encrypt
only some components of the document, but not others:

> PDF 1.5 (Acrobat 6) introduced a feature called plaintext metadata. With this feature
encrypted documents can contain unencrypted document XMP metadata. This is for
the benefit of search engines which can retrieve document metadata even from en-
crypted documents.

> Since PDF 1.6 (Acrobat 7) file attachments can be encrypted even in otherwise unpro-
tected documents. This way an unprotected document can be used as a container for
confidential attachments.

Security recommendations. Keep in mind that only PDFs with a user password (re-
quired to open the document) are safe from cracking. The following recommendations
should be obeyed to avoid which encryption which could be cracked:

> Passwords consisting of 1-6 characters should be avoided since they are susceptible
to attacks which try all possible passwords (brute-force attack against the password).

> Passwords should not resemble a plain text word since the password would be sus-
ceptible to attacks which try all plaintext words (dictionary attack). Passwords
should contain non-alphabetic characters. Don’t use your spouse’s or pet’s name,
birthday, or other items which are easy to determine.

> The modern AES algorithm is preferable over the older RC4 algorithm.
> AES-256 according to PDF 1.7ext3 (Acrobat 9) should be avoided because it contains a

weakness in the password checking algorithm which facilitates brute-force attacks
against the password. For this reason Acrobat X/XI/DC and PDFlib never use
Acrobat 9 encryption for protecting new documents (only for decrypting existing
documents).

In summary, AES-256 according to PDF 1.7ext8/PDF 2.0 should be used. Passwords
should be longer than 6 characters and should contain non-alphabetic characters.

Protecting PDFs on the Web. When PDFs are served over the Web users can always
produce a local copy of the document with their browser. There is no way for a PDF doc-
ument to prevent users from saving a local copy.

3.3 PDF Password Security 73

3.3.2 Password-Protecting PDF Documents with PDFlib
PDFlib can apply standard security features when generating PDF documents. In order
to import pages from protected PDF documents with PDFlib+PDI or PDFlib Personaliza-
tion Servers (PPS) the master password or the shrug option is required. Querying docu-
ment properties with the pCOS interface is governed by the pCOS mode. For example,
XMP document metadata, document info fields, bookmarks, and annotation contents
can be retrieved without the master password if the document does not require a user
password (or only the user password has been supplied). The pCOS Path Reference dis-
cusses this in more detail.

Note You cannot Reader-enable PDF documents (e.g. allow annotations with Adobe Reader) with
PDFlib products.

Encryption algorithm and key length. The encryption algorithm and key length used
to protect a document with a password depend on the PDF version of the generated doc-
ument, which in turn depends on the compatibility option of PDF_begin_document(). The
encryption algorithm is selected as follows:

> PDF 1.4 and 1.5: the respective flavor of RC4 encryption with 128-bit keys is used.
> PDF 1.6, PDF 1.7 and PDF 1.7ext3: AES-128 is used. Note that AES-256 according to

PDF 1.7ext3 (Acrobat 9) is never used because of known weaknesses.
> PDF 1.7ext8 and PDF 2.0: AES-256 according to Acrobat X/XI/DC is used.

Setting passwords with PDFlib. Passwords can be set with the userpassword and
masterpassword options in PDF_begin_document(). PDFlib interacts with client-supplied
passwords for the generated document in the following ways:

> If a user password or permission settings, but no master password has been sup-
plied, a regular user would easily be able to change the security settings, thereby de-
feating any protection. For this reason PDFlib considers this situation as an error.

> If the user and master password are the same, a distinction between user and owner
of the file would no longer be possible, again defeating effective protection. PDFlib
considers this situation as an error.

> Unicode passwords are allowed for AES-256. All older encryption algorithms require
passwords which are restricted to the Latin-1 character set. An exception will be
thrown for older encryption algorithms if the supplied password contains characters
outside the Latin-1 character set.

> Passwords will be truncated to 127 UTF-8 bytes for AES-256, and to 32 characters for
older encryption algorithms.

Setting permissions with PDFlib. Access restrictions can be set with the permissions op-
tion in PDF_begin_document(). It contains one or more access restriction keywords.
When setting the permissions option the masterpassword option must also be set, be-
cause otherwise Acrobat users could easily remove the permission settings. By default,
all actions are allowed. Specifying an access restriction will disable the respective fea-
ture in Acrobat. Access restrictions can be applied without any user password. Multiple
restriction keywords can be specified as in the following example:

p.begin_document(filename, "masterpassword=abcd1234 permissions={noprint nocopy}");

Table 3.4 lists all supported access restriction keywords.

74 Chapter 3: Creating PDF Documents

Cookbook A full code sample can be found in the Cookbook topic general/permission_settings.

Encrypted file attachments. In PDF 1.6 and above file attachments can be encrypted
even in otherwise unprotected documents. This can be achieved by supplying the
attachmentpassword option to PDF_begin_document().

Table 3.4 Access restriction keywords for the permissions option of PDF_begin_document()

keyword explanation

noprint Acrobat will prevent printing the file.

nomodify Acrobat will prevent users from adding form fields or making any other changes.

nocopy Acrobat will prevent copying and extracting text or graphics, and will disable accessibility.

noannots Acrobat will prevent adding or changing comments or form fields.

noforms (Implies noannots) Acrobat will prevent form field filling, even if noannots hasn’t been specified.

noaccessible (Deprecated in PDF 2.0) Acrobat will prevent extracting text or graphics for accessibility purposes.

noassemble (Implies nomodify) Acrobat will prevent inserting, deleting, or rotating pages and creating book-
marks and thumbnails, even if nomodify hasn’t been specified.

nohiresprint Acrobat will prevent high-resolution printing. If noprint hasn’t been specified printing is restrict-
ed to the »print as image« feature which prints a low-resolution rendition of the page.

plainmetadata (PDF 1.5) Keep document metadata unencrypted even for encrypted documents.

http://www.pdflib.com/pdflib-cookbook/general/permission_settings/

3.3 PDF Password Security 75

4.1 Device Color Spaces 77

4 Color Spaces
Color spaces can be specified separately for filling and stroking operations, e.g. with the
fillcolor and strokecolor options. While color spaces in PDF are also used for images,
PDFlib usually determines the image color space automatically unless color-related op-
tions are supplied in PDF_load_image().

Cookbook Code samples for color handling can be found in the color category of the PDFlib Cookbook.
The color/starter_color sample demonstrates the use of all color spaces.

4.1 Device Color Spaces
Device-specific color spaces are perhaps the most common methods for describing col-
or. As the name implies they describe color as rendered by a specific device such as a
monitor, printer or printing machine. Device-specific colors appear differently depend-
ing on which device produces the output. Because of this undesirable property device
colors are not allowed directly in PDF/A and PDF/X, but only with a suitable output in-
tent ICC profile or default color space.

Grayscale color space. Grayscale colors can be requested with the color space keyword
gray and a single gray value. Gray values are in the range 0=black and 1=white. Example:

p.set_graphics_option("fillcolor={{ gray 0.5 }");

RGB color space. Colors in the additive RGB color space are mixed from the red, green
and blue components. RGB colors can be requested with the color space keyword rgb
and three RGB values in the range 0..1 specifying the percentage of red, green, and blue
with (0, 0, 0)=black and (1, 1, 1)=white. The commonly used RGB color values in the range
0–255 must be divided by 255 in order to scale them to the range 0–1 as required by
PDFlib.

As an alternative to numerical RGB values you can specify RGB colors via their HTML
names or hexadecimal values. Examples:

p.set_graphics_option("fillcolor={{ rgb 1 0 0 }");
p.set_graphics_option("fillcolor=pink");
p.set_graphics_option("fillcolor={#FFC0CB})";

CMYK color space. Colors in the subtractive CMYK color space are mixed from the cy-
an, magenta, yellow and black (»key«) components. CMYK values can be requested with
the color space keyword cmyk and four CMYK values in the range 0..1, where 0 = no color
and 1 = full color, representing cyan, magenta, yellow, and black values; (0, 0, 0, 0)=
white, (0, 0, 0, 1)=black. Note that the polarity of CMYK colors i different from grayscale
and RGB colors. Example:

p.set_graphics_option("fillcolor={{ cmyk 0 1 0 0 }");

A special property of the CMYK color space is that the overprint behavior of CMYK ob-
jects can be controlled with the overprintmode option (see »Overprint mode for CMYK
colors«, page 102).

http://www.pdflib.com/pdflib-cookbook/color/
http://www.pdflib.com/pdflib-cookbook/color/starter_color/

78 Chapter 4: Color Spaces

Mapping device colors to device-independent colors with default color spaces. Device
color spaces can be mapped to device-independent color spaces by means of default col-
or spaces; see »Mapping device colors to ICC-based color spaces«, page 81, for details.
This is useful when data with device-specific colors, such as RGB or CMYK images or
graphics, is used in PDF/A or PDF/X without any matching output intent.

4.2 Color Management with ICC Profiles 79

4.2 Color Management with ICC Profiles
PDFlib supports color management with ICC profiles and rendering intents. ICC profiles
play a crucial role in color-managed workflows and most PDF standards such as PDF/X
and PDF/A.

Cookbook Full code samples can be found in the starter_color sample and the Cookbook topic color/
iccprofile_to_image.

ICC profiles. The International Color Consortium (ICC) defined a file format for speci-
fying color characteristics of input and output devices. These ICC color profiles are con-
sidered an industry standard and are supported by all major color management system
and application vendors. PDFlib supports color management with ICC profiles for the
use cases listed in Table 4.1. Color management does not change the number of compo-
nents in a color specification (e.g., from RGB to CMYK).

Note Recommendations and links to freely available ICC color profiles for common printing condi-
tions are available at www.pdflib.com.

Table 4.1 Different uses of ICC profiles

Use case Relevant API functions and options

Set ICC-based color space for text and vector graph-
ics on the page

PDF_set_option() with iccprofilegray/rgb/cmyk and
PDF_setcolor() with colorspace=iccbasedgray/rgb/cmyk;
color options with iccbased keyword

Apply ICC profile to an imported image PDF_load_image(): option iccprofile

Process or ignore ICC profile embedded in an image PDF_load_image(): option honoriccprofile

Query ICC profile embedded in an image PDF_info_image() with keyword=iccprofile

Set default color space for mapping grayscale, RGB,
or CMYK data to ICC-based color spaces

PDF_begin_page_ext(), PDF_begin_template_ext(), PDF_begin_
pattern_ext() and PDF_begin_font(): options defaultgray/
defaultrgb/defaultcmyk

Specify a PDF/X or PDF/A output intent with a refer-
enced or embedded ICC profile

PDF_load_iccprofile(): option usage=outputintent

Specify a blending color space for transparency and
blend modes

PDF_begin/end_page_ext(), PDF_open_pdi_page(), PDF_begin_
template_ext() and PDF_load_graphics() with templateoptions:
option transparencygroup, suboption colorspace

Alternate color space for spot color PDF_set_graphics_option(): color option with keyword spotname
and iccbased alternate color, or PDF_set_graphics_option() with
option fillcolor followed by PDF_makespotcolor().

Alternate color space for DeviceN color PDF_create_devicen(): option alternate with suboption
iccbased

Query number of color components in an ICC pro-
file

PDF_get_option() with keyword icccomponents

http://www.pdflib.com/pdflib-cookbook/color/iccprofile_to_image/
http://www.pdflib.com/pdflib-cookbook/color/iccprofile_to_image/

80 Chapter 4: Color Spaces

Acceptable ICC profiles. Color profiles must satisfy certain conditions regarding the
ICC version number of the profile, its device class, and its data color space. The ICC ver-
sion number is restricted as follows:

> PDF output compatibility 1.4: ICC version 2.x
> PDF output compatibility 1.5 and above: ICC version 2.x or 4.x

Table 4.2 details additional requirements regarding device class and data color space for
ICC profiles depending on their intended use.

Searching for ICC profiles. PDFlib will search for ICC profiles according to the follow-
ing steps, using the profilename parameter supplied to PDF_load_iccprofile():

> If profilename=sRGB, PDFlib uses the internal sRGB profile and terminates the search.
> Check whether there is a resource named profilename in the ICCProfile resource cate-

gory. If so, use its value as file name in the following steps. If there is no such re-
source, use profilename as a file name directly.

> Use the file name determined in the previous step to locate a disk file by trying the
following combinations one after another:

<filename>

<filename>.icc

<filename>.icm

<colordir>/<filename> (only on Windows and macOS)

<colordir>/<filename>.icc (only on Windows and macOS)

<colordir>/<filename>.icm (only on Windows and macOS)

On Windows colordir designates the directory where device-specific ICC profiles are
stored by the operating system (e.g. C:\Windows\System32\spool\drivers). On macOS
the following paths are tried for colordir:

/System/Library/ColorSync/Profiles

/Library/ColorSync/Profiles

/Network/Library/ColorSync/Profiles

~/Library/ColorSync/Profiles

The sRGB color space and sRGB ICC profile. PDFlib supports the industry-standard
RGB color space called sRGB. It is supported by a variety of software and hardware ven-
dors and is widely used for simplified color management for consumer RGB devices
such as digital still cameras, office equipment such as color printers, and monitors.
PDFlib supports the sRGB color space and includes the required ICC profile data inter-
nally. Therefore an sRGB profile must not be configured explicitly by the client, but it is
always available without any additional configuration. It can be requested by calling

Table 4.2 Acceptable ICC profiles for various uses

ICC profile usage device class data color space

output intent for PDF/X-3/4 and PDF/X-5p/5pg prtr Gray, RGB, CMYK

output intent for PDF/X-5n prtr xCLR (n-colorant)

output intent for PDF/A prtr, mntr Gray, RGB, CMYK

transparency group color space prtr, mntr, scnr, spac Gray, RGB, CMYK

all other uses of ICC profiles prtr, mntr, scnr, spac Gray, RGB, CMYK

4.2 Color Management with ICC Profiles 81

PDF_load_iccprofile() with profilename=sRGB. As a convenient shortcut the keyword srgb
can be supplied as an alternative in all places where an ICC profile handle created with
PDF_load_iccprofile() is expected.

The sRGB profile is of device class mntr (output device), i.e. it can be used as output
intent for PDF/A, but not for PDF/X.

Using embedded profiles in images (ICC-tagged images). Some images contain em-
bedded ICC profiles describing the nature of the image’s color values. For example, an
embedded ICC profile can describe the color characteristics of the scanner used to pro-
duce the image data. PDFlib handles embedded ICC profiles in the JPEG, JPEG 2000, PNG
and TIFF image file formats. If the honoriccprofile option is set to true (which is the de-
fault) the ICC profile embedded in an image is extracted from the image and embedded
in the PDF output.

The keyword iccprofile of PDF_info_image() can be used to obtain an ICC profile han-
dle for the profile embedded in an image. This may be useful when the same profile
must be applied to multiple images.

In order to check the number of color components in an unknown ICC profile use the
icccomponents option.

Applying external ICC profiles to images. As an alternative to using ICC profiles em-
bedded in an image, an external profile may be applied to an individual image by sup-
plying a profile handle along with the iccprofile option to PDF_load_image().

ICC-based color spaces for page descriptions. The color values for text and vector
graphics can directly be specified in the ICC-based color space specified by a profile. The
color space must first be set by supplying the ICC profile handle as value to one of the
iccprofilegray, iccprofilergb, iccprofilecmyk options. Subsequently ICC-based color values
can be supplied to a color option or PDF_setcolor() along with one of the color space key-
words iccbasedgray, iccbasedrgb, or iccbasedcmyk:

p.set_option("errorpolicy=return");
icchandle = p.load_iccprofile("myCMYK", "usage=iccbased");
if (icchandle == -1)
{

return;
}
p.set_graphics_option("fillcolor={iccbased=" + icchandle + " 0 1 0 0}");

Mapping device colors to ICC-based color spaces. PDF provides a feature for mapping
device-dependent gray, RGB, or CMYK colors to device-independent ICC-based colors.
This can be used to attach a precise colorimetric specification to color values which oth-
erwise would be device-dependent. It can be achieved by supplying the defaultgray,
defaultrgb, or defaultcmyk options of PDF_begin_page_ext(), PDF_begin_template_ext(),
PDF_begin_pattern_ext() and PDF_begin_font() with a suitable ICC profile handle. The fol-
lowing example sets the sRGB color space as the default RGB color space for text, imag-
es, and vector graphics on the page:

p.begin_page_ext(595, 842, "defaultrgb=srgb");

If the default color space is derived from an external ICC profile, a profile handle must
first be created:

82 Chapter 4: Color Spaces

/* create ICC profile handle*/
icchandle = p.load_iccprofile("myRGB", "usage=iccbased");
p.begin_page_ext(595, 842, "defaultrgb=" + icchandle);

Output intents for PDF/X and PDF/A. An output device profile can be used to specify
an output condition for PDF/X or PDF/A. This is done by supplying usage=outputintent
in the call to PDF_load_iccprofile(). For PDF/A a printer or monitor profile can be speci-
fied as output intent, while PDF/X allows only printer profiles. For details see Section
12.4, »PDF/X for Print Production«, page 331, and Section 12.3, »PDF/A for Archiving«,
page 319.

4.3 Device-Independent CIE L*a*b* Color 83

4.3 Device-Independent CIE L*a*b* Color
Cookbook A full code sample can be found in the starter_color sample.

Device-independent color values can be specified in the CIE 1976 L*a*b* color space (Lab
for short). Colors in the L*a*b* color space are specified by three values L, a and b (see Fig-
ure 4.1). The luminance (or lightness) L runs in the range 0-100. The values a and b in the
range -128 to 127 describe the color. The value a runs from green (-128) to magenta-red
(+127); b runs from blue (-128) to yellow (+127). Positive numbers describe warm colors
(yellow, magenta-red), while negative numbers describe cool colors (green, blue). The in-
tersection of the a and b axes (a=b=0) describes neutral gray values ranging from black
(0, 0, 0) to white (100, 0, 0).

An important property of the Lab color space is that unlike RGB and CMYK it is per-
ceptually uniform, which means that the same numerical difference corresponds to the
same visual difference between colors. This makes it much easier to calculate mixtures
of multiple colors simply by calculating the weighted average of their Lab values. We
will take advantage of this when creating a PostScript transform function in »DeviceN
color space based on spot colors with Lab alternate space«, page 90.

Lab values specify absolute colors only if the white point is also specified. PDFlib
uses the white point of the standard illuminant D50 (daylight 5000 K, 2˚ observer).

PDFlib supports the Lab color space as follows:
> Lab colors for text and vector graphics can be specified in color options and PDF_

setcolor() using the color space keyword lab plus three numbers for the L, a and b val-
ues, e.g.

p.set_graphics_option("fillcolor={lab 100 0 0}");

In PDF/A mode the default black fill and stroke colors are specified as device-inde-
pendent Lab (0, 0, 0) unless an output intent has been specified.

> PDFlib uses the Lab color space for the alternate color values of all HKS and Pantone
spot colors in its internal database.

> TIFF images with Lab color space can be imported.
> ICC profiles with Lab color space can be loaded with PDF_load_iccprofile() unless they

are intended for use as output intent or for the transparencygroup option since PDF
doesn’t allow Lab in these places.

Fig. 4.1
The CIE L*a*b* color space

84 Chapter 4: Color Spaces

4.4 Pantone, HKS, and custom Spot Colors
Cookbook Full code samples can be found in the starter_color sample and the Cookbook topic color/

spot_color.

Separation color space for spot colors. PDFlib supports spot colors (technically known
as Separation color space in PDF) which can be used to print custom colors outside the
range of colors mixed from process colors. Spot colors are specified by name, and in PDF
must be accompanied by an alternate color which closely, but not exactly, resembles
the spot color. The PDF viewer or RIP uses the alternate color for screen display and
printing to devices which do not support spot colors (such as office printers). On the
printing press the requested spot color is applied in addition to any process colors
which may be used in the document.

PDFlib supports various built-in spot color libraries as well as custom (user-defined)
spot colors. When a spot color name is requested with PDF_makespotcolor() PDFlib first
checks whether the requested spot color can be found in one of its built-in libraries. If
so, PDFlib uses built-in Lab values for the alternate color. Otherwise the spot color is as-
sumed to be a user-defined color, and the client must supply appropriate alternate col-
or values in the spotname color keyword of color options (or via the current fill color
when using PDF_setcolor(). Spot colors can be tinted, i.e., they can be used with a per-
centage which specifies the color intensity from 0=no color=white to 1=maximum in-
tensity. Separation color spaces are always subtractive (unlike additive color spaces like
RGB where 0=black). Once a spot color has been defined, it can be used to draw text and
vector graphics, to colorize grayscale images, or to construct a shading. Note that PDFlib
automatically inverts the color polarity when colorizing images with a spot color (see
»Colorize a grayscale image with a spot color«, page 194).

By default, built-in spot colors cannot be redefined with custom alternate values.
This behavior can be changed with the spotcolorlookup option of PDF_set_option(). This
can be useful to achieve compatibility with older applications which may use different
color definitions, and for workflows which cannot deal with PDFlib’s Lab alternate val-
ues for Pantone colors.

Note Built-in Pantone® and HKS® spot color data and the corresponding trademarks have been li-
censed by PDFlib GmbH from the respective trademark owners for use in PDFlib software.

Pantone® colors. Pantone colors are well-known and wide-
ly used on a world-wide basis. PDFlib fully supports the Pan-
tone Matching System® with thousands of named colors. All
color swatch names from the digital color libraries listed in
Table 4.3 can be used.

Spot color names are case-sensitive; use uppercase as
shown in the examples. The PANTONE prefix must always be
provided in the swatch name as shown in the examples.
Pantone color names are constructed according to the fol-
lowing scheme:

PANTONE <id> <paperstock>

where <id> is the identifier of the color (e.g., 185) and <paperstock> the abbreviation of the
paper stock or another designation (e.g., C for coated). A single space character must be

http://www.pdflib.com/pdflib-cookbook/color/spot_color/
http://www.pdflib.com/pdflib-cookbook/color/spot_color/

4.4 Pantone, HKS, and custom Spot Colors 85

provided between all components constituting the swatch name. If a spot color is re-
quested where the name starts with the PANTONE prefix, but the name does not repre-
sent a valid Pantone color a warning is logged. The following code snippet demonstrates
the use of a Pantone color with a tint value of 70 percent:

p.set_graphics_option("fillcolor={ spotname {PANTONE 281 U} 0.7 }");

Note Pantone® colors displayed here may not match Pantone-identified standards. Consult current
Pantone Color Publications for accurate color. Pantone® and other Pantone, Inc. trademarks are
the property of Pantone, Inc. © Pantone, Inc., 2003-2016.

Table 4.3 Pantone spot color libraries built into PDFlib

color library name sample color name remarks

PANTONE solid coated PANTONE 185 C

PANTONE+ Solid Coated-336 New PANTONE 2071 C 336 colors introduced in 2012

PANTONE PLUS Solid Coated PANTONE 2337 C
PANTONE 3514 C

84 colors in the range 2337-2427 introduced in 2014;
112 colors in the range 2428-3599 added in 2016

PANTONE solid uncoated PANTONE 185 U

PANTONE+ Solid Uncoated-336 New PANTONE 2071 U 336 colors introduced in 2012

PANTONE PLUS Solid Uncoated PANTONE 2337 U
PANTONE 3514 U

84 colors in the range 2337-2427 introduced in 2014;
112 colors in the range 2428-3599 added in 2016

PANTONE solid matte PANTONE 185 M

PANTONE Extended Gamut Coated (XGC) PANTONE 185 XGC 1729 XGC colors introduced in 2015

PANTONE process coated PANTONE DS 35-1 C

PANTONE process uncoated PANTONE DS 35-1 U

PANTONE process coated EURO PANTONE DE 35-1 C

PANTONE process uncoated EURO PANTONE DE 35-1 U introduced in 2006

PANTONE pastel coated PANTONE 9461 C includes new colors introduced in 2006

PANTONE pastel uncoated PANTONE 9461 U includes new colors introduced in 2006

PANTONE metallic coated PANTONE 871 C includes new colors introduced in 2006

PANTONE color bridge CMYK PC PANTONE 185 PC replaces PANTONE solid to process coated

PANTONE color bridge CMYK EURO PANTONE 185 EC replaces PANTONE solid to process coated EURO

PANTONE color bridge uncoated PANTONE 185 UP introduced in 2006

Deprecated color libraries (not recommended)

PANTONE hexachrome coated PANTONE H 305-1 C discontinued in 2008

PANTONE hexachrome uncoated PANTONE H 305-1 U discontinued in 2008

PANTONE solid in hexachrome coated PANTONE 185 HC

PANTONE solid to process coated PANTONE 185 PC replaced by PANTONE color bridge CMYK PC

PANTONE solid to process coated EURO PANTONE 185 EC replaced by PANTONE color bridge CMYK EURO

86 Chapter 4: Color Spaces

HKS® colors. The HKS color system is widely used in Germa-
ny and other European countries. PDFlib fully supports HKS
colors. All color swatch names from the digital color libraries
listed in Table 4.4 can be used.

Spot color names are case-sensitive; use uppercase as
shown in the examples. The HKS prefix must always be pro-
vided in the swatch name as shown in the examples. HKS color names are constructed
according to the following scheme:

HKS <id> <paperstock>

where <id> is the identifier of the color (e.g., 43) and <paperstock> the abbreviation of the
paper stock in use (e.g., N for natural paper). A single space character must be provided
between the HKS, <id>, and <paperstock> components constituting the swatch name. If a
spot color is requested where the name starts with the HKS prefix, but the name does
not represent a valid HKS color a warning is logged. The following code snippet demon-
strates the use of an HKS color with a tint value of 70 percent:

p.set_graphics_option("fillcolor={ spotname {HKS 38 E} 0.7 }");

Custom spot colors. In addition to built-in spot colors as detailed above, PDFlib sup-
ports custom spot colors. These can have an arbitrary name (which must not conflict
with the name of any built-in color, however) and an alternate color which will be used
for screen preview or low-quality printing, but not for high-quality color separations.
The client is responsible for providing suitable alternate colors for custom spot colors.

Spot colors can be set with the fillcolor/strokecolor text or graphics appearance op-
tions and other color-related options. The alternate color can be supplied directly in the
spot color definition:

fillcolor={spotname={CompanyRed} 1.0 {cmyk 0 0.78 0.88 0}}

Alternatively, spot colors can be defined by using the current fill color as alternate color.
Except for an additional call to set the current fill color as alternate color, defining and
using custom spot colors works similarly to using built-in spot colors:

/* set current fill color for use as alternate color */
p.setcolor("fill", "cmyk", 0 0.78 0.88 0);
/* derive spot color from the current fill color */
spot = p.makespotcolor("CompanyRed");

/* set spot color for filling */
p.set_graphics_option("fillcolor={ spotname {CompanyRed} 0.7 }");

Table 4.4 HKS spot color libraries built into PDFlib

color library name sample color name remarks

HKS K HKS 43 K 88 colors for gloss art paper (Kunstdruckpapier)

HKS N HKS 43 N 86 colors for natural paper (Naturpapier)

HKS E HKS 43 E 88 colors for continuous stationary/coated (Endlospapier)

HKS Z HKS 43 Z 50 colors for newsprint (Zeitungspapier)

4.4 Pantone, HKS, and custom Spot Colors 87

Separation color space based on CMYK process colors. While spot color names gener-
ally can be chosen arbitrarily, the colorant names Cyan, Magenta, Yellow and Black always
refer to the CMYK process colors. This fact can be used to paint into a specific CMYK
channel only (e.g. Magenta), without affecting the other channels. This differs from
painting in full CMYK color with Cyan=Yellow=Black=0 which erases existing contents in
the Cyan, Yellow and Black channels (this behavior can be modified with device-depen-
dent settings, see Section 4.11, »Overprint Control«, page 102). For example, the follow-
ing call:

fillcolor={spotname=Magenta 0.5 {cmyk 0 1 0 0}}

is different from directly using CMYK color:

fillcolor={cmyk 0 0.5 0 0}

since the former call leaves existing contents in the Cyan, Yellow and Black channels
unchanged, while the second calls sets them to 0% (subject to the overprint settings).

88 Chapter 4: Color Spaces

4.5 DeviceN Colors
Cookbook Full code samples can be found in the starter_color sample and the Cookbook topic color/

devicen_color.

DeviceN color spaces support an arbitrary number of named color components and can
be regarded as a generalization of spot colors. The colorants may be taken from the set
of process colors (typically CMYK, but other process color spaces are possible) or may be
arbitrary spot colors. Applications of DeviceN color include the following:

> Some printing systems use more than four process colors to extend the color gamut
(the set of printable colors). For example, some seven-color printing systems are
based on CMYK plus Orange, Green and Violet.

> A DeviceN color space containing a subset of the CMYK process colors, e.g. only Cyan
and Magenta, can be used when an object in CMYK color should overprint other
CMYK objects.

> DeviceN color can be used to construct a shading (smooth color transition) between
a spot color and a process color or between multiple spot colors.

> Package printing often uses n-colorant color because traditional spot colors cannot
be used. Additional color channels are also used to record information which is not
directly related to visible colors, such as varnish or die lines.

The function PDF_create_devicen() returns a DeviceN color space handle which can be
used for drawing operations with color-related options such as fillcolor/strokecolor, for
constructing a shading with PDF_shading(), or for colorizing a raster image with the
colorize option of PDF_load_image(). DeviceN colors can be tinted, i.e., they can be used
with a percentage for each color channel which specifies the intensity of the respective
color channel from 0=no color=white to 1=maximum intensity. DeviceN color spaces
are always subtractive (unlike additive color spaces like RGB where 0=black).

PDF_create_devicen() needs the list of colorant names, the alternate color space, and
PostScript code which implements the tint transform function. The transform function
must convert N color values of the DeviceN color space to the corresponding color val-
ues in the alternate color space. The alternate color values are used for rendering if the
output device doesn’t support the named colors in the DeviceN color space, e.g. on a
monitor. Below we provide suitable PostScript transform functions for DeviceN color
spaces constructed from CMYK process colors or from spot colors when using Lab as al-
ternate color space. Devising a suitable PostScript transform function for other combi-
nations is a non-trivial task.

When creating output for PDF 1.6 or above, PDFlib emits a DeviceN attributes dictio-
nary with Colorants entries for all known spot colors. This ensures that the PDF viewer
has enough information to render the named colorants individually and can blend the
colorants. The advantage of this method is that the color display in Acrobat is correct re-
gardless of the Overprint Preview setting. It also means that Acrobat doesn’t need the
PostScript transform function for rendering the page. However, the transform function
must nevertheless be provided since third-party viewers or RIPs may resort to the Post-
Script function for rendering the DeviceN color to the alternate color space.

In PDF/X-4/5 mode PDF_makespotcolor() must be called before PDF_create_devicen()
for all custom spot colors used in the DeviceN color space. Since this generally improves
the screen display it is recommended even if no PDF/X-4/5 is generated.

http://www.pdflib.com/pdflib-cookbook/color/devicen_color/
http://www.pdflib.com/pdflib-cookbook/color/devicen_color/

4.5 DeviceN Colors 89

NChannel color spaces. PDF 1.6 introduced an extension of DeviceN color spaces called
NChannel. NChannel color spaces contain additional information which aids the PDF
viewer or RIP in accurate color rendering. This information includes alternate color
spaces for individual colorants in the DeviceN color space (not only the combined tint
transform function), the process color space and component names. NChannel may
also include additional information describing the mixing behavior of printing inks,
but this is not currently supported in PDFlib. NChannel color spaces require the
Colorants entry with individual alternate colors for the colorants. This is created auto-
matically by PDFlib. NChannel color spaces also require the name of the process color
space and its colorant names. These must be supplied in the process option and the
colorspace and components suboptions.

NChannel color spaces can be created with the option subtype=nchannel in PDF_
create_devicen(). The advantage of this setting is that DeviceN color spaces with this sub-
type no longer depend on Acrobat’s Overprint Preview setting. In some cases this Acrobat
preference is required for correct screen preview, but NChannel automatically forces
Acrobat into this display mode.

DeviceN color space based on CMYK process colors. In the following example we use a
subset of CMYK colors consisting of the Magenta and Yellow colorants, and DeviceCMYK
as alternate color space. The transform function is simple as it only supplies additional
zero values for the Cyan and Black components of the CMYK alternate color space:

devicen = p.create_devicen(
"names={Magenta Yellow} alternate=devicecmyk transform={{0 0 4 1 roll}}");

p.set_graphics_option("fillcolor={devicen " + devicen + " 0.5 1}");

N color values must be supplied when setting the color (N=2 in the example above).
The DeviceN color space created above paints only in the Magenta and Yellow channels,
but leaves the Cyan and Black channels unchanged. This differs from painting in full
CMYK color with Cyan=Black=0 which erases existing contents in the Cyan and Black
channels (subject to the overprint settings).

For convenience Table 4.3 lists the DeviceN PostScript transform functions for all
possible subsets of CMYK colorants with CMYK as alternate color space.

Table 4.5 DeviceN PostScript transform functions for subsets of CMYK process colorants and alternate=devicecmyk

DeviceN colorant names
for CMYK subsets

PostScript transform
function

DeviceN colorant names
for CMYK subsets

PostScript transform
function

Cyan {0 0 0} Magenta Black {0 3 1 roll 0 exch}

Magenta {0 0 0 4 1 roll} Yellow Black {0 0 4 2 roll}

Yellow {0 0 0 4 2 roll} Cyan Magenta Yellow {0}

Black {0 0 0 4 3 roll} Cyan Magenta Black {0 exch}

Cyan Magenta {0 0} Cyan Yellow Black {0 3 1 roll}

Cyan Yellow {0 exch 0} Magenta Yellow Black {0 4 1 roll}

Cyan Black {0 0 3 -1 roll} Cyan Magenta Yellow Black { }

Magenta Yellow {0 0 4 1 roll}

90 Chapter 4: Color Spaces

A similar technique can be used to render only a subset of CMYK image channels. For
example, the following code fragment creates a DeviceN color space which uses only the
Black channel and replaces the other three channels with None. Since four color chan-
nels are present in the image data, the PostScript transform function replaces the Cyan,
Magenta and Yellow channels with zero values (this differs from the PostScript func-
tions in Table 4.3 which add missing 0 values instead of replacing existing color values
with zero):

devicen = p.create_devicen(
"names={None None None Black} " +
"alternate=devicecmyk transform={{4 1 roll pop pop pop 0 0 0 4 -1 roll}}");

optlist = "width=4000 height=3000 bpc=8 colorize=" + devicen;
image = p.load_image("raw", filename, optlist);

Cookbook A full code sample can be found in the Cookbook topic color/colorize_image_with_DeviceN.

DeviceN color space based on spot colors with Lab alternate space. Using two or more
spot colors as DeviceN colorants provides the basis for shadings between spot colors.
Implementing a suitable PostScript transform function for device-dependent alternate
color spaces is rather challenging due to the nonlinear characteristics of RGB and CMYK.
Blending colors in the Lab color space is much easier because it is perceptually uniform.
This means we can combine colors simply by calculating the weighted average of their
Lab values. The following PostScript code implements this method for two Pantone col-
ors whose Lab alternate values must be provided at the start of the code:

% PostScript transform function for DeviceN with N=2 and Lab alternate;
% blend Lab colors values by using the tint values as
% weights and calculating the weighted average of the L/a/b values

80 28 75 % Lab values of color 1=PANTONE 123 U
31.7647 0 -17 % Lab values of color 2=PANTONE 289 U

% blend L values
7 index 6 index mul % t1*L1
7 index 4 index mul % t2*L2
add 9 1 roll % bottom: L = t1*L1 + t2*L2

% blend a values
7 index 5 index mul % t1*a1
7 index 3 index mul % t2*a2
add 9 1 roll % bottom: a = t1*a1 + t2*a2

% blend b values
7 index 4 index mul % t1*b1
7 index 2 index mul % t2*b2
add 9 1 roll % bottom: b = t1*b1 + t2*b2

% pop 2 tint and 2x3 input color values
pop pop pop pop pop pop pop pop
% result: Lab values of blended color

The PostScript function transformFunc2 above can be used to create a DeviceN color
space based on the two Pantone spot colors as follows:

http://www.pdflib.com/pdflib-cookbook/color/colorize_image_with_DeviceN/

4.5 DeviceN Colors 91

devicen = p.create_devicen(
"names={{PANTONE 123 U} {PANTONE 289 U}} alternate=lab " +
"transform={{" + transformFunc2 + "}}");

PDFlib automatically constructs such a DeviceN color space when a shading is con-
structed based on different spot colors with Lab alternate values.

Cookbook A more extensive code sample and Lab-based PostScript transform functions for higher values
of N can be found in the Cookbook topic color/devicen_color.

http://www.pdflib.com/pdflib-cookbook/color/devicen_color/

92 Chapter 4: Color Spaces

4.6 Shadings and Shading Patterns
Cookbook Full code samples can be found in the starter_color sample and the Cookbook topic color/

color_gradient.

Smooth shadings, also called color blends or gradients, provide a continuous transition
between two or more colors in the same color space, e.g. two RGB colors or two tints of a
spot color. Simple shadings define a transition between two colors. The first color is tak-
en from the startcolor option of PDF_shading() or the current fill color, The second color
is provided in the endcolor option or the c1, c2, c3, and c4 parameters. Shadings with an
arbitrary number of intermediate colors can be created by using the stopcolors option
instead of startcolor/endcolor.

The shading color is controlled by a variable t which varies linearly from 0 at the
start color to 1 at the end color. The linear transition can be changed to an exponential
transition with the N option as exponent. Since the RGB and CMYK color spaces are not
perceptually linear, the resulting blends may not appear as smooth as desired. Specify-
ing the blend with start and end colors in the Lab color space may result in a smoother
color transition. PDFlib supports two different kinds of geometry for shadings:

> The color in axial shadings (type=axial) varies along a line between a starting point
and an ending point (see Figure 4.2). The shading color varies linearly from the start-
ing point (x0, y0) to the ending point (x1, y1). The shading can optionally be extended
with the boundary color beyond the starting and/or ending point, subject to the
extend0 and extend1 options.

> The color in radial shadings (type=radial) varies between two circles (see Figure 4.3).
Radial shadings may be used to create a 3D-like visualization of a sphere. The shad-
ing color varies from a starting circle with center (x0, y0) and radius r0 to an ending
circle with center (x1, y1) and radius r1. One of the circles may collapse to a point.

PDF_shading() returns a handle to a shading object which can be used in two ways:
> Fill an area directly with PDF_shfill(). This method is preferable if the geometry of the

object to be filled is the same as the geometry of the shading. Contrary to its name
this function not only fills the interior of the object, but also affects the exterior. This
behavior can be modified with PDF_clip().

> Define a shading pattern (not to be confused with tiling patterns) to be used for fill-
ing more complex objects. This involves calling PDF_shading_pattern() to create a
pattern based on the shading and using this pattern to fill or stroke arbitrary objects.

startcolor=red endcolor=blue

starting point
(x0, y0)

ending point
(x1, y1)

t=0 t=0.5 t=1

Fig. 4.2
Main parameters of an axial shading between two colors

http://www.pdflib.com/pdflib-cookbook/color/color_gradient/
http://www.pdflib.com/pdflib-cookbook/color/color_gradient/

4.6 Shadings and Shading Patterns 93

Shadings between two process colors. The following code creates an axial shading
from red to blue in the RGB color space and uses it to fill a circle:

sh = p.shading("axial", 100, 100, 500, 500, 0, 0, 0, 0, "startcolor=red endcolor=blue");
shp = p.shading_pattern(sh, "");
p.set_graphics_option("fillcolor={pattern " + shp + "}");

p.circle(300, 300, 200);
p.fill();

Shadings between spot colors. Since shadings can only be used to create transitions
between colors in the same color space, you cannot use arbitrary spot colors or a spot
color and a process color as start and end color. However, for spot colors with Lab alter-
nate values shadings can be achieved with a suitable DeviceN color space similar to the
one shown in the section »DeviceN color space based on spot colors with Lab alternate
space«, page 90. PDFlib automatically creates such a DeviceN color space for spot colors
as stop colors, provided certain conditions are met (see PDFlib API Reference). The fol-
lowing code fragment creates a shading between two spot colors:

sh = p.shading("axial", 100, 100, 500, 500, 0, 0, 0, 0,
"stopcolors={ 0% {spotname {PANTONE 123 U} 1} 100% {spotname {PANTONE 289 U} 1}}"

shp = p.shading_pattern(sh, "");
p.set_graphics_option("fillcolor={pattern " + shp + "}");

p.circle(300, 300, 200);
p.fill();

endcolor=red

center0 (x0, y0) =
center1 (x1, y1)

r1r0=0
startcolor=yellow

t=0 t=0.5 t=1

Fig. 4.3
Main parameters of a radial shading between two colors.
The start circle collapses to a point; both circles have the
same center.

94 Chapter 4: Color Spaces

4.7 Tiling Patterns
Cookbook Full code samples can be found in the starter_color sample and the Cookbook topics

graphics/fill_pattern and images/tiling_pattern.

A tiling pattern is defined by an arbitrary number of painting operations which are
grouped into a single entity. This group of objects can be used to fill or stroke arbitrary
other objects by replicating (or tiling) the group over the entire area to be filled or the
path to be stroked. Working with patterns involves the following steps:

> First the pattern must be defined with drawing operators between PDF_begin_
pattern_ext() and PDF_end_pattern(). Most graphics operators can be used to define a
pattern.

> The pattern handle returned by PDF_begin_pattern_ext() can be used to set the pat-
tern as the current color with the options fillcolor/strokecolor in PDF_set_graphics_
option() or PDF_setcolor().

Depending on the painttype option of PDF_begin_pattern_ext() the pattern definition
may or may not include its own color specifications. If painttype=colored, the pattern
definition must contain its own color specification and will always look the same; if
painttype=uncolored, the pattern definition must not include any color specification. In-
stead, the current fill or stroke color will be applied when the pattern is used for filling
or stroking.

Text filled with tiling pattern

Fig. 4.4
A tiling pattern used for filling a circle and some text. The text outlines are additionally stroked for emphasis.

http://www.pdflib.com/pdflib-cookbook/graphics/fill_pattern/
http://www.pdflib.com/pdflib-cookbook/images/tiling_pattern/

4.8 Transparency Blend Modes 95

4.8 Transparency Blend Modes
Cookbook A code sample can be found in the Cookbook topic color/blendmode.

The blend mode controls how the colors of an object blend with the background in the
transparent imaging model (as opposed to the opaque imaging model where each ob-
ject completely obscures all underlying objects). Since the background color may have
been created by blending multiple other objects, it is referred to as backdrop. The object
being painted is referred to as source. Source and backdrop colors are blended against
each other with a blend function. The blend modes listed in Table 4.6 create a variety of
artistic effects and can also be leveraged for specialized applications (see Section 4.9.1,
»Changing the Color with Blend Modes«, page 98). The available blend modes can be cat-
egorized as follows:

> The default blend mode Normal makes the source completely opaque, i.e. the source
object completely replaces the background. Setting a blend mode other than Normal
implicitly makes the source object transparent, regardless of any opacity settings or
image transparency.

> The blend modes Darken, Multiply and ColorBurn create darkening effects.
> The blend modes Lighten, Screen and ColorDodge create lightening effects.
> The blend modes Overlay, SoftLight and HardLight increase the contrast by modifying

light and dark areas.
> The differencing blend modes Difference and Exclusion subtract color values. They are

the only modes where painting a white object on a white backdrop does not result in
white.

> The blend modes Hue, Saturation, Color and Luminosity are defined by their effect on
the dimensions of the HSL color representation. In the HSL model hue describes the
perceived color (red and green are different hues), saturation describes how colorful
a color appears (how much gray is mixed into the color), and luminosity describes
how dark or light a color appears (white has maximum luminosity).

Table 4.6 Blend modes and their effect when blending a source object against background objects (backdrop)

Blend mode Description according to ISO 32000-2

Blend modes without any blending effect

None PDFlib-specific blend mode for creating a gstate without any blend mode specification. This ensures that
a blend mode set in an enclosing gstate comes into effect.

Normal Selects the source color, ignoring the backdrop.

Darkening blend modes

Darken1 Selects the darker of the backdrop and source colors. The backdrop is replaced with the source where the
source is darker; otherwise, it is left unchanged.

Multiply1 Multiplies the backdrop and source color values. The result color is always at least as dark as either of the
two constituent colors. When working with additive colors, multiplying any color with black produces
black while multiplying with white leaves the original color unchanged. For subtractive colors, the maxi-
mum tint value used for all colorants of the color space acts as black does for additive spaces. Painting
successive overlapping objects with a color other than black or white produces progressively darker col-
ors.

ColorBurn Darkens the backdrop color to reflect the source color. Painting with white produces no change.

http://www.pdflib.com/pdflib-cookbook/color/blendmode/

96 Chapter 4: Color Spaces

Blending color space. The PDF viewer performs all transparency calculations in a
blending color space. This color space plays an important role since the blending results
depend on the selected color space. It is determined as follows:

> The color space specified with the colorspace suboption of the transparencygroup page
option if present.

Lightening blend modes

Lighten1 Selects the lighter of the backdrop and source colors. The backdrop is replaced with the source where the
source is lighter; otherwise, it is left unchanged.

Screen1 Multiplies the complements of the backdrop and source color values, then complements the result. The
result color is always at least as light as either of the two constituent colors. When working with additive
colors, screening any color with white produces white while screening with black leaves the original color
unchanged. For subtractive colors, the maximum tint value of all colorants of the color space acts as
black does for additive spaces. The effect is similar to projecting multiple photographic slides simultane-
ously onto a single screen.

ColorDodge Brightens the backdrop color to reflect the source color. Painting with black produces no change.

Contrasting blend modes

HardLight Multiplies or screens the colors if the source color value is smaller or larger than 0.5, respectively. The ef-
fect is similar to shining a harsh spotlight on the backdrop.

SoftLight Darkens or lightens the colors if the source color value is smaller or larger than 0.5, respectively. The effect
is similar to shining a diffused spotlight on the backdrop.

Overlay Multiplies or screens the colors, depending on the backdrop color value. Source colors overlay the back-
drop while preserving its highlights and shadows. The backdrop color is not replaced but is mixed with
the source color to reflect the lightness or darkness of the backdrop.

Differencing blend modes

Difference1,2 Subtracts the darker of the two constituent colors from the lighter color: Painting with white inverts the
backdrop color; painting with black produces no change. For subtractive colors, the maximum tint value
for all colorants of the color space acts as black does for additive spaces.

Exclusion1,2 Produces an effect similar to that of the Difference mode but lower in contrast. Painting with white in-
verts the backdrop color; painting with black produces no change. For subtractive colors, the maximum
tint value for all colorants of the color space acts as black does for additive spaces.

HSL blend modes

Hue2 Creates a color with the hue of the source color and the saturation and luminosity of the backdrop color.

Saturation2 Creates a color with the saturation of the source color and the hue and luminosity of the backdrop color.
Painting with this mode in an area of the backdrop that is a pure gray (no saturation) produces no
change.

Color2 Creates a color with the hue and saturation of the source color and the luminosity of the backdrop color.
This preserves the gray levels of the backdrop and is useful for coloring monochrome images or tinting
color images.

Luminosity2 Creates a color with the luminosity of the source color and the hue and saturation of the backdrop color.
This produces the same effect as the Color mode, but with source and backdrop exchanged.

1. This mode is symmetric, i.e. swapping the source and backdrop colors doesn’t change the result of the blending operation.
2. This mode doesn’t have any effect on spot colors; blend mode Normal is used instead.

Table 4.6 Blend modes and their effect when blending a source object against background objects (backdrop)

Blend mode Description according to ISO 32000-2

4.8 Transparency Blend Modes 97

> Otherwise the PDF/X or PDF/A output intent ICC profile is used if present. In PDF/X
an output intent is always present. If a PDF/A document doesn’t contain any output
intent it must specify the colorspace suboption of the transparencygroup page option.

> Otherwise the native color space of the output device (or the simulated output de-
vice for soft proofing/output preview) is used. It is recommended to avoid this situa-
tion by specifying the blending color space explicitly since otherwise the rendering
of transparent objects depends on the output device.

The following code fragment specifies DeviceRGB as blending color space and blend
mode Multiply:

p.begin_page_ext(0, 0, "width=a4.width height=a4.height " +
"transparencygroup={colorspace=DeviceRGB}");

gstate = p.create_gstate("blendmode=Multiply");
p.set_gstate(gstate);

Multiple blend modes. In PDF only one blend mode at a time can be active in the
graphics state. If you want to apply the effects of multiple blend modes you can paint
another object on top of the already blended backdrop and object. For example, in order
to invert the result of some other blend mode, first blend the backdrop and object with
some blend mode; then change the blend mode to Difference and paint a white rectangle
on top of the result of the first blend operation.

98 Chapter 4: Color Spaces

4.9 Changing the Color of Objects
PDFlib supports several methods for changing the color of objects such as imported PDF
pages, raster images or SVG graphics, or arbitrary text and vector elements placed on
the page:

> Raster images can be colorized, see Section 8.1.5, »Colorize Images with Spot or De-
viceN Color«, page 194.

> The color of arbitrary objects can be changed with blend modes.
> GStates with luminosity soft masks can be used to apply color to arbitrary objects.

4.9.1 Changing the Color with Blend Modes
Cookbook A code sample for all effects discussed in this section can be found in the Cookbook topic color/

blendmode_effects.

In this section we present some useful applications of blend modes. A description of all
available blend modes can be found in Section 4.8, »Transparency Blend Modes«, page
95. In all examples the colors of an object, e.g. an imported image, PDF page, or SVG
graphics, are modified in some way.

All examples can be implemented with the basic code fragment shown below. It
specifies a transparency group colorspace for the page to avoid device-specific render-
ing and sets a specific blend mode. In order to avoid subsequent objects to be affected
by the specified blend mode the sequence should be bracketed with a save/restore pair:

p.begin_page_ext(width, height, "transparencygroup={colorspace=DeviceCMYK}");

// place raster image, imported PDF page or SVG graphics
p.fit_image(image, 200, 150, optlist);

// Colorize, decolorize or invert existing content by blending with the desired color
p.save();

// Create gstate with the desired blend mode
gs_blendmode = p.create_gstate("blendmode=Color");
p.set_graphics_option("fillcolor=red gstate=" + gs_blendmode);
p.rect(0, 0, width, height);
p.fill();

p.restore();

Colorize an object with arbitrary color. Blend mode Color can be used to colorize an ob-
ject with some new color, i.e. the perceived gray levels of the object control the tint val-
ue of an additional color while the object’s original colors are ignored. In order to color-
ize an object apply blend mode Color and place a colored rectangle (or other shape) on
top of the object. In order to colorize transparent objects you it is recommend to place a
white area below the placed object.

If you want the backdrop color to show through the white areas of the source object
instead (while dark areas remain dark), use blend mode Multiply.

Decolorize or invert an object. In some situations you may want to decolorize (or de-
saturate, or bleach) an object, i.e. create grayscale output for an object which originally
contained color, where the gray levels correspond to the perceived brightness (luminos-
ity) of the object’s original colors. This can be achieved with blend mode Color and a
white area on top of the object.

http://www.pdflib.com/pdflib-cookbook/color/blendmode_effects/
http://www.pdflib.com/pdflib-cookbook/color/blendmode_effects/

4.9 Changing the Color of Objects 99

The colors of raster images can be inverted with the invert image option. The colors
of arbitrary objects can be inverted with blend mode Difference and white on top of the
object.

4.9.2 Changing the Color with Soft Masks
Cookbook A code sample can be found in the Cookbook topic color/softmask_effects.

Image alpha channels can be generalized to arbitrary objects and color spaces with the
help of a luminosity soft mask which is contained in a graphics state (gstate). The soft
mask is constructed on the basis of a template which may contain arbitrary contents
such as imported PDF pages or SVG graphics. The luminosity (perceived gray level) of
the template contents determines the visibility of subsequently drawn objects: light ar-
eas of the template are transparent (i.e. drawn objects are visible), while dark areas pre-
vent objects from being visible. This technique entails the following steps:

> Create a template with the transparencygroup option and suboption colorspace.Apply
arbitrary drawing operations in the template.

> When applying the soft mask the light (white) areas of the soft mask template will be
colorized with the current color while dark (black) areas will not get any color. As a
result dark and light areas of the soft mask are exchanged. In order to preserve dark
and light areas you can invert the template colors with blend mode Difference as ex-
plained in the section »Decolorize or invert an object«, page 98.

> Create a gstate based on the template with the softmask option list and the subop-
tion type=luminosity. By default the soft mask background is initialized to black, i.e.
opaque. This can be changed by setting the backdropcolor option to white (with a suit-
able number of color components according to the colorspace suboption of the tem-
plate’s transparencygroup option.

> Set the gstate, usually bracketed with a save/restore sequence to limit the effect of
the soft mask. The geometry of the soft mask template in the gstate is subject to the
current coordinate system. For example, you can control the position of the soft
mask by applying a translation before setting the gstate. Now draw the contents
which will be masked on the page.

The following code fragment implements this sequence including mask inversion and
applies it to colorize an imported SVG graphics file:

// Create the template which will be used to define the soft mask
tpl = p.begin_template_ext(595, 842, "transparencygroup={colorspace=devicecmyk}");

 // Place arbitrary contents, e.g. SVG graphics
 p.fit_graphics(graphics, 0, 0, "boxsize={595 842} position={center} fitmethod=meet");

 // Invert the template luminosity to preserve dark and light areas
// Create a gstate with blend mode for color inversion
gstate_invert = p.create_gstate("blendmode=Difference");

 p.set_graphics_option("fillcolor=white gstate=" + gstate_invert);
 p.rect(0, 0, 595, 842);
 p.fill();
p.end_template_ext(0, 0);

// Activate the gstate with soft mask and apply color
// Result: SVG graphics is colorized with red
p.save();

http://www.pdflib.com/pdflib-cookbook/color/softmask_effects/

100 Chapter 4: Color Spaces

// Create a gstate with soft mask based on the template
// The "backdropcolor" option initializes the template area to transparent
gstate_softmask = p.create_gstate(

"softmask={type=luminosity template=" + tpl + " backdropcolor={0 0 0 0} }");
 p.set_graphics_option("fillcolor=red gstate=" + gstate_softmask);
 p.rect(0, 0, 595, 842);
 p.fill();
p.restore();

Multiple soft masks. PDF supports only up to one soft mask per compositing opera-
tion. For example, if an image contains its own alpha channel (=soft mask), a soft mask
supplied in a graphics state doesn’t have any effect. As a workaround to this PDF restric-
tion you must create the contents in a template and place this template on the page, ef-
fectively forcing the PDF viewer to apply a separate compositing operation where the
soft mask can be used.

4.10 Rendering Intents 101

4.10 Rendering Intents
Although PDFlib applications can specify device-independent color values, a particular
output device may not be able to accurately reproduce the colors. In this situation some
compromises have to be made in a process called gamut compression, i.e., reducing the
range of colors to a smaller range which can be reproduced by the device. The rendering
intent can be used to control this process. Rendering intents can be specified for indi-
vidual images by supplying the renderingintent option to PDF_load_image(). In addition,
rendering intents can be specified for text and vector graphics by supplying the render-
ingintent option to PDF_create_gstate(). Table 4.6 lists all available rendering intents.

Table 4.7 Available rendering intents

intent description typical use

Auto Do not specify any rendering intent in the PDF file, but use
the device’s default intent instead.

not enough information about the
page contents is available

AbsoluteColorimetric No correction is made for the device’s white point (such as
paper white). Colors which are out of gamut are mapped
to nearest value within the device’s gamut.

exact reproduction of solid colors;
not recommended for other uses

RelativeColorimetric The color data is compressed into the device’s gamut, map-
ping the white points onto one another while slightly shift-
ing the remaining colors.

vector graphics

Saturation Color saturation is preserved while the color values may be
shifted.

business graphics

PerceptualColor Color relationships are preserved by modifying both in-
gamut and out-of-gamut colors in order to provide a pleas-
ing appearance.

real-world images

102 Chapter 4: Color Spaces

4.11 Overprint Control
Cookbook A code sample can be found in the Cookbook topic color/overprint.

By default, painting in a specific color channel replaces the corresponding areas of the
other color channels. For example, color 0/0/1/0, i.e. Yellow, on a CMYK device erases ex-
isting Cyan, Magenta and Black channels of objects which have been painted earlier at
the same location of the page. This behavior can be changed with a process called over-
printing which relates to mixing of color ink particles on a printing device. Overprint-
ing can be used to create »enriched Black« by printing Black over another dark color.

The overprint flag in PDF is targeted at CMYK printing. It controls whether painting
in a particular channel has an effect on existing contents in other channels. For exam-
ple, if Cyan is printed on top of Yellow, the result will be green with overprinting (Cyan
and Yellow are mixed). On the other hand, the same sequence without overprinting re-
sults in the last printed color Cyan since pure Cyan has no Yellow component, therefore
0% Yellow replaces the existing Yellow contents.

Overprint settings for fill and stroke operations. The overprinting behavior can be
controlled separately for stroke and other operations with the graphics appearance op-
tions overprintstroke (for stroking operations) and overprintfill (for all non-stroking oper-
ations including image placement). Both options default to false:

> If overprintfill=false or overprintstroke=false, filling or stroking in any color channel re-
places the corresponding areas of unspecified colorants: the foreground color wins.

> If the options are true and the output device supports overprinting, previous mark-
ings in unspecified colorants are left unchanged. Overprinting is usually used for
very dark colors.

Overprint mode for CMYK colors. The overprint behavior of CMYK objects can further
be modified with the overprintmode graphics appearance option which controls the be-
havior of zero CMYK components if overprintfill/overprintstroke=true:

> overprintmode=0 (default): each color component replaces previously placed marks
(»foreground color wins«). In other words, all channels of the foreground object color
knock out the underlying objects.

> overprintmode=1 (sometimes called »Illustrator overprint mode«): tint value 0 leaves
the corresponding component of previously painted color unchanged instead of set-
ting it to 0 (»foreground tint value 0 is ignored«). In other words, only foreground
channels with non-zero values knock out underlying objects. This is equivalent to
painting in a DeviceN color space which includes only those CMYK components
which have non-zero values.

This means that a small difference in CMYK tint values (e.g. 0% vs. 1%) can result in a big
difference depending on the overprint mode: with overprint mode 0 the result is 0% or
1%, respectively. With overprint mode 1, the result is the background color (whatever
that was) or 1%, respectively. Due to its definition overprint mode doesn’t have any ef-
fect on color spaces other than CMYK.

Only colors in the DeviceCMYK color space are affected by overprinting. If the Cyan,
Magenta, Yellow or Black components are used in a DeviceN color space the CMYK over-
printing rules don’t apply.

http://www.pdflib.com/pdflib-cookbook/color/overprint/

4.11 Overprint Control 103

Device-dependent overprint rendering. Since PDF viewers must ignore overprint set-
tings if the output device doesn’t support overprinting, documents with overprinting
objects are inherently non-portable and may require specific configuration of the PDF
viewer or RIP to achieve the intended page representation. Whether or not Acrobat hon-
ors overprint settings for screen display can be configured via Edit, Preferences, Page
Display, Use Overprint Preview. We recommend to set this preference to Always when
working with overprint settings to ensure reliable screen display. In addition, the Out-
put Preview panel in Acrobat also offers an item Simulate Overprinting.

If transparency or blend modes are used on the page, Acrobat’s overprint preview
works as expected only if the current blending color space is set to use the DeviceCMYK
color space, e.g. with the following option in PDF_begin_page_ext():

transparencygroup={colorspace=devicecmyk}

Third-party PDF viewers without support for overprint preview may display unexpect-
ed colors. In fact, most simple PDF viewers don’t support overprint preview.

Device-independent overprinting effect. Because of the viewer dependencies de-
scribed above the rendering of overprinting may be fragile. You can achieve overprint-
ing effects in a device-independent manner by using blend mode Darken as follows:

gstate = p.create_gstate("blendmode=darken");
p.set_gstate(gstate);

A particular situation where overprint simulation is useful is the recombination of col-
or separations. Assuming you have the Cyan, Magenta, Yellow and Black separations of
an image or page and need to recombine these into a composite PDF page, this can be
achieved with the Darken blend mode.

Cookbook A code sample for recombining CMYK separations can be found in the Cookbook topic color/
recombine_color_channels.

http://www.pdflib.com/pdflib-cookbook/color/recombine_color_channels/
http://www.pdflib.com/pdflib-cookbook/color/recombine_color_channels/

5.1 Important Unicode Concepts 105

5 Unicode and Legacy Encodings
This chapter provides basic information about Unicode and other encoding schemes.
Text handling in PDFlib heavily relies on the Unicode standard, but also supports vari-
ous legacy encodings.

5.1 Important Unicode Concepts
Characters and glyphs. When dealing with text it is important to clearly distinguish
the following concepts:

> Characters are the smallest units which convey information in a language. Common
examples are the letters in the Latin alphabet, Chinese ideographs, and Japanese syl-
lables. Characters have a meaning: they are semantic entities.

> Glyphs are different graphical variants which represent one or more particular char-
acters. Glyphs have an appearance: they are representational entities.

There is no one-to-one relationship between characters and glyphs. For example, a liga-
ture is a single glyph which represents two or more separate characters. On the other
hand, a specific glyph may represent different characters depending on the context
(some characters look identical, see Figure 5.1).

BMP and PUA. The following terms will occur frequently in Unicode-based environ-
ments:

> The Basic Multilingual Plane (BMP) comprises the code points in the Unicode range
U+0000...U+FFFF. The Unicode standard contains many more code points in the sup-
plementary planes, i.e. in the range U+10000...U+10FFFF.

> The Private Use Area (PUA) consists of multiple Unicode ranges which are reserved for
private use. PUA code points cannot be used for general interchange since the Uni-
code standard does not specify any characters in this range. The Basic Multilingual
Plane includes the PUA range U+E000...U+F8FF. Plane fifteen (U+F0000... U+FFFFD)
and plane sixteen (U+100000...U+10FFFD) are completely reserved for private use.

U+0067 LATIN SMALL LETTER G

Characters Glyphs

U+0066 LATIN SMALL LETTER F +
U+0069 LATIN SMALL LETTER I

U+2126 OHM SIGN or
U+03A9 GREEK CAPITAL LETTER OMEGA

U+2167 ROMAN NUMERAL EIGHT or
U+0056 V U+0049 I U+0049 I U+0049 I

Fig. 5.1
Relationship of glyphs
and characters

106 Chapter 5: Unicode and Legacy Encodings

Unicode encoding forms (UTF formats). The Unicode standard assigns a number (code
point) to each character. In order to use these numbers in computing, they must be rep-
resented in some way. In the Unicode standard this is called an encoding form (former-
ly: transformation format); this term should not be confused with font encodings. Uni-
code defines the following encoding forms:

> UTF-8: This is a variable-width format where code points are represented by 1-4 bytes.
ASCII characters in the range U+0000...U+007F are represented by a single byte in
the range 00...7F. Latin-1 characters in the range U+00A0...U+00FF are represented by
two bytes, where the first byte is always 0xC2 or 0xC3 (these values represent Â and Ã
in Latin-1).

> UTF-16: Code points in the Basic Multilingual Plane (BMP) are represented by a single
16-bit value. Code points in the supplementary planes, i.e. in the range U+10000...
U+10FFFF, are represented by a pair of 16-bit values. Such pairs are called surrogate
pairs. A surrogate pair consists of a high-surrogate value in the range D800...DBFF
and a low-surrogate value in the range DC00...DFFF. High- and low-surrogate values
can only appear as parts of surrogate pairs, but not in any other context.

> UTF-32: Each code point is represented by a single 32-bit value.

Unicode encoding schemes and the Byte Order Mark (BOM). Computer architectures
differ in the ordering of bytes, i.e. whether the bytes constituting a larger value (16- or
32-bit) are stored with the most significant byte first (big-endian) or the least significant
byte first (little-endian). A common example for big-endian architectures is PowerPC,
while the x86 architecture is little-endian. Since UTF-8 and UTF-16 are based on values
which are larger than a single byte, the byte-ordering issue comes into play here. An en-
coding scheme (note the difference to encoding form above) specifies the encoding
form plus the byte ordering. For example, UTF-16BE stands for UTF-16 with big-endian
byte ordering. If the byte ordering is not known in advance it can be specified by means
of the code point U+FEFF, which is called Byte Order Mark (BOM). Although a BOM is not
required in UTF-8, it may be present as well, and can be used to identify a stream of
bytes as UTF-8. Table 5.1 lists the representation of the BOM for various encoding forms.

Table 5.1 Byte order marks for various Unicode encoding forms

encoding form byte order mark (hex) graphical representation in WinAnsi1

1. The square  denotes a null byte.

UTF-8 EF BB BF ï»¿

UTF-16 big-endian FE FF þÿ

UTF-16 little-endian FF FE ÿþ

UTF-32 big-endian 00 00 FE FF   þÿ

UTF-32 little-endian FF FE 00 00 ÿþ  

5.2 Unicode-capable Language Bindings 107

5.2 Unicode-capable Language Bindings
Some aspects of the PDFlib API vary depending on whether or not the used language
binding is Unicode-capable. This concept is discussed in this section and the next sec-
tion.

5.2.1 Language Bindings with native Unicode Strings
If a programming language or environment supports Unicode strings natively we call
the binding Unicode-capable. The following PDFlib language bindings are Unicode-
capable:

> C++
> .NET and .NET Core
> Java
> Objective-C
> Python
> RPG

String handling in these environments is straightforward: all strings are supplied to the
PDFlib kernel as Unicode strings in native UTF-16 format. The language wrappers cor-
rectly deal with Unicode strings provided by the client, and automatically set certain
PDFlib options. This has the following consequences:

> All strings supplied by the client arrive in PDFlib in Unicode encoding and UTF-16
format.

> The distinction between different string types (content strings, hypertext strings
and name strings) in the API descriptions is not relevant. The options textformat,
hypertextformat and hypertextencoding are not required and are not allowed. The
Textflow option fixedtextformat is forced to true.

> Using unicode encoding for the contents of a page is the easiest way to deal with en-
codings in Unicode-capable languages, but 8-bit encodings and single-byte text for
symbol fonts can also be used if so desired.

> Non-Unicode legacy CMaps for Chinese, Japanese, and Korean text (see Section 5.5,
»Chinese, Japanese, and Korean CMaps«, page 116) cannot be used since the wrapper
always supplies Unicode to the PDFlib kernel; only Unicode CMaps can be used.

The overall effect is that clients can provide native Unicode strings to PDFlib API func-
tions without any additional configuration.

5.2.2 Language Bindings with UTF-8 Support
Programming languages without a native Unicode string data type can nevertheless
deal with Unicode strings in UTF-8 format. The following PDFlib language bindings can
be made Unicode-capable by setting the stringformat=utf8 option:

> C
> Perl
> PHP
> Ruby

UTF-8 is recommended if you work with one of these language bindings. The following
function call can be used immediately after creating a new PDFlib object to make the
language binding Unicode-aware:

108 Chapter 5: Unicode and Legacy Encodings

p.set_option("stringformat=utf8");

If Unicode processing is required in the application it is recommended to use the call
above to make the language binding Unicode-aware based on UTF-8. After this call the
language binding behaves like a Unicode-capable binding except that the client must
make sure to supply UTF-8 strings to all API functions. The call has the following addi-
tional consequences:

> All strings at the API, i.e. name strings, content strings, hypertext strings and option
lists are expected in UTF-8 format with or without BOM.

> In the C language binding name strings as function parameters are still interpreted
as UTF-16 if the length parameter is supplied with a value larger than 0.

Unicode conversion. If you must deal with strings in other encodings than Unicode,
you must convert them to Unicode in UTF-8 or UTF-16 format before passing them to
PDFlib. This can be achieved with PDF_convert_to_unicode() or language-specific meth-
ods. Chapter 2, »PDFlib Language Bindings«, page 29, provides more details regarding
useful Unicode string conversion methods provided by common language environ-
ments.

5.3 Non-Unicode-capable Language Bindings 109

5.3 Non-Unicode-capable Language Bindings
The following PDFlib language bindings are not Unicode-capable by default:

> C
> Perl
> PHP
> Ruby

It is recommended to make these language bindings Unicode-capable with the
stringformat option; see »Language Bindings with UTF-8 Support«, page 107). The re-
mainder of this section is only relevant for applications which are written in one of the
languages listed above and which don’t set the option stringformat=utf8.

Unicode conversion. PDFlib offers the PDF_convert_to_unicode() function which con-
verts between UTF-8, UTF-16, and UTF-32 strings, or from arbitrary encodings to Unicode
with an optional BOM.

The format UTF-8 with BOM has the advantage for C users that PDFlib automatically
recognizes such strings via the BOM. This makes it possible to load fonts with
encoding=unicode, treat hypertext strings with hypertextencoding=unicode and name
strings with usehypertextencoding=true, resulting in a full Unicode workflow.

The language-specific sections in Chapter 2, »PDFlib Language Bindings«, page 29,
provide more details regarding useful Unicode string conversion methods provided by
common language environments.

Unicode handling and string types. Unicode strings can still be used in non-Unicode-
capable languages, but string handling is a bit more complicated and depends on the
type of string. The PDFlib API uses the string types content string, hypertext string, and
name string (these designations are historical misnomers). Parameters and options are
marked as one of these types in the PDFlib API Reference. Handling of these string types
is summarized in Table 5.2 and detailed in separate sections below.

Table 5.2 Summary of string handling for different string types

string type sample parameters and options relevant options/interpretation

content
string

The text parameter of PDF_fit_textline() and PDF_add_
textflow().

textformat

encoding

hypertext
string

> The fieldname option of PDF_add_table_cell()
> The name option of PDF_define_layer()
> The destname option of PDF_create_action()
> The text parameter of PDF_create_bookmark()

hypertextformat

hypertextencoding

name string > The filename parameter of PDF_begin_document() and
PDF_create_pvf()

> The fontname parameter of PDF_load_font()
> The profilename parameter of PDF_load_iccprofile()

usehypertextencoding,
filenamehandling

strings in
option lists

with BOM: UTF-8
without BOM: depends on string
type

110 Chapter 5: Unicode and Legacy Encodings

Content strings. Content strings are used to create page content (page descriptions)
according to the encoding chosen by the user for a particular font. All function parame-
ters with the name text in the PDFlib API Reference for the page content functions fall in
this class. Since content strings are represented with glyphs from a particular font, the
range of usable characters depends on the font/encoding combination.

Interpretation of content strings is controlled by the textformat option (detailed be-
low) and the encoding parameter or option of PDF_load_font(). If textformat=auto (which
is the default) utf16 format will be used for the unicode and glyphid encodings as well as
UCS-2 and UTF-16 CMaps. For all other encodings the format will be bytes. In the C lan-
guage the length of UTF-16 strings must be supplied in a separate length parameter.

Hypertext strings. Hypertext strings are used for interactive features such as book-
marks and annotations, and are labeled Hypertext string in the PDFlib API Reference.
Many parameters and options of the functions for interactive features fall in this class,
as well as some others. The range of characters which can be displayed depends on ex-
ternal factors, such as the fonts available to Acrobat and the operating system.

Interpretation of hypertext strings is controlled by the hypertextformat and hyper-
textencoding options (detailed below). If hypertextformat=auto (which is the default)
utf16 format will be used if hypertextencoding=unicode, and bytes otherwise. In the C lan-
guage the length of UTF-16 strings must be supplied in a separate length parameter.

Name strings. Name strings are used for external file names, font names, Block
names, etc., and are marked as Name string in the PDFlib API Reference. They slightly dif-
fer from Hypertext strings.

File names are a special case: the option filenamehandling specifies how PDFlib con-
verts filenames supplied to the API to a string which can be used with the local file sys-
tem.

Interpretation of name strings differs slightly from content strings. By default, name
strings are interpreted in host encoding. However, if a name starts with a UTF-8 BOM it
is interpreted as UTF-8 (or as EBCDIC UTF-8 if it starts with an EBCDIC UTF-8 BOM). If
usehypertextencoding=true, the encoding specified in hypertextencoding is applied to
name strings as well. This can be used, for example, to specify font or file names in
Shift-JIS. If hypertextencoding=unicode PDFlib expects a UTF-16 string which must be ter-
minated by two null bytes.

In C the length parameter must be 0 for UTF-8 strings. If it is different from 0 the
string is interpreted as UTF-16. In all other non-Unicode-capable language bindings
there is no length parameter available in the API functions, and name strings must al-
ways be supplied in UTF-8 format. In order to create Unicode name strings you must
convert the string to UTF-8.

Text format for content strings and hypertext strings. Unicode strings can be sup-
plied in UTF-8, UTF-16, or UTF-32 format with any byte ordering. The choice of format
can be controlled with the textformat option for all text on page descriptions and the
hypertextformat option for interactive elements. Table 5.3 lists the values which are sup-
ported for both of these options. The default for the [hyper]textformat option is auto. Use
the usehypertextencoding option to enforce the same behavior for name strings. The de-
fault for the hypertextencoding option is auto.

Although the textformat setting is in effect for all encodings, it is most useful for
unicode encoding. Table 5.4 details the interpretation of text strings for various combi-

5.3 Non-Unicode-capable Language Bindings 111

nations of encodings and textformat. If a code or Unicode value in a content string can-
not be represented with a suitable glyph in the selected font, the option glyphcheck con-
trols the behavior of PDFlib (see »Glyph replacement«, page 131).

Option lists. Strings within option lists require special attention since in non-Uni-
code-capable language bindings they cannot be expressed as Unicode strings in UTF-16
format, but only as byte strings. For this reason UTF-8 is used for Unicode options. By
looking for a BOM at the beginning of an option, PDFlib decides how to interpret it. The
BOM is used to determine the format of the string, and the string type (content string,
hypertext string, or name string as defined above) is used to determine the appropriate
encoding. More precisely, interpreting a string option works as follows:

> If the option starts with a UTF-8 BOM (0xEF 0xBB 0xBF) it is interpreted as UTF-8. On
EBCDIC-based systems: if the option starts with an EBCDIC UTF-8 BOM (0x57 0x8B
0xAB) it is interpreted as EBCDIC UTF-8.

> If no BOM is found, string interpretation depends on the type of string:
> Content strings are interpreted according to the applicable encoding option or the

encoding of the corresponding font (whichever is present).
> Hypertext strings are interpreted according to the hypertextencoding option.
> Name strings are interpreted according to the hypertext settings if usehypertext-

encoding=true, and auto encoding otherwise.
Note that the characters { and } require special handling within strings in option lists,
and must be preceded by a \ character if they are used within a string option. This re-
quirement remains for legacy encodings such as Shift-JIS: all occurrences of the byte

Table 5.3 Values for the textformat and hypertextformat options

[hyper]textformat explanation

bytes One byte in the string corresponds to one character. This is mainly useful for 8-bit encodings and
symbolic fonts. A UTF-8 BOM at the start of the string will be evaluated and then removed.

utf8 Strings are expected in UTF-8 format. Invalid UTF-8 sequences will trigger an exception if
glyphcheck=error, or will be deleted otherwise.

ebcdicutf8 Strings are expected in EBCDIC-coded UTF-8 format (only on IBM System i and IBM Z).

utf16 Strings are expected in UTF-16 format. A Unicode Byte Order Mark (BOM) at the start of the string
will be evaluated and then removed. If no BOM is present the string is expected in the machine’s
native byte ordering (on Intel x86 architectures the native byte order is little-endian, while on
Sparc and PowerPC systems it is big-endian).

utf16be Strings are expected in UTF-16 format in big-endian byte ordering. There is no special treatment
for Byte Order Marks.

utf16le Strings are expected in UTF-16 format in little-endian byte ordering. There is no special treatment
for Byte Order Marks.

auto Content strings: equivalent to bytes for 8-bit encodings and non-Unicode CMaps, and utf16 for
wide-character addressing (unicode, glyphid, or a UTF16 CMap).
Hypertext strings: UTF-8 and UTF-16 strings with BOM will be detected (in C UTF-16 strings must
be terminated with a double-null). If the string does not start with a BOM, it will be interpreted as
an 8-bit encoded string according to the hypertextencoding option.
This setting will provide proper text interpretation in most environments which do not use Uni-
code natively.

112 Chapter 5: Unicode and Legacy Encodings

values 0x7B and 0x7D must be preceded with 0x5C. For this reason the use of UTF-8 for
options is recommended (instead of Shift-JIS and other legacy encodings).

Table 5.4 Relationship of encodings and text format

[hypertext]encoding textformat=bytes textformat=utf8, utf16, utf16be, or utf16le

All string types:

auto see section »Automatic encoding«, page 113

unicode and UTF16
CMaps

8-bit codes are Unicode values from
U+0000 to U+00FF

any Unicode value, encoded according to the cho-
sen text format1

any other CMap
(not Unicode-based)

any single- or multibyte codes according to
the selected CMap

PDFlib will throw an exception

Only content strings:

8-bit and builtin 8-bit codes Convert Unicode values to 8-bit codes according to
the chosen encoding1.

glyphid 8-bit codes are glyph ids from 0 to 255 Unicode values will be interpreted as glyph ids2.
Surrogate pairs will not be interpreted.

1. If the Unicode character is not available in the font, PDFlib throws an exception or replaces it subject to the glyphcheck option.
2. If the glyph id is not available in the font, PDFlib throws an exception or replaces it with glyph id 0 subject to the glyphcheck option.

5.4 Single-Byte (8-Bit) Encodings 113

5.4 Single-Byte (8-Bit) Encodings
Note The information in this section is unlikely to be required in Unicode workflows.

8-bit encodings (also called single-byte encodings) map a byte value 0x01-0xFF to a sin-
gle character with a Unicode value in the BMP (i.e. U+0000...U+FFFF). They are limited to
255 different characters at a time since code 0 (zero) is reserved for the .notdef character
U+0000. PDFlib contains internal definitions of the following encodings:

winansi (identical to cp1252; superset of iso8859-1),
macroman (the original Macintosh character set),
macroman_apple (similar to macroman, but replaces currency with Euro),
ebcdic (EBCDIC code page 1047), ebcdic_37 (EBCDIC code page 037),
pdfdoc (PDFDocEncoding),
iso8859-1, iso8859-2, iso8859-3, iso8859-4, iso8859-5, iso8859-6, iso8859-7, iso8859-8,
iso8859-9, iso8859-10, iso8859-13, iso8859-14, iso8859-15, iso8859-16,s
cp1250, cp1251, cp1252, cp1253, cp1254, cp1255, cp1256, cp1257, cp1258

Host encoding. The special encoding host does not have any fixed meaning, but will be
mapped to another 8-bit encoding depending on the current platform as follows:

> on IBM System Z with MVS or USS it will be mapped to ebcdic;
> on IBM System i it will be mapped to ebcdic_37;
> on Windows it will be mapped to winansi;
> on all other systems it will be mapped to iso8859-1;

Host encoding is primarily useful for writing platform-independent test programs and
other simple applications. Host encoding is not recommended for production use, but
should be replaced by whatever encoding is appropriate.

Automatic encoding. PDFlib supports a mechanism which can be used to specify the
most natural encoding for certain environments without further ado. Supplying the
keyword auto as an encoding name specifies a platform- and environment-specific 8-bit
encoding for text fonts as follows:

> On Windows: the current system code page (see below for details)
> On Unix and macOS: iso8859-1
> On IBM System i: the current job’s encoding (IBMCCSID000000000000)
> On IBM System Z: ebcdic (=code page 1047).

For symbol fonts the keyword auto is mapped to builtin encoding (see Section 6.4.2, »Se-
lecting an Encoding for symbolic Fonts«, page 135). While automatic encoding is conve-
nient in many circumstances, using this method makes your PDFlib client programs in-
herently non-portable.

Encoding auto is used as the default encoding for Name strings (see Section 5.3,
»Non-Unicode-capable Language Bindings«, page 109) in non-Unicode-capable lan-
guage bindings, since this is the most appropriate encoding for file names etc.

Tapping system code pages. PDFlib can fetch code page definitions from the system.
Instead of supplying the name of a built-in or user-defined encoding for PDF_load_
font(), simply use an encoding name which is known to the system. This feature is only
available on selected platforms, and the syntax for the encoding string is platform-spe-
cific:

114 Chapter 5: Unicode and Legacy Encodings

> On Windows the encoding name is cp<number>, where <number> is the number of
any single-byte code page installed on the system (see Section 7.5.1, »Using TrueType
and OpenType CJK Fonts«, page 177, for information on multi-byte Windows code
pages):

font = p.load_font("Helvetica", "cp1250", "");

Single-byte code pages will be transformed into an internal 8-bit encoding, while
multi-byte code pages will be mapped to Unicode at runtime. The text must be sup-
plied in a format which is compatible with the chosen code page (e.g. SJIS for cp932,
see »Code pages for custom CJK fonts«, page 117).

> On Linux all codeset identifiers supported the iconv facility can be used.
> On IBM IBM System i any Coded Character Set Identifier (CCSID) can be used. The CCSID

must be supplied as a string, and PDFlib will apply the prefix IBMCCSID to the sup-
plied code page number. PDFlib will also add leading 0 characters if the code page
number uses fewer than 5 characters. Supplying 0 (zero) as the code page number
will result in the current job’s encoding to be used:

font = p.load_font("Helvetica", "273", "");

> On IBM System Z with USS or MVS any Coded Character Set Identifier (CCSID) can be
used. The CCSID must be supplied as a string, and PDFlib will pass the supplied code
page name to the system literally without applying any change:

font = p.load_font("Helvetica", "IBM-273", "");

User-defined 8-bit encodings. In addition to predefined encodings PDFlib supports
user-defined 8-bit encodings. These are the way to go if you want to deal with some
character set which is not internally available in PDFlib, such as EBCDIC character sets
different from the one supported internally in PDFlib. PDFlib supports encoding tables
defined by PostScript glyph names, as well as tables defined by Unicode values.

The following tasks must be done before a user-defined encoding can be used in a
PDFlib program (alternatively the encoding can also be constructed at runtime using
PDF_encoding_set_char()):

> Generate a description of the encoding in a simple text format.
> Configure the encoding as PDFlib resource (see Section 3.1.4, »Resource Configura-

tion and File Search«, page 55).
> Provide a font that supports all characters used in the encoding.

The encoding file lists glyph names and codes line by line. The following excerpt shows
the start of an encoding definition:

% Encoding definition for PDFlib, based on glyph names
% name code Unicode (optional)
space 32 0x0020
exclam 33 0x0021
...

If no Unicode value has been specified PDFlib searches for a suitable Unicode value in its
internal tables. A Unicode value can be specified instead of a glyph name:

% Code page definition for PDFlib, based on Unicode values
% Unicode code
0x0020 32

5.4 Single-Byte (8-Bit) Encodings 115

0x0021 33
...

The contents of an encoding or code page file are governed by the following rules:
> Comments are introduced by a percent ’%’ character, and terminated by the end of

the line.
> The first entry in each line is either a PostScript glyph name or a hexadecimal Uni-

code value composed of a 0x prefix and four hex digits (upper or lower case). This is
followed by whitespace and a hexadecimal (0xoo–0xFF) or decimal (0–255) character
code. Optionally, name-based encoding files may contain a third column with the
corresponding Unicode value.

> Character codes which are not mentioned in the encoding file are assumed to be un-
defined. Alternatively, a Unicode value of 0x0000 or the character name .notdef can
be provided for unused slots.

> All Unicode values in an encoding or codepage file must be smaller than U+FFFF.

116 Chapter 5: Unicode and Legacy Encodings

5.5 Chinese, Japanese, and Korean CMaps
Since the concept of an encoding is much more complicated for CJK text than for Latin
text, simple 8-bit encodings no longer suffice. Instead, PDF supports the concept of
character collections and character maps (CMaps) for organizing the characters in a font.

Note CMaps are mainly used for legacy CJK encodings; they are not necessary in Unicode-based
workflows. The function PDF_convert_to_unicode() or language- or system-specific methods
can be used to convert strings from legacy CJK encodings to Unicode.

Note Unicode-capable language bindings support only Unicode CMaps (UTF16). Other CMaps can-
not be used.

Predefined CMaps for common CJK encodings. The predefined CJK CMaps are listed in
Table 5.5. They support most CJK encodings used on macOS, Windows, and Unix sys-
tems as well as several vendor-specific encodings, e.g. Shift-JIS, EUC, and ISO 2022 for
Japanese, GB and Big5 for Chinese, and KSC for Korean. Unicode CMaps are also avail-
able for all locales.

CMap configuration. In order to create Chinese, Japanese, or Korean (CJK) text output
with one of the predefined CMaps PDFlib requires the corresponding CMap files for pro-
cessing the incoming text and mapping CJK encodings to Unicode. CMap files are avail-
able in a separate package. They should be installed as follows:

> On Windows the CMap files will be found automatically if you place them in the
resource/cmap directory within the PDFlib installation directory.

> On other systems you can place the CMap files in any convenient directory, and
must manually configure the CMap files by setting the SearchPath at runtime:

p.set_option("SearchPath={{/path/to/resource/cmap}}");

As an alternative method for configuring access to the CJK CMap files you can set the
PDFLIBRESOURCEFILE environment variable to point to a UPR configuration file which
contains a suitable SearchPath definition.

Table 5.5 Predefined CMaps for Japanese, Chinese, and Korean text

locale CMap name
Simplified
Chinese

UniGB-UCS2-H/V1, UniGB-UTF16-H/V, GB-EUC-H/V, GBpc-EUC-H/V, GBK-EUC-H/V, GBKp-EUC-H/
V, GBK2K-H/V

1. UCS2 CMaps are deprecated. Unless PDF 1.4 must be created the corresponding UTF16 CMaps should be used.

Traditional
Chinese

UniCNS-UCS2-H/V1, UniCNS-UTF16-H/V, B5pc-H/V, HKscs-B5-H/V, ETen-B5-H/V, ETenms-B5-H/V,
CNS-EUC-H/V

Japanese UniJIS-UCS2-H/V1, UniJIS-UCS2-HW-H/V, UniJIS-UTF16-H/V, 83pv-RKSJ-H, 90ms-RKSJ-H/V,
90msp-RKSJ-H/V, 90pv-RKSJ-H, Add-RKSJ-H/V, EUC-H/V, Ext-RKSJ-H/V, H/V

Korean UniKS-UCS2-H/V1, UniKS-UTF16-H/V, KSC-EUC-H/V, KSCms-UHC-H/V, KSCms-UHC-HW-H/V,
KSCpc-EUC-H/V

5.5 Chinese, Japanese, and Korean CMaps 117

Code pages for custom CJK fonts. PDFlib supports the code pages listed in Table 5.6.
PDFlib on Windows additionally supports any CJK code page installed on the system.

Table 5.6 CJK code pages (must be used with textformat=auto or textformat=bytes)

locale code page format character set

Simplified Chinese cp936 GBK GBK

Traditional Chinese cp950 Big Five Big Five with Microsoft extensions

Japanese cp932 Shift-JIS JIS X 0208:1997 with Microsoft extensions

Korean cp949 UHC KS X 1001:1992, remaining 8822 hangul as
extension

cp1361 Johab Johab

118 Chapter 5: Unicode and Legacy Encodings

5.6 Addressing Characters
Some environments require the programmer to write source code in 8-bit encodings
(such as winansi or ebcdic). This makes it cumbersome to include isolated Unicode char-
acters in 8-bit encoded text. In order to aid developers in this situation, PDFlib supports
several auxiliary methods for expressing text.

5.6.1 Escape Sequences
PDFlib supports a method for incorporating arbitrary values within text strings via a
mechanism called escape sequences (this is actually a misnomer; backslash substitution
might be a better term). For example, the \t sequence in the default text of a text block
can be used to include tab characters which may not be possible by direct keyboard in-
put. Similarly, escape sequences are useful for expressing codes for symbolic fonts, or in
literal strings for language bindings where escape sequences are not available.

An escape sequence is an instruction to replace a sequence with a single byte value.
The sequence starts with the code for the backslash character ’\’ in the current encoding
of the string. Since the backslash has special meaning in many programming languages
it may have to be duplicated if used literally in source code. The byte values resulting
from substituting escape sequences are listed in Table 5.7; some differ between ASCII
and EBCDIC platforms. Only byte values in the range 0-255 can be expressed with escape
sequences.

Unlike some programming languages, escape sequences in PDFlib always have fixed
length depending on their type. Therefore no terminating character is required for the
sequence.

Escape sequences are not substituted by default. You must explicitly set the
escapesequence option to true to use escape sequences in strings. This can be done selec-
tively in the functions where it is required, e.g. PDF_fit_textline(). Alternatively you can
activate escape sequence expansion for all content strings (i.e. all text output opera-
tions) as follows:

p.set_text_option("escapesequence=true");

Table 5.7 Escape sequences for byte values

sequence length macOS,
Windows, Unix

EBCDIC platforms common interpretation

\f 2 0C 0C form feed

\n 2 0A 15/25 line feed

\r 2 0D 0D carriage return

\t 2 09 05 horizontal tabulation

\v 2 0B 0B line tabulation

\\ 2 5C E0 backslash

\xNN 4 two hexadecimal digits specifying a byte value, e.g. \xFF

\NNN 4 three octal digits specifying a byte value, e.g. \377

5.6 Addressing Characters 119

Escape sequence substitution can also be enabled globally with PDF_set_option(). This
global option affects all subsequently used name strings, hypertext strings and content
strings. Since the values of environment variables are treated as name strings they are
also subject to escape sequence expansion. This may result in undesired behavior e.g.
with Windows path or file names containing backslash characters. For this reason it is
not recommended to activate escape sequence substitution globally with PDF_set_
option(), but only selectively with the function where it is required (e.g. PDF_fit_
textline()) or only for content strings with PDF_set_text_option(),

 As an alternative to setting the escapesequence option you can substitute escape se-
quences in strings using PDF_convert_to_unicode(), using the same input and output en-
coding, e.g.

String s_plain = p.convert_to_unicode("utf16",
s.character.getBytes("UTF-16"),
"outputformat=utf16 escapesequence=true");

Escape sequences are evaluated after BOM detection, but before converting to the target
format. If textformat= utf16, utf16le or utf16be escape sequences must be expressed as
two byte values according to the selected format. Each character in the escape sequence
will be represented by two bytes, where one byte has the value zero. If textformat=utf8
the resulting code will not be converted to UTF-8.

If an escape sequence cannot be resolved (e.g. \x followed by invalid hex digits) an
exception is thrown. For content strings the behavior is controlled by the glyphcheck
and errorpolicy settings.

5.6.2 Character References
Cookbook A full code sample can be found in the Cookbook topic fonts/character_references.

A character reference is an instruction to replace the reference sequence with a Unicode
value. The reference sequence starts with the code of the ampersand character ’&’ in the
current encoding and ends with the code of the semicolon character ’;’. There are several
methods available for expressing the target Unicode values:

HTML character references. PDFlib supports all character entity references defined in
HTML 4.0. Numeric character references can be supplied in decimal or hexadecimal no-
tation. The full list of HTML character references can be found at the following location:

www.w3.org/TR/REC-html40/charset.html#h-5.3

Examples:

­ U+00AD soft hyphen
€ U+20AC Euro glyph (entity name)
< U+003C less than sign
> U+003E greater than sign
& U+0026 ampersand sign
Α U+0391 Greek Alpha

Numerical character references. Numerical character references for Unicode charac-
ters are also defined in HTML 4.0. They require the hash character ’#’ and a decimal or
hexadecimal number, where hexadecimal numbers are introduced with a lower- or up-
percase ’X’ character. Examples:

http://www.pdflib.com/pdflib-cookbook/fonts/character_references/
http://www.w3.org/TR/REC-html40/charset.html#h-5.3

120 Chapter 5: Unicode and Legacy Encodings

­ U+00AD soft hyphen
­ U+00AD soft hyphen
å U+0229 letter a with small circle above (decimal)
å U+00E5 letter a with small circle above (hexadecimal)
å U+00E5 letter a with small circle above (hexadecimal)
€ U+20AC Euro glyph (hexadecimal)
€ U+20AC Euro glyph (decimal)

Note Code points 128-159 (decimal) or 0x80-0x9F (hexadecimal) do not reference winansi code
points. In Unicode they do not refer to printable characters, but control characters.

PDFlib-specific entity names. PDFlib supports custom character entity references for
the following groups of Unicode control characters:

> Control characters for overriding the default shaping behavior listed in Table 7.4.
> Control characters for overriding the default bidi formatting listed in Table 7.5.
> Control characters for Textflow line breaking and formatting listed in Table 9.1.

Examples:

&linefeed; U+000A linefeed control character
&hortab; U+0009 horizontal tab
&ZWNJ; U+200C ZERO WIDTH NON-JOINER

Glyph name references. Glyph names are drawn from the following sources:
> Common glyph names are searched in an internal list
> Font-specific glyph names are searched in the current font. Character references of

this class work only with content strings since they require a font.

In order to identify glyph name references the actual name requires a period character
’.’ after the ampersand character ’&’. Examples:

&.three; U+0033 common glyph name for the digit 3
&.mapleleaf; (PUA unicode value) custom glyph name from Carta font
&.T.swash; (PUA unicode value) second period character is part of the glyph name

Character references with glyph names are useful in the following scenarios:
> Character references with font-specific glyph names are useful in content strings to

select alternate character forms (e.g. swash characters) and glyphs without any spe-
cific Unicode semantics (symbols, icons, and ornaments). Note that tabular figures
and many other features are more easily implemented with OpenType features (see
Section 7.3, »OpenType Layout Features«, page 164) if supported by the font.

> Names from the Adobe Glyph List (including the uniXXXX and u1XXXX forms) plus
certain common »misnamed« glyph names are always accepted for content strings
and hypertext strings.

Byte value references. Numerical values can also be supplied in character references
which may be useful for addressing the glyphs in a symbol font. This variant requires
an additional hash character ’#’ and a decimal or hexadecimal number, where hexadec-
imal numbers are introduced with a lower- or uppercase ’X’ character. Example (assum-
ing the Wingdings font):

&.#x9F; bullet symbol in Wingdings font
&.#159; bullet symbol in Wingdings font

5.6 Addressing Characters 121

Using character references. Character references are not substituted by default; you
must explicitly set the charref option to true in order to use character references in con-
tent strings, for example:

p.fit_textline("Price: 500€", x, y, "charref=true");

Supplying charref as text option enables character reference substitution for all content
strings:

p.set_text_option("charref=true font=" + font + " fontsize=24");
p.fit_textline("Price: 500€", x, y, "");

The charref option can also be set globally with PDF_set_option(). However, this is not
recommended because it affects all name strings, hypertext strings and content strings,
which may have undesired results.

As an alternative to setting the charref option you can substitute character referenc-
es in strings using PDF_convert_to_unicode(), using the same input and output encoding,
e.g.

String s_plain = p.convert_to_unicode("utf16",
s.character.getBytes("UTF-16"),
"outputformat=utf16 charref=true");

Additional notes on using character references:
> Character references can be used in all content strings, hypertext strings, and name

strings. As an exception, font-specific glyph name references work only with con-
tents strings as noted above.

> Character references are not substituted in text with builtin encoding. However, you
can use character references for symbolic fonts by using unicode encoding.

> Character references are not substituted in option lists, but they are recognized in
options with the Unichar data type; in this case the ’&’ and ’;’ decoration must be
omitted. This recognition is always enabled; it is not subject to the charref option.

> In non-Unicode-capable language bindings character references must be expressed
as two-byte values if textformat=utf16, utf16be, or utf16le. If encoding=unicode and text-
format=bytes the character references must be expressed in ASCII (even on EBCDIC-
based platforms).

> An ampersand character '&' is considered as start of a character reference if a subse-
quent semicolon ';' can be found and the characters between '&' and ';' are valid for a
character reference. Otherwise the ampersand character '&' is left unchanged. In or-
der to express an ampersand character '&' without starting a character reference it is
recommended to use the character reference &.

> If a potential character reference sequence is invalid (e.g. &# followed by invalid dec-
imal digits or ’&’ followed by an unknown entity name) the behavior depends on the
option glyphcheck:
glyphcheck=none: the sequence is kept as is;
glyphcheck=replace: the sequence is replaced with the replacement character.
glyphcheck=error: an error occurs and text processing stops. If errorpolicy=exception an
exception is thrown.

122 Chapter 5: Unicode and Legacy Encodings

6.1 Font Formats 123

6 Font Handling
6.1 Font Formats

6.1.1 TrueType Fonts

TrueType file formats. PDFlib supports vector-based TrueType fonts. PDFlib
supports the following file formats for TrueType fonts:

> Windows TrueType fonts (*.ttf), including Western, symbolic, and CJK
fonts;

> TrueType collections (*.ttc) with multiple fonts in a single file. TTC files are
typically used for grouping CJK fonts, but also to package multiple mem-
bers of a Western font family in a single file.

> End-user defined character (EUDC) fonts (*.tte) created with Microsoft’s
eudcedit.exe tool;

> On macOS any TrueType font installed on the system (including .dfont) can also be
used in PDFlib.

TrueType font names. If you are working with font files you can assign an arbitrary
API name to the font (see »Sources of Font Data«, page 140). This name is used for load-
ing the font and may differ from the font file name or the font’s internal name. In the
generated PDF the name of a TrueType font may differ from the name used in PDFlib (or
Windows). This is normal, and results from the fact that PDF uses the PostScript name of
a TrueType font, which differs from its genuine TrueType name (e.g., TimesNewRoman-
PSMT vs. Times New Roman).

6.1.2 OpenType Fonts
The OpenType font format combines PostScript and TrueType technology. It
is implemented as an extension of the TrueType file format and offers a uni-
fied format. OpenType fonts may contain optional tables which can be used
to enhance text output, e.g. ligatures and swash characters (see Section 7.3,
»OpenType Layout Features«, page 164), as well as tables for complex script
shaping (see Section 7.4, »Complex Script Output«, page 170). Note that neither the file
name suffix nor the logo displayed by the Windows Explorer says anything about the
presence or absence of OpenType layout features in a font. See Section 7.3, »OpenType
Layout Features«, page 164, for more information.

While OpenType fonts offer a single container format which works on all platforms,
it may be useful to understand the following OpenType flavors which sometimes lead
to confusion:

> Outline format: OpenType fonts may contain glyph descriptions which are based on
TrueType or PostScript. The PostScript flavor is also called Compact Font Format (CFF)
or Type 2, and is usually used with the *.otf suffix. The Windows Explorer displays
OpenType fonts with the »O« logo.

> TrueType fonts and OpenType fonts with TrueType outlines are not easily distin-
guished since both may use the *.ttf suffix. Because of this blurry distinction the
Windows Explorer works with the following criterion: if a .ttf font contains a digital

124 Chapter 6: Font Handling

signature it is displayed with the »O« logo; otherwise it is displayed with the »TT« lo-
go. However, since a digital signature is not required in OpenType fonts this cannot
be used a reliable criterion for distinguishing plain old TrueType fonts and Open-
Type fonts.

> The CID (Character ID) architecture is used for CJK fonts. Modern CID fonts are pack-
aged as OpenType *.otf fonts with PostScript outlines. From a practical standpoint
they are indistinguishable from plain OpenType fonts. The Windows Explorer dis-
plays OpenType CID fonts with the »O« logo.

> OpenType Collections haven been introduced with the OpenType 1.7 specification.
They are similar to TrueType Collections in that they package multiple related Open-
Type fonts into a single combined file. OpenType Collections use the *.ttc or *.otc suf-
fix.

> OpenType font variations, also called variable fonts: fonts that use OpenType font
variations mechanisms can be used to package multiple font faces within a font
family (such as light, regular and bold) into a single font resource. Since font varia-
tions are not supported in PDF this mechanism cannot be used. OpenType font vari-
ations with TrueType outlines can be loaded with PDFlib, but only the default font
instance without variations will be visible. OpenType font variations with PostScript
outlines in a CFF2 table are rejected since they are incompatible with PDF.

6.1.3 WOFF Fonts
WOFF (Web Open Font Format) is a simple compressed file format for
TrueType and OpenType fonts. It can be regarded as a new container
format for existing font formats, but does not offer any new typo-
graphic features. WOFF has been designed for use on the Web and of-
fers compression and subsetting features to achieve small font file sizes. WOFF is de-
tailed in a W3C recommendation; the WOFF specification can be found at

www.w3.org/TR/WOFF

WOFF fonts typically use the file name extension .woff.
PDFlib supports WOFF fonts to the extent that the underlying TrueType or Open-

Type font is supported. For example, TrueType bitmap fonts packaged as WOFF are not
supported.

6.1.4 PostScript Type 1 Fonts
Note The use of PostScript Type 1 fonts is deprecated.

PostScript Type 1 fonts are always split in two parts: the actual outline data and the
metrics information. PDFlib supports the following file formats for PostScript Type 1
outline and metrics data:

> The platform-independent AFM (Adobe Font Metrics) and the Windows-specific PFM
(Printer Font Metrics) format for metrics information.

> The platform-independent PFA (Printer Font ASCII) and the Windows-specific PFB
(Printer Font Binary) format for font outline information in the PostScript Type 1 for-
mat.

http://www.w3.org/TR/WOFF/

6.1 Font Formats 125

6.1.5 SING Fonts (Glyphlets)
SING fonts (Smart Independent Glyphlets) are technically an extension of the OpenType
font format. SING fonts have been developed as a solution to the Gaiji problem with
CJK text, i.e. custom glyphs which are not encoded in Unicode.

SING fonts usually contain only a single glyph (they may also contain an additional ver-
tical variant). The Unicode value of this »main« glyph can be retrieved with PDFlib by re-
questing its glyph ID and subsequently the Unicode value for this glyph ID:

maingid = (int) p.info_font(font, "maingid", "");
uv = (int) p.info_font(font, "unicode", "gid=" + maingid);

It is recommended to use SING fonts as fallback font with the gaiji suboption of the
forcechars option of the fallbackfonts option of PDF_load_font(); see Section 7.5.3, »EUDC
and SING Fonts for Gaiji Characters«, page 178, for more information.

6.1.6 Type 3 Fonts
Unlike all other font formats, Type 3 fonts are not fetched from a disk file, but must be
defined at runtime with standard PDFlib graphics functions. Type 3 fonts are useful for
the following purposes:

> bitmap fonts;
> custom graphics, such as logos can easily be printed using simple text operators;
> Japanese gaiji (user-defined characters) which are not available in any predefined

font or encoding.

Since all PDFlib features for vector graphics, raster images, and even text output can be
used in Type 3 font definitions, there are no restrictions regarding the contents of the
characters in a Type 3 font. Combined with the PDF import library PDI you can even im-
port complex drawings as a PDF page, and use those for defining a character in a Type 3
font. However, Type 3 fonts are most often used for bitmapped glyphs since it is the
only font format in PDF which supports raster images for glyphs. The following exam-
ple demonstrates the definition of a simple Type 3 font:

p.begin_font("Fuzzyfont", 0.001, 0.0, 0.0, 0.001, 0.0, 0.0, "");

p.begin_glyph_ext(-1, "glyphname=circle width=1000 boundingbox={0 0 1000 1000}");
p.arc(500, 500, 500, 0, 360);
p.fill();
p.end_glyph();

p.begin_glyph_ext(-1, "glyphname=ring width=400 boundingbox={0 0 400 400}");
p.arc(200, 200, 200, 0, 360);
p.stroke();
p.end_glyph();

p.end_font();

Cookbook Full code samples can be found in the Cookbook topics type3_fonts/starter_type3font,
type3_fonts/type3_bitmaptext, type3_fonts/type3_rasterlogo, and type3_fonts/type3_
vectorlogo.

http://www.pdflib.com/pdflib-cookbook/type3_fonts/starter_type3font/
http://www.pdflib.com/pdflib-cookbook/type3_fonts/type3_bitmaptext/
http://www.pdflib.com/pdflib-cookbook/type3_fonts/type3_rasterlogo/
http://www.pdflib.com/pdflib-cookbook/type3_fonts/type3_vectorlogo/
http://www.pdflib.com/pdflib-cookbook/type3_fonts/type3_vectorlogo/

126 Chapter 6: Font Handling

The font will be registered in PDFlib and its name can be supplied to PDF_load_font()
along with an encoding which contains the names of the glyphs in the Type 3 font.
Please note the following when working with Type 3 fonts:

> If the font has been loaded with encoding=unicode the glyphs can be addressed with
their Unicode value or with glyph name references of the form &.<glyphname>; as in
the following example: &.circle;

> If the font has been loaded with encoding=builtin character codes can be used to ad-
dress glyphs, where the code of each glyph corresponds to the order in which the
glyphs have been created; the .notdef glyph always has code 0.

> If only Unicode values have been specified but no glyph names, PDFlib generates
glyph names of the form GXXX where XXX is decimal number of the generated glyph.

> It is recommended to use the inline image option for defining bitmaps in Type 3
fonts. The interpolate option for images may be useful for enhancing the screen and
print appearance of Type 3 bitmap fonts.

> When normal bitmap data is used to define characters, unused pixels in the bitmap
will print as white, regardless of the background. In order to avoid this and have the
original background color shine through, use the mask option for constructing the
bitmap image.

> Due to restrictions in PDF consumers all characters used in text output must actual-
ly be defined in the font: if character code x is to be displayed with any text output
function, and the encoding contains glyphname at position x, then glyphname must
have been defined via PDF_begin_glyph_ext().

> Some PDF consumers require a glyph named .notdef if codes will be used for which
the corresponding glyph names are not defined in the font. The .notdef glyph must
be present, but it may simply contain an empty glyph description.

> Type 3 glyph definitions do not supply any typographic properties such as ascender,
descender, etc. However, these can be set by using the corresponding options in PDF_
load_font().

6.2 Unicode Characters and Glyphs 127

6.2 Unicode Characters and Glyphs
6.2.1 Glyph IDs

A font is a collection of glyphs, where each glyph is defined by its geometric outline.
PDFlib assigns a number to each glyph in the font. This number is called the glyph id or
GID. GID 0 (zero) refers to the .notdef glyph in all font formats. The visual appearance of
the .notdef glyph varies among font formats and vendors; typical implementations are
the space glyph or a hollow or crossed-out rectangle. The highest GID is one less than
the number of glyphs in the font which can be queried with the numglyphs keyword of
PDF_info_font().

The assignment of glyph IDs depends on the font format:
> Since TrueType and OpenType fonts already contain internal GIDs, PDFlib uses these

GIDs.
> For CID-keyed OpenType CJK fonts CIDs will be used as GIDs.
> For other font types PDFlib numbers the glyphs according to the order of the corre-

sponding outline descriptions in the font.

PDFlib supports glyph selection via GID as an alternative to Unicode and other encod-
ings (see »Glyphid encoding«, page 135). Direct GID addressing is only useful for special-
ized applications, e.g. printing font overview tables by querying the number of glyphs
and iterating over all glyph IDs.

6.2.2 Unicode Mappings for Glyphs

Unicode mapping and ambiguous glyphs. PDFlib assigns Unicode values to all glyphs
in a font. In some fonts a particular glyph may be used to represent multiple Unicode
values. Common examples for such ambiguous glyphs are the empty glyph which rep-
resents U+0020 Space as well as U+00A0 No-Break Space, or a glyph which represents
both U+2126 Ohm Sign and U+03A9 Greek Capital Letter Omega.

If multiple Unicode values are represented by the same glyph PDFlib creates a To-
Unicode CMap which maps the glyph to one of the affected Unicode values. The other
Unicode values are emitted with the same glyph ID, but are assigned an ActualText attri-
bute with the appropriate Unicode value. This way correct semantics are preserved in
the generated PDF output.

Text selection problems in Acrobat. Unfortunately, Acrobat DC sometimes has prob-
lems with the text selection of text with an ActualText attribute. Some glyphs cannot be
selected and highlighted. Although the visual highlight is incomplete, the text con-
tained in the ActualText attribute is copied to the clipboard correctly. You can work
around the selection problems in the following ways:

> Avoid ambiguous glyphs in the first place.
> Use the text filter option actualtext=false to disable creation of the ActualText attri-

bute.

However, these methods are not recommended since different characters are extracted
with the same Unicode value which thwarts content repurposing.

Unmapped glyphs and the Private Use Area (PUA). In some situations the font may
not provide a Unicode value for a particular glyph. In this case PDFlib assigns a value

128 Chapter 6: Font Handling

from the Unicode Private Use Area (PUA, see Section 5.1, »Important Unicode Concepts«,
page 105) to the glyph. Such glyphs are called unmapped glyphs. The number of un-
mapped glyphs in a font can be queried with the unmappedglyphs keyword of PDF_info_
font(). Unmapped glyphs are represented by the Unicode replacement character
U+FFFD in the font’s ToUnicode CMap which controls searchability and text extraction.
As a consequence, unmapped glyphs cannot be properly extracted as text from the gen-
erated PDF. However, this behavior can be changed which is particularly useful for CJK
Gaiji characters; see »Preserving PUA values for Gaiji characters«, page 179, for details.

When PDFlib assigns PUA values to unmapped glyphs it uses ascending values from
the following pool:

> The basis is the Unicode PUA range in the Basic Multilingual Plane (BMP), i.e. the
range U+E000 - U+F8FF. Additional PUA values in plane 15 (U+F0000 to U+FFFFD) are
used if required.

> PUA values which have already been assigned by the font internally are not used
when creating new PUA values.

> PUA values in the Adobe range U+F600-F8FF are not used.

The generated PUA values are unique within a font. The assignment of generated PUA
values for the glyphs in a font is independent from other fonts.

Unicode mapping for TrueType, OpenType, and SING fonts. PDFlib keeps the Unicode
mappings found in the font’s relevant cmap table (the selection of the cmap depends on
the encoding supplied to PDF_load_font()). If a single glyph is used for multiple Unicode
values PDFlib will use the first Unicode value found in the font.

If the cmap does not provide any Unicode mapping for a glyph PDFlib checks the
glyph names in the post table (if present in the font) and determines Unicode mappings
based on the glyph names as described below for Type 1 fonts.

In some cases neither the cmap nor the post table provide Unicode values for all
glyphs in the font. This is true for variant glyphs (e.g. swash characters), extended liga-
tures, and non-textual symbols outside the Unicode standard. In this case PDFlib as-
signs PUA values to the affected glyphs as described in »Unmapped glyphs and the Pri-
vate Use Area (PUA)«, page 127.

Unicode mapping for Type 1 fonts. Type 1 fonts do not include explicit Unicode map-
pings, but assign a unique name to each glyph. PDFlib tries to assign a Unicode value
based on this glyph name, using an internal mapping table which contains Unicode
mappings for more than 7 000 common glyph names for a variety of languages and
scripts. The mapping table includes ca. 4 200 glyph names from the Adobe Glyph List
(AGL)1. However, Type 1 fonts may contain glyph names which are not included in the
internal mapping table; this is especially true for Symbol fonts. In this case PDFlib as-
signs PUA values to the affected glyphs as described in »Unmapped glyphs and the Pri-
vate Use Area (PUA)«, page 127.

If the metrics for a Type 1 font are loaded from a PFM file and no PFB or PFA outline
file is available, the glyph names of the font are not known to PDFlib. In this case PDFlib
assigns Unicode values based on the encoding (charset) entry in the PFM file.

Unicode mapping for Type 3 fonts. Since Type 3 fonts are also based on glyph names,
they are treated in the same way as Type 1 fonts. An important difference, however, is

1. The AGL can be found at partners.adobe.com/public/developer/en/opentype/glyphlist.txt

http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt

6.2 Unicode Characters and Glyphs 129

that the glyph names for Type 3 fonts are under user control (directly via the uv param-
eter or indirectly via the glyphname option of PDF_begin_glyph_ext()). It is therefore
strongly recommended to either supply suitable Unicode values or appropriate AGL
glyph names for the glyphs in user-defined Type 3 fonts. This ensures that proper Uni-
code values can be assigned by PDFlib, resulting in searchable text in the generated PDF
documents.

6.2.3 Unicode Control Characters
Control characters are Unicode values which do not represent any glyph, but are used to
convey some formatting information. PDFlib processes the following groups of Unicode
control characters:

> The control characters for overriding the default shaping behavior (listed in Table
7.4) and those for overriding the default bidi formatting (listed in Table 7.5) control
complex script shaping and OpenType layout feature processing in Textline and
Textflow. After evaluating these control characters they will be removed.

> The formatting control characters for line breaking and Textflow formatting listed
in Table 9.1. After evaluating these control characters they will be removed.

> Other Unicode control characters in the ranges U+0001-U+0019 and U+007F-
U+009F will be replaced with the replacementchar character.

Even if a font contains a glyph for a control character the glyph will usually not be visi-
ble since PDFlib removes control characters (as an exception to this rule &NBSP; and
&SHY; will not be removed). However, with encoding=glyphid control characters will be
retained in the text and can produce visible output.

130 Chapter 6: Font Handling

6.3 The Text Processing Pipeline
The client application provides text for page output to PDFlib. This text is encoded ac-
cording to some application-specific encoding and format. However, PDFlib’s internal
processing is based on the Unicode standard, and the final text output requires font-
specific glyph IDs. PDFlib therefore treats incoming strings for page contents in a text
processing pipeline with three sections:

> normalize input codes to Unicode values; this process is restricted by the selected en-
coding.

> convert Unicode values to font-specific glyph IDs; this process is restricted by the
available glyphs in the font.

> transform glyph IDs; this process is restricted by the output encoding.

These three sections of the text processing pipeline contain several subprocesses which
can be controlled by options.

6.3.1 Normalizing Input Strings to Unicode
The following steps are performed for all encodings except encoding=glyphid and non-
Unicode CMaps:

> Unicode-capable language bindings: if a single-byte encoding has been specified
UTF-16 text is converted to single-byte text by dropping the high-order bytes.

> Windows: convert multi-byte text (e.g. cp932) to Unicode.
> Replace escape sequences (see Section 5.6.1, »Escape Sequences«, page 118) with the

corresponding numerical values.
> Resolve character references and replace them with the corresponding Unicode val-

ues (see Section 5.6.2, »Character References«, page 119, and next section below).
> Single-byte encodings: convert single-byte text to Unicode according to the specified

encoding.
> Normalize the text to one of the Unicode normalization forms (e.g. NFC) according to

the normalize option.

See also Section 6.2.2, »Unicode Mappings for Glyphs«, page 127, for more details regard-
ing the Unicode assignments for various font formats and types of characters.

Character references with glyph names. A font may contain glyphs which are not di-
rectly accessible because the corresponding Unicode values are not known in advance
(since PDFlib assigns PUA values at runtime). As an alternative for addressing such
glyphs, character references with glyph names can be used; see Section 5.6.2, »Character
References«, page 119, for a syntax description. These references are replaced with the
corresponding Unicode values.

If a character reference is used in a content string, PDFlib tries to find the specified
glyph in the current font, and will replace the reference with the glyph’s Unicode value.
If a glyph with the specified name is not available in the font, PDFlib searches its inter-
nal glyph name table to determine a Unicode value. This Unicode value will be used
again to check whether a suitable glyph is available in the font. If no such glyph can be
found, the behavior is controlled by the glyphcheck and errorpolicy settings. Character
references cannot be used with glyphid or builtin encoding.

6.3 The Text Processing Pipeline 131

6.3.2 Converting Unicode Values to Glyph IDs
The Unicode values determined in the previous section may have to be modified for
several reasons. The steps below are performed for all encodings except encoding=
glyphid and non-Unicode CMaps which are treated as follows:

> For non-Unicode CMaps: invalid code sequences always trigger an exception.
> For encoding=glyphid: invalid glyph IDs are replaced with glyph ID 0. If

glyphcheck=error an exception is thrown.

Force characters from fallback fonts. Replace Unicode values according to the force-
chars suboption of the fallbackfonts option, and determine the glyph ID of the corre-
sponding fallback font. For more information see Section 6.4.6, »Fallback Fonts«, page
146.

Resolve variation sequences. For some fonts Unicode characters may be followed by a
variation selector which selects a specific glyph variant of the character (see Section
7.5.5, »Unicode Variation Selectors and Variation Sequences«, page 181). If the font con-
tains a variant glyph for the variation sequence the glyph ID of the variant glyph is used
instead of the original glyph ID.

Convert to glyph IDs. Convert the Unicode values to glyph IDs according to the map-
pings determined in Section 6.2.2, »Unicode Mappings for Glyphs«, page 127. If no corre-
sponding glyph ID for a Unicode value was found in the font, the next steps depend on
the glyphcheck option:

> glyphcheck=none: glyph ID 0 is used, i.e. the .notdef glyph is used in the text output. If
the .notdef glyph contains a visible shape (often a hollow or crossed-out rectangle) it
makes the problematic characters visible on the PDF page, which may or may not be
desired.

> glyphcheck=replace (which is the default): a warning message is logged and PDFlib at-
tempts to replace the unmappable Unicode value with the glyph replacement mech-
anism detailed below.

> glyphcheck=error: PDFlib raises an error. In case of errorpolicy=return this means that
the function call terminates without creating any text output; PDF_add/create_
textflow() return -1 (in PHP: 0). In case of errorpolicy=exception an exception is thrown.

Glyph replacement. If glyphcheck=replace, unmappable Unicode values are recursively
replaced as follows:

> The fallback fonts specified when loading the master font are searched for glyphs for
the Unicode value. This may involve an arbitrary number of fonts since more than
one fallback font can be specified for each font. If a glyph is found in one of the fall-
back fonts it is used.

> Select a typographically similar glyph according to the Unicode value from PDFlib’s
internal replacement table. The following excerpt from the internal list contains
some of these replacements. If the first character in the list is unavailable in a font, it
is replaced with the second character:

U+00A0 (NO-BREAK SPACE) U+0020 (SPACE)

U+00AD (SOFT HYPHEN) U+002D (HYPHEN-MINUS)

U+2010 (HYPHEN) U+002D (HYPHEN-MINUS)

U+03BC (GREEK SMALL LETTER MU) U+00C5 (MICRO SIGN)

132 Chapter 6: Font Handling

U+212B (ANGSTROM SIGN) U+00B5 (LATIN CAPITAL LETTER A WITH RING ABOVE Å)

U+220F (N-ARY PRODUCT) U+03A0 (GREEK CAPITAL LETTER PI)

U+2126 (OHM SIGN) U+03A9 (GREEK CAPITAL LETTER OMEGA)

In addition to the internal table, the fullwidth characters U+FF01 to U+FF5E are re-
placed with the corresponding ISO 8859-1 characters (i.e. U+0021 to U+007E) if the
fullwidth variants are not available in the font.

> Decompose Unicode ligatures into their constituent glyphs (e.g. replace U+FB00
Latin small ligature ff with the sequence U+0066 f, U+0066 f).

> Select glyphs with the same Unicode semantics according to their glyph name. In
particular, all glyph name suffixes separated with a period are removed if the corre-
sponding glyph is not available (e.g. replace A.swash with A; replace g.alt with g).

If none of these methods delivers a glyph for the Unicode value, the replacementchar op-
tion is evaluated as follows:

> If replacementchar=auto (which is the default) the characters U+00A0 (NO-BREAK
SPACE) and U+0020 (SPACE) are tried. If these are still unavailable, the »missing
glyph« symbol is used (not allowed in PDF/A, PDF/UA and PDF/X-4/5).

> If a Unicode character was specified as replacementchar it is used instead of the origi-
nal character.

> If replacementchar=drop, the character is dropped from the input stream and no out-
put is created.

> If replacementchar=error an exception is thrown. This may be used to avoid unread-
able text output.

Cookbook A full code sample can be found in the Cookbook topic fonts/glyph_replacement.

6.3.3 Transforming Glyph IDs
The determined glyph IDs are not yet final since several transformations may have to
be applied before final output can be created. The details of these transformations de-
pend on the font and several options. The steps below are performed for all encodings
except non-Unicode CMaps with keepnative=true.

Vertical glyphs. For fonts in vertical writing mode some glyphs may be replaced by
their vertical counterparts. This substitution requires a vert OpenType layout feature ta-
ble in the font.

OpenType layout features. OpenType features can create ligatures, swash characters,
small caps, and many other typographic variations by replacing one or more glyph IDs
with other values. OpenType features are discussed in Section 7.3, »OpenType Layout
Features«, page 164. OpenType layout features are relevant only for suitable fonts (see
»Requirements for OpenType layout features«, page 166), and are applied according to
the features option.

Complex script shaping. Shaping reorders the text and determines the appropriate
variant glyph according to the position of a character (e.g. initial, middle, final, or isolat-
ed form of Arabic characters). Shaping is discussed in Section 7.4, »Complex Script Out-
put«, page 170. It is relevant only for suitable fonts (see »Requirements for shaping«,
page 170, and is applied according to the shaping option.

http://www.pdflib.com/pdflib-cookbook/fonts/glyph_replacement/

6.4 Loading Fonts 133

6.4 Loading Fonts
6.4.1 Selecting an Encoding for Text Fonts

Fonts can be loaded explicitly with the PDF_load_font() function or implicitly by supply-
ing the fontname and encoding options to certain functions such as PDF_add/create_
textflow() or PDF_fill_textblock(). Regardless of the method used for loading a font, a
suitable encoding must be specified. The encoding determines

> in which text formats PDFlib expects the supplied text;
> which glyphs in a font can be used;
> how text on the page and the glyph data in the font is stored in the PDF output docu-

ment.

PDFlib’s text handling is based on the Unicode standard1, almost identical to ISO 10646.
Since most modern development environments support the Unicode standard our goal
is to make it as easy as possible to use Unicode strings for creating PDF output. Howev-
er, developers who don’t work with Unicode are not required to switch their application
to Unicode since legacy encodings can be used as well.

The choice of encoding depends on the font, the available text data, and some pro-
gramming aspects. In the remainder of this section we will provide an overview of the
different classes of encodings as an aid for selecting a suitable encoding.

Unicode encoding. With encoding=unicode you can pass Unicode strings to PDFlib. This
encoding is supported for all font formats. Depending on the language binding in use,
the Unicode string data type provided by the programming language (e.g. Java) can be
used, or byte arrays containing Unicode in one of the UTF-8, UTF-16, or UTF-32 formats
with little- or big-endian byte ordering (e.g. C).

With encoding=unicode all glyphs in a font can be addressed; complex script shaping
and OpenType layout features are supported. PDFlib checks whether the font contains a
glyph for a requested Unicode value. If no glyph is available, a substitute glyph can be
pulled from the same or another font (see Section 6.4.6, »Fallback Fonts«, page 146).

In non-Unicode-capable language bindings PDFlib expects UTF-16 encoded text by
default. However, you can supply single-byte strings by specifying textformat=bytes. In
this case the byte values represent the characters U+0001 - U+00FF, i.e. the first Unicode
block with Basic Latin characters (identical to ISO 8859-1). However, using character ref-
erences Unicode values outside this range can also be specified in single-byte text.

Some font types in PDF (Type 1, Type 3, and OpenType fonts based on glyph names)
support only single-byte text. However, PDFlib takes care of this situation to make sure
that more than 255 different characters can be used even for these font types.

The disadvantage of encoding=unicode is that text in traditional single- or multi-byte
encodings (except ISO 8859-1) cannot be used.

Single-byte encodings. 8-bit encodings (also called single-byte encodings) map each
byte in a text string to a single character, and are thus limited to 255 different characters
at a time (the value 0 is not available). This type of encoding is supported for all font for-
mats. PDFlib checks whether the font contains glyphs which match the selected encod-
ing. If a minimum number of usable glyphs is not reached, PDFlib will log a warning
message. If no usable glyph at all for the selected encoding is available in the font, font

1. See www.unicode.org

http://www.unicode.org

134 Chapter 6: Font Handling

loading will fail with the message font doesn’t support encoding. PDFlib checks whether
the font contains a glyph for a requested input value. If no glyph is available, a substi-
tute glyph can be pulled from the same or another font (see Section 6.4.6, »Fallback
Fonts«, page 146).

In non-Unicode-capable language bindings PDFlib expects single-byte encoded text
by default. However, you can supply UTF-8 or UTF-16 strings by specifying textformat=
utf8 or utf16.

8-bit encodings are discussed in detail in Section 5.4, »Single-Byte (8-Bit) Encodings«,
page 113. They can be pulled from various sources:

> A large number of predefined encodings according to Section 5.4, »Single-Byte (8-Bit)
Encodings«, page 113. These cover the most important encodings in use on a variety
of systems and in a variety of locales.

> User-defined encodings which can be supplied in an external file or constructed dy-
namically at runtime with PDF_encoding_set_char(). These encodings can be based on
glyph names or Unicode values.

> Encodings pulled from the operating system, also known as a system encoding. This
feature is available on Windows, IBM IBM System i and IBM Z.

The disadvantage of single-byte encodings is that only a limited set of characters and
glyphs is available. For this reason complex script shaping and OpenType layout fea-
tures are not supported for single-byte encodings.

Builtin encoding. Among other scenarios, you can specify encoding=builtin to use sin-
gle-byte codes for non-textual glyphs from symbolic fonts. The format of a font’s inter-
nal encoding depends on the font type:

> TrueType: the encoding is created based on the font’s symbolic cmap, i.e. the (3, 0)
entry in the cmap table.

> OpenType fonts can contain an encoding in the CFF table.
> PostScript Type 1 fonts always contain an encoding.
> For Type 3 fonts the encoding is defined by the first 255 glyphs in the font.

If the font does not contain any builtin encoding font loading fails (e.g. OpenType CJK
fonts). You can use the symbolfont key in PDF_info_font(). If it returns false, the font is a
text font which can also be loaded with one of the common single-byte encodings. This
is not possible if the symbolfont key returns true. The glyphs in such symbolic fonts can
only be used if you know the corresponding code for each glyph (see Section 6.4.2, »Se-
lecting an Encoding for symbolic Fonts«, page 135).

In non-Unicode-capable language bindings PDFlib expects single-byte formatted
text by default. This has the advantage that you can use the single-byte values which
have traditionally been used to address some symbolic fonts; this is not possible with
other encodings. However, you can also supply text in a Unicode format, e.g. with text-
format=utf16.

The disadvantage of encoding=builtin is that in single-byte encoded text character
references cannot be used.

Multi-byte encodings. This encoding type is supported for CJK fonts, i.e. TrueType and
OpenType CID fonts with Chinese, Japanese, or Korean characters. A variety of encoding
schemes has been developed for use with these scripts, e.g. Shift-JIS and EUC for Japa-
nese, GB and Big5 for Chinese, and KSC for Korean. Multi-byte encodings are defined by

6.4 Loading Fonts 135

the Adobe CMaps or Windows codepages (see Section 5.5, »Chinese, Japanese, and Kore-
an CMaps«, page 116).

These traditional encodings are only supported in non-Unicode-capable language
bindings with the exception of Unicode CMaps; these are equivalent to encoding=
unicode.

In non-Unicode-capable language bindings PDFlib expects multi-byte encoded text
by default (textformat=bytes).

With multi-byte encodings the text will be written to the PDF output exactly as sup-
plied by the user if the keepnative option is true.

The disadvantage of multi-byte encodings is that PDFlib checks the input text only
for valid syntax, but does not check whether a glyph for the supplied text is available in
the font. Also, it is not possible to supply Unicode text since PDFlib cannot convert the
Unicode values to the corresponding multi-byte sequences. Finally, character referenc-
es, OpenType layout features and complex script shaping cannot be used.

Glyphid encoding. PDFlib supports encoding=glyphid for all font formats. With this en-
coding all glyphs in a font can be addressed, using the numbering scheme explained in
Section 6.2.1, »Glyph IDs«, page 127. Numerical glyph IDs run from 0 to a theoretical
maximum value of 65 565 (but fonts with such a large number of glyphs are not avail-
able). The maximum glyph ID value can be queried with the maxcode key in PDF_info_
font().

In non-Unicode-capable language bindings PDFlib expects double-byte encoded text
by default (textformat=utf16).

PDFlib checks whether the supplied glyph ID is valid for the font. Complex script
shaping and OpenType layout features are supported.

Since glyph IDs are specific to a particular font and in some situations are even creat-
ed by PDFlib encoding=glyphid is generally not suited for regular text output. The main
use of this encoding is for printing complete font tables with all glyphs.

6.4.2 Selecting an Encoding for symbolic Fonts
Symbolic fonts are fonts which contain symbols, logos, pictograms or other non-textual
glyphs. They raise several issues which are not relevant for text fonts. The underlying
problem is that by design the Unicode standard does not generally encode symbolic
glyphs (although there are exceptions to this rule, e.g. the glyphs in the common Zapf-
Dingbats font). In order to make symbolic fonts fit for use in Unicode workflows, True-
Type and OpenType fonts usually assign Unicode values in the Private Use Area (PUA) to
their glyphs. For lack of Unicode mapping tables, PostScript Type 1 fonts cannot do this,
and generally use the codes of Latin characters to select their glyphs. In all font formats
the symbolic glyphs usually have custom glyph names.

This situation has the following consequences regarding selection of glyphs from
symbolic fonts:

> Symbolic TrueType and OpenType fonts are best loaded with encoding=unicode. If
you know the PUA values assigned to the glyphs you can supply these values in the
text in order to select symbolic glyphs. This requires advance knowledge of the PUA
assignments in the font.

> Since PDFlib assigns PUA values for symbolic PostScript Type 1 fonts internally, these
PUA values are not known in advance.

136 Chapter 6: Font Handling

> If you prefer to work with 8-bit codes for addressing the glyphs in a symbolic font
you can load the font with encoding=builtin and supply the 8-bit codes in the text. For
example, the digit 4 (code 0x34) will select the check mark symbol in the Zapf-
Dingbats font.

In order to use symbolic fonts with encoding=unicode suitable Unicode values must be
used for the text:

> The characters in the Symbol font all have proper Unicode values.
> The characters in the ZapfDingbats font have Unicode values in the range U+2007 -

U+27BF.
> Microsoft’s symbolic fonts, e.g. Wingdings and Webdings, use PUA Unicode values in

the range U+F020 - U+F0FF (although the charmap application presents them with
single-byte codes).

> For other fonts the Unicode values for individual glyphs in the font must be known
in advance or must be determined at runtime with PDF_info_font(), e.g. for PostScript
Type 1 fonts by supplying the glyph name.

Control characters. The Unicode control characters in the range U+0001 - U+001F
which are listed in Table 9.1 are supported in Textflow even with encoding=builtin. Codes
< 0x20 will be interpreted as control characters if the symbolic font does not contain
any glyph for the code. This is true for the majority of symbolic fonts.

Since the code for the a linefeed characters differs between ASCII and EBCDIC, it is
recommended to avoid the literal character 0x0A on EBCDIC systems, and use the
PDFlib escape sequence \n with the option escapesequence=true instead. Note that the \n
must arrive at the PDFlib API, e.g. in C the sequence \\n is required.

Character references. Character references are supported for symbolic fonts. However,
symbolic fonts generally do not include any glyph for the ampersand character U+0026
’&’ which introduces character references. The code 0x26 cannot be used either since it
could be mapped to an existing glyph in the font. For these reasons symbolic fonts
should be loaded with encoding=unicode if character references must be used. Character
references do not work with encoding=builtin.

6.4 Loading Fonts 137

6.4.3 Example: Selecting a Glyph from the Wingdings Symbol Font
Since there are many different ways of selecting characters from a symbol font and
some will not result in the desired output, let’s take a look at an example.

Understanding the characters in the font. First let’s collect some information about
the target character in the font, using the Windows charmap application (see Figure 6.1):

> Charmap displays the glyphs in the Wingdings font, but does not provide any Uni-
code access in the Advanced view. This is a result of the fact that the font contains
symbolic glyphs for which no standardized Unicode values are registered. Instead,
the glyphs in the font use dummy Unicode values in the Private Use Area (PUA). The
charmap application does not reveal these values.

> If you look at the lower left corner of the charmap window or hover the mouse over
the smileface character, the Character code: 0x4A is displayed. This is the glyph’s byte
code.
This code corresponds to the uppercase J character in the Winansi encoding. For ex-
ample, if you copy the character to the clipboard the corresponding Unicode value
U+004A, i.e. character J will result from pasting the clipboard contents to a text-only
application. Nevertheless, this is not the character’s Unicode value and therefore
U+004A or J can not be used to select it in Unicode workflows.

> The Unicode character used internally in the font is not displayed in charmap. How-
ever, symbolic fonts provided by Microsoft use the following simple rule:

Unicode value = U+F000 + (character code displayed in charmap)

For the smileface glyph this yields the Unicode value U+F04A.
> The corresponding glyph name can be retrieved with a font editor and similar tools.

In our example it is smileface.

You can use PDF_info_font() to query Unicode values, glyph names or codes, see Section
6.6.2, »Font-specific Encoding, Unicode, and Glyph Name Queries«, page 153.

Addressing the symbol character with PDFlib. Depending on the information which is
available about the target character you can select the Wingdings smileface glyph in sev-
eral ways:

> If you know the PUA Unicode value which is assigned to the character in the font you
can use a numerical character reference (see »Numerical character references«, page
119):



If you work with textformat=utf8 you can use the corresponding three-byte UTF-8 se-
quence:

\xEF\x81\x8A

Unicode values can not be used with the combination of encoding=builtin and text-
format=bytes.

> If you know the character code you can use a byte value reference (see »Byte value
references«, page 120):

&.#x4A;

138 Chapter 6: Font Handling

In non-Unicode-capable language bindings the character code can be specified di-
rectly if encoding=builtin and textformat=bytes:

J
\x4A

> If you know the glyph name you can use a glyph name reference (see »Glyph name
references«, page 120):

&.smileface;

Glyph names can not be used with the combination of encoding=builtin and text-
format=bytes.

Table 6.1 lists methods for Unicode-capable language bindings such as Java and .NET.

Table 6.1 Addressing the smileface glyph in the Wingdings font with Unicode-capable language bindings (e.g. Java)

encoding additional options input string visible result on the page

unicode

\uF04A 1

1. String syntax for U+F04A in Java and many other Unicode-capable languages



charref  

charref &.#x4A; 

charref &.smileface; 

J 2

2. Winansi character for the byte code \x4A

(space glyph if available, otherwise .notdef glyph)

escapesequence \x4A (space glyph if available, otherwise .notdef glyph)

builtin (same as above with encoding=unicode)

Fig. 6.1
Windows character map
with the Wingdings font

6.4 Loading Fonts 139

Table 6.2 lists methods for non-Unicode-capable language bindings such as C.

Table 6.2 Addressing the smileface glyph in the Wingdings font with non-Unicode-capable language bindings (e.g. C)

encoding textformat additional options input string visible result on the page

unicode

utf16 \xF0\x4A 1

1. Must be expressed as \xF0\x4A or \x4A\xF0 depending on byte ordering; note that \x designates C escape syntax



utf8

charref  

charref &.#x4A; 

charref &.smileface; 

ï•ã
2

2. Winansi characters for the three-byte sequence \xEF \x81 \x8A



escapesequence3

3. The escapesequence option is only required if the programming language doesn’t offer any syntax for direct byte values.

\xEF\x81\x8A 4

4. Three-byte UTF-8 sequence for U+F04A



J 5

5. Winansi character for the byte code \x4A

(space glyph if available, otherwise .notdef
glyph)

escapesequence \x4A (space glyph if available, otherwise .notdef
glyph)

bytes

charref  

bytes &.#x4A; 

charref &.smileface; 

J (space glyph if available, otherwise .notdef
glyph)

escapesequence \x4A (space glyph if available, otherwise .notdef
glyph)

builtin

utf16, utf8 (same as above with encoding=unicode)

bytes

charref  

charref &.#x4A; 

charref &.smileface; 

J 

escapesequence \x4A 

140 Chapter 6: Font Handling

6.4.4 Searching for Fonts

Sources of Font Data. As mentioned earlier, fonts can be loaded explicitly with the
PDF_load_font() function or implicitly by supplying the fontname and encoding options
to various text output functions. You can use a font’s native name or work with arbi-
trary custom names which will be used to locate the font data. Custom font names must
be unique within a document. In PDF_info_font() this font name can be queried with the
apiname key.

Subsequent calls to PDF_load_font() with the same font name will return the same
font handle if all options are identical to those provided in the first call to this function
(a few options are treated differently; see PDFlib API Reference for details). Otherwise a
new font handle will be created for the same font name. PDFlib supports the following
sources of font data:

> Disk-based or virtual font files
> Fonts pulled from the Windows or macOS operating system (host fonts)
> PDF standard fonts: these are from a small set of Latin and CJK fonts with well-

known names
> Type 3 fonts which have been defined with PDF_begin_font() and related functions.

Cookbook A full code sample can be found in the Cookbook topic fonts/font_resources.

With the enumeratefonts option PDFlib can be instructed to collect all fonts which are ac-
cessible on the search path (see »File search and the SearchPath resource category«, page
56). Using the saveresources option the current list of PDFlib resources can be written to a
disk file:

/* add font directory to the search path */
p.set_option("searchpath={{C:/fonts}}");

/* enumerate all fonts on the searchpath and create a UPR file */
p.set_option("enumeratefonts saveresources={filename=C:/fonts/pdflib.upr}");

Font name aliasing. Each font may have an arbitrary number of alias names. This may
be useful in situations where fonts are requested via an artificial or virtual name which
must be mapped to a physical font. Font name aliases can be created with the
FontnameAlias resource category (see Table 3.1, page 56) as in the following example:

p.set_option("FontnameAlias={sans Helvetica}");

The alias name to the left can be chosen arbitrarily and can be used for loading the font
under its new alias name. The name on the right must be a valid API name of a font, e.g.
the name of a host font or a font which has been connected to a font resource with one
of the font resource categories FontOutline etc.

Search order for fonts. The font name supplied to PDFlib is a name string. If the speci-
fied name is a font name alias it will be replaced with the corresponding API font name.
PDFlib uses the API font name to search for fonts of various types in the order described
below. The search process stops as soon as one of the steps located a usable font:

> The font name matches the name of a Type 3 font which has previously been created
in the same document with PDF_begin_font() (see Section 6.1.6, »Type 3 Fonts«, page
125).

http://www.pdflib.com/pdflib-cookbook/fonts/font_resources/

6.4 Loading Fonts 141

> The font name matches the name in a FontOutline resource which connects the font
name with the name of a TrueType or OpenType font file.

> The font name matches the name in a FontAFM or FontPFM resource which connects
the font name with the name of a PostScript Type 1 font metrics file.

> The font name matches the name in a FontOutline resource which connects the font
name with the name of an SVG font file and doesn’t match the name in a HostFont re-
source.

> The font name matches the name in a HostFont resource which connects the font
name with the name of a font installed on the system.

> The font name matches the name of a Latin core font (see »Latin core fonts«, page
142).

> The name matches the name of a host font installed on the system (see Section 6.4.5,
»Host Fonts on Windows and macOS«, page 144).

> The font name matches the base name (i.e. without file name suffix) of a font file.

If no font was found, font loading stops with the following error message:

Font file (AFM, PFM, TTF, OTF etc.) or host font not found

Details regarding the resource categories can be found in Section 3.1.4, »Resource Con-
figuration and File Search«, page 55. The following sections discuss font loading for the
various classes of fonts in more detail.

TrueType, OpenType, and WOFF fonts. The font name must be
connected to the name of the desired font file via the FontOutline
resource:

p.set_option("FontOutline={Arial=/usr/fonts/Arial.ttf}");
font = p.load_font("Arial", "unicode", "embedding");

The font name to the left of the equal sign (called the font’s API
name) can be chosen arbitrarily:

p.set_option("FontOutline={f1=/usr/fonts/Arial.ttf}");
font = p.load_font("f1", "unicode", "embedding");

As an alternative to runtime configuration via PDF_set_option(), the FontOutline re-
source can be configured in a UPR file (see Section 3.1.4, »Resource Configuration and
File Search«, page 55). In order to avoid absolute file names you can use the SearchPath
resource category (again, the SearchPath resource category can alternatively be config-
ured in a UPR file), for example:

p.set_option("SearchPath={{/usr/fonts}}");
p.set_option("FontOutline={f1=Arial.ttf}");
font = p.load_font("f1", "unicode", "");

TrueType and OpenType Collections. In order to select a font which is con-
tained in a TrueType or OpenType Collection (TTC/OTC, see Section 7.5.1, »Us-
ing TrueType and OpenType CJK Fonts«, page 177) file you directly specify the
name of the font:

p.set_option("FontOutline={MS-Gothic=msgothic.ttc}");
font = p.load_font("MS-Gothic", "unicode", "embedding");

142 Chapter 6: Font Handling

The font name will be matched against the names of all fonts in the TTC/OTC file. Alter-
natively, to select the n-th font in a TTC/OTC file you can specify the number n with a co-
lon after the font name. In this case the API font name to the left of the equal sign can be
chosen arbitrarily:

p.set_option("FontOutline={f1=msgothic.ttc}");
font = p.load_font("f1:0", "unicode", "");

PostScript Type 1 fonts. The font name must be connected to the name of
the desired font metrics file via one of the FontAFM or FontPFM resource cate-
gories according to the type of the metrics file:

p.set_option("FontPFM={lucidux=LuciduxSans.pfm}");
font = p.load_font("lucidux", "unicode", "");

If embedding is requested for a PostScript font, its name must additionally be connected
to the corresponding font outline file (PFA or PFB) via the FontOutline resource category:

p.set_option("FontPFM={lucidux=LuciduxSans.pfm}");
p.set_option("FontOutline={lucidux=LuciduxSans.pfa}");
font = p.load_font("lucidux", "unicode", "embedding");

Keep in mind that for PostScript Type 1 fonts the FontOutline resource alone is not suffi-
cient. Since a metrics file is always required, an AFM or PFM file must be available in or-
der to load the font.

The directories which will be searched for font metrics and outline files can be speci-
fied via the SearchPath resource category.

Latin core fonts. PDF viewers support a core set of 14 fonts which are assumed to be al-
ways available. Full metrics information for the core fonts is already built into PDFlib so
that no additional data are required (unless the font is to be embedded). The core fonts
have the following names:

Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique,
Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique,
Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic,
Symbol, ZapfDingbats

If a font name is not connected to any file name via resources, PDFlib will search the
font in the list of Latin core fonts. This step will be skipped if the embedding option is
specified or a FontOutline resource is available for the font name. The following code
fragment requests one of the core fonts without any configuration:

font = p.load_font("Times-Roman", "unicode", "");

Core fonts found in the internal list are never embedded. In order to embed one of these
fonts you must configure a font outline file. In some situations, e.g. for font names in
SVG, it may be useful to attach a style keyword to the font name in the font outline con-
figuration, e.g.
p.set_option("FontOutline={Helvetica,Bold=/usr/fonts/HelvBd.ttf}");

Host fonts. If a font name is not connected to any file name via resources, PDFlib will
search the font in the list of fonts installed on Windows or macOS. Fonts installed on

6.4 Loading Fonts 143

the system are called host fonts. Host font names must be encoded in ASCII. On Windows
Unicode can also be used. See Section 6.4.5, »Host Fonts on Windows and macOS«, page
144, for more details on host fonts. Example:

font = p.load_font("Verdana", "unicode", "");

On Windows an optional font style can be added to the font name after a comma (this
syntax can also be used with the Latin core fonts):

font = p.load_font("Verdana,Bold", "unicode", "");

In order to load a host font with the name of one of the core fonts, the font name must
be connected to the desired host font name via the HostFont resource category. The fol-
lowing fragment makes sure that instead of using the built-in core font data, the Sym-
bol font metrics and outline data will be taken from the host system:

p.set_option("HostFont={Symbol=Symbol}");
font = p.load_font("Symbol", "unicode", "embedding");

The API font name to the left of the equal sign can be chosen arbitrarily. Typically the
name of the host font is used on both sides of the equal sign.

Extension-based search for font files. All font types except Type 3 fonts can be
searched by using the specified font name as the base name (without any file suffix) of a
font metrics or outline file. If PDFlib couldn’t find any font with the specified name it
will loop over all entries in the SearchPath resource category, and add all known file
name suffixes to the supplied font name in an attempt to locate the font metrics or out-
line data. The details of the extension-based search algorithm are as follows:

> The following suffixes will be added to the font name, and the resulting file names
tried one after the other to locate the font metrics (and outline in the case of True-
Type and OpenType fonts):

.tte .ttf .otf .gai .woff .cef .afm .pfm .ttc, .otc, .svg, .svgz,

.TTE .TTF .OTF .GAI .WOFF .CEF .AFM .PFM .TTC, .OTC, .SVG, .SVGZ

> If embedding is requested for a PostScript font, the following suffixes will be added to
the font name and tried one after the other to find the font outline file:

.pfa .pfb

.PFA .PFB

If no font file was found, font loading stops with the following error message:

Font cannot be embedded (PFA or PFB font file not found)

> All candidate file names above will be searched for »as is«, and then by prepending
all directory names configured in the SearchPath resource category.

This means that PDFlib will find a font without any manual configuration provided the
corresponding font file name consists of the font name plus the standard file name suf-
fix according to the font type, and is located in one of the SearchPath directories.

The following groups of statements achieve the same effect with respect to locating
the font outline file:

p.set_option("FontOutline={Arial=/usr/fonts/Arial.ttf}");
font = p.load_font("Arial", "unicode", "");

144 Chapter 6: Font Handling

and

p.set_option("SearchPath={{/usr/fonts}}");
font = p.load_font("Arial", "unicode", "");

Standard CJK fonts. Acrobat supports various standard fonts for CJK text; see Section
7.5.6, »Standard CJK Fonts«, page 182, for more details and a list of font names. PDFlib
will find a standard CJK font at the very beginning of the font search if the specified font
name matches the name of a standard CJK font, the specified encoding is the name of
one of the predefined CMaps, and the embedding option was not specified.

Note that the concept of standard CJK fonts is deprecated. Configure suitable fonts
for use with PDFlib.

Type 3 fonts. Type 3 fonts must be defined at runtime by defining the glyphs with
standard PDFlib graphics functions (see Section 6.1.6, »Type 3 Fonts«, page 125). If the
font name supplied to PDF_begin_font() matches the font name requested with PDF_
load_font() the font will be selected at the beginning of the font search. Example:

p.begin_font("PDFlibLogoFont", 0.001, 0.0, 0.0, 0.001, 0.0, 0.0, "");

...
p.end_font();
...
font = p.load_font("PDFlibLogoFont", "logoencoding", "");

6.4.5 Host Fonts on Windows and macOS
On macOS and Windows systems PDFlib can access TrueType, OpenType, and PostScript
fonts which have been installed in the operating system. We refer to such fonts as host
fonts. Instead of manually configuring font files simply install the font in the system
(usually by dropping it into the appropriate directory), and PDFlib will happily use it.

When working with host fonts it is important to use the exact (case-sensitive) font
name. Since font names are crucial we mention some platform-specific methods for de-
termining font names below. More information on font names can be found in Section
6.1.4, »PostScript Type 1 Fonts«, page 124, and Section 6.1.1, »TrueType Fonts«, page 123.
Host font search can be disabled with the usehostfonts option of PDF_set_option().

Finding host font names on Windows. You can find the name of an installed font by
double-clicking the font file and taking note of the full font name which is displayed in
the window title. Some fonts may have parts of their name localized according to the re-
spective Windows version in use. For example, the common font name portion Bold
may appear as the translated word Fett on a German system. In order to retrieve the
host font data from the Windows system you must use the translated form of the font
name in PDFlib (e.g. Arial Fett), or use font style names (see below). However, in order to
retrieve the font data directly from file you must use the generic (non-localized) form of
the font name (e.g. Arial Bold).

Note You can avoid this internationalization problem by appending font style names (e.g. »,Bold«,
see below) to the font name instead of using localized font name variants.

6.4 Loading Fonts 145

Windows font style names. When loading host fonts from the Windows operating
system PDFlib users have access to a feature provided by the Windows font selection
machinery: style names can be provided for the weight and slant, for example

font = p.load_font("Verdana,Bold", "unicode", "");

This will instruct Windows to search for a particular bold, italic, or other variation of the
base font. Depending on the available fonts Windows will select a font which most
closely resembles the requested style (it will not create a new font variation). The font
found by Windows may be different from the requested font, and the font name in the
generated PDF may be different from the requested name; PDFlib does not have any
control over Windows’ font selection. Font style names only work with host fonts, but
not for fonts configured via a font file.

The following keywords (separated from the font name with a comma) can be at-
tached to the base font name to specify the font weight:

none, thin, extralight, ultralight, light, normal, regular, medium,
semibold, demibold, bold, extrabold, ultrabold, heavy, black

The keywords are case-insensitive. The italic keyword can be specified alternatively or in
addition to the above. If two style names are used both must be separated with a com-
ma, for example:

font = p.load_font("Verdana,Bold,Italic", "unicode", "");

Numerical font weight values can be used as an equivalent alternative to font style
names:

0 (none), 100 (thin), 200 (extralight), 300 (light), 400 (normal), 500 (medium), 600
(semibold), 700 (bold), 800 (extrabold), 900 (black)

The following example will select the bold variant of a font:

font = p.load_font("Verdana,700", "unicode", "");

Note Windows style names for fonts may be useful if you have to deal with localized font names
since they provide a universal method to access font variations regardless of their localized
names.

Windows font substitution. Windows can automatically substitute fonts based on cer-
tain registry entries. This kind of font substitution also affects PDFlib’s host font mech-
anism, but is completely under control of the Windows operating system. For example,
if the Helvetica font is requested Windows may deliver Arial instead, depending on the
following registry entry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\FontSubstitutes

For more information about Windows font substitution please refer to Microsoft docu-
mentation.

Host font names on macOS. Using the Font Book utility, which is part of macOS, you
can find the names of installed host fonts. In order to programmatically create lists of
host fonts we recommend Apple’s Font Tool Suite1. This set of command-line utilities

146 Chapter 6: Font Handling

contains a program called ftxinstalledfonts which is useful for determining the exact
names of all installed fonts. PDFlib supports several flavors of host font names:

> »Unique« font names: these are font names which can be encoded in Unicode, e.g.
for East-Asian fonts. In order to determine unique font names issue the following
command in a terminal window (in some cases the output contains entries with a ’:’
which must be removed):

ftxinstalledfonts -u

> PostScript font names. In order to determine PostScript font names issue the follow-
ing command in a terminal window:

ftxinstalledfonts -p

Potential problem with host font access on macOS. In our testing we found that new-
ly installed fonts are sometimes not accessible for UI-less applications such as PDFlib
until the user logs out from the console, and logs in again.

6.4.6 Fallback Fonts
Cookbook A full code sample can be found in the Cookbook topic text_output/starter_fallback.

Fallback fonts provide a powerful mechanism which deals with shortcomings in fonts
and encodings. They are also useful for combining fonts for different scripts. For exam-
ple, a font for the Arabic script may not support Latin characters (for example, the Goo-
gle Noto font family is designed this way). Fallback fonts can be used in many situations
to facilitate text output since necessary font changes are applied automatically by
PDFlib. This mechanism augments a given font (called the base font) by merging glyphs
from one ore more other fonts into the base font. More precisely: the fonts are not actu-
ally modified, but PDFlib applies all necessary font changes in the PDF page description
automatically. Fallback fonts offer the following features:

> Glyphs which are unavailable in the base font are automatically searched in one or
more fallback fonts. In other words, you can add glyphs to a font. Since multiple fall-
back fonts can be attached to the base font, you can effectively use all Unicode char-
acters for which at least one of the fonts contains a suitable glyph.

> Glyphs from a particular fallback font can be used to override glyphs in the base
font, i.e. you can replace glyphs in a font. You can replace one or more individual
glyphs, or specify one or more ranges of Unicode characters which will be replaced.

The size and vertical position of glyphs from a fallback font can be adjusted to match
the base font. Somewhat surprisingly, the base font itself can also be used as a fallback
font (with the same or a different encoding). This can be used to implement the follow-
ing tricks:

> Using the base font itself as fallback font can be used to adjust the size or position of
some or all glyphs in a font.

> You can add characters outside the actual encoding of the base font.

The fallback font mechanism is controlled by the fallbackfonts font loading option, and
affects all text output functions. As with all font loading options, the fallbackfonts op-
tion can be provided in explicit calls to PDF_load_font(), or in option lists for implicit

1. See developer.apple.com/fonts

http://www.pdflib.com/pdflib-cookbook/text_output/starter_fallback/
http://developer.apple.com/fonts

6.4 Loading Fonts 147

font loading. Since more than one fallback font can be specified for a base font, the fall-
backfonts option expects a list of option lists (i.e. an extra set of braces is required).

PDF_info_font() can be used to query the results of the fallback font mechanism (see
Section 6.6.3, »Querying Codepage Coverage and Fallback Fonts«, page 154).

Caveats. Note the following when working with fallback fonts:
> Not all font combinations result in typographically pleasing results. Care should be

taken to use only fallback fonts in which the glyph design matches the glyph design
of the base font.

> Font loading options for the fallback font(s) must be specified separately in the fall-
backfonts option list. For example, if embedding is specified for the base font, the fall-
back fonts will not automatically be embedded.

> Fallback fonts work only if the fonts contain proper Unicode information. The re-
placement glyph(s) must have the same Unicode value as the replaced glyph.

> Script-specific shaping (options shaping, script, locale) and OpenType features (op-
tions features, script, language) will only be applied to glyphs within the same font,
but not across glyphs from the base font and one or more fallback fonts.

> The underline/overline/strikeout features must be used with care when working
with fallback fonts, as well as the ascender and similar typographic values. The un-
derline thickness or position defined in the base font may not match the values in
the fallback font. As a result, the underline position or thickness may jump in un-
pleasant ways. A simple workaround against such artifacts is to specify a unified val-
ue with the underlineposition and underlinewidth options of PDF_fit_textline() and
PDF_add/create_textflow(). This value should be selected so that it works with the
base font and all fallback fonts.

In the sections below we describe several important use cases of fallback fonts and
demonstrate the corresponding option lists.

Add mathematical characters to a text font. As a very rough solution in case of miss-
ing mathematical glyphs you can use the following font loading option list for the
fallbackfonts option to add mathematical glyphs from the Symbol font to a text font:

fallbackfonts={{fontname=Symbol encoding=unicode}}

Combine fonts for use with multiple scripts. In some situations the script of incoming
text data is not known in advance. For example, a database may contain Latin, Greek,
and Cyrillic text, but the available fonts cover only one of these scripts at a time. Instead
of determining the script and selecting an appropriate font you can construct a font
which chains together several fonts, effectively covering the superset of all scripts. Use
the following font loading option list for the fallbackfonts option to add Greek and Cyril-
lic fonts to a Latin font:

fallbackfonts={
{fontname=Times-Greek encoding=unicode embedding forcechars={U+0391-U+03F5}}
{fontname=Times-Cyrillic encoding=unicode embedding forcechars={U+0401-U+0490}}

}

Extend 8-bit encodings. If your input data is restricted to a legacy 8-bit encoding you
can nevertheless use characters outside this encoding, taking advantage of fallback
fonts (where the base font itself serves as a fallback font) and PDFlib’s character refer-

148 Chapter 6: Font Handling

ence mechanism to address characters outside the encoding. Assuming you loaded the
Helvetica font with encoding=iso8859-1 (this encoding does not include the Euro charac-
ter), you can use the following font loading option list for the fallbackfonts option to add
the Euro glyph to the font:

fallbackfonts={{fontname=Helvetica encoding=unicode forcechars=euro}}

Since the input encoding does not include the Euro character you cannot address it with
an 8-bit value. In order to work around this restriction use character or glyph name ref-
erences, e.g. € (see Section 5.6.2, »Character References«, page 119).

Enlarge some or all glyphs in a font. Fallback fonts can also be used to enlarge some or
all glyphs in a font without changing the font size. Again, the base font itself will be
used as fallback font. This feature can be useful to make different font designs visually
compatible without adjusting the fontsize in the code. Use the following font loading
option list for the fallbackfonts option to enlarge all glyphs in the specified range to
120%:

fallbackfonts={
{fontname=Times-Italic encoding=unicode forcechars={U+0020-U+00FF} fontsize=120%}
}

Add an enlarged pictogram. Use the following font loading option list for the
fallbackfonts option to pull a symbol from the ZapfDingbats font:

fallbackfonts={
{fontname=ZapfDingbats encoding=unicode forcechars=.a12 fontsize=150% textrise=-15%}
}

Again, we use the fontsize and textrise suboptions to adjust the symbol’s size and posi-
tion to the base font.

Replace glyphs in a CJK font. You can use the following font loading option list for the
fallbackfonts option to replace the Latin characters in the ASCII range with those from
another font:

fallbackfonts={
{fontname=Courier-Bold encoding=unicode forcechars={U+0020-U+007E}}
}

Add Latin characters to an Arabic font. This use case is detailed in Section 7.4.5, »Arabic
Text Formatting«, page 176.

Identify missing glyphs. The font Unicode BMP Fallback SIL, which is freely available,
displays the hexadecimal value of each Unicode character instead of the actual glyph.
This font can be very useful for diagnosing font-related problems in the workflow. You
can use the following font loading option list for the fallbackfonts option to augment
any font with this special fallback font to visualize missing characters:

fallbackfonts={{fontname={Unicode BMP Fallback SIL} encoding=unicode}}

Add Gaiji characters to a font. This use case is detailed in Section 7.5.3, »EUDC and
SING Fonts for Gaiji Characters«, page 178.

6.5 Font Embedding and Subsetting 149

6.5 Font Embedding and Subsetting
6.5.1 Font Embedding

PDF font embedding and font substitution in Acrobat. PDF documents can include
font data in various formats to ensure proper text display. Alternatively, a font descrip-
tor containing only the character metrics and some general font information (but not
the actual glyph outlines) can be embedded. If a font is not embedded in a PDF docu-
ment, Acrobat will take it from the target system if available and configured (»Use Local
Fonts«), or try to build a substitute font according to the font descriptor. The use of sub-
stitution fonts results in readable text, but the glyphs may look different from the orig-
inal font. Similarly, substitution fonts don’t work if complex script shaping or Open-
Type layout features have been used. For these reasons font embedding is generally
recommended unless you know that the documents are displayed on the target sys-
tems acceptably even without embedded fonts. Such PDF files are inherently nonport-
able, but may be of use in controlled environments, such as corporate networks where
the required fonts are known to be available on all workstations.

Embedding fonts with PDFlib. Font embedding is controlled by the embedding option
when loading a font (although in some cases PDFlib enforces font embedding):

font = p.load_font("WarnockPro", "winansi", "embedding");

Table 6.3 lists different situations with respect to font usage, each of which imposes dif-
ferent requirements on the font and metrics files required by PDFlib. In addition to the
requirements listed in Table 6.3 the corresponding CMap files (plus in some cases the
Unicode mapping CMap for the respective character collection, e.g. Adobe-Japan1-UCS2)
must be available in order to use a (standard or custom) CJK font with any of the stan-
dard CMaps.

Font embedding for fonts which are exclusively used for invisible text (mainly use-
ful for OCR results) can be controlled with the optimizeinvisible option when loading the
font.

Legal aspects of font embedding. It’s important to note that mere possession of a font
file may not justify embedding the font in PDF, even for holders of a legal font license.
Many font vendors restrict embedding of their fonts. Some type foundries completely
forbid PDF font embedding, others offer special online or embedding licenses for their
fonts, while still other type foundries allow font embedding provided subsetting is ap-

Table 6.3 Different font usage situations and required files

font usage font metrics file required? font outline file required?

one of the 14 core fonts no only if embedding=true and
skipembedding={latincore} is not set

TrueType, OpenType, or Type 1 host fonts
installed on macOS or Windows

no no

non-core Type 1 fonts yes only if embedding=true

TrueType, OpenType, SING, WOFF and SVG
fonts

n/a yes

150 Chapter 6: Font Handling

plied to the font. Please check the legal implications of font embedding before attempt-
ing to embed fonts with PDFlib. PDFlib will honor embedding restrictions which may be
specified in a TrueType or OpenType font. If the embedding flag in a TrueType font is
set to no embedding1, PDFlib will honor the font vendor’s request, and reject any attempt
at embedding the font.

The legal warning above should be kept in mind especially for Web fonts since most
vendors of fonts for use on the Web do not allow embedding of such fonts in PDF docu-
ments.

6.5.2 Font Subsetting
In order to decrease the size of the PDF output, PDFlib can embed only those glyphs of a
font which are actually used in the document. This process is called font subsetting. It
creates a new font which contains fewer glyphs than the original font, and omits font
information which is not required for PDF viewing. Font subsetting is particularly im-
portant for CJK fonts. PDFlib supports subsetting for the following types of fonts:

> TrueType fonts
> OpenType fonts with PostScript or TrueType outlines
> WOFF fonts
> Type 3 fonts (special handling required, see »Type 3 font subsetting«, page 151.)

When a font for which subsetting has been requested is used in a document, PDFlib will
keep track of the characters actually used for text output. There are several controls for
the subsetting behavior (assuming autosubsetting is not specified):

> The default subsetting behavior is controlled by the autosubsetting option. If it is true,
subsetting will be enabled for all fonts where subsetting is possible (except Type 3
fonts which require special handling, see below). The default value is true.

> If autosubsetting=true: The subsetlimit option contains a percentage value. If a docu-
ment uses more than this percentage of glyphs in a font, subsetting will be disabled
for this particular font, and the complete font will be embedded instead. This saves
some processing time at the expense of larger output files. The following font option
sets the subset limit to 75%:

subsetlimit=75%

The default value of subsetlimit is 100 percent. In other words, the subsetting option
requested at PDF_load_font() will be honored unless the client explicitly requests a
lower limit than 100 percent.

> If autosubsetting=true: The subsetminsize option can be used to completely disable
subsetting for small fonts. If the original font file is smaller than the value of
subsetminsize in KB, font subsetting will be disabled for this font.

Specifying the initial font subset. Font subsets contain outline descriptions for all
glyphs used in the document. This means that the generated font subsets will vary
among documents since a different set of characters (and therefore glyphs) is generally
used in each document. Different font subsets can be problematic when merging many
small documents with embedded font subsets to a larger document: the embedded sub-
sets cannot be removed since they are all different.

1. More specifically: if the fsType flag in the OS/2 table of the font has a value of 2.

6.5 Font Embedding and Subsetting 151

For this scenario PDFlib allows you to specify the initial contents of a font subset
with the initialsubset option of PDF_load_font(). While PDFlib starts with an empty sub-
set by default and adds glyphs as required by the generated text output, the initialsubset
option can be used to specify a non-empty subset. For example, if you know that only
Latin-1 text output will be generated and the font contains many more glyphs, you can
specify the first Unicode block as initial subset:

initialsubset={U+0020-U+00FF}

This means that the glyphs for all Unicode characters in the specified range will be in-
cluded in the subset. If this range has been selected so that it covers all text in the gener-
ated documents, the generated font subsets will be identical in all documents. As a re-
sult, when combining such documents later to a single PDF the identical font subsets
can be removed with the optimize option of PDF_begin_document().

Type 3 font subsetting. Type 3 fonts must be defined and therefore embedded before
they can be used in a document (because the glyph widths are required). On the other
hand, subsetting is only possible after creating all pages (since the glyphs used in the
document must be known to determine the proper subset). In order to avoid this con-
flict, PDFlib supports widths-only Type 3 fonts. If you need subsetting for a Type 3 font
you must define the font in two passes:

> The first pass with the widthsonly option of PDF_begin_font() must be done before us-
ing the font. It defines only the font and glyph metrics (widths); the font matrix in
PDF_begin_font() as well as wx and the glyph bounding box in PDF_begin_glyph_ext())
must be supplied and must accurately describe the actual glyph metrics. Only PDF_
begin_glyph_ext() and PDF_end_glyph() are required for each glyph, but not any other
calls for defining the actual glyph shape. If other functions are called between start
and end of a glyph description, they will not have any effect on the PDF output, and
will not trigger an exception.

> The second pass must be done after creating all text in this font, and defines the ac-
tual glyph outlines or bitmaps. Font and glyph metrics are ignored since they are al-
ready known from the first pass. After the last page has been created, PDFlib also
knows which glyphs have been used in the document, and will only embed the re-
quired glyph descriptions to construct the font subset.
API function calls for the descriptions of unused glyphs are silently ignored. Func-
tions which can return an error code (e.g. PDF_load_image()) return an error value
which must be ignored by the application. In order to distinguish unused glyphs from real
errors the error message number returned by PDF_get_errnum() must be checked: if it is
zero, the glyph is ignored, i.e. no real error happened.

The same set of glyphs must be provided in pass 1 and pass 2. A Type 3 font with subset-
ting can only be loaded once with PDF_load_font().

Cookbook A full code sample can be found in the Cookbook topic type3_fonts/type3_subsetting.

http://www.pdflib.com/pdflib-cookbook/type3_fonts/type3_subsetting/

152 Chapter 6: Font Handling

6.6 Querying Font Information
PDF_info_font() can be used to query useful information related to fonts, encodings,
Unicode, and glyphs. Depending on the type of query, a valid font handle may be re-
quired as parameter for this function. In all examples below we use the variables de-
scribed in Table 6.4.

If the requested combination of keyword and option(s) is not available, PDF_info_font()
will return -1. This must be checked by the client application and can be used to check
whether or not a required glyph is present in a font.

Each of the sample code lines below can be used in isolation since they do not de-
pend on each other.

6.6.1 Font-independent Encoding, Unicode, and Glyph Name Queries

Encoding queries. Encoding queries do not require any valid font handle, i.e. the value
-1 (in PHP: 0) can be supplied for the font parameter of PDF_info_font(). Only glyph
names known internally to PDFlib can be supplied in gn, but not any font-specific glyph
names.

Query the 8-bit code of a Unicode character or a named glyph in an 8-bit encoding:

c = (int) p.info_font(-1, "code", "unicode=" + uv + " encoding=" + enc);
c = (int) p.info_font(-1, "code", "glyphname=" + gn + " encoding=" + enc);

Query the Unicode value of an 8-bit code or a named glyph in an 8-bit encoding:

uv = (int) p.info_font(-1, "unicode", "code=" + c + " encoding=" + enc);
uv = (int) p.info_font(-1, "unicode", "glyphname=" + gn + " encoding=" + enc);

Query the registered glyph name of an 8-bit code or a Unicode value in an 8-bit encod-
ing:

gn_idx = (int) p.info_font(-1, "glyphname", "code=" + c + " encoding=" + enc);
gn_idx = (int) p.info_font(-1, "glyphname", "unicode=" + uv + " encoding=" + enc);

Table 6.4 Variables for use in the examples for PDF_info_font()

variable comments

int uv; Numerical Unicode value; as an alternative glyph name references without the & and ; decora-
tion can be used in the option list, e.g. unicode=euro. For more details see the description of the
Unichar option list data type in the PDFlib API Reference.

int c; 8-bit character code

int gid; glyph id

int cid; CID value

String gn; glyph name

int gn_idx; String index for a glyph name; if gn_idx is different from -1 the corresponding string can be re-
trieved as follows:
gn = p.get_string(gn_idx, "");

String enc; encoding name

int font; valid font handle created with PDF_load_font()

6.6 Querying Font Information 153

/* retrieve the actual glyph name using the string index */
gn = p.get_string(gn_idx, "");

Unicode and glyph name queries. PDF_info_font() can also be used to perform queries
which are independent from a specific 8-bit encoding, but affect the relationship of Uni-
code values and glyph names known to PDFlib internally. Since these queries are inde-
pendent from any font, a valid font handle is not required.

Query the Unicode value of an internally known glyph name:

uv = (int) p.info_font(-1, "unicode", "glyphname=" + gn + " encoding=unicode");

Query the internal glyph name of a Unicode value:

gn_idx = (int) p.info_font(-1, "glyphname", "unicode=" + uv + " encoding=unicode");

/* retrieve the actual glyph name using the string index */
gn = p.get_string(gn_idx, "");

6.6.2 Font-specific Encoding, Unicode, and Glyph Name Queries
The following queries relate to a specific font which must be identified by a valid font
handle. The gn variable can be used to supply internally known glyph names as well as
font-specific glyph names. In all examples below the return value -1 means that the font
does not contain the requested glyph.

Query the 8-bit codes for a Unicode value, glyph ID, named glyph, or CID in a font
which has been loaded with an 8-bit encoding:

c = (int) p.info_font(font, "code", "unicode=" + uv);
c = (int) p.info_font(font, "code", "glyphid=" + gid);
c = (int) p.info_font(font, "code", "glyphname=" + gn);
c = (int) p.info_font(font, "code", "cid=" + cid);

Query the Unicode value for a code, glyph ID, named glyph, or CID in a font:

uv = (int) p.info_font(font, "unicode", "code=" + c);
uv = (int) p.info_font(font, "unicode", "glyphid=" + gid);
uv = (int) p.info_font(font, "unicode", "glyphname=" + gn);
uv = (int) p.info_font(font, "unicode", "cid=" + cid);

Query the glyph id for a code, Unicode value, named glyph, or CID in a font:

gid = (int) p.info_font(font, "glyphid", "code=" + c);
gid = (int) p.info_font(font, "glyphid", "unicode=" + uv);
gid = (int) p.info_font(font, "glyphid", "glyphname=" + gn);
gid = (int) p.info_font(font, "glyphid", "cid=" + cid);

Query the glyph id for a code, Unicode value, or named glyph in a font with respect to
an arbitrary 8-bit encoding:

gid = (int) p.info_font(font, "glyphid", "code=" + c + " encoding" + enc);
gid = (int) p.info_font(font, "glyphid", "unicode=" + uv + " encoding=" + enc);
gid = (int) p.info_font(font, "glyphid", "glyphname=" + gn + " encoding=" + enc);

154 Chapter 6: Font Handling

Query the font-specific name of a glyph specified by code, Unicode value, glyph ID, or
CID:

gn_idx = (int) p.info_font(font, "glyphname", "code=" + c);
gn_idx = (int) p.info_font(font, "glyphname", "unicode=" + uv);
gn_idx = (int) p.info_font(font, "glyphname", "glyphid=" + gid);
gn_idx = (int) p.info_font(font, "glyphname", "cid=" + cid);

/* retrieve the actual glyph name using the string index */
gn = p.get_string(gn_idx, "");

Checking glyph availability. Using PDF_info_font() you can check whether a particular
font contains the glyphs you need for your application. As an example, the following
code checks whether the Euro glyph is contained in a font:

/* We could also use "unicode=U+20AC" below */
if (p.info_font(font, "code", "unicode=euro") == -1)
{

/* no glyph for Euro sign available in the font */
}

Cookbook A full code sample can be found in the Cookbook topic fonts/glyph_availability.

Alternatively, you can call PDF_info_textline() to check the number of unmapped charac-
ters for a given text string, i.e. the number of characters in the string for which no ap-
propriate glyph is available in the font. The following code fragment queries results for
a string containing a single Euro character (which is expressed with a glyph name refer-
ence). If one unmapped character is found this means that the font does not contain
any glyph for the Euro sign:

String optlist = "font=" + font + " charref";

if (p.info_textline("€", "unmappedchars", optlist) == 1)
{

/* no glyph for Euro sign available in the font */
}

6.6.3 Querying Codepage Coverage and Fallback Fonts
PDF_info_font() can also be used to check whether a font is suited for creating text out-
put in a certain language or script, provided the codepage is known which is required
for the text. Codepage coverage is encoded in the OS/2 table of the font. Note that it is
up to the font designer to decide what exactly it means that a font support a particular
codepage. Even if a font claims to support a specific codepage this does not necessarily
mean that it contains glyphs for all characters in this codepage. If more precise coverage
information is required you can query the availability of all required characters as
demonstrated in Section 6.6.2, »Font-specific Encoding, Unicode, and Glyph Name Que-
ries«, page 153.

Checking whether a font supports a codepage. The following fragment checks wheth-
er a font supports a particular codepage:

String cp="cp1254";

result = (int) p.info_font(font, "codepage", "name=" + cp);

http://www.pdflib.com/pdflib-cookbook/fonts/glyph_availability/

6.6 Querying Font Information 155

if (result == -1)
System.err.println("Codepage coverage unknown");

else if (result == 0)
System.err.println("Codepage not supported by this font");

else
System.err.println("Codepage supported by this font");

Retrieving a list of all supported codepages. The following fragment queries a list of
all codepages supported by a TrueType or OpenType font:

cp_idx = (int) p.info_font(font, "codepagelist", "");

if (cp_idx == -1)
System.err.println("Codepage list unknown");

else
{

System.err.println("Codepage list:");
System.err.println(p.get_string(cp_idx, ""));

}

This will create the following list for the common Arial font:

cp1252 cp1250 cp1251 cp1253 cp1254 cp1255 cp1256 cp1257 cp1258 cp874 cp932 cp936 cp949
cp950 cp1361

Query fallback glyphs. You can use PDF_info_font() to query the results of the fallback
font mechanism (see Section 6.4.6, »Fallback Fonts«, page 146, for details on fallback
fonts). The following fragment determines the name of the base or fallback font which
is used to represent the specified Unicode character:

result = p.info_font(basefont, "fallbackfont", "unicode=U+03A3");
/* if result==basefont the base font was used, and no fallback font was required */
if (result == -1)
{

/* character cannot be displayed with neither base font nor fallback fonts */
}
else
{

idx = p.info_font(result, "fontname", "api");
fontname = p.get_string(idx, "");

}

156 Chapter 6: Font Handling

6.6 Querying Font Information 157

7.1 Text Output Methods 159

7 Text Output
7.1 Text Output Methods

PDFlib supports text output on several levels:
> Low-level text output with PDF_show() and similar functions;
> Single-line formatted text output with PDF_fit_textline(); This function also supports

text on a path.
> Multi-line text formatted output with Textflow (PDF_fit_textflow() and related func-

tions); The Textflow formatter can also wrap text inside or outside of vector-based
shapes.

> Text in tables; the table formatter supports Textline and Textflow contents in table
cells.

Low-level text output. Functions like PDF_show() can be used to place text at a specific
location on the page, without using any formatting aids. This is recommended only for
applications with very basic text output requirements (e.g. convert plain text files to
PDF), or for applications which already have full text placement information (e.g. a driv-
er which converts a page in another format to PDF). The following fragment creates text
output with low-level functions:

font = p.load_font("Helvetica", "unicode", "");
p.setfont(font, 12);
p.set_text_pos(50, 700);
p.show("Hello world!");
p.continue_text("(says Java)");

Formatted single-line text output with Textlines. PDF_fit_textline() creates text out-
put which consists of single lines and offers a variety of formatting features. However,
the position of individual Textlines must be determined by the client application. The
following fragment creates text output with a Textline. Since font, encoding, and font-
size can be specified as options, a preceding call to PDF_load_font() is not required:

p.fit_textline(text, x, y, "fontname=Helvetica encoding=unicode fontsize=12");

See Section 9.1, »Placing and Fitting Textlines«, page 221, for more information.

Multi-line text output with Textflow. PDF_fit_textflow() creates text output with an
arbitrary number of lines and can distribute the text across multiple columns or pages.
The Textflow formatter supports a wealth of formatting functions. The following frag-
ment creates text output with Textflow:

tf = p.add_textflow(tf, text, optlist);
result = p.fit_textflow(tf, llx, lly, urx, ury, optlist);
p.delete_textflow(tf);

See Section 9.2, »Multi-Line Textflows«, page 231, for more information.

Text in tables. Textlines and Textflows can also be used to place text in table cells. See
Section 9.3, »Table Formatting«, page 251, for more information.

160 Chapter 7: Text Output

7.2 Font Metrics and Text Variations
7.2.1 Font and Glyph Metrics

Text position. PDFlib maintains the text position independently from the current
point for drawing graphics. While the former can be queried via the textx/texty options,
the latter can be queried via currentx/currenty.

Glyph metrics. PDFlib uses the glyph and font metrics system used by PostScript and
PDF which shall be briefly discussed here.

The font size which must be specified by PDFlib users is the minimum distance be-
tween adjacent text lines which is required to avoid overlapping character parts. The
font size is generally larger than individual characters in a font, since it spans ascender
and descender, plus possibly additional space between lines.

The leading (line spacing) specifies the vertical distance between the baselines of ad-
jacent lines of text. By default it is set to the value of the font size. The capheight is the
height of capital letters such as T or H in most Latin fonts. The xheight is the height of
lowercase letters such as x in most Latin fonts. The ascender is the height of lowercase
letters such as f or d in most Latin fonts. The descender is the distance from the baseline
to the bottom of lowercase letters such as j or p in most Latin fonts. The descender is
usually negative. The values of xheight, capheight, ascender, and descender are measured
as a fraction of the font size, and must be multiplied with the required font size before
being used.

The gaplen property is only available in TrueType and OpenType fonts (it will be esti-
mated for other font formats). The gaplen value is read from the font file, and specifies
the difference between the recommended distance between baselines and the sum of
ascender and descender.

PDFlib may have to estimate one or more of these values since they are not guaran-
teed to be present in the font or metrics file. In order to find out whether real or estimat-
ed values are used you can call PDF_info_font() to query the xheight with the option
faked. The character metrics for a specific font can be queried from PDFlib as follows:

font = p.load_font("Times-Roman", "unicode", "");

capheight = p.info_font(font, "capheight", "");
ascender = p.info_font(font, "ascender", "");

font size

baseline

capheight

descender

ascender

Fig. 7.1 Font and character metrics

7.2 Font Metrics and Text Variations 161

descender = p.info_font(font, "descender", "");
xheight = p.info_font(font, "xheight", "");

Note The position and size of superscript and subscript cannot be queried with PDFlib.

Cookbook A full code sample can be found in the Cookbook topic fonts/font_metrics_info.

7.2.2 Kerning
> Some character combinations can lead to unpleasant appearance. For example, two

characters V next to each other can look like a W, and the distance between T and e
must be reduced in order to avoid ugly white space. This compensation is referred to
as kerning. Many fonts contain comprehensive kerning information which specifies
spacing adjustments for critical letter combinations.

There are two PDFlib controls for the kerning behavior:
> By default, kerning information in a font will be read when loading the font. If kern-

ing is not required the readkerning option can be set to false in PDF_load_font().
> Kerning for text output must be enabled with the kerning text appearance option

which is supported by the text output functions.

Temporarily disabling kerning may be useful, for example, for tabular figures when the
kerning data contains pairs of figures, since kerned figures wouldn’t line up in a table.
Note that modern TrueType and OpenType fonts include special figures for this pur-
pose which can be used with the Tabular Figures layout feature and the option
features={tnum}.

Kerning is applied in addition to any character spacing, word spacing, and horizontal
scaling which may be active. PDFlib does not impose any limit for the number of kern-
ing pairs in a font.

Kerning is controlled by the font option readkerning and the text option kerning. By
default kerning is enabled.

7.2.3 Text Variations

Simulated bold fonts. PDFlib supports a mechanism for creating artificial bold text for
individual text strings via the fakebold option. This method simulates a bold font by
stroking the glyph outlines; for Type 3 fonts the text will be placed multiply with differ-

No kerning

Kerning applied

Character movement caused by kerning

Fig. 7.2 Kerning

http://www.pdflib.com/pdflib-cookbook/fonts/font_metrics_info/

162 Chapter 7: Text Output

ent offsets. It is strongly recommended to use real bold font designs for emphasis. The
fakebold option creates text output which is inferior to real bold text, and may inhibit
text extraction.

Cookbook A full code sample can be found in the Cookbook topic fonts/simulated_fontstyles.

Note The fontstyle=bold[italic] font option can be used to force fakebold simulation for all text
created with a particular font.

Simulated italic fonts. The italicangle option can be used to simulate italic fonts when
only a regular font is available. This method creates a fake italic font by skewing the reg-
ular font by a user-provided angle. Negative values will slant the text clockwise. Be
warned that using a real italic or oblique font will result in much more pleasing output.
However, if an italic font is not available the italicangle option can be used to easily sim-
ulate one. This feature may be especially useful for CJK fonts. Typical values for the
italicangle option are in the range -12 to -15 degrees.

Note PDFlib does not adjust the glyph width to the new bounding box of the slanted glyph. For ex-
ample, when generated justified text the italicized glyphs may exceed beyond the fitbox.

Shadow text. PDFlib can create a shadow effect which will generate multiple instances
of text where each instance is placed at a slightly different location. Shadow text can be
created with the shadow option of PDF_fit_textline() and PDF_add/create_textflow(). The
color of the shadow, its position relative to the main text and graphics state options can
be specified in suboptions.

Underline, overline, and strikeout text. PDFlib can be instructed to put lines below,
above, or in the middle of text. The stroke width of the bar and its distance from the
baseline are calculated based on the font’s metrics information. In addition, the current
values of the horizontal scaling factor and the text matrix are taken into account when
calculating the width of the bar. The respective option names for PDF_set_text_option()
can be used to switch the underline, overline, and strikeout feature on or off, as well as
the corresponding options in the text output functions. The underlineposition and
underlinewidth options can be used for fine-tuning.

The strokecolor option is used for drawing the bars. The current linecap option is ig-
nored. The decorationabove option controls whether or not the line will be drawn on top
of or below the text. Aesthetics alert: in most fonts underlining will touch descenders,
and overlining will touch diacritical marks atop ascenders.

Cookbook A full code sample can be found in the Cookbook topic text_output/starter_textline.

Text rendering modes. PDFlib supports several rendering modes which affect the ap-
pearance of text. This includes outline text and the ability to use text as a clipping path.
Text can also be rendered invisibly which may be useful for placing text on scanned im-
ages in order to make the text accessible to searching and indexing, while at the same
time assuring it will not be visible directly. The rendering modes are described in the
PDFlib API Reference, and can be set with the textrendering option.

When stroking text, text state options such as strokewidth and strokecolor are applied
to the glyph outline. The rendering mode has no effect on text displayed using a Type 3
font.

http://www.pdflib.com/pdflib-cookbook/fonts/simulated_fontstyles/
http://www.pdflib.com/pdflib-cookbook/text_output/starter_textline/

7.2 Font Metrics and Text Variations 163

Cookbook Full code samples can be found in the Cookbook topics text_output/text_as_clipping_path
and text_output/invisible_text.

Text color. Text is usually displayed in the color specified in the fillcolor option. How-
ever, if a rendering mode other than 0 has been selected, both strokecolor and fillcolor af-
fect the text depending on the selected rendering mode.

Cookbook A full code sample can be found in the Cookbook topic text_output/starter_textline.

http://www.pdflib.com/pdflib-cookbook/text_output/text_as_clipping_path/
http://www.pdflib.com/pdflib-cookbook/text_output/text_as_clipping_path/
http://www.pdflib.com/pdflib-cookbook/text_output/invisible_text/
http://www.pdflib.com/pdflib-cookbook/text_output/starter_textline/

164 Chapter 7: Text Output

7.3 OpenType Layout Features
Cookbook Full code samples can be found in the Cookbook topics text_output/starter_opentype and

font/opentype_feature_tester.

7.3.1 Supported OpenType Layout Features
PDFlib supports enhanced text output according to additional information in some
fonts. These font extensions are called OpenType layout features. For example, a font
may contain a liga feature which includes the information that the f, f, and i glyphs can
be combined to form a ligature. Other common examples are small caps in the smcp fea-
ture, i.e. uppercase characters which are smaller than the regular uppercase characters,
and old-style figures in the onum feature with ascenders and descenders (as opposed to
lining figures which are all placed on the baseline). Although ligatures are a very com-
mon OpenType feature, they are only one of many dozen possible features. An over-
view of the OpenType format and OpenType feature tables can be found at

www.microsoft.com/typography/developers/opentype/default.htm

PDFlib supports the following groups of OpenType features:
> OpenType features for Western typography listed in Table 7.1; these are controlled by

the features option.
> OpenType features for Chinese, Japanese, and Korean text output listed in Table 7.7;

these are also controlled by the features option, and are discussed in more detail in
Section 7.5.4, »OpenType Layout Features for advanced CJK Text Output«, page 179.

> OpenType features for complex script shaping and vertical text output; these are au-
tomatically evaluated subject to the shaping and script options (see Section 7.4, »Com-
plex Script Output«, page 170). The vert feature is controlled by the vertical font op-
tion.

> OpenType feature tables for kerning; however, PDFlib doesn’t treat kerning as Open-
Type feature because kerning data may also be represented with other means than
OpenType feature tables. Use the readkerning font option and the kerning text option
instead to control kerning (see Section 7.2.2, »Kerning«, page 161).

More detailed descriptions of OpenType layout features can be found at

www.microsoft.com/typography/otspec/featuretags.htm

Identifying OpenType features. You can identify OpenType feature tables with the fol-
lowing tools:

> The FontLab font editor is a an application for creating and editing fonts. The free
demo version (www.fontlab.com) displays OpenType features.

> DTL OTMaster Light (www.fontmaster.nl) is a free application for viewing and analyz-
ing fonts, including their OpenType feature tables.

> PDFlib’s PDF_info_font() interface can also be used to query supported OpenType fea-
tures (see »Querying OpenType features programmatically«, page 169).

http://www.pdflib.com/pdflib-cookbook/text_output/starter_opentype/
http://www.pdflib.com/pdflib-cookbook/text_output/opentype_feature_tester/
http://www.microsoft.com/typography/developers/opentype/default.htm
http://www.microsoft.com/typography/otspec/featuretags.htm
http://www.fontlab.com
http://www.fontmaster.nl/

7.3 OpenType Layout Features 165

Table 7.1 Supported OpenType features for Western typography (Table 7.7 lists OpenType features for CJK text)

key-
word name description

_none all features disabled Deactivate all OpenType features listed in Table 7.1 and Table 7.7.

afrc alternative fractions Replace figures separated by a slash with an alternative form.

c2pc petite capitals from
capitals

Turn capital characters into petite capitals.

c2sc small capitals from
capitals

Turn capital characters into small capitals.

calt contextual
alternates

Replace default glyphs with alternate forms which provide better joining behavior. Used
in script typefaces which are designed to have some or all of their glyphs join.

case case-sensitive forms Shift accent marks upwards so that they work better with all-capital sequences or lining
figures; also changes oldstyle figures to lining figures.

ccmp glyph composition/
decomposition

To minimize the number of glyph alternates, it is sometimes desired to decompose a char-
acter into two glyphs, or to compose two characters into a single glyph for better glyph
processing. This feature permits such composition/decomposition.

clig contextual ligatures Replace a sequence of glyphs with a single glyph which is preferred for typographic pur-
poses. Unlike other ligature features, clig specifies the context in which the ligature is
recommended. This capability is important in some script designs and for swash ligatures.

cswh contextual swash Replace the default glyph with a corresponding swash glyph in a specified context.

dlig discretionary
ligatures

Replace a sequence of glyphs with a single glyph which is preferred for typographic pur-
poses. dlig covers ligatures which may be used for special effects, at the user’s preference.

dnom denominators Replace figures which follow a slash with denominator figures.

falt final glyph on line
alternates

Replace line final glyphs with alternate forms specifically designed for this purpose (they
would have less or more advance width as need may be), to help justification of text.

fina final forms Replace glyphs at the ends of words with alternate forms designed for this use. This is
common in Latin connecting scripts, and required in various non-Latin scripts like Arabic.

frac fractions Replace figures separated by a slash with 'common' (diagonal) fractions.

hist historical forms Replace the default (current) forms with the historical alternates. Some letter forms were
in common use in the past, but appear anachronistic today.

hlig historical ligatures Replace the default (current) ligatures with the historical alternates.

init initial forms Replace glyphs at the beginnings of words with alternate forms designed for this use. This
is common in Latin connecting scripts, and required in various non-Latin scripts like Ara-
bic.

isol isolated forms Replace the nominal form of glyphs with their isolated forms.

liga standard ligatures Replace a sequence of glyphs with a single glyph which is preferred for typographic pur-
poses. liga covers ligatures which the designer/manufacturer judges should be used in
normal conditions.

lnum lining figures Change figures from oldstyle to the default lining form.

locl localized forms Enable localized forms of glyphs to be substituted for default forms. This feature requires
the script and language options.

medi medial forms Replace glyphs in the middle of words with alternate forms designed for this use. This is
different from the default form, which is designed for stand-alone use. This is common in
Latin connecting scripts, and required in various non-Latin scripts like Arabic.

166 Chapter 7: Text Output

7.3.2 OpenType Layout Features with Textlines and Textflows
PDFlib supports OpenType layout features in the Textline and Textflow functions, but
not in the simple text output functions PDF_show() etc.

Requirements for OpenType layout features. A font for use with OpenType layout fea-
tures must meet the following requirements:

> The font must be a TrueType (*.ttf), OpenType (*.otf) or TrueType/OpenType Collec-
tion (*.ttc) font.

> The font file must contain a GSUB table with the OpenType feature(s) to be used.
> The font must be loaded with encoding=unicode or glyphid, or a Unicode CMap.

mgrk mathematical Greek Replace standard typographic forms of Greek glyphs with corresponding forms commonly
used in mathematical notation.

numr numerators Replace figures which precede a slash with numerator figures and replace the typograph-
ic slash with the fraction slash.

onum oldstyle figures Change figures from the default lining style to oldstyle form.

ordn ordinals Replace default alphabetic glyphs with the corresponding ordinal forms for use after fig-
ures; commonly also creates the Numero (U+2116) character.

ornm ornaments Replace the bullet character and ASCII characters with ornaments.

pcap petite capitals Turn lowercase characters into petite capitals, i.e. capital letters which are shorter than
regular small caps.

pnum proportional figures Replace monospaced (tabular) figures with figures which have proportional widths.

salt stylistic alternates Replace the default forms with stylistic alternates. These alternates don’t always fit into a
clear category like swash or historical.

sinf scientific inferiors Replace lining or oldstyle figures with inferior figures (smaller glyphs), primarily for chem-
ical or mathematical notation).

smcp small capitals Turn lowercase characters into small capitals.

ss01
...
ss20

stylistic set 1-20 In addition to, or instead of, stylistic alternatives of individual glyphs (see salt feature),
some fonts may contain sets of stylistic variant glyphs corresponding to portions of the
character set, e.g. multiple variants for lowercase letters in a Latin font.

subs subscript Replace a default glyph with a subscript glyph.

sups superscript Replace lining or oldstyle figures with superior figures (primarily for footnote indication),
and replace lowercase letters with superior letters (primarily for abbreviated French titles)

swsh swash Replace default glyphs with corresponding swash glyphs.

titl titling Replace default glyphs with corresponding forms designed for titling.

tnum tabular figures Replace proportional figures with monospaced (tabular) figures.

unic unicase Map upper- and lowercase letters to a mixed set of lowercase and small capital forms, re-
sulting in a single case alphabet.

zero slashed zero Replace the glyph for the figure zero with an alternative form which uses a diagonal slash
through the counter.

Table 7.1 Supported OpenType features for Western typography (Table 7.7 lists OpenType features for CJK text)

key-
word name description

7.3 OpenType Layout Features 167

> The readfeatures option of PDF_load_font() must not be set to false.

PDFlib supports OpenType features with GSUB table lookups. Except for kerning PDFlib
does not support OpenType features based on the GPOS table.

Caveats. Note the following when working with OpenType features:
> OpenType features (options features, script, language) are only applied to glyphs with-

in the same font, but not across glyphs from the base font and one or more fallback
fonts if fallback fonts have been specified.

> Make sure to enable and disable features as you need them. Accidentally leaving
OpenType features activated for all of the text may lead to unexpected results.

Enabling and disabling OpenType features. You can enable and disable OpenType fea-
tures for pieces of text as required. Use the features text option to enable features by
supplying their name, and disable them by prepending no to the feature name. For ex-
ample, with inline option lists for Textflow feature control works as follows:

<features={liga}>ffi<features={noliga}

For Textlines you can enable OpenType features as follows:

p.fit_textline("ffi", x, y, "features={liga}");

OpenType features can also be enabled as Block properties for use with the PDFlib Per-
sonalization Server (PPS).

More than one feature can be applied to the same text, but the feature tables in the
font must be prepared for this situation and must contain the corresponding feature

Fig. 7.3
Microsoft’s font property extension displays

the list of OpenType features in a font

168 Chapter 7: Text Output

lookups in the proper order. For example, consider the word office, and the ligature (liga)
and small cap (smcp) features. If both features are enabled (assuming the font contains
corresponding feature entries) you’d expect the small cap feature to be applied, but not
the ligature feature. If this is correctly implemented in the font tables, PDFlib will gener-
ate the expected output, i.e. small caps without any ligature.

Disabling ligatures with control characters. Some languages disallow the use of liga-
tures in certain situations. Typographic rules for German and other languages prohibit
the use of ligatures across composition boundaries. For example, the f+i combination in
the word Schilfinsel must not be replaced with a ligature since it spans the boundaries
between two combined words.

As described above, you can enable and disable ligatures and other OpenType fea-
ture processing with the features option. Disabling ligatures via options can be cumber-
some in exceptional cases like the one described above. In order to offer simple ligature
control you can disable ligatures with control characters in the text, avoiding the need
for enabling/disabling features with multiple options. Inserting the character Zero-
width non-joiner (U+200C, ‌ see also Table 7.4) between the constituent characters
will prevent them from being replaced by a ligature even if ligatures are enabled in the
features option. For example, the following sequence will not create any f+i ligature:

<features={liga charref=true}>Schilf‌insel

Script- and language-specific OpenType layout features. OpenType features may ap-
ply in all situations, or can be implemented for a particular script or even a particular
script and language combination. For this reason the script and language text options
can optionally be supplied along with the features option. They will have a noticeable ef-
fect only if the feature is implemented in a script- or language-specific manner in the
font.

As an example, the ligature for the f and i glyphs is not available in some fonts if the
Turkish language is selected (since the ligated form of i could be confused with the dot-
less i which is very common in Turkish). Using such a font the following Textflow op-
tion will create a ligature since no script/language is specified:

<features={liga}>fi

However, the following Textflow option list will not create any ligature due to the Turk-
ish language option:

<script=latn language=TRK features={liga}>fi

The locl feature explicitly selects language-specific character forms. The liga feature con-
tains language-specific ligatures. Some examples for language-specific features:

Variant character for Serbian:
<features={locl} script=cyrl language=SRB charref>б

Variant figures for Urdu:
<features={locl} script=arab language=URD charref>٢٣٤٥

See Section 7.4.2, »Script and Language«, page 172, for supported script and language
keywords.

7.3 OpenType Layout Features 169

Combining OpenType features and shaping. Shaping for complex scripts (see Section
7.4, »Complex Script Output«, page 170) heavily relies on OpenType font features which
will be selected automatically. However, for some fonts it may make sense to combine
OpenType features selected automatically for shaping with OpenType features which
have been selected by the client application. PDFlib will first apply user-selected Open-
Type features (option features) before applying shaping-related features automatically
(options shaping, script and language).

Querying OpenType features programmatically. You can query OpenType features in
a font programmatically with PDF_info_font(). The following statement retrieves a
space-separated list with all OpenType features which are available in the font and are
supported by PDFlib:

result = (int) p.info_font(font, "featurelist", "");
if (result != -1)
{

/* retrieve string containing space-separated feature list */
featurelist = p.get_string(result, "");

}
else
{

/* no supported features found */
}

Use the following statement to check whether PDFlib and the test font support a partic-
ular feature, e.g. ligatures (liga):

result = (int) p.info_font(font, "feature", "name=liga");
if (result == 1)
{

/* feature supported by font and PDFlib */
}

170 Chapter 7: Text Output

7.4 Complex Script Output
Cookbook A full code sample can be found in the Cookbook topic complex_scripts/starter_shaping.

7.4.1 Complex Scripts
The Latin script basically places one character after the other in left-to-right order. Oth-
er writing systems have additional requirements for correct text output. We refer to
such writing systems as complex scripts. PDFlib performs text processing for complex
scripts for a variety of scripts including those listed in Table 7.2.

In this section we discuss shaping for complex scripts in more detail. Some writing
systems (scripts) require additional processing:

> The Arabic and Hebrew scripts place text from right to left. Mixed text (e.g. Arabic
with a Latin insert) contains both right-to-left and left-to-right segments. These seg-
ments must be reordered, which is referred to as the Bidi (bidirectional) problem.

> Some scripts, especially Arabic, use different character shapes depending on the po-
sition of the character (isolated, beginning/middle/end of a word).

> Mandatory ligatures replace sequences of characters.
> The position of glyphs must be adjusted horizontally and vertically.
> Indic scripts require reordering of some characters, i.e. characters may change their

position in the text.
> Special word break and justification rules apply to some scripts.

Shaping. Scripts which require one or more of these processing steps are called com-
plex scripts. The process of preparing incoming logical text for proper presentation is
called shaping (this term also includes reordering and Bidi processing). The user always
supplies text in unshaped form and in logical order, while PDFlib performs the neces-
sary shaping before producing PDF output.

Complex script shaping can be enabled with the shaping text option, which in turn
requires the script option and optionally allows the language option. The following op-
tion list enables Arabic shaping (and Bidi processing):

shaping script=arab

Caveats. Note the following when working with complex script shaping:
> PDFlib does not automatically set the shaping and script options, but expects them to

be supplied by the user.
> Script-specific shaping (options shaping, script, language) is only applied to glyphs

within the same font, but not across glyphs from different fonts. If fallback fonts are
used, shaping is only applied within text runs in the same (master or fallback) font.

> Since shaping may reorder characters in the text, care must be taken regarding attri-
bute changes within a word. For example, if you use inline options in Textflow to
colorize the second character in a word – what should happen when shaping swaps
the first and second characters? For this reason, formatting changes in shaped text
should only be applied at word boundaries, but not within words.

Requirements for shaping. A font for use with complex script shaping must meet the
following requirements in addition to containing glyphs for the target script:

> It must be a TrueType or OpenType font with GDEF, GSUB, and GPOS feature tables
and correct Unicode mappings appropriate for the target script. As an alternative to

http://www.pdflib.com/pdflib-cookbook/complex_scripts/starter_shaping/

7.4 Complex Script Output 171

Table 7.2 Complex scripts and keywords for the script option

writing system script name language/region (incomplete list) script keyword

unspecified script – _none

automatic script
detection

– This keyword selects the script to which the majori-
ty of characters in the text belong, where _latn
and _none are ignored.

_auto

European Alphabetic Latin many European and other languages latn

Greek Greek grek

Cyrillic Russian and many other Slavic languages cyrl

Middle Eastern Arabic Arabic, Persian (Farsi), Urdu, Pashto and others arab

Hebrew Hebrew, Yiddish and others hebr

Syriac Syrian Orthodox, Maronite, Assyrian syrc

Thaana Dhivehi/Maldives thaa

South Asian (India) Devanagari Hindi and classical Sanskrit deva

Bengali Bengali, Assamese beng

Gurmukhi Punjabi guru

Gujarati Gujarati gujr

Oriya Oriya/Orissa orya

Tamil Tamil/Tamil Nadu, Sri Lanka taml

Telugu Telugu/Andrha Pradesh telu

Kannada Kannada/Karnataka knda

Malayalam Malayalam/Kerala mlym

Southeast Asian Thai Thai thai

Lao Lao »lao «1

Khmer Khmer (Cambodian) khmr

East Asian Han Chinese, Japanese, Korean hani

Hiragana Japanese hira

Katakana Japanese kana

Hangul Korean hang

others Other four-character codes according to the OpenType specification also work, but are not sup-
ported. The full list can be found at the following location:
www.microsoft.com/typography/developers/OpenType/scripttags.aspx

1. Note the trailing space character.

http://www.microsoft.com/typography/developers/OpenType/scripttags.aspx

172 Chapter 7: Text Output

the OpenType tables, for the Arabic and Hebrew scripts, the font may contain glyphs
for the Unicode presentation forms (e.g. Arabic Apple fonts are constructed this
way). In this case internal tables will be used for the shaping process. For Thai text
the font must contain contextual forms according to Microsoft, Apple, or Monotype
Worldtype (e.g. used in some IBM products) conventions for Thai.

> The font must be loaded with encoding=unicode or glyphid.
> The vertical option of PDF_load_font() must not be used, and the readshaping option

must not be set to false.

7.4.2 Script and Language
Script and language settings play a role in the functional aspects listed below. They can
be controlled with the following options:

> The script text option identifies the target script (writing system). It supports the
four-letter keywords listed in Table 7.2. Examples:

script=latn
script=cyrl

script=arab
script=hebr
script=deva

script={lao }

With script=_auto PDFlib automatically assigns that script to which the majority of
characters in the text belong. Since Latin text doesn’t require shaping it will not be
counted when determining the script automatically. You can query the scripts used
for some text with the scriptlist keyword of PDF_info_textline().

> The language option specifies the natural language in which the text is written. It
supports the three-character keywords listed in Table 7.3. Examples:

language=ARA
language=URD
language=ZHS

language=HIN

Complex script processing. Complex script processing (option shaping) requires the
script option. The language option can additionally be supplied. It controls language-
specific aspects of shaping, e.g. different figures for Arabic vs. Urdu. However, only few
fonts contain language-specific script shaping tables, so in most cases specifying the
script option will be sufficient, and shaping cannot be improved with the language op-
tion.

OpenType layout features. Fonts can implement OpenType layout features in a lan-
guage-specific manner (see »Script- and language-specific OpenType layout features«,
page 168). While a few features may differ in behavior subject to the script and language
options but can also be used without these options (e.g. liga), the locl feature only makes
sense in combination with the script and language options.

Note While advanced line breaking for Textflow (see Section 9.2.10, »Advanced script-specific Line
Breaking«, page 246) also applies language-specific processing, it is not controlled by the
language option, but by the locale option which identifies not only languages, but also coun-
tries and regions.

7.4 Complex Script Output 173

7.4.3 Complex Script Shaping
The shaping process selects appropriate glyph forms depending on whether a character
is located at the start, middle, or end of a word, or in a standalone position. Shaping is a
crucial component of Arabic and Hindi text formatting. Shaping may also replace a se-
quence of two or more characters with a suitable ligature. Since the shaping process de-
termines the appropriate character forms automatically, explicit ligatures and Unicode
presentation forms (e.g. Arabic Presentation Forms A starting at U+FB50) must not be
used as input characters.

Since complex scripts require multiple different glyph forms per character and addi-
tional rules for selecting and placing these glyphs, shaping for complex scripts does not

Table 7.3 Keywords for the language option

key-
word language

key-
word language

key-
word language

_none unspecified language FIN Finnish NEP Nepali

AFK Afrikaans FRA French ORI Oriya

SQI Albanian GAE Gaelic PAS Pashto

ARA Arabic DEU German PLK Polish

HYE Armenian ELL Greek PTG Portuguese

ASM Assamese GUJ Gujarati ROM Romanian

EUQ Basque HAU Hausa RUS Russian

BEL Belarussian IWR Hebrew SAN Sanskrit

BEN Bengali HIN Hindi SRB Serbian

BGR Bulgarian HUN Hungarian SND Sindhi

CAT Catalan IND Indonesian SNH Sinhalese

CHE Chechen ITA Italian SKY Slovak

ZHP Chinese phonetic JAN Japanese SLV Slovenian

ZHS Chinese simplified KAN Kannada ESP Spanish

ZHT Chinese traditional KSH Kashmiri SVE Swedish

COP Coptic KHM Khmer SYR Syriac

HRV Croatian KOK Konkani TAM Tamil

CSY Czech KOR Korean TEL Telugu

DAN Danish MLR Malayalam reformed THA Thai

NLD Dutch MAL Malayalam traditional TIB Tibetan

DZN Dzongkha MTS Maltese TRK Turkish1

ENG English MNI Manipuri URD Urdu

ETI Estonian MAR Marathi WEL Welsh

FAR Farsi MNG Mongolian JII Yiddish

1. Some fonts wrongly use TUR for Turkish; PDFlib treats this tag as equivalent to TRK.

174 Chapter 7: Text Output

work with all kinds of fonts, but requires suitable fonts which contain the necessary in-
formation. Shaping works for TrueType and OpenType fonts which contain the re-
quired feature tables (see »Requirements for shaping«, page 170, for detailed require-
ments).

Shaping can only be done for characters in the same font because the shaping infor-
mation is specific to a particular font. As it doesn’t make sense, for example, to form lig-
atures across different fonts, complex script shaping cannot be applied to a word which
contains characters from different fonts.

Override shaping behavior. In some cases users may want to override the default
shaping behavior. PDFlib supports several Unicode formatting characters for this pur-
pose. For convenience, these formatting characters can also be specified with entity
names (see Table 7.4).

7.4.4 Bidirectional Formatting
Cookbook A full code sample can be found in the Cookbook topic complex_scripts/bidi_formatting.

For right-to-left text (especially Arabic and Hebrew, but also some other scripts) it is
very common to have nested sequences of left-to-right Latin text, e.g. an address or a
quote in another language. These mixed sequences of text require bidirectional (Bidi)
formatting. Since numerals are always written from left to right, the Bidi problem af-
fects even text which is completely written in Arabic or Hebrew. PDFlib implements bi-
directional text reordering according to the Unicode Bidi algorithm as specified in Uni-
code Standard Annex #91. Bidi processing does not have to be enabled with an option,
but will automatically be applied as part of the shaping process if text in a right-to-left
script with an appropriate script option is encountered.

Note Bidi processing is not supported for multi-line Textflows, but only for Textlines (i.e. single-line
text output).

Overriding the Bidi algorithm. While automatic Bidi processing will provide proper re-
sults in common cases, there are situations which require explicit user control. PDFlib
supports several directional formatting codes for this purpose. For convenience, these
formatting characters can also be specified with entity names (see Table 7.5). The bidi-
rectional formatting codes are useful to override the default Bidi algorithm in the fol-
lowing situations:

> a right-to-left paragraph begins with left-to-right characters;
> there are nested segments with mixed text;

Table 7.4 Unicode control characters for overriding the default shaping behavior

formatting
character entity name Unicode name function

U+200C ZWNJ ZERO WIDTH NON-JOINER prevent the two adjacent characters from forming a cur-
sive connection

U+200D ZWJ ZERO WIDTH JOINER force the two adjacent characters to form a cursive connec-
tion

1. See www.unicode.org/unicode/reports/tr9/

http://www.unicode.org/unicode/reports/tr9/
http://www.pdflib.com/pdflib-cookbook/complex_scripts/bidi_formatting/

7.4 Complex Script Output 175

> there are weak characters, e.g. punctuation, at the boundary between left-to-right
and right-to-left text;

> part numbers and similar entities containing mixed text.

Options for improved right-to-left document handling. The default settings of various
formatting options and Acrobat behavior are targeted at left-to-right text output. Use
the following options for right-to-left text formatting and document display:

> Place a Textline right-aligned with the following fitting option:

position={right center}

> Create a leader between the text and the left border:

leader={alignment=left text=.}

> Use the following option of PDF_begin/end_document() to activate better right-to-left
document and page display in Acrobat:

viewerpreferences={direction=r2l}

Dealing with Bidi text in your code. The following may also be useful when dealing
with bidirectional text:

> You can use the startx/starty and endx/endy keywords of PDF_info_textline() to deter-
mine the coordinates of the logical start and end characters, respectively.

> You can use the writingdirx keyword of PDF_info_textline() to determine the domi-
nant writing direction of text. This direction will be inferred from the initial charac-
ters of the text or from directional formatting codes according to Table 7.5 (if present
in the text).

> You can use the auto keyword for the position option of PDF_info_textline() to auto-
matically align Arabic or Hebrew text at the right border and Latin text at the left
border. For example, the following Textline option list aligns right- or left-aligns the
text on the baseline:

boxsize={width 0} position={auto bottom}

Table 7.5 Directional formatting codes for overriding the bidirectional algorithm

formatting
code entity name Unicode name function

U+202A LRE LEFT-TO-RIGHT EMBEDDING (LRE) start an embedded left-to-right sequence

U+202B RLE RIGHT-TO-LEFT EMBEDDING (RLE) start an embedded right-to-left sequence

U+200E LRM LEFT-TO-RIGHT MARK (LRM) left-to-right zero-width character

U+200F RLM RIGHT-TO-LEFT MARK (RLM) right-to-left zero-width character

U+202D LRO LEFT-TO-RIGHT OVERRIDE (LRO) force characters to be treated as strong left-
to-right characters

U+202E RLO RIGHT-TO-LEFT OVERRIDE (RLO) force characters to be treated as strong
right-to-left characters

U+202C PDF POP DIRECTIONAL FORMATTING (PDF) restore the bidirectional state to what it
was before the last LRE, RLE, RLO, or LRO

176 Chapter 7: Text Output

7.4.5 Arabic Text Formatting
Cookbook A full code sample can be found in the Cookbook topic complex_scripts/arabic_formatting.

In addition to Bidirectional formatting and text shaping as discussed above there are
several other formatting aspects related to generating text output in the Arabic script.

Arabic ligatures. The Arabic script makes extensive use of ligatures. Many Arabic fonts
contain two kinds of ligatures which are treated differently in PDFlib:

> Required ligatures (rlig feature) must always be applied, e.g. the Lam-Alef ligature
and variants thereof. Required ligatures are used if the shaping option is enabled
with script=arab.

> Optional Arabic ligatures (liga and dlig features) are not used automatically, but can
be enabled like other user-controlled OpenType features, i.e. features={liga}. Optional
Arabic ligatures are applied after complex script processing and shaping.

Avoiding ligatures. In some cases joining adjacent characters is not desired, e.g. for
certain abbreviations. In such cases you can use the formatting characters listed in Ta-
ble 7.4 to force or prevent characters from being joined. For example, the zero-width
non-joiner character in the following example prevents the characters from being
joined in order to form a proper abbreviation:

أي&ZWNJ;بي&ZWNJ;إم

Tatweel formatting for Arabic text. You can stretch Arabic words by inserting one or
more instances of the tatweel character U+0640 (also called kashida). While PDFlib does
not automatically justify text by inserting tatweel characters, you can insert this char-
acter in the input text to stretch words.

Adding Latin characters to an Arabic font. Some Arabic fonts do not contain any
glyphs for Latin characters, e.g. Google’s Noto fonts. In this situation you can use the
fallbackfonts option to merge Latin characters into an Arabic font. PDFlib automatically
switches between both fonts depending on the Latin or Arabic text input, i.e. you don’t
have to switch fonts in your application but can supply mixed Latin/Arabic text with a
single font specification.

You can use the following font loading option list for the fallbackfonts option to add
Latin characters from the NotoSerif-Regular font to the NotoNaskhArabic-Regular font:

fontname=NotoNaskhArabic-Regular encoding=unicode
fallbackfonts={ {fontname=NotoSerif-Regular encoding=unicode} }

http://www.pdflib.com/pdflib-cookbook/complex_scripts/arabic_formatting/

7.5 Chinese, Japanese, and Korean Text Output 177

7.5 Chinese, Japanese, and Korean Text Output
7.5.1 Using TrueType and OpenType CJK Fonts

PDFlib supports CJK fonts in the TrueType, TrueType/OpenType Collection (TTC/OTC)
and OpenType formats. CJK fonts are processed as follows:

> If the embedding option is true, the font is converted to a CID font and embedded in
the PDF output.

> CJK host font names on Windows can be supplied to PDF_load_font() as UTF-8 with
BOM or UTF-16. Non-Latin host font names are not supported on macOS.

The following example uses the ArialUnicodeMS font to display Chinese text. The font
must either be installed on the system or must be configured according to Section 6.4.4,
»Searching for Fonts«, page 140):

font = p.load_font("Arial Unicode MS", "unicode", "");
if (font == -1) { ... }

p.fit_textline("\u4e00\u500b\u4eba", x, y, "fontsize=24");

Accessing individual fonts in a TrueType Collection. TTC/OTC files contain
multiple separate fonts. You can access each font by supplying its proper
name. However, if you don’t know which fonts are contained in a TTC/OTC
file you can numerically address each font by appending a colon character
and the number of the font within the TTC/OTC file (starting with 0). If the
index is 0 it can be omitted. For example, the TTC file msgothic.ttc contains multiple
fonts which can be addressed as follows in PDF_load_font() (each line contains equiva-
lent font names):

msgothic:0 MS Gothic msgothic:
msgothic:1 MS PGothic
msgothic:2 MS UI Gothic

Note that msgothic (without any suffix) will not work as a font name since it does not
uniquely identify a font. Font name aliases (see »Sources of Font Data«, page 140) can be
used in combination with TTC/OTC indexing. If a font with the specified index cannot
be found, the function call will fail.

It is only required to configure the TTC/OTC font file once; all indexed fonts in the
TTC/OTC file will be found automatically. The following code is sufficient to configure
all indexed fonts in msgothic.ttc (see Section 6.4.4, »Searching for Fonts«, page 140):

p.set_option("FontOutline={msgothic=msgothic.ttc}");

7.5.2 Horizontal and Vertical Writing Mode
PDFlib supports both horizontal and vertical writing modes. Vertical writing mode can
be requested in different ways:

> TrueType and OpenType Fonts with encodings other than a CMap can be used for
vertical writing mode by supplying the vertical font option.

> Font names starting with an ’@’ character are always processed in vertical mode.
> For CJK CMaps the writing mode is selected along with the encoding by choosing the

appropriate CMap name. CMaps with names ending in -H select horizontal writing
mode, while the -V suffix selects vertical writing mode.

178 Chapter 7: Text Output

By default all glyphs have the same height in vertical writing mode. However, TrueType
and OpenType fonts may contain proportional metrics for vertical writing mode.
PDFlib can be instructed to use such proportional vertical metrics by setting the font
option readverticalmetrics (with the default false).

Note Character spacing must be negative to spread characters apart in vertical writing mode.

OpenType fonts may contain the OpenType layout features listed in Table 7.6. They re-
place default glyph forms with variants adjusted for vertical writing. The vkna feature
can be controlled with the features text option, while vrt2/vert are automatically enabled
in vertical writing mode.

7.5.3 EUDC and SING Fonts for Gaiji Characters
PDFlib supports Windows EUDC (end-user defined characters, *.tte) and SING fonts
(*.gai) which can be used to access custom Gaiji characters for CJK text. Most convenient-
ly fonts with custom characters are integrated into other fonts with the fallback font
mechanism. Gaiji characters will commonly be provided in EUDC or SING fonts.

Using fallback fonts for Gaiji characters. Typically, Gaiji characters will be pulled from
Windows EUDC fonts or SING glyphlets, but the fallbackfonts option accepts any kind of
font. Therefore this approach is not limited to Gaiji characters, but can be used for any
kind of symbol (e.g. a company logo in a separate font). You can use the following font
loading option list for the fallbackfonts option to add a user-defined (gaiji) character
from an EUDC font to the loaded font:

fallbackfonts={
{fontname=EUDC encoding=unicode forcechars=U+E000 fontsize=140% textrise=-20%}
}

Once a base font has been loaded with this fallback font configuration, the EUDC charac-
ter can be used within the text without any need to change the font.

With SING fonts the Unicode value doesn’t have to be supplied since it will automat-
ically be determined by PDFlib:

fallbackfonts={
{fontname=PDFlibWing encoding=unicode forcechars=gaiji}
}

Table 7.6 OpenType layout features for vertical text

key-
word name description

vert1

1. Automatically enabled for fonts in vertical writing mode

vertical writing Replace default forms with variants adjusted for vertical writing.

vkna vertical Kana alter-
nates

Replace standard Kana with forms that have been specially designed for vertical writing.

vrt21 vertical alternates
and rotation

Replace some fixed-width (half-, third- or quarter-width) or proportional-width glyphs
(mostly Latin or Katakana) with forms suitable for vertical writing, i.e. rotated 90° clock-
wise. If this feature is present it disables the vert feature which is a subset of vrt2.

7.5 Chinese, Japanese, and Korean Text Output 179

Preserving PUA values for Gaiji characters. In some cases, e.g. with Windows EUDC
fonts (see below), Gaiji characters are mapped to Unicode values in the Private Use Area
(PUA) by the font. By default, PDFlib replaces PUA values with U+FFFD (Unicode replace-
ment character) in the ToUnicode CMap. As a result such characters cannot be extracted
correctly from the generated PDF.

This behavior can be changed with the preservepua font loading option. If it is set to
true for a font, Gaiji characters with PUA values will retain their Unicode values, i.e. the
Gaiji can be extracted correctly from the generated PDF.

Preparing EUDC fonts. You can use the EUDC editor available in Windows to create
custom characters for use with PDFlib. Proceed as follows:

> Use the eudcedit.exe to create one or more custom characters at the desired Unicode
position(s).

> Locate the EUDC.TTE file in the directory \Windows\fonts and copy it to some other di-
rectory. Since this file is invisible in Windows Explorer use the dir and copy com-
mands in a DOS box to find the file. Now configure the font for use with PDFlib, us-
ing one of the methods discussed in (see Section 6.4.4, »Searching for Fonts«, page
140):

p.set_option("FontOutline={EUDC=EUDC.TTE}");

p.set_option("SearchPath={{...directory name...}}");

or place EUDC.TTE in the current directory.
As an alternative to this explicit font file configuration you can use the following
function call to configure the font file directly from the Windows directory. This way
you will always access the current EUDC font used in Windows:

p.set_option("FontOutline={EUDC=C:\Windows\fonts\EUDC.TTE}");

> Integrate the EUDC font into any base font using the fallbackfonts option as described
above. If you want to access the font directly, use the following call to load the font in
PDFlib:

font = p.load_font("EUDC", "unicode", "");

as usual and supply the Unicode value(s) chosen in the first step to output the char-
acters.

7.5.4 OpenType Layout Features for advanced CJK Text Output
As detailed in Section 7.3, »OpenType Layout Features«, page 164, PDFlib supports ad-

vanced typographic layout tables in OpenType and TrueType fonts. For example, Open-
Type features can be used to select alternative forms of the Latin glyphs with propor-
tional widths or half widths, or to select alternate character forms. Table 7.7 lists
OpenType features for CJK text (additional OpenType layout features for general use
are listed in Table 7.1 and features for vertical writing mode in Table 7.6).

Table 7.7 Supported OpenType layout features for Chinese, Japanese, and Korean text

key-
word name description

expt expert forms Like the JIS78 forms this feature replaces standard Japanese forms with corresponding
forms preferred by typographers.

180 Chapter 7: Text Output

fwid full widths Replace glyphs set on other widths with glyphs set on full (usually em) widths. This may
include Latin characters and various symbols.

hkna horizontal Kana al-
ternates

Replace standard Kana with forms that have been specially designed for only horizontal
writing.

hngl Hangul (Deprecated per ISO 14496-22:2015/Amd.2:2017) Replace hanja (Chinese-style) Korean
characters with the corresponding Hangul (syllabic) characters.

hojo Hojo Kanji forms (JIS
X 0212-1990)

Access the JIS X 0212-1990 glyphs (also called »Hojo Kanji«) if the JIS X 0213:2004 form is
encoded as default.

hwid half widths Replace glyphs on proportional widths, or fixed widths other than half an em, with glyphs
on half-em widths.

ital italics Replace the Roman glyphs with the corresponding Italic glyphs.

jp04 JIS2004 forms (Subset of the nlck feature) Access the JIS X 0213:2004 glyphs.

jp78 JIS78 forms Replace default (JIS90) Japanese glyphs with the corresponding forms from JIS C 6226-
1978 (JIS78).

jp83 JIS83 forms Replace default (JIS90) Japanese glyphs with the corresponding forms from JIS X 0208-
1983 (JIS83).

jp90 JIS90 forms Replace Japanese glyphs from JIS78 or JIS83 with the corresponding forms from JIS X
0208-1990 (JIS90).

locl localized forms Enable localized forms of glyphs to be substituted for default forms. This feature requires
the script and language options.

nalt alternate annota-
tion forms

Replace default glyphs with various notational forms (e.g. glyphs placed in open or solid
circles, squares, parentheses, diamonds or rounded boxes).

nlck NLC Kanji forms Access the new glyph shapes defined in 2000 by the National Language Council (NLC) of
Japan for a number of JIS characters.

pkna proportional Kana Replace glyphs, Kana and Kana-related, set on uniform widths (half or full-width) with
proportional glyphs.

pwid proportional widths Replace glyphs set on uniform widths (typically full or half-em) with proportionally
spaced glyphs.

qwid quarter widths Replace glyphs on other widths with glyphs set on widths of one quarter of an em.

ruby Ruby notation forms Replace default Kana glyphs with smaller glyphs designed for use as (usually superscript-
ed) Ruby.

smpl simplified forms Replace traditional Chinese or Japanese forms with the corresponding simplified forms.

tnam traditional name
forms

Replace simplified Japanese Kanji forms with the corresponding traditional forms. This is
equivalent to the trad feature, but limited to the traditional forms considered proper for
use in personal names.

trad traditional forms Replace simplified Chinese Hanzi or Japanese Kanji forms with the corresponding tradi-
tional forms.

twid third widths Replace glyphs on other widths with glyphs set on widths of one third of an em.

Table 7.7 Supported OpenType layout features for Chinese, Japanese, and Korean text

key-
word name description

7.5 Chinese, Japanese, and Korean Text Output 181

7.5.5 Unicode Variation Selectors and Variation Sequences
Unicode characters can be represented by a wide variety of glyphs. Generally, such visu-
al differences are realized by using suitable fonts (e.g. regular vs. italic). In some situa-
tions the choice of glyph is semantically relevant and must be made explicit even in
plain text without any font-related formatting information. Unicode offers the mecha-
nism of variation selectors for this purpose.

Variation sequences. A variation sequence consists of a base Unicode character fol-
lowed by a variation selector. The sequence is called a variant of the base character. The
Unicode standard comprises two kinds of sequences:

> Standardized variation sequences are defined in the file StandardizedVariants.txt1 in
the Unicode Character Database. They use one of 16 variation selectors in the range
U+FE00 - U+FE0F. Standardized variation sequences are used for selecting alternate
mathematical glyphs, Emoji variants, and Mongolian text.

> Ideographic Variation Sequences (IVS) are defined by the registration process accord-
ing to Unicode Technical Standard #37, »Unicode Ideographic Variation Database«,
and are listed in the Ideographic Variation Database2. An IVS consists of a unified
ideographic character as base character and one of 240 variation selectors in the
range U+E0100 - U+E01EF. IVSes are mainly used for selecting appropriate glyphs for
person and place names.

If the variation selector for the base character cannot be honored, e.g. because the font
does not contain the required glyph, it will be ignored.

Creating variant glyphs with PDFlib. Suitable glyphs for Unicode Variation Sequences
(UVS) must be provided by the font. Currently OpenType is the only font format capable
of storing UVSes (using a format 14 cmap table). PDFlib interprets the UVS table in an
OpenType font unless this has been disabled with the readselectors font option. Since a
font is available only for content strings, but not for hypertext and name strings, varia-
tion selectors will be ignored for these string types.

Assuming you know that a font contains the required glyphs, working with variation
sequences is as simple as providing the sequence to PDFlib’s text output functions. The
following code fragments print the default glyph of a Unicode base character plus a
variant chosen by a selector.

p.fit_textline("≨ ≨︀", 50, 700,
"fontname={Cambria Math} encoding=unicode fontsize=24 charref=true");

p.fit_textline("㐂󠄀 㐂󠄁", 50, 650,
"fontname={KozMinPr6N-Regular} encoding=unicode fontsize=24 charref=true");

The resulting output is shown in Figure 7.4; note the differences within the glyph pairs.

Note Variation sequences are not supported in the forcechars suboption of the fallbackfonts op-
tion.

1. See www.unicode.org/Public/UNIDATA/StandardizedVariants.html
2. See www.unicode.org/ivd

http://www.unicode.org/Public/UNIDATA/StandardizedVariants.html
http://www.unicode.org/ivd/

182 Chapter 7: Text Output

Querying variation selectors in a font. Using PDF_info_font() you can check whether a
font contains variation selectors at all. The selector keyword along with the index option
can be used to retrieve a list of all variation selectors available in the font:

for (i = 0; i < 256; i++)
{

selectors[i] = (int) p.info_font(font, "selector", "index=" + i);
if (selectors[i] == -1)
{

selectorcount = i;
break;

}
}

The following code fragment can be used to check whether the font contains a variant
glyph for a particular sequence:

if (p.info_font(font, "unicode", "unicode=" + uv + "selector=" + s) == -1)
{

/* no variant glyph available in the font for this sequence */
}

This query is only intended to check whether a variant is available. The resulting Uni-
code (if a variant is available) itself is unlikely to be useful because PDFlib assigns PUA
Unicode values to variants.

7.5.6 Standard CJK Fonts
Note The concept of standard CJK fonts is deprecated; use externally configured font files with or

without embedding instead.

Acrobat supports various standard fonts for CJK text. These fonts are supplied with the
Acrobat installation and don’t have to be embedded in the PDF file. The standard CJK
fonts support horizontal and vertical writing modes. The names of the standard CJK
fonts are listed in Table 7.8 along with applicable CMaps (see Section 5.5, »Chinese, Japa-
nese, and Korean CMaps«, page 116, for more details on CJK CMaps).

Keeping native CJK legacy codes. If keepnative=true, native legacy character codes (e.g.
Shift-JIS) according to the selected CMap are written to the PDF output; otherwise the
text is converted to Unicode. The advantage of keepnative=true is that such fonts can be
used for form fields without embedding (see description of the keepnative font loading
option for in the PDFlib API Reference). If keepnative=false legacy code sequences are
converted to CID values which are written to the PDF output. The advantage is that
OpenType features and the Textflow formatter can be used.

Fig. 7.4 Default glyph and variant glyph

7.5 Chinese, Japanese, and Korean Text Output 183

Table 7.8 Acrobat’s standard fonts and CMaps (encodings) for Japanese, Chinese, and Korean text

locale font name supported CMaps (encodings)

Simplified
Chinese

AdobeSongStd-Light2 GB-EUC-H, GB-EUC-V, GBpc-EUC-H, GBpc-EUC-V, GBK-EUC-H, GBK-EUC-V,
GBKp-EUC-H, GBKp-EUC-V, GBK2K-H, GBK2K-V, UniGB-UTF16-H1, UniGB-
UTF16-V1

Traditional
Chinese

AdobeMingStd-Light2 B5pc-H, B5pc-V, HKscs-B5-H, HKscs-B5-V, ETen-B5-H, ETen-B5-V, ETenms-B5-
H, ETenms-B5-V, CNS-EUC-H, CNS-EUC-V, UniCNS-UTF16-H1, UniCNS-
UTF16-V1

Japanese KozMinPro-Regular-Acro
KozGoPro-Medium2

KozMinProVI-Regular2

83pv-RKSJ-H, 90ms-RKSJ-H, 90ms-RKSJ-V, 90msp-RKSJ-H, 90msp-RKSJ-V,
90pv-RKSJ-H, Add-RKSJ-H, Add-RKSJ-V, EUC-H, EUC-V, Ext-RKSJ-H, Ext-RKSJ-
V, H, V, UniJIS-UTF16-H1, UniJIS-UTF16-V1

Korean AdobeMyungjoStd-
Medium2

KSC-EUC-H, KSC-EUC-V, KSCms-UHC-H, KSCms-UHC-V, KSCms-UHC-HW-H,
KSCms-UHC-HW-V, KSCpc-EUC-H, UniKS-UTF16-H1, UniKS-UTF16-V1

1. Only available when generating PDF 1.5 or above
2. Only available when generating PDF 1.6 or above

184 Chapter 7: Text Output

8.1 Raster Images 185

8 Importing Images, SVG Graphics
and PDF Pages

8.1 Raster Images
8.1.1 Basic Image Handling

Embedding raster images with PDFlib is easy to accomplish. First, the image file has to
be opened with a PDFlib function which analyzes the image characteristics and copies
the pixel data to the PDF output. PDF_load_image() returns a handle which serves as an
image descriptor. This handle can be used in a call to PDF_fit_image(), along with posi-
tioning and scaling options:

image = p.load_image("auto", "image.jpg", "");
if (image == -1)

throw new Exception("Error: " + p.get_errmsg());

p.fit_image(image, 0.0, 0.0, "");
p.close_image(image);

The last parameter of PDF_fit_image() function is an option list which supports a variety
of options for positioning, scaling, and rotating the image. Details regarding these op-
tions are discussed in Section 8.4, »Placing Images, Graphics, and imported PDF Pages«,
page 213.

If an image file cannot be imported successfully PDF_load_image() returns an error
code. If you need to know more details about the image failure, call PDF_get_errmsg() to
retrieve a detailed error message.

Cookbook Code samples for image handling can be found in the images category of the PDFlib Cookbook.

Re-using image data. PDFlib supports an important PDF optimization technique for
using repeated raster images. Consider a layout with a constant logo or background on
multiple pages. In this situation it is possible to include the actual image data only once
in the PDF, and generate only a reference on each of the pages where the image is used.
Simply load the image file once, and call PDF_fit_image() every time you want to place
the logo or background on a particular page. You can place the image on multiple pages,
or use different scaling factors for different occurrences of the same image (as long as
the image hasn’t been closed). Depending on the image’s size and the number of occur-
rences, this technique can result in enormous space savings.

Scaling and dpi calculations. PDFlib never changes the number of pixels in an import-
ed image. Scaling either blows up or shrinks image pixels, but doesn’t do any downsam-
pling. A scaling factor of 1 results in a pixel size of 1 unit in user coordinates. In other
words, the image is imported with its native resolution (or 72 dpi if it doesn’t contain
any resolution information) if the user coordinate system hasn’t been scaled (since
there are 72 default units to an inch).

http://www.pdflib.com/pdflib-cookbook/images/

186 Chapter 8: Importing Images, SVG Graphics and PDF Pages

Cookbook A full code sample can be found in the Cookbook topic images/image_dimensions. It shows how
to get the dimensions of an image and how to place it with various sizes.

Color space of imported images. Except for adding or removing ICC profiles and ap-
plying spot or DeviceN color according to the options provided in PDF_load_image(),
PDFlib generally preserves the native color space of an imported image. However, this is
not possible for certain rare combinations.

PDFlib does not perform any conversion between RGB and CMYK. If such a conver-
sion is required it must be applied to the image data before loading the image in PDFlib.

Multi-page images. PDFlib supports GIF, TIFF and JBIG2 images with more than one
image, also known as multi-page image files. In order to use multi-page images use the
page option in PDF_load_image():

image = p.load_image("tiff", filename, "page=2");

The page option indicates that a multi-image file is to be used, and specifies the number
of the image to use. The first image is numbered 1. This option may be increased until
PDF_load_image() returns -1, signaling that no more images are available in the file.

Cookbook A full code sample for converting all images in a multi-image TIFF file to a multi-page PDF file
can be found in the Cookbook topic images/multi_page_tiff.

Inline images. As opposed to reusable images, which are written to the PDF output as
image XObjects, inline images are written directly into the respective content stream
(page, pattern, template, or glyph description). This results in some space savings, but
should only be used for small amounts of image data (up to 4 KB). The primary use of
inline images is for bitmap glyph descriptions in Type 3 fonts; inline images are not rec-
ommended for other situations.

Inline images can be generated with PDF_load_image() and the inline option. Inline
images cannot be reused, i.e., the corresponding handle must not be supplied to any call
which accepts image handles. For this reason if the inline option has been provided PDF_
load_image() internally performs the equivalent of the following code:

p.fit_image(image, 0, 0, "");
p.close_image(image);

Inline images are only supported for imagetype=ccitt, jpeg, and raw. For other image
types the inline option is silently ignored.

XMP metadata in images. Image files may contain XMP metadata. By default PDFlib
ignores image metadata for images in the TIFF, JPEG, and JPEG 2000 image formats to
reduce the output file size. However, the XMP metadata can be attached to the generat-
ed image in the output PDF document with the following option of PDF_load_image():

metadata={keepxmp=true}

8.1.2 Supported Image File Formats

PNG images. PDFlib supports all flavors of PNG images (ISO 15948). If a PNG image
contains transparency information, the transparency is retained in the generated PDF
(see Section 8.1.4, »Image Transparency«, page 191).

http://www.pdflib.com/pdflib-cookbook/images/image_dimensions/
http://www.pdflib.com/pdflib-cookbook/images/multi_page_tiff/

8.1 Raster Images 187

If a PNG image contains an sRGB chunk, the sRGB ICC profile is attached to the image
unless the honoriccprofile option is false or another ICC profile has been assigned to the
image with the iccprofile option. The rendering intent in the sRGB chunk will be used
unless the renderingintent option has been supplied.

JPEG images. PDFlib supports the following flavors of JPEG images (ISO 10918-1):
> Grayscale, RGB (usually encoded as YCbCr, but direct RGB is also supported), and

CMYK color
> Baseline and progressive JPEG compression

These conditions cover all JPEG images in practical use. The restrictions above imply
that images using some uncommon JPEG features cannot be imported, in particular
arithmetic coding, lossless compression, bit depths other than 8 bits per component as
well as non-standard features such as SmartScale and reversible RGB color transform.
Note that the similar formats JPEG-LS (ISO 14495), sometimes called »lossless JPEG« and
JPEG-XR (ISO 29199-2), formerly called HD Photo, are not supported.

JPEG images can be packaged in several file formats. PDFlib supports all common
JPEG file formats and features:

> JFIF 1, which is generated by a wide variety of imaging applications.
> JPEG files written by Adobe Photoshop and other Adobe applications.
> PDFlib reads clipping paths from JPEG images created with Adobe Photoshop.
> PDFlib honors embedded ICC profiles in JPEG images unless the honoriccprofile op-

tion is set to false.
> If a JPEG image contains an Exif marker the color space information in the Exif mark-

er is interpreted. If it indicates sRGB color space the sRGB ICC profile is attached to
the image (unless the image contains an explicit embedded ICC profile, the honor-
iccprofile option is false or another ICC profile has been assigned to the image with
the iccprofile option).

> The orientation entry in an Exif marker which specifies the desired image orienta-
tion is honored. It can be ignored (as many applications do) with the ignore-
orientation option.

JPEG 2000 images. JPEG 2000 images (ISO 15444-2) require PDF 1.5 or above. PDFlib ac-
cepts JPEG 2000 images according to the following conditions:

> JP2 and JPX baseline images (usually *.jp2 or *.jpf) are supported, subject to the color
space conditions below. All color depth values in the range 1-38 bits are supported.
The following color spaces are supported: sRGB, sRGB-grey, ROMM-RGB, sYCC,
e-sRGB, e-sYCC, CIELab, ICC-based color spaces, and CMYK. PDFlib does not alter the
original color space in the JPEG 2000 image file.

> (Unsupported) Raw JPEG 2000 code streams without JPX wrapper (often *.j2k) with 1,
3, or 4 color components can be imported.

> Restricted or full ICC profiles embedded in the JPEG 2000 image file are kept, i.e. the
honoriccprofile option is always true.

Note JPM compound image files according to ISO 15444-6 (usually *.jpm) are not supported.

Additional JPEG 2000 restrictions for PDF/X-4/5 (JPEG 2000 is not allowed in PDF/X-3
which is based on PDF 1.4):

> The number of color channels must be 1, 3, or 4.
> The bit depth of each color channel must be 1, 8, or 16.

188 Chapter 8: Importing Images, SVG Graphics and PDF Pages

> All color channels must have the same bit depth.
> Exactly one color space definition must be present in the JPEG 2000 image file.
> CMYK images can only be used if the output condition is a CMYK device or the

defaultcmyk option has been supplied.

Additional JPEG 2000 restrictions for PDF/A-2 (JPEG 2000 is not allowed in PDF/A-1
which is based on PDF 1.4):

> The number of color channels must be 1, 3, or 4.
> All color channels must have the same bit depth.
> If the number of color space specifications in the JPEG2000 image file is larger than

one, there must be exactly one color space specification that has the value 0x01 in
the APPROX field.

JBIG2 images. PDFlib supports single- and multi-page flavors of JBIG2 images
(ISO 14492). JBIG2 images always contain black/white pixel data.

Due to the nature of JBIG2 compression, several pages in a multi-page JBIG2 stream
may refer to the same global segments. If more than one page of a multi-page JBIG2
stream is converted the global segments can be shared among the generated PDF imag-
es. Since the calls to PDF_load_image() are independent from each other you must in-
form PDFlib in advance that multiple pages from the same JBIG2 stream will be convert-
ed. This works as follows:

> When loading the first page all global segments are copied to the PDF. Use the follow-
ing option list for PDF_load_image():

page=1 copyglobals=all

> When loading subsequent pages from the same JBIG2 stream the image handle<N>
for page 1 must be provided so that PDFlib can create references to the global seg-
ments which have already been copied with page 1. Use the following option list for
PDF_load_image():

page=2 imagehandle=<N>

The client application must make sure that the copyglobals/imagehandle mechanism is
only applied to pages which are extracted from the same JBIG2 image stream. Without
the copyglobals options PDFlib will automatically copy all required data for the current
page.

GIF images. PDFlib supports all GIF flavors and all palette sizes. GIF images are always
recompressed with Flate compression. GIF files may contain more than one image (see
»Multi-page images«, page 186); use the page option to select a specific image within a
GIF file.

TIFF images. PDFlib processes all relevant flavors of TIFF images:
> Compression schemes: uncompressed, CCITT (group 3, group 4, and RLE), ZIP (=Flate),

PackBits (=RunLength), LZW, old-style and new-style JPEG, as well as some other rare
compression schemes;

> Color space: black and white, grayscale, RGB, CMYK, CIELab, and YCbCr images; the
color space in imported TIFF images is retained unmodified with the following ex-
ception: LZW-compressed TIFF images with CIELab color are converted to RGB, and
do not retain the CIELab color space.

8.1 Raster Images 189

> Color depth must be 1, 2, 4, 8, or 16 bits per color component. 16-bit images require
PDF 1.5.

> The BigTIFF format which extends the original TIFF format beyond 4GB.

The following TIFF features are processed when importing an image:
> TIFF files containing more than one image (see »Multi-page images«, page 186); use

the page option to select a specific image within a TIFF file.
> Alpha channels or masks (see Section 8.1.4, »Image Transparency«, page 191) are hon-

ored unless the ignoremask option is set. You can explicitly select an alpha channel
with the alphachannelname option.

> PDFlib honors clipping paths in TIFF images created with Adobe Photoshop and com-
patible programs unless the ignoreclippingpath option is set.

> PDFlib honors embedded ICC profiles in TIFF images unless the honoriccprofile option
is set to false.

> If a TIFF image contains an Exif marker the color space information in the Exif mark-
er is interpreted. If it indicates sRGB color space the sRGB ICC profile is attached to
the image (unless the image contains an explicit embedded ICC profile, the
honoriccprofile option is false or another ICC profile has been assigned to the image
with the iccprofile option).

> The orientation tag which specifies the desired image orientation is honored. It can
be ignored (as many applications do) with the ignoreorientation option.

BMP images. PDFlib supports the following flavors of BMP images:
> BMP versions 2 and 3;
> color depth 1, 4, and 8 bits per component, including 3 x 8 = 24 bit TrueColor. 16-bit

images are treated as 5+5+5 plus one unused bit. 32-bit images are treated as 3 x 8 bit
images (the remaining 8 bits are ignored).

> black and white or RGB color (indexed and direct color);
> uncompressed as well as 4-bit and 8-bit RLE compression;
> PDFlib does not mirror images if the pixels are stored in bottom-up order (this is a

rarely used feature in BMP which is interpreted differently in applications).

CCITT images. Group 3 or Group 4 fax compressed image data are passed through
without uncompressing. Note that this format actually means plain CCITT-compressed
image data, not TIFF files using CCITT compression. Raw CCITT compressed image files
are usually not supported in end-user applications, but can only be generated with fax-
related software.

In order to supply CCITT image data the width and height options must be supplied
since PDFlib cannot deduce the image dimensions from the data. The specific type of
CCITT compression can be supplied with the K option.

Raw images. Uncompressed raw image data may be useful for special applications.
Note that this format is unrelated to Camera Raw files created by Adobe applications.

In order to supply raw image data the width, height and bpc options must be supplied
since PDFlib cannot derive the image dimensions from the image data. The color space
can be derived from the components option: 1 component implies a grayscale image, 3
components an RGB image, and 4 components a CMYK image. Alternatively a spot or
DeviceN color can be applied to the image via the colorize option. In this case the color
space and number of color components are derived from the color space handle.

190 Chapter 8: Importing Images, SVG Graphics and PDF Pages

The length of the supplied image data must be equal to

[width x components x bpc / 8] x height

bytes, with the bracketed term adjusted upwards to the next integer. Image samples are
expected in top to bottom and left to right ordering (assuming no coordinate transfor-
mations have been applied). 16-bit samples must be provided with the most significant
byte first (big-endian byte order). If bpc is smaller than 8, each pixel row begins on a byte
boundary, and color values must be packed from left to right within a byte. Color chan-
nels are always interleaved, i.e. all color values for the first pixel must be supplied first,
followed by the color values for the second pixel, and so on. The user is responsible for
supplying option values which match the image. Otherwise corrupt PDF output may be
generated, and Acrobat may respond with the message Insufficient data for an Image.

The polarity of the color values is the same as for color-related options (see Chapter
4, »Color Spaces«, page 77). Note that Adobe Photoshop uses the expected PDF polarity
only for grayscale and RGB images, but inverse polarity for raw CMYK images and addi-
tional color channels: while PDF and PDFlib expect 0=no intensity, Photoshop assumes
0=maximum intensity. You can adjust the polarity by applying the invert option when
loading the image.

8.1.3 Clipping Paths
PDFlib supports clipping paths in TIFF and JPEG images created with Adobe Photoshop
or compatible programs. An image file may contain multiple named paths. Using the
clippingpathname option of PDF_load_image() one of the named paths can be selected
and will be used as a clipping path: only those parts of the image inside the clipping
path will be visible; other parts remain invisible. This is useful to separate background
and foreground, eliminate unwanted portions of an image, etc.

Alternatively, an image file may specify a default clipping path. If PDFlib finds a de-
fault clipping path in an image file it will automatically apply it to an image (see Figure
8.1). In order to prevent the default clipping path from being applied set the honor-
clippingpath option in PDF_load_image() to false. If you have several instances of the
same image and only some instances shall have the clipping path applied, you can sup-
ply the ignoreclippingpath option in PDF_fit_image() in order to disable the clipping path.
When a clipping path is applied, the bounding box of the clipped image will be used as
the basis for all calculations related to placing or fitting the image.

Fig. 8.1
Using a clipping path to separate
foreground and background

8.1 Raster Images 191

Cookbook A full code sample can be found in the Cookbook topic images/integrated_clipping_path.

The vector operations for describing the clipping path are written to the PDF output at
each call to PDF_fit_image(). If an image with clipping path is placed in the document
more than once it is strongly recommended to wrap the image within a template in or-
der to reduce the output file size. This can be achieved with the templateoptions option
of PDF_load_image().

8.1.4 Image Transparency
Image transparency is useful for a variety of artistic and other effects. For example, you
can ignore the irrelevant parts of an image and display only the interesting person or
object. PDFlib supports several methods for image transparency:

> An alpha channel (also called soft mask) specifies transparency values for each im-
age pixel. The alpha channel may be part of the imported image file or can be speci-
fied as a separate grayscale image. Soft masks with more than 1 bit per pixel are not
allowed in PDF/A-1 and PDF/X-1a/3.

> Chroma key masking specifies a single color value or a range of color value as trans-
parent. The transparent color value(s) may come from the imported image file or can
be specified via the chromakey option.

> Stencil masking uses a separate bitmap image which specifies transparent areas. The
remaining image areas are painted with the current color or the main image.

Table 8.1 summarizes the available methods for masking an image with an alpha chan-
nel, chroma key value or stencil mask. The mask polarity differs for the alpha vs. stencil
methods: the background shines through black areas of an alpha mask, but through
white areas of a stencil mask.

Additional image color effects can be achieved with the colorize option (see Section
8.1.5, »Colorize Images with Spot or DeviceN Color«, page 194), blend modes and gstate
soft masks (see Section 4.9, »Changing the Color of Objects«, page 98). For comparison
the effects of colorizing an image with a spot or DeviceN color are also listed in Table 8.1.

Cookbook Full code samples can be found in the Cookbook topic images/image_mask.

Images with an internal alpha channel. PDFlib reads an internal alpha channel from
the following image formats (unless ignoremask=true):

> TIFF images may contain a single alpha channel which is used by PDFlib. Alternative-
ly, a TIFF image may contain multiple alpha channels which are identified by name.
If multiple channels are present in a TIFF image PDFlib by default uses the first alpha
channel. You can explicitly select another channel by supplying its name with the
alphachannelname option:

image = p.load_image("tiff", filename, "alphachannelname={apple}");

> PNG images may contain an alpha channel which is used by PDFlib.
> JPEG 2000 images may contain an alpha channel which is used by PDFlib.

Note As an alternative to a full alpha channel Photoshop can create transparent backgrounds in TIFF
images using a proprietary format which is not supported in PDFlib. In order to use such trans-
parent images with PDFlib you must save them in Photoshop in the TIFF file format and select
Save Transparency in the TIFF options dialog box.

http://www.pdflib.com/pdflib-cookbook/images/integrated_clipping_path/
http://www.pdflib.com/pdflib-cookbook/images/image_mask/

192 Chapter 8: Importing Images, SVG Graphics and PDF Pages

Using a separate grayscale image as alpha channel. As an alternative to an internal al-
pha channel in the image file you can use a second image as source of an alpha channel.
All kinds of grayscale images are suitable for use as alpha channel. If the mask contains
an embedded ICC profile this must be ignored with honoriccprofile=false. For TIFF images
the nopassthrough option for PDF_load_image() is recommended to avoid multi-strip
images. BMP images are oriented differently than other image types. For this reason
BMP images must be mirrored along the x axis before they can be used as a mask.

White pixels in the alpha image result in the corresponding area of the base image
being painted, while black mask pixels result in the background shining through. If the
mask uses more than one bit per pixel, intermediate values blend the foreground image
against the background, providing a transparency effect.

After loading the mask it is applied to the base image with the masked option:

// load the mask image which serves as alpha channel
mask = p.load_image("png", maskfilename, "");

Table 8.1 Supported methods for alpha masking, chroma key masking stencil masking and colorizing images

masking/colorizing method base image
auxiliary
mask image

effect of pixels in the
mask or base image

alpha channel (soft mask) from image or masked option

image with internal alpha
channel

TIFF, PNG or JPEG 2000 im-
age with internal alpha
channel

(from image file) (transparency according to the TIFF/
PNG/JPEG 2000 image format)

image plus separate alpha
channel image

any image; optionmasked
refers to soft mask in auxil-
iary image

bitmap or grayscale
image

black mask = background
gray mask = semi transparent
white mask = base image1

chroma key masking from image or chromakey option

image with internal chroma
key value

GIF or PNG image with in-
ternal chroma key entry

– chroma key color = transparent
other image colors = base image

image plus separate chro-
ma key value or range

any image except JPEG and
JPEG 2000; option
chromakey specifies trans-
parent color value(s)

– chroma key color(s) = transparent
other image colors = base image

stencil masking with mask option

paint through mask image
as stencil

– bitmap image load-
ed with option mask

black mask = fill color
white mask = background1

mask base image with
stencil image

any image; option masked
refers to stencil mask in aux-
iliary image

bitmap image load-
ed with option mask

black mask = base image
white mask = background1

colorizing images with colorize option

colorize image with spot
color

grayscale image (>=1 bit per
pixel); option colorize re-
fers to spot color

– black image = full spot color
gray image = tinted spot color
white image = white

colorize image with DeviceN
color

n-channel image; option
colorize refers to DeviceN
color

– 0 in image = white
intermediate = DeviceN tint
1 in image = full DeviceN color

1. The effect of the mask can be inverted by applying the invert option to the stencil or alpha image.

8.1 Raster Images 193

if (mask == -1)
throw new Exception("Error: " + p.get_errmsg());

// load base image and mask it
image = p.load_image(type, filename, masked=" + mask)
if (image == -1)

throw new Exception("Error: " + p.get_errmsg());

p.fit_image(image, x, y, "");

Visualizing an image alpha channel. Sometimes you may want to display an image al-
pha channel as grayscale image. This may be useful for debugging or to repurpose an al-
pha channel. It can be achieved by retrieving an image handle for the mask from the
main image, using PDF_info_image() with the keyword imagemask:

image = p.load_image("auto", "image.jpg", "");
if (image == -1)

throw new Exception("Error: " + p.get_errmsg());

alpha = (int) p.info_image(image, "imagemask", "");
if (alpha != -1)

p.fit_image(alpha, 0.0, 0.0, "");

The alpha channel is treated as grayscale image: transparent areas appear black.

Chroma key masking. Images may specify a single color or a range of colors to be
masked out. Pixels with colors in the specified range are not painted so that the back-
ground shines through. In video technology this technique is called chroma key or blue
screen masking. It is supported with the chromakey image option. This option expects n
or 2xn integers in the range 0 to 2bitspercomponent-1, where n is the number of components
in the image colorspace.

Each pair in the list contains the inclusive lower and upper bounds of a color compo-
nent range. Pixels where all color components (before applying any decode values or col-
or inversion with the invert option) fall in the specified ranges are treated as transpar-
ent, i.e. they are not painted but allow the background to shine through.

If n values instead of n pairs are supplied each component range contains only a sin-
gle color value, i.e. each list value describes both lower and upper bound for a color com-
ponent.

Table 8.2 lists various examples of the chromakey option.

Table 8.2 Examples for the chromakey image option

chromakey option
image color
space effect

chromakey={255 255 255} RGB treat white pixels as transparent

chromakey={0 255 128 255 0 255} RGB treat all pixels with more than 50% green as transparent

chromakey={242 255 242 255 242 255} RGB treat all colors lighter than 95% as transparent

chromakey={242 255 242 255 242 255}
decode={0 0.95 0 0.95 0 0.95}

RGB treat all colors lighter than 95% as transparent and spread
the remaining colors to avoid sudden truncation at 95%

194 Chapter 8: Importing Images, SVG Graphics and PDF Pages

Chroma key masking is applied automatically in the following cases (unless ignore-
mask=true):

> GIF images may contain a single transparent color value (palette entry) which is re-
spected by PDFlib.

> PNG images may contain a single transparent color value which is respected by
PDFlib. If multiple color values with a corresponding alpha value are present, only
the first one with an alpha value below 50 percent is used.

Stencil masks. Stencil masks are bitmap images with a bit depth of 1 where white pix-
els are treated as transparent: whatever content already exists on the page shines
through the transparent parts of the image. The areas with 0 pixel values can be painted
with the current fill color, or can be used to show parts of another image.

In order to colorize a stencil mask with the current fill color you must load the image
with the mask option and set the current fill color before placing the image: Black pixels
are colorized with the current fill color, while white areas remain unchanged:

mask = p.load_image("tiff", maskfilename, "mask");
if (mask == -1)

throw new Exception("Error: " + p.get_errmsg());

p.set_graphics_option("fillcolor=red);
p.fit_image(mask, x, y, "");

If the stencil image is used to mask another image with the masked option, the pixels of
that base image are visible in black areas of the stencil mask, and the background in
white areas.

8.1.5 Colorize Images with Spot or DeviceN Color
Similarly to stencil masks, where a color is applied to the non-transparent parts of a bit-
map image PDFlib supports colorizing images with a spot or DeviceN color.

Colorize a grayscale image with a spot color. Black and white or grayscale images can
be colorized with a spot color. To colorize an image with a spot color you must supply
the colorize option when loading the image. This option contains a spot color handle cre-
ated with PDF_makespotcolor():

spot = p.makespotcolor("PANTONE Reflex Blue CV");

String optlist = "colorize=" + spot;
image = p.load_image("tiff", "image.tif", optlist);

As explained in Section 4.4, »Pantone, HKS, and custom Spot Colors«, page 84, spot color
spaces usually expect 0=no color=white in contrast to the grayscale color space where
0=black. In order to ensure that white remains white PDFlib inverts the image polarity
when colorizing an image with a spot color, i.e. dark image areas result in full spot color
intensity. You can revert the color polarity with the invert image option.

Colorize an n-channel image with a DeviceN color. A DeviceN color handle created
with PDF_create_devicen() can be supplied in the colorize image option to apply DeviceN
color to an n-colorant image. In order to colorize an image with a DeviceN color the im-
age data must contain the appropriate number N of color channels.

8.1 Raster Images 195

As explained in Section 4.5, »DeviceN Colors«, page 88, DeviceN color spaces expect
0=no color=white in contrast to the grayscale color space where 0=black. Unlike when
colorizing an image with spot colors, PDFlib does not invert the image polarity when
colorizing an image with a DeviceN color. As a result, colorizing with a spot color and
colorizing with a DeviceN color with N=1 expect different color polarities. You can invert
the color polarity with the invert image option.

A code fragment for colorizing an image with a DeviceN color space can be found in
»DeviceN color space based on CMYK process colors«, page 89.

Note Only raw images can be colorized with DeviceN color.

Cookbook A code sample can be found in the Cookbook topic images/colorize_image_with_DeviceN_
color.

8.1.6 Modifying Color Values with a Decode Array
The color values of an image can be further modified with a linear decoding function.
This method is supported with the decode image option. It expects 2xn float or percent-
age values, where n is the number of components in the image colorspace. Applying de-
code arrays therefore requires knowledge of the image color space. Each pair of num-
bers in a decode array describes the target color values to which the lowest and highest
component values 0 and 2bitspercomponent-1 are mapped; intermediate values are interpo-
lated linearly. By default, image component values are mapped to the range 0..1 for
most colorspaces. Decode arrays can be used to apply certain color effects by compact-
ing, spreading or clamping the color values. This technique may also be useful if the im-
age is colorized or used as a mask.

Decode values have different effects on additive vs. subtractive colorspaces. For ex-
ample, increasing the values results in lighter RGB colors, but darker CMYK colors. For
most colorspaces (except Lab and Indexed) typical values are in the range 0..1. Values
outside this range are allowed, but the viewer clips the resulting color values to the ap-
propriate range for the colorspace. This can be used for certain effects, e.g. to force a
range of light colors to white.

Applying the decode option to an image which is used as a soft mask to another im-
age can modify the effect of the mask, e.g. soften the mask.

The following image option shifts the black target values from the default range 0..1
to the new range 0.2..1.2, i.e. it increases the black channel of a CMYK image by 20%, re-
sulting in a stronger image:

decode={0 1 0 1 0 1 0.2 1.2}

Table 8.3 lists various examples of the decode option.

Table 8.3 Examples for the decode image option

decode option
image color
space effect

decode={1 0 1 0 1 0} RGB invert image colors; same as invert

decode={-0.5 1.5 -0.5 1.5 -0.5 1.5} RGB increase contrast

decode={0.5 1.5 0.5 1.5 0.5 1.5} RGB lighten all colors by 50%

decode={-0.2 0.8 -0.2 0.8 -0.2 0.8} RGB darken all colors by 20% (since
100%=white)

http://www.pdflib.com/pdflib-cookbook/images/colorize_image_with_DeviceN_color/
http://www.pdflib.com/pdflib-cookbook/images/colorize_image_with_DeviceN_color/

196 Chapter 8: Importing Images, SVG Graphics and PDF Pages

decode={-0.2 0.8 -0.2 0.8 -0.2 0.8 -0.2 0.8} CMYK lighten all colors by 20% (since 100%=dark)

decode={0 1 0 1 0 1 0 0} CMYK remove black channel, resulting in a duller
image

decode={0 1 0 1 0 1 0.2 1.2} CMYK increase black channel by 20%, resulting in
a stronger image

decode={1 0 0 1 0 1 0 1} CMYK invert Cyan channel while keeping other
channels unchanged; unlikely to be useful
except for artistic purposes

Table 8.3 Examples for the decode image option

decode option
image color
space effect

8.2 SVG Graphics 197

8.2 SVG Graphics
8.2.1 Supported SVG Flavors

PDFlib is a »Conforming High-Quality Static SVG Viewer« according to
W3C nomenclature. PDFlib accepts SVG graphics as follows:

> PDFlib implements SVG 1.1 (Second Edition) as published by the W3C.
> The following Unicode formats and encodings are supported:

UTF-8, UTF-16, ISO 8859-1 ... ISO 8859-15, ASCII
> CSS styling is available, but some CSS elements are unsupported.
> In addition to SVG files in plain text format Flate-compressed SVG files (*.svgz) are

supported.
> Fonts in the CEF format are supported. CEF fonts are not part of the SVG specifica-

tion, but are embedded in SVG graphics by some Adobe applications.
> Colors can be specified with additional color spaces according to the SVG Color 1.2

draft including a PDFlib-specific extension for the tint value of spot colors (see Sec-
tion 8.2.6, »SVG Color Extension«, page 203).

See Section 8.2.8, »Unsupported SVG Features«, page 206, for restrictions.

8.2.2 SVG Processing Considerations

Basic SVG handling. Embedding vector graphics with PDFlib is easy to accomplish.
First, the graphics file has to be opened with a PDFlib function which interprets the
graphics and stores an internal representation in memory. The PDF_load_graphics()
function returns a handle which serves as a graphics descriptor. This handle can be used
in a call to PDF_fit_graphics(), along with positioning and scaling options:

graphics = p.load_graphics("auto", "graphics.svg", "");
if (graphics == -1)

throw new Exception("Error: " + p.get_errmsg());

if (p.info_graphics(graphics, "fittingpossible", optlist) == 1)
p.fit_graphics(graphics, 0.0, 0.0, "");

else
System.err.println("Cannot place graphics: " + p.get_errmsg());

p.close_graphics(graphics);

The last parameter of PDF_fit_graphics() is an option list which supports a variety of op-
tions for positioning, scaling, and rotating. Details regarding these options are dis-
cussed in Section 8.4, »Placing Images, Graphics, and imported PDF Pages«, page 213.

Cookbook Code samples for SVG handling can be found in the graphics category of the PDFlib Cookbook.

SVG content as inline graphics or Form XObject (template). PDFlib supports the fol-
lowing methods for importing vector graphics:

> By default, the graphics data is written inline in the content stream of the page, pat-
tern, template, or glyph description. This is the default behavior, which is recom-
mended for situations where the graphics is placed exactly once in the document
and where you don’t want to change the opacity of the imported graphics. If PDF_fit_

http://www.pdflib.com/pdflib-cookbook/graphics/

198 Chapter 8: Importing Images, SVG Graphics and PDF Pages

graphics() is called more than once, the graphics data is written again and again to
the PDF output which increases output file size.

> If the graphics is intended to be placed multiply in the document, the template-
options option of PDF_load_graphics() is recommended. The option templateoptions=
{transparencygroup={isolated=true}} is required if you intend to change the opacity of
the imported graphics. It creates a PDF Form XObject (template), i.e. the graphics
data is stored in the PDF document as a separate entity which can be referenced an
arbitrary number of times. The graphics data for the template is written to the PDF
output at the end of the document or when PDF_close_graphics() is called. This way
the output file size is optimized. However, links within graphics are no longer con-
verted to PDF annotations.

Using the same graphics in multiple documents. Graphics can be loaded and closed in-
dependently from the current output document. When PDF_load_graphics() is called an
internal representation of the graphics is created. It is kept in memory until the corre-
sponding call to PDF_close_graphics(). Keeping graphics in memory across documents
has performance advantages in situations where the same graphics are placed in many
output documents since the graphics must be loaded only once. For example, an appli-
cation may load graphics with symbols, background artwork or company stationery
once and call PDF_fit_graphics() in each document where the graphics is required.

Checking for SVG processing problems. While PDF_load_graphics() loads the SVG
graphics, full processing and analysis is done only later in PDF_fit_graphics(), PDF_close_
graphics() or PDF_end_document() depending on Form XObject creation and scope of
loading. Since some error situations can be detected only during full processing, these
functions could throw an exception if a problem was found (since they cannot return
any error values). In order to avoid such an exception the graphics can be checked with
the fittingpossible keyword of PDF_info_graphics(). It performs all processing steps and
doesn’t create any output, but reports the success (or not) of SVG processing. If this
check succeeds, PDF_fit_graphics() will not throw an exception when the image is placed.
If an error occurs during the fittingpossible check, PDF_info_graphics() returns 0 regard-
less of errorpolicy. To summarize:

> The fittingpossible check prevents later exceptions in PDF_fit_graphics(), PDF_close_
graphics() or PDF_end_document(). Since the PDF output would be unusable after an
exception this is the recommended approach.

> Skipping the fittingpossible check speeds up SVG loading, but exceptions triggered by
SVG data may occur later. This setting can be used to speed up SVG loading if excep-
tions in PDF_fit_graphics() are acceptable. For example, if the application converts a
single SVG graphics file to a single PDF document without any additional page con-
tent this would be an acceptable approach.

The fittingpossible check uses the currently active global, document, and page options as
well as the current output intent. It is therefore recommended to run this check only
immediately before the actual call to PDF_fit_graphics().

8.2 SVG Graphics 199

8.2.3 Visible Size of SVG Graphics
SVG graphics specify the width and height in the svg element which defines the map-
ping of the SVG graphics to the target viewport (e.g. the browser window or some part of
a PDF page). Often the size of the viewport is specified in absolute units, e.g.

<svg xmlns="http://www.w3.org/2000/svg" width="640mm" height="480mm">

PDFlib converts the width and height attributes to points and makes them available via
the graphicswidth and graphicsheight keywords of PDF_info_graphics(). If the size is speci-
fied in pixels (px) PDFlib uses 1pt=1px. These values are also used to calculate the object
box for fitting operations. The svg element may also contain the viewBox attribute
which specifies a window inside the viewport.

You can override the size values specified in the SVG graphics file with the
forcedwidth and forcedheight options. The suboption clipping of the matchbox option can
be used to clip the graphics to some part of the object box.

SVG graphics without absolute size information. Some SVG graphics do not contain
absolute size information since width and height are missing or contain only relative
values such as in the following example:

<svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%">

This is used for SVG graphics which are not intended for standalone use. PDFlib sup-
ports this case if the user has specified a fitbox with the options boxsize and fit-
method=nofit. The fitbox is used as object box. The SVG graphics will be clipped at the
border of the fitbox. If no fitbox is specified PDFlib uses the viewBox attribute (if pres-
ent) as object box.

If no absolute size information is available in the SVG graphics you can supply the
fallbackwidth and fallbackheight options of PDF_load_graphics(). In the absence of these
options PDFlib calculates the bounding box of the SVG graphics in the first call of PDF_
fit_graphics() or PDF_info_graphics(). The calculated bounding box may be too small be-
cause line widths and oversized glyphs are not taken into account. In this case the calcu-
lated box can be enlarged with the bboxexpand option. By default the calculated bound-
ing box is moved such that the graphics is located at the original position in the
coordinate system (i.e. the box does not necessarily use the origin as corner).

8.2.4 Font Selection

Font selection algorithm. Font selection in SVG is controlled by the following proper-
ties:

font-family
font-style
font-weight

font-stretch
font-variant
font-size
font-size-adjust

Only the first three of these properties are relevant for selecting an external font.

200 Chapter 8: Importing Images, SVG Graphics and PDF Pages

In order to select a suitable font, PDFlib constructs the following font names:

<font-family>,<font-weight>,<font-style>
<font-family>-<font-weight><font-style>
<font-family>,<font-normweight>,<font-style>
<font-family>,<font-weight>,<font-normstyle>
<font-family>,<font-normweight>,<font-normstyle>

where <font-normweight> is one of

Regular, Thin, Extralight, Light, Medium, Semibold, Bold, Extrabold, Black

and <font-normstyle> is

Italic

For example, with the following SVG font specification:

font-family="Tahoma" font-weight="Bold" font-style="Italic"

PDFlib will search for the font Tahoma,Bold,Italic, using the comma-separated PDFlib
syntax for specifying font styles which can also be used to address Windows host f0nts.

PDFlib then tries to load the font names listed above one after the other until the
process is successful and a font could be loaded. The font names in this list can be used
in font resource specifications, e.g.

p.set_option("FontOutline={<fontname>=<filename>}")
p.set_option("FontNameAlias={<fontname>=ArialMT}")

If all attempts fail, PDFlib tries to load the font with the name <font-family> and simu-
lates the Bold and Italic properties if required.

Some browsers ignore the font selection properties if the specified font family can-
not be found. Since PDFlib doesn’t do this you must take care to make suitable fonts
available via PDFlib’s font configuration mechanism (see Section 6.4, »Loading Fonts«,
page 133).

The font-family property may also contain multiple font family names, e.g.

font-family="Georgia, 'Minion Web', 'Times New Roman', Times, 'MS PMincho', serif"

In this case PDFlib tries to load the next font in the list if a particular font family could
not be loaded. If some font for a font-family list could be loaded, PDFlib attempts to load
the remaining font-families in the list as fallback fonts for the first loaded font (the mas-
ter font, see Section 6.4.6, »Fallback Fonts«, page 146). If the master font already has fall-
back fonts because it has been loaded earlier, the new fallback fonts will be appended to
the list of existing fallback fonts.

When PDFlib attempts to load a font for SVG graphics the following options are used
by default:

embedding subsetting skipembedding={fstype latincore}

These options can be overridden with the option defaultfontoptions of PDF_load_
graphics().

8.2 SVG Graphics 201

Font configuration. On Windows systems PDFlib can access all fonts which are in-
stalled on the system (see Section 6.4.5, »Host Fonts on Windows and macOS«, page 144).
For example, the SVG font specification

font-family="Verdana" font-weight="bold"

results in the PDFlib font name Verdana,Bold. On other operating systems PDFlib will
find a font if a FontOutline resource has been specified in the following way:

<fontnamepattern>=<filename.xxx>

where <fontnamepattern> is one of the font name patterns above and xxx is the corre-
sponding file name extension of the font outline file.

Suitable FontOutline resources with font names which match one or more of the font
name patterns above can be created automatically with the enumeratefonts option of
PDF_set_option(). Refer to Section 6.4.4, »Searching for Fonts«, page 140, for more infor-
mation on font configuration.

Mapping generic SVG font families to PDF core fonts. PDFlib automatically maps the
generic SVG font families monospace, sans-serif and serif to the Latin core fonts at the
first occurrence of a generic SVG font family, using FontNameAlias resources of the fol-
lowing form:

p.set_option("FontNameAlias={monospace=Courier}")
p.set_option("FontNameAlias={monospace,Bold=Courier-Bold}")

The full list of generic font name mappings is as follows (there are no default mappings
for the generic font families cursive and fantasy):

monospace Courier
monospace,Bold Courier-Bold
monospace,Italic Courier-Oblique
monospace,Bold,Italic Courier-BoldOblique

sans Helvetica
sans,Bold Helvetica-Bold
sans,Italic Helvetica-Oblique
sans,Bold,Italic Helvetica-BoldOblique

sans-serif Helvetica
sans-serif,Bold Helvetica-Bold
sans-serif,Italic Helvetica-Oblique
sans-serif,Bold,Italic Helvetica-BoldOblique

serif Times-Roman
serif,Bold Times-Bold
serif,Italic Times-Italic
serif,Bold,Italic Times-BoldItalic

These mappings are executed only if no other suitable resource has been specified by
the user before.

202 Chapter 8: Importing Images, SVG Graphics and PDF Pages

8.2.5 Dealing with missing Fonts and missing Glyphs

Missing fonts and the default font. If all font loading attempts fail, PDFlib attempts to
load a default font which has the font-family name defined in the defaultfontfamily op-
tion of PDF_load_graphics(). By default, the Arial Unicode MS font is used if available, and
Helvetica otherwise. It is highly recommended to either make the Arial Unicode MS font
available in PDFlib’s font configuration, or to specify another font with a large glyph
complement in defaultfontfamily. For example, to configure the NotoSans-Regular font as
last resort font use the following option:

defaultfontfamily={NotoSans-Regular}

Replacing individual fonts. In order to avoid a particular font which is not available or
not desirable (e.g. because it does not contain enough glyphs, see below) you can map it
to another font which is more suitable. Use the font name alias feature and PDF_set_
option() for this purpose (see »Font name aliasing«, page 140, for details). For example, if
you have Chinese text which is inappropriately set with the Trebuchet MS font which
doesn’t contain any Chinese glyphs, you can map it to Arial Unicode MS as follows:

p.set_option("FontnameAlias={ {Trebuchet MS}={Arial Unicode MS} }");

Keep in mind that font attributes are not automatically added. For example, if the
Trebuchet MS font is used with the attribute font-weight="bold" you must create an alias
for the bold version of the font:

p.set_option("FontnameAlias={ {Trebuchet MS,Bold}={Arial Unicode MS} }");

Visualizing missing glyphs. If a selected font does not contain a required glyph, the de-
fault replacement glyph is used instead, which means that no text will be visible at all.
In order to visualize missing glyphs you can specify a visible replacement glyph using
the defaultfontoptions option. For example, the following option for PDF_load_graphics()
will display a question mark for all missing glyphs:

defaultfontoptions={replacementchar=?}

Specifying a particular fallback font for missing glyphs. If the font specified in SVG
does not contain suitable glyphs for the text, no text will be visible. As a common exam-
ple consider Chinese text which is attempted to be shown with a Western font which
doesn’t contain any Chinese glyphs. Of course the best solution would be to use suitable
fonts in the SVG in the first place. However, if you have to deal with unsuitable fonts in
SVG you can specify a fallback font in PDFlib. This fallback font is used whenever the
original font does not provide a particular glyph.

The following option for PDF_load_graphics() calls for Arial Unicode MS as fallback
font:

defaultfontoptions={fallbackfonts={{fontname={Arial Unicode MS} encoding=unicode}}}

Note that the font specified in the defaultfontfamily option shown earlier is used when a
font cannot be found, while the fallback technique applies when a font is available, but
doesn’t contain all required glyphs.

8.2 SVG Graphics 203

Specifying a global fallback font family. The fallbackfontfamily and fallbackfontoptions
options can be used to specify a family of fallback fonts and corresponding options.
While the fallbackfonts option within defaultfontoptions selects a single font for use as
fallback font, fallbackfontfamily can be used to specify a family of fallback fonts, i.e. style
attributes will be applied to this font family name, assuming that style variants of the
specified font family are actually available. Example:

fallbackfontfamily={Arial} fallbackfontoptions={encoding=unicode}

8.2.6 SVG Color Extension
Cookbook A code samples for non-sRGB color in SVG can be found in the Cookbook topic color/svg_

color_extension.

SVG by default uses the sRGB color space for text and vector graphics. PDFlib therefore
treats SVG graphics as device-independent color for PDF/X and PDF/A. Embedded imag-
es in SVG may use other color spaces, though. For example, an embedded or referenced
JPEG image may use the CMYK color space with or without an ICC profile. The default
sRGB profile for RGB colors can be overridden with the iccprofilergb option of PDF_load_
graphics().

In addition to sRGB PDFlib supports additional color spaces using syntax extensions
according to the SVG Color 1.2 draft specification. Table 8.4 lists supported SVG color
spaces along with syntax examples. See Chapter 4, »Color Spaces«, page 83, for general
information about these color spaces and their treatment in PDFlib.

SVG syntax requires sRGB fallback colors for all variants. PDFlib uses the fallback col-
or in case of syntax errors, missing spot color definitions and missing ICC profiles or if
the option forcesrgb has been supplied.

You can colorize or decolorize SVG images with the help of blend modes (see Section
4.9.1, »Changing the Color with Blend Modes«, page 98).

ICC-based colors. The icc-based color specifications apply the specified ICC profile
which is searched according to the ICCprofile resource category unless it references a lo-
cal file. ICC profiles are ignored if the option honoriccprofile=false is supplied. Use the op-
tions iccprofilegray/iccprofilergb/iccprofilecmyk to override the profiles specified in the
SVG graphics with other profiles.

Gray, RGB and CMYK device color spaces. The device-specific color spaces device-gray,
device-rgb and device-cmyk are not recommended for general use as their rendering de-
pends on the specific output device unless controlled by a PDF/A or PDF/X output in-
tent ICC profile or suitable default color space. It is strongly recommended to work with
ICC-based color spaces instead. Particular exceptions may be the use of a CMYK control
strip to directly control tint values on a printing machine, or printing registration
marks.

Device-dependent colors created by device-gray/rgb/cmyk attributes or referenced im-
ages can be mapped to ICC-based colors via the iccprofile suboption of defaultimage-
options or the defaultgray/rgb/cmyk suboptions of templateoptions.

Spot colors and DeviceN colors. The icc-named-color syntax can be used to specify spot
colors. However, since named color ICC profiles are not supported the spot color must
be known to PDFlib; otherwise the sRGB fallback color is used as alternate color. Custom

http://www.pdflib.com/pdflib-cookbook/color/svg_color_extension/
http://www.pdflib.com/pdflib-cookbook/color/svg_color_extension/

204 Chapter 8: Importing Images, SVG Graphics and PDF Pages

spot colors must therefore be defined in your code (see »Custom spot colors«, page 86)
before calling PDF_load_graphics(), e.g.

// Define custom spot color "CompanyRed" with Lab alternate values
p.set_graphics_option("fillcolor={spotname {CompanyRed} 1.0 {lab 60 65 65}}");

The device-nchannel syntax can be used to select DeviceN colors which must be created
with PDF_create_devicen() (see Section 4.5, »DeviceN Colors«, page 88) supplied to PDF_
load_graphics() via the devicencolors option. This implies that only a single DeviceN color
space can be used for each value of N.

Shadings. The color spaces listed in Table 8.4 can also be used in SVG gradients. How-
ever, PDF requires all stop colors for a gradient to be taken from the same color space. If
a gradient uses stop colors from different color spaces the sRGB fallback colors for all
stop colors are used.

Shadings created from spot colors retain the spot colors provided these have been
created with Lab alternate values (which is true for all spot colors known internally to
PDFlib). Spot colors created with other alternate color spaces such as CMYK will not be
retained, but result in sRGB shadings in the PDF output.

Note Since non-sRGB colors in SVG have not been fully standardized yet the syntax may change in
the future.

Table 8.4 Extended color spaces in SVG (can be disabled with forcesrgb)

color space SVG syntax examples notes

Device-independent color spaces

sRGB #FF0000 SVG 1.1 default color space

ICC-based
color

#7F7F7F icc-color(gray.icc, 0.5)
#CC6633 icc-color(rgb.icc, 0.8, 0.4, 0.2)
#2B7FAB icc-color(cmyk.icc, 0.8, 0.4, 0.2, 0.0)

One, three or four color values must be sup-
plied for Grayscale, RGB or CMYK profiles,
respectively.

CIELab #598237 cielab(50, -25, 35)

CIELch #FF007E cielch(50, 127, 0)
#FF007E cielchab(50, 127, 0)

Lightness, chroma and hue (in degrees)
are converted to CIELab.

well-known
spot color

#FFB12D icc-named-color(nmcl.icc, 'PANTONE 123 U')
#FFCE4C icc-named-color(nmcl.icc, 'PANTONE 123 U', 0.5)
#994F5B icc-named-color(nmcl.icc, 'HKS 18 Z')

The profile name is ignored. As an exten-
sion to the SVG syntax PDFlib supports an
optional tint value. If no tint value is pres-
ent, 1.0 is assumed.

custom
spot color

#FFE560 icc-named-color(nmcl.icc, 'CompanyColor')
#FFF36D icc-named-color(nmcl.icc, 'CompanyColor', 0.5)

The sRGB fallback color is used as alternate
color unless the spot color has already been
defined earlier; the profile name is ignored.
If no tint value is present, 1.0 is assumed.

n-colorant #FFE560 device-nchannel(0, 0.7, 0.2)
#FFF36D device-nchannel(1 0 0 0 0.5 0.2 0)

DeviceN color space handles must be sup-
plied via the devicencolors option. If no
DeviceN color space handle for n has been
supplied the sRGB fallback color is used.

8.2 SVG Graphics 205

8.2.7 SVG Contents beyond Vector Graphics and Text

Embedded images in SVG. PDFlib processes the image element in SVG and accepts all
of the image formats discussed in Section 8.1, »Raster Images«, page 185, and nested SVG
graphics. Image data may be embedded in the SVG file or located in an external file.

Images in SVG graphics are processed automatically. However, in some situations
you may want to supply certain image processing options. This can be achieved with
the defaultimageoptions option of PDF_load_graphics(). For example, use the following
option to apply antialiasing which improves the appearance of low-resolution images
(this matches the SVG display of most browsers which apply anti-aliasing to images):

defaultimageoptions={interpolate}

If an image is not available (e.g. because the referenced external image file is missing)
and the option fallbackimage={ } (i.e. an empty option list) has been supplied, PDFlib cre-
ates a transparent gray checkerboard pattern. Suboptions of the option fallbackimage
can be used to customize this pattern or to supply a custom image or template as fall-
back visualization. Use the following option if you want to avoid that missing images
are silently replaced:

errorconditions={references={image}}

SVG links. Links in SVG graphics are generally converted to interactive Link annota-
tions in the generated PDF output; however, there are a few conditions which disable
link creation (see PDFlib API Reference). Links which are located outside the graphics are
ignored. The contents option of the PDF annotation is populated with the xlink:title attri-
bute of the SVG link if present, and the target URI otherwise. In Tagged PDF mode a Link
element and an associated OBJR element are created for the generated link unless the
currently active item is an Artifact or pseudo element.

Conversion of SVG links to PDF links can be disabled with the convertlinks option of
PDF_fit_graphics(). Note that links cannot be created when a template (Form XObject) is
created for the graphics or the graphics is placed on a template.

Metadata in SVG. SVG graphics may contain XMP metadata. By default PDFlib ignores
SVG metadata in graphics to reduce the output file size. However, if a template is creat-
ed from SVG the XMP metadata can be attached to the generated XObject with the fol-
lowing option of PDF_load_graphics():

templateoptions={metadata={keepxmp=true}}

Device-dependent color spaces

DeviceGray #7F7F7F device-gray(0.5) PDF/A and PDF/X requirements for device
color spaces must be obeyed.

DeviceRGB #0000FF device-rgb(0, 0, 255) PDF/A and PDF/X requirements for device
color spaces must be obeyed.

DeviceCMYK #00AEEF device-cmyk(1, 0, 0, 0) PDF/A and PDF/X requirements for device
color spaces must be obeyed.

Table 8.4 Extended color spaces in SVG (can be disabled with forcesrgb)

color space SVG syntax examples notes

206 Chapter 8: Importing Images, SVG Graphics and PDF Pages

The contents of the metadata, desc, and title elements of an SVG graphic can be retrieved
with PDF_info_graphics() according to the following pattern:

idx = (int) p.info_graphics(svg, "description", "");
if (idx != -1)

description = p.get_string(idx, "");

8.2.8 Unsupported SVG Features

Treatment of unsupported features. By default, unsupported SVG features are ig-
nored. As a result, output is created but some aspects of the graphics may be missing or
wrong. This behavior can be changed with the errorconditions option of PDF_load_
graphics(). Its suboptions specify conditions which trigger an error instead of being ig-
nored. For example, with the following option list PDF_load_graphics() fails if the SVG
graphics contain animated or scripted elements, e.g.:

errorconditions = {elements={animate script}}

General restriction. The following restriction affects various elements:
> references to external URLs are not resolved (image, font, etc.)

Unsupported SVG elements. The following SVG elements are not supported and will
be ignored:

> elements for animation and scripting:

animate, animateColor, animateMotion, animateTransform, script, mpath, set

> elements for SVG filters:

feBlend, feColorMatrix, feComponentTransfer, feComposite, feConvolveMatrix,
feDiffuseLighting, feDisplacementMap, feDistantLight, feFlood, feFuncA, feFuncB,
feFuncG, feFuncR, feGaussianBlur, feImage, feMerge, feMergeNode, feMorphology,
feOffset, fePointLight, feSpecularLighting, feSpotLight, feTile, feTurbulence, filter

> other elements:

cursor, foreignObject, vkern

Restricted SVG elements, attributes and properties. The following attributes and
properties are subject to restrictions:

> Some CSS rules are not supported, including @import and @font-face.
> The font selection property font-variant is supported only with the keyword small-

caps, and only for fonts containing the OpenType feature smcp.
> Combination of values of the text presentation property text-decoration are not sup-

ported. PDFlib doesn’t draw the decoration elements as areas with separate fill and
stroke color, but draws the decorations as lines. The lines are drawn with the fill color
if present, otherwise with the stroke color.

> The attribute rotate for the textPath element is not supported.
> The attribute xlink:href of the use element is supported only for local IRI references.

For example, a reference to an external SVG file within a use element is not support-
ed.

> The property unicode-bidi is honored only for TrueType/OpenType fonts containing
the required tables for Bidi text layout. PDFlib sets the options shaping and script=_
auto in the option list of PDF_fit_textline().

8.2 SVG Graphics 207

> The property glyph-orientation-vertical is supported according to SVG 1.1 except the
angles 180˚ and 270˚ which are not supported.

> The attribute preserveAspectRatio for the view element is ignored.
> The property overflow for the svg element does not support the value visible if a Form

XObject (template) is created with the option templateoptions.

Unsupported SVG properties. The following SVG properties are not supported and are
ignored:

alignment-baseline, color-interpolation, color-interpolation-filters,
color-rendering, cursor, dominant-baseline, enable-background, filter, flood-color,
flood-opacity, glyph-orientation-horizontal,
image-rendering, lighting-color, pointer-events, shape-rendering, text-rendering

Unsupported attributes of supported SVG elements. The following attributes of sup-
ported SVG elements are not supported and are ignored:

baseProfile (svg)
contentScriptType (svg)
contentStyleType (svg)
externalResourcesRequired (all elements)
method (textPath)
on* (all elements)
spacing (textPath)
textLength and lengthAdjust for vertical text (text, textpath, tref, tspan)
version (svg)
zoomAndPan (svg)
xlink:role (all elements)
xlink:show (all elements)
xlink:type (all elements)

208 Chapter 8: Importing Images, SVG Graphics and PDF Pages

8.3 Importing PDF Pages with PDI
Note All functions described in this section require PDFlib+PDI or the PDFlib Personalization Server

PPS (which includes PDI). The PDF import library (PDI) is not contained in the PDFlib base prod-
uct. Although PDI is integrated in all binary editions of PDFlib, a license key for PDFlib+PDI or
PPS is required to use it.

8.3.1 PDI Features and Applications
If PDI (PDF import library) is available, pages from existing PDF documents can be im-
ported. PDI prepares pages from existing PDF documents for use with PDFlib. Conceptu-
ally, imported PDF pages are treated similarly to imported raster images: you open a
PDF document, choose a page to import, and place it on an output page. You can apply
any of PDFlib’s transformation functions for translating, scaling, rotating, or skewing
the imported page. Imported pages can be combined with new content by using
PDFlib’s text or graphics functions after placing the imported PDF page on the output
page (think of the imported page as the background for new content). Using PDFlib and
PDI you can easily accomplish the following tasks:

> overlay two or more pages from multiple PDF documents (e.g., add stationary to ex-
isting documents in order to simulate preprinted paper stock);

> place PDF ads in existing documents;
> clip the visible area of a PDF page in order to get rid of unwanted elements (e.g., crop

marks), or scale pages;
> impose multiple pages on a single sheet for printing;
> process multiple PDF/X or PDF/A documents to create a new PDF/X or PDF/A file;
> copy the PDF/X or PDF/A output intent of a file;
> add some text (e.g., headers, footers, stamps, page numbers) or images (e.g., company

logo) to existing PDF pages;
> copy all pages from an input document to the output document, and place barcodes

on the pages;
> use the pCOS interface to query arbitrary properties of a PDF document (see pCOS

Path Reference for details).

In order to place a PDF background page and populate it with dynamic data (e.g., mail
merge, personalized PDF documents on the Web, form filling) we recommend using PDI
along with PDFlib blocks (see Chapter 13, »PPS and the PDFlib Block Plugin«, page 355).

8.3.2 Using PDFlib+PDI
Cookbook Code samples regarding PDF import issues can be found in the pdf_import category of the

PDFlib Cookbook.

General considerations. It is important to understand that PDI only imports the actual
page contents, but not any interactive features (such as sound, movies, embedded files,
hypertext links, form fields, JavaScript, bookmarks, thumbnails, and notes) which may
be present in the imported PDF document. These interactive features can be generated
with the corresponding PDFlib functions.

The following items can optionally be imported:
> Structure element tags can be imported (see »Importing pages from Tagged PDF doc-

uments«, page 211, for details).

http://www.pdflib.com/pdflib-cookbook/pdf_import/

8.3 Importing PDF Pages with PDI 209

> Layer definitions can be imported (see »Importing PDF pages with layers«, page 211,
for details).

> (PPS only) PDFlib Blocks can be imported with PDF_process_pdi() and the option
action=copyallblocks or copyblock (see Section 13.9.2, »Importing PDFlib Blocks«, page
397).

You cannot re-use individual elements of imported pages with other PDFlib functions.
For example, re-using fonts from imported documents for some other content is not
possible. Instead, all required fonts must be configured in PDFlib. If multiple imported
documents contain embedded font data for the same font, PDI will not remove any du-
plicate font data. On the other hand, if fonts are missing from some imported PDF, they
will also be missing from the generated PDF output file. As an optimization you should
keep the imported document open as long as possible in order to avoid the same fonts
to be embedded multiple times in the output document.

PDFlib+PDI uses the template feature (Form XObjects) for placing imported PDF pag-
es on the output page. Documents which contain imported pages from other PDF docu-
ments can be processed with PDFlib+PDI again.

Code fragment for importing PDF pages. Dealing with pages from existing PDF docu-
ments is possible with a very simple code structure. The following code snippet opens a
page from an existing document and copies the page contents to a new page in the out-
put PDF document (which must have been opened before):

int doc, page, pagecount, pageno = 1;
String filename = "input.pdf";

if (p.begin_document(outfilename, "") == -1) {...}
...

doc = p.open_pdi_document(infilename, "");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Number of pages in the input document; useful for importing all pages */
pagecount = (int) p.pcos_get_number(doc, "length:pages");

page = p.open_pdi_page(doc, pageno, "");
if (page == -1)

throw new Exception("Error: " + p.get_errmsg());

/* dummy page size, will be modified by the adjustpage option */
p.begin_page_ext(20, 20, "");
p.fit_pdi_page(page, 0, 0, "adjustpage");
p.close_pdi_page(page);
...add more contents to the page using PDFlib functions...
p.end_page_ext("");
p.close_pdi_document(doc);

The last parameter to PDF_fit_pdi_page() is an option list which supports a variety of op-
tions for positioning, scaling, and rotating the imported page. Details regarding these
options are discussed in Section 8.4, »Placing Images, Graphics, and imported PDF Pag-
es«, page 213.

210 Chapter 8: Importing Images, SVG Graphics and PDF Pages

8.3.3 Document and Page-related Checks

Document-related checks. PDFlib+PDI happily processes all kinds of PDF documents
which can be opened with Acrobat, regardless of PDF version number or features used
within the file.

PDFlib+PDI implements a repair mode for damaged PDFs so that even certain kinds
of damaged documents can be opened. However, in rare cases a PDF document or a par-
ticular page of a document may be rejected by PDI.

If a PDF document or page can’t be imported successfully PDF_open_pdi_document()
and PDF_open_pdi_page() return an error code. If you need to know more details about
the failure you can query the reason with PDF_get_errmsg(). Alternatively, you can set
the errorpolicy option to exception, which will result in an exception if the document
cannot be opened.

Page-related checks. The following checks are done in PDF_open_pdi_page():
> Pages from PDF documents which use a higher PDF version number than the PDF

output document that is currently being generated can not be imported. The reason
is that PDFlib can no longer make sure that the output will actually conform to the
requested PDF version after a PDF with a higher version number has been imported.
Solution: set the version of the output PDF to the required level using the compatibi-
lity option in PDF_begin_document().
PDF 1.7ext 3 (Acrobat 9) and PDF 1.7ext8 (Acrobat X/XI) documents are compatible with
PDF 1.7 as far as PDI is concerned.
In PDF/A mode the input PDF version number is not relevant since the PDF version
header must be ignored in PDF/A.
If a document uses a higher PDF version header although it is known to conform to
an older PDF version you can use the ignorepdfversion option of PDF_open_pdi_
document().

> PDF/A, PDF/X, PDF/VT or PDF/UA documents which are incompatible to the corre-
sponding PDF/A, PDF/X, PDF/VT or PDF/UA status of the current output document
are rejected. See the following sections for more information:
> Section 12.3.7, »Importing PDF/A Documents with PDI«, page 326;
> Section 12.4.6, »Importing PDF/X Documents with PDI«, page 338;
> Section 12.5.7, »Importing PDF/X and PDF/VT Documents with PDI«, page 347;
> Section 12.6.4, »Importing PDF/UA Documents with PDI«, page 352.

> If the document contains an inconsistent PDF/A or PDF/X output intent no pages
can be imported.

8.3.4 Specific Aspects of imported PDF Documents

Dimensions of imported PDF pages. Imported PDF pages are handled similarly to im-
ported raster images, and can be placed on the output page using PDF_fit_pdi_page(). By
default, PDI imports the page exactly as it is displayed in Acrobat, in particular:

> cropping will be retained (in technical terms: if a CropBox is present, PDI favors the
CropBox over the MediaBox; see Section 3.2.2, »Page Size«, page 65);

> rotation which has been applied to the page is retained.

The cloneboxes option instructs PDFlib+PDI to copy all page boxes of the imported page
to the generated output page, effectively cloning all page size aspects.

8.3 Importing PDF Pages with PDI 211

Alternatively, you can use the pdiusebox option to explicitly instruct PDI to use any
of the MediaBox, CropBox, BleedBox, TrimBox or ArtBox entries of a page (if present) for
determining the size of the imported page.

Finally, you can use the transform option of PDF_open_pdi_page() to apply arbitrary
transformations to the imported page, e.g. scale it up or down or rotate it.

Color handling. PDFlib+PDI does not change the color of imported PDF documents in
any way. For example, if a PDF contains ICC color profiles these are retained in the out-
put document. If a page contains a transparency group entry it will be copied to the
generated Form XObject unless the transparencygroup option of PDF_open_pdi_page()
asks for different treatment. If required, a suitable transparency group is created for the
imported page, taking into account all applicable PDF/A, PDF/X, and PDF/VT require-
ments.

Importing pages from Tagged PDF documents. By default, tags are imported if both
input and output document are tagged. However, tag import can be disabled with the
usetags options of PDF_open_pdi_document() and PDF_open_pdi_page(). For more infor-
mation refer to Section 11.4.5, »Importing Tagged PDF Pages with PDI«, page 310.

Importing PDF pages with layers. PDI always imports the contents of all layers (tech-
nically known as optional content) on a page. The layer definitions including the layers’
visibility state are also imported provided the layer is used on any of the imported pag-
es. However, import of layer definitions can be disabled with the uselayers options of
PDF_open_pdi_document(). In order to work with uselayers=false the generated document
must not contain any layers at all, i.e. all PDF documents with layers must be opened
with uselayers= false and PDF_define_layer() must not be called.

For more control for arranging the imported layers you can use the parenttitle of
PDF_open_pdi_document() which creates a hierarchical title layer in the layer list on top
of the imported layers (e.g. for supplying a file name). The parentlayer option works sim-
ilarly but expects a handle to a user-defined layer.

Importing georeferenced PDF. When importing georeferenced PDF with PDI the geo-
spatial information is kept if it has been created with one of the following methods (im-
age-based geospatial reference):

> with PDFlib and the georeference option of PDF_load_image()
> by importing an image with geospatial information in Acrobat.

The geospatial information is lost after importing a page if it has been created with one
of the following methods (page-based geospatial reference):

> with PDFlib and the viewports option of PDF_begin/end_page_ext()
> by manually geo-registering a PDF page in Acrobat.

Optimization across multiple imported documents. While PDFlib itself creates highly
optimized PDF output, imported PDF may contain redundant data structures which in
some cases can be optimized. In addition, importing multiple PDFs may bloat the out-
put file size if multiple files contain identical resources, e.g. fonts. In this situation you
can use the optimize option of PDF_begin_document(). It detects redundant objects in im-
ported files and removes them without affecting the visual appearance or quality of the
generated output.

212 Chapter 8: Importing Images, SVG Graphics and PDF Pages

Encrypted PDF documents and the »shrug« feature. In order to import pages from en-
crypted documents (i.e., files with permission settings or password) the corresponding
master password must be supplied. Encrypted PDF documents without the master pass-
word are rejected by default. However, they can be opened for querying information
with pCOS (as opposed to importing pages) by setting the infomode option of PDF_open_
pdi_document() to true (exception to the infomode rule: documents created with the Dis-
tiller setting Object Level Compression: Maximum cannot be opened even in info mode).

With the shrug feature pages from protected documents can be imported without
master password, assuming the user accepts responsibility for respecting the document
author’s rights. By using the shrug feature the user asserts that he or she does not vio-
late any document authors’ rights. PDFlib GmbH’s terms and conditions require that
users respect document author’s rights.

If all of the following conditions are true, the shrug feature is enabled:
> The shrug option has been supplied to PDF_open_pdi_document().
> The document requires a master password but it has not been supplied to PDF_open_

pdi_document().
> If the document requires a user (open) password, it must have been supplied to PDF_

open_pdi_document().

The shrug feature has the following effects:
> Pages can be imported although the master password has not been supplied.
> The pCOS pseudo object shrug is set to true/1.
> pCOS runs in full mode (instead of restricted mode), i.e. the pcosmode pseudo object

is set to 2.

8.4 Placing Images, Graphics, and imported PDF Pages 213

8.4 Placing Images, Graphics, and imported PDF Pages
The functions PDF_fit_image() for placing raster images and templates, PDF_fit_
graphics() for placing graphics and PDF_fit_pdi_page() for placing imported PDF pages
offer a wealth of options for controlling the placement on the page. This section demon-
strates the most important options by looking at some common application tasks. A
complete list and descriptions of all options can be found in the PDFlib API Reference.

All samples in this section work the same for raster images, templates, graphics and
imported PDF pages. Although code samples are only presented for raster images we
talk about placing objects in general. Before calling any of the fit functions a call to PDF_
load_image(), PDF_load_graphics() or PDF_open_pdi_document() and PDF_open_pdi_
page() must be issued. For the sake of simplicity these calls are not repeated here.

Cookbook Code samples regarding images, graphics and imported PDF pages can be found in the images,
graphics, and pdf_import categories of the PDFlib Cookbook.

8.4.1 Simple Object Placement

Positioning an image at the reference point. By default, an object will be placed in its
original size with the lower left corner at the reference point. In this example we will
place an image with the bottom centered at the reference point (0, 0):

p.fit_image(image, 0, 0, "position={center bottom}");

Similarly, you can use the position option with another combination of the keywords
left, right, center, top, and bottom to place the object at the reference point.

Placing an image with scaling. The following variation will place the image while
modifying its size:

p.fit_image(image, 0, 0, "scale=0.5");

This code fragment places the object with its lower left corner at the point (0, 0) in the
user coordinate system. In addition, the object will be scaled in x and y direction by a
scaling factor of 0.5, which makes it appear at 50 percent of its original size.

Cookbook A full code sample can be found in the Cookbook topic images/starter_image.

8.4.2 Placing an Object at a Point or Line or in a Box
In order to position an object an additional box with specified width and height can be
used. The gray box or line in the figures below is depicted for visualizing the box size
only; it is not part of the actual output.

Placing an object in a box doesn’t make sense for fitmethod=nofit since the object is
only positioned in this case, but not scaled. The boxsize option can be used to specify a
horizontal line, vertical line or real box for object placement:

boxsize={100 0} horizontal line
boxsize={0 100} vertical line
boxsize={100 200} box

In the examples below we will fit the object into the box with various fitting methods.

http://www.pdflib.com/pdflib-cookbook/images/
http://www.pdflib.com/pdflib-cookbook/pdf_import/
http://www.pdflib.com/pdflib-cookbook/images/starter_image/

214 Chapter 8: Importing Images, SVG Graphics and PDF Pages

Automatic fitting in a box. With fitmethod=auto PDFlib scales the image to fit into the
box without distorting it: if it fits into the box no scaling is applied. Otherwise the size is
reduced while preserving the aspect ratio of width and height. Figure 8.2a, Figure 8.2b,
and Figure 8.2c demonstrate how PDFlib reduces the image size as the size of the fitbox
decreases from initially boxsize={70 45} to boxsize={70 30} and further to boxsize={30 30}.

Fig. 8.2 Fitting an image into a box subject to various fit methods

Fitting an image in the center of a box. In order to center an image within a pre-
defined rectangle you don’t have to do any calculations, but can achieve this with suit-
able options. With position=center we place the image in the center of the box, 70 units
wide and 45 high (boxsize={70 45}). Using fitmethod=meet, the image is proportionally re-
sized until its height completely fits into the box (see Figure 8.2d).

Decreasing the box width from 70 to 35 units forces PDFlib to scale down the image
until its width completely fits into the box (see Figure 8.2e).

With fitmethod=meet it is guaranteed that the image is not distorted and that it is
placed in the box as large as possible.

Generated output Option list for PDF_fit_image()

a)
boxsize={70 45} position=center fitmethod=auto
(no scaling necessary)

b)
boxsize={70 30} position=center fitmethod=auto
(scaled down to adjust for smaller box height)

c)
boxsize={30 30} position=center fitmethod=auto
(scaled down to adjust for smaller box height and width)

d) boxsize={70 45} position=center fitmethod=meet

e) boxsize={35 45} position=center fitmethod=meet

f) boxsize={70 45} position=center fitmethod=entire

g) boxsize={30 30} position=center fitmethod=clip

h) boxsize={30 30} position={right top} fitmethod=clip

8.4 Placing Images, Graphics, and imported PDF Pages 215

Completely fitting the image into a box. We can further fit the image so that it com-
pletely fills the box. This is accomplished with fitmethod=entire. However, this combina-
tion will rarely be useful since the image may be distorted (see Figure 8.2f).

Clipping an image when fitting it into a box. Using another fit method (fitmethod=
clip) we can clip the object if it exceeds the target box. We decrease the box size to a
width and height of 30 units and position the image in its original size at the center of
the box (see Figure 8.2g).

By positioning the image at the center of the box, the image will be cropped evenly
on all sides. Similarly, to completely show the upper right part of the image you can po-
sition it with position={right top} (see Figure 8.2h).

8.4.3 Orientating an Object

Placing an image with orientation. In our next example we orientate an image to-
wards western direction (orientate=west). This means that the image is rotated by 90˚
counterclockwise and then the lower left corner of the rotated object is translated to the
reference point (0, 0). The object will be rotated in itself (see Figure 8.5a). Since we have
not specified any fit method the image is output in its original size and exceeds the box.

Fitting an image proportionally into a box with orientation. Our next goal is to orien-
tate the image to the west with a predefined size. We define a box of the desired size and
fit the image into the box with the image’s proportions being unchanged
(fitmethod=meet). The orientation is specified as orientate=west. By default, the image
will be placed in the lower left corner of the box (see Figure 8.5b). Figure 8.5c shows the
image orientated to the east, and Figure 8.5d the orientation to the south.

The orientate option supports the direction keywords north, east, west, and south as
demonstrated in Figure 8.4.

Note that the orientate option has no influence on the whole coordinate system but
only on the placed object.

Fig. 8.3
The rotate option

Fig. 8.4
The orientate option

216 Chapter 8: Importing Images, SVG Graphics and PDF Pages

Fig. 8.5 Orientating an image

Fitting an oriented image into a box with clipping. We orientate the image to the east
(orientate=east) and position it centered at the bottom of the box (position={center
bottom}). In addition, we place the image in its original size and clip it if it exceeds the
box (fitmethod=clip) (see Figure 8.5e).

8.4.4 Rotating an Object
The rotate option rotates an object by rotating the coordinate system at the reference
point. As a result the fitbox is also rotated. Figure 8.3 demonstrates the general behavior
of the rotate option.

Placing an image with rotation. Our first goal is to rotate an image by 90˚ counter-
clockwise. Before placing the object the coordinate system is rotated at the reference
point by 90˚ counterclockwise. The rotated object’s lower right corner (which is the un-
rotated object’s lower left corner) ends up at the reference point. This case is shown in
Figure 8.6a.

Since the rotation affects the whole coordinate system, the box will be rotated as
well. Similarly, we can rotate the image by 30˚ counterclockwise (see Figure 8.6b).

Fitting an image with rotation. Our next goal is to fit the image rotated by 90˚ coun-
terclockwise into the box while maintaining its proportions. This is accomplished using
fitmethod=meet (see Figure 8.6c). Similarly, we can rotate the image by 30˚ counterclock-
wise and proportionally fit the image into the box (see Figure 8.6d).

Generated output Option list for PDF_fit_image()

a) boxsize={70 45} orientate=west1

1. The boxsize option isn’t actually required because of the default fitmethod=nofit.

b) boxsize={70 45} orientate=west fitmethod=meet

c) boxsize={70 45} orientate=east fitmethod=meet

d) boxsize={70 45} orientate=south fitmethod=meet

e)
boxsize={70 45} position={center bottom} orientate=east
fitmethod=clip

8.4 Placing Images, Graphics, and imported PDF Pages 217

Fig. 8.6 Rotating an image

8.4.5 Adjusting the Page Size

Adjusting the page size to an image. In the next example we will automatically adjust
the page size to the object’s size. This can be useful, for example, for archiving images in
the PDF format. The reference point (x, y) can be used to specify whether the page will
have exactly the object’s size, or somewhat larger or smaller. When enlarging the page
size (see Figure 8.7) some border will be kept around the image. If the page size is smaller
than the image some parts of the image will be clipped. Let’s start with exactly match-
ing the page size to the object’s size:

p.fit_image(image, 0, 0, "adjustpage");

The next code fragment increases the page size by 40 units in x and y direction, creating
a white border around the object:

p.fit_image(image, 40, 40, "adjustpage");

The next code fragment decreases the page size by 40 units in x and y direction. The ob-
ject will be clipped at the page borders, and some area within the object (with a width of
40 units) will be invisible:

p.fit_image(image, -40, -40, "adjustpage");

In addition to placing by means of x and y coordinates (which specify the object’s dis-
tance from the page edges, or the coordinate axes in the general case) you can also spec-

Generated output Option list for PDF_fit_image()

a) boxsize={70 45} rotate=901

1. The boxsize option isn’t actually required because of the default fitmethod=nofit.

b) boxsize={70 45} rotate=301

c) boxsize={70 45} rotate=90 fitmethod=meet

d) boxsize={70 45} rotate=30 fitmethod=meet

(x, y)

(x, y)

(x, y)

(x, y)

218 Chapter 8: Importing Images, SVG Graphics and PDF Pages

ify a target box. This is a rectangular area in which the object will be placed subject to
various formatting rules. These can be controlled with the boxsize, fitmethod and position
options.

Cloning the page boxes of an imported PDF page. You can copy all page boxes (Media-
Box, CropBox) etc. of an imported PDF page to the current output page. The cloneboxes
option must be supplied to PDF_open_pdi_page() to read all relevant box values, and
again in PDF_fit_pdi_page() to apply the box values to the current page:

/* Open the page and clone the page box entries */
inpage = p.open_pdi_page(indoc, 1, "cloneboxes");
...
/* Start the output page with a dummy page size */
p.begin_page_ext(10, 10, "");
...
/*
* Place the imported page on the output page, and clone all
* page boxes which are present in the input page; this will
* override the dummy size used in begin_page_ext().
*/
p.fit_pdi_page(inpage, 0, 0, "cloneboxes");

Using this technique you can make sure that the pages in the generated PDF will have
the exact same page size, cropping etc. as the pages of the imported document. This is
especially important for prepress applications.

8.4.6 Querying Information about placed Images and PDF Pages

Information about placed images and templates. The PDF_info_image() function can
be used to query image and template information. The supported keywords for this
function cover general image information (e.g. width and height in pixels) as well as ge-
ometry information related to placing the image on the output page (e.g. width and
height in absolute values after performing the fitting calculations).

The following code fragment retrieves both the pixel size and the absolute size after
placing an image with certain fitting options:

String optlist = "boxsize={300 400} fitmethod=meet orientate=west";
p.fit_image(image, 0.0, 0.0, optlist);

imagewidth = (int) p.info_image(image, "imagewidth", optlist);
imageheight = (int) p.info_image(image, "imageheight", optlist);
System.err.println("image size in pixels: " + imagewidth + " x " + imageheight);

width = p.info_image(image, "width", optlist);
height = p.info_image(image, "height", optlist);
System.err.println("image size in points: " + width + " x " + height);

Fig. 8.7
Adjusting the page

size. Left to right:
exact, enlarge,

shrink

8.4 Placing Images, Graphics, and imported PDF Pages 219

Information about placed PDF pages. The PDF_info_pdi_page() function can be used to
query information about placed PDF pages. The supported keywords for this function
cover information about the original page (e.g. its width and height) as well as geometry
information related to placing the imported PDF on the output page (e.g. width and
height after performing the fitting calculations).

The following code fragment retrieves both the original size of the imported page
and the size after placing the page with certain fitting options:

String optlist = "boxsize={400 500} fitmethod=meet";
p.fit_pdi_page(page, 0, 0, optlist);

pagewidth = p.info_pdi_page(page, "pagewidth", optlist);
pageheight = p.info_pdi_page(page, "pageheight", optlist);
System.err.println("original page size: " + pagewidth + " x " + pageheight);

width = p.info_pdi_page(page, "width", optlist);
height = p.info_pdi_page(page, "height", optlist);
System.err.println("size of placed page: " + width + " x " + height);

220 Chapter 8: Importing Images, SVG Graphics and PDF Pages

9.1 Placing and Fitting Textlines 221

9 Text and Table Formatting
9.1 Placing and Fitting Textlines

The function PDF_fit_textline() for placing a single line of text on a page offers a wealth
of formatting options. The most important options will be discussed in this section us-
ing some common application examples. A complete description of these options can
be found in the PDFlib API Reference. Most options for PDF_fit_textline() are identical to
those of PDF_fit_image(). Therefore we will only use text-related examples here; it is rec-
ommended to take a look at the examples in Section 8.4, »Placing Images, Graphics, and
imported PDF Pages«, page 213, for an introduction to image formatting.

The examples below demonstrate only the relevant call of PDF_fit_textline(), assum-
ing that the required font has already been loaded and set in the desired font size.

PDF_fit_textline() uses a hypothetical text box to determine the positioning of the
text: the width of the text box is identical to the width of the text, and the box height is
identical to the height of capital letters in the font. The text box can be modified by the
matchbox option.

In the examples below, the coordinates of the reference point are supplied as x, y pa-
rameters of PDF_fit_textline(). The fitbox for text lines is the area where text will be
placed. It is defined as the rectangular area specified with the x, y parameters of PDF_fit_
textline() and appropriate options (boxsize, fitmethod, position, rotate). The fitbox can be
reduced to the left/right or top/bottom with the margin option.

Cookbook Code samples regarding text output issues can be found in the text_output category of the
PDFlib Cookbook.

9.1.1 Simple Textline Placement

Positioning text at the reference point. By default, the text will be placed with the
lower left corner at the reference point. However, in this example we want to place the
text with the bottom centered at the reference point. The following code fragment plac-
es the text box with the bottom centered at the reference point (30, 20).

p.fit_textline(text, 30, 20, "position={center bottom}");

Figure 9.1 illustrates centered text placement. Similarly, you can use the position option
with another combination of the keywords left, right, center, top, and bottom to place text
at the reference point.

x

Kraxiy Kr
ax

i

x

y

Fig. 9.2
Simple text with
orientation west

Fig. 9.1
Centered text

http://www.pdflib.com/pdflib-cookbook/text_output/

222 Chapter 9: Text and Table Formatting

Placing text with orientation. Our next goal is to rotate text while placing its lower
left corner (after the rotation) at the reference point. The following code fragment ori-
entates the text to the west (90˚ counterclockwise) and then translates the lower left
corner of the rotated text to the reference point (0, 0).

p.fit_textline(text, 0, 0, "orientate=west");

Figure 9.2 illustrates simple text placement with orientation.

9.1.2 Positioning Text in a Box
In order to position the text, an additional box with predefined width and height can be
used, and the text can be positioned relative to this box. Figure 9.3 illustrates the gener-
al behavior

Positioning text in the box. We define a rectangular box and place the text within this
box on the top right. The following code fragment defines a box with a width of 50 units
and a height of 22 units at reference point (30, 20). In Figure 9.4a, the text is placed on
the top right of the box.

Similarly, we can place the text at the center of the bottom. This case is illustrated in
Figure 9.4b.

To achieve some distance between the text and the box we can add the margin option
(see Figure 9.4c).

Note that the box or line depicted for visualizing the box size in the figures is not
part of the actual output.

Fig. 9.4 Placing text in a box subject to various positioning options

Generated output Option list for PDF_fit_textline()

a) boxsize={50 22} position={right top}

b) boxsize={50 22} position={center bottom}

c) boxsize={50 22} position={center bottom} margin={0 3}

d) boxsize={50 0} position={center bottom}

20

20 Kraxi box 50 wide, 0 high
text at bottom center of the box

30

20
Kraxi box 50 wide, 22 high

text on top right of the box

Fig. 9.3 Positioning text in a box

Kraxi

Kraxi

Kraxi

Kraxi

9.1 Placing and Fitting Textlines 223

Aligning text at a horizontal or vertical line. Positioning text along a horizontal or
vertical line (i.e. a box with zero height or width) is a somewhat extreme case which may
be useful nevertheless. In Figure 9.4d the text is placed with the bottom centered at the
box. With a width of 50 and a height of 0, the box resembles to a horizontal line.

To align the text centered along a vertical line we will orientate it to the west and po-
sition it at the left center of the box. This case is shown in Figure 9.4e.

9.1.3 Fitting Text into a Box
In this section we use various fit methods to fit the text into the box. The current font
and font size are assumed to be the same in all examples so that we can see how the font
size and other properties will implicitly be changed by the different fit methods.

Let’s start with the default case: no fit method will be used so that no clipping or scal-
ing occurs. The text will be placed in the center of the box which is 100 units wide and 35
units high (see Figure 9.5a).

Decreasing the box width from 100 to 50 units doesn’t have any effect on the output.
The text will remain in its original font size and will exceed beyond the box (see Figure
9.5b).

Proportionally fitting text into a small box. Now we will completely fit the text into
the box while maintaining its proportions. This can be achieved with the option
fitmethod=auto. In Figure 9.5c the box is wide enough to keep the text in its original size
completely so that the text is placed into the box unchanged.

When scaling down the width of the box from 100 to 58, the text is too long to fit
completely. The auto fit method tries to condense the text horizontally, subject to the
shrinklimit option (default: 0.75). Figure 9.5d shows the text shrunk to 75 percent of its
original length.

When reducing the box width further to 30 units the text will not fit even with
shrinking. Then the meet method is applied. It decreases the font size until the text fits
completely into the box. This case is shown in Figure 9.5e.

Fitting the text into the box with increased font size. You might want to fit the text so
that it covers the whole width (or height) of the box but maintains its proportions. Us-
ing fitmethod=meet with a box larger than the text, the text will be increased until its
width matches the box width. This case is illustrated in Figure 9.5f.

Completely fitting text into a box. We can further fit the text so that it completely fills
the box. In this case, fitmethod=entire is used. However, this combination will rarely be
used since the text will most probably be distorted (see Figure 9.5g).

Fitting text into a box with clipping. In another rare case you might want to fit the
text in its original size and clip the text if it exceeds the box. In this case, fitmethod=clip

e) boxsize={0 35} position={left center} orientate=west

Generated output Option list for PDF_fit_textline()

Kr
ax

i

224 Chapter 9: Text and Table Formatting

can be used. In Figure 9.5h the text is placed at the bottom left of a box which is not
broad enough. The text will be clipped on the right.

Fig. 9.5 Fitting text into a box on the page subject to various options

Vertically centering text. The text height in PDF_fit_textline() is the capheight, i.e. the
height of the capital letter H, by default. If the text is positioned in the center of a box it
will be vertically centered according to its capheight (see Figure 9.6a).

To specify another height for the text box we can use the Matchbox feature (see also
Section 9.4, »Matchboxes«, page 267). The matchbox option of PDF_fit_textline() define
the height of a Textline which is the capheight of the given font size, by default. The
height of the matchbox is calculated according to its boxheight suboption. The boxheight
suboption determines the extent of the text above and below the baseline.
matchbox={boxheight={capheight none}} is the default setting, i.e. the top border of the
matchbox will touch the capheight above the baseline, and the bottom border of the
matchbox will not extend below the baseline.

Generated output Option list for PDF_fit_textline()

a) boxsize={100 35} position=center fontsize=12

b) boxsize={50 35} position=center fontsize=12

c)
boxsize={100 35} position=center fontsize=12
fitmethod=auto

d)
boxsize={58 35} position=center fontsize=12
fitmethod=auto

e)
boxsize={30 35} position=center fontsize=12
fitmethod=auto

f)
boxsize={100 35} position=center fontsize=12
fitmethod=meet

g)
boxsize={100 35} position=center fontsize=12
fitmethod=entire

h)
boxsize={50 35} position={left center}
fontsize=12 fitmethod=clip

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems
Kraxi Sys

9.1 Placing and Fitting Textlines 225

To illustrate the size of the matchbox we will fill it with red color (see Figure 9.6b).
Figure 9.6c vertically centers the text according to the xheight by defining a matchbox
with a corresponding box height.

Figure 9.6d–f shows the matchbox (red) with various useful boxheight settings to de-
termine the height of the text to be centered in the box.

Fig. 9.6 Fitting text proportionally into a box according to different box heights

9.1.4 Aligning Text at a Character
You might want to align text at a certain character, e.g. at the decimal point in a num-
ber. As shown in Figure 9.7a, the text is positioned at the center of the fitbox. Using PDF_
fit_textline() with the alignchar=. option the numbers are aligned at the dot character.

You can omit the position option which places the dots in the center of the box. In
this case, the default position={left bottom} will be used which places the dots at the ref-
erence point (see Figure 9.7b). In general, the alignment character will be placed with the
lower right corner at the reference point.

Fig. 9.7 Aligning a Textline to the dot character

Generated output Option list for PDF_fit_textline()

a) boxsize={80 20} position=center fitmethod=auto

b)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={capheight none} fillcolor=mistyrose}

c)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={xheight none} fillcolor=mistyrose}

d)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={ascender none} fillcolor=mistyrose}

e)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={ascender descender} fillcolor=mistyrose}

f)
boxsize={80 20} position=center fitmethod=auto
matchbox={boxheight={fontsize none} fillcolor=mistyrose}

Generated output Option list for PDF_fit_textline()

a) boxsize={70 8} position={center bottom} alignchar=.

b) boxsize={70 8} position={left bottom} alignchar=.

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

Kraxi Systems

127.123
12.01

123.0
4025.20

127.123
12.01

123.0
4025.20

226 Chapter 9: Text and Table Formatting

9.1.5 Placing a Stamp
Cookbook A full code sample can be found in the Cookbook topic text_output/simple_stamp.

As an alternative to rotated text, the stamp feature offers a convenient method for plac-
ing text diagonally in a box. The stamp function will automatically perform some so-
phisticated calculations to determine a suitable font size and rotation so that the text
covers the box. To place a diagonal stamp, e.g. in the page background, use PDF_fit_
textline() with the stamp option. With stamp=ll2ur the text is placed from the lower left
to the upper right corner of the fitbox. However, with stamp=ul2lr the text is placed
from the upper left to the lower right corner of the fitbox. The fitbox option is ignored.
As shown in Figure 9.8, showborder=true is used to illustrate the fitbox and the bounding
box of the stamp.

Fig. 9.8 Fitting a text line like a stamp from the lower left to the upper right

9.1.6 Using Leaders
Leaders can be used to fill the space between the borders of the fitbox and the text. For
example, dot leaders are often used as a visual aid between the entries in a table of con-
tents and the corresponding page numbers.

Leaders in a table of contents. Using PDF_fit_textline() with the leader option and the
alignment={none right} suboption, leaders are appended to the right of the text line, and
repeated until the right border of the text box. There will be an equal distance between
the rightmost leader and the right border, while the distance between the text and the
leftmost leader may differ (see Figure 9.9a).

Cookbook A full code sample demonstrating the usage of dot leaders in a text line can be found in the
Cookbook topic text_output/leaders_in_textline.

Cookbook A full code sample demonstrating the usage of dot leaders in a Textflow can be found in the
Cookbook topic textflow/dot_leaders_with_tabs.

Leaders in a news ticker. In another use case you might want to create a news ticker
effect. In this case we use a plus and a space character »+ « as leaders. The text line is
placed in the center, and the leaders are printed before and after the text line
(alignment={left right}). The left and right leaders are aligned to the left and right border,
and might have a varying distance to the text (see Figure 9.9b).

Generated output Option list for PDF_fit_textline()

fontsize=8 boxsize={160 50} stamp=ll2ur showborder=trueGiant Wing

http://www.pdflib.com/pdflib-cookbook/text_output/simple_stamp/
http://www.pdflib.com/pdflib-cookbook/text_output/leaders_in_textline/
http://www.pdflib.com/pdflib-cookbook/textflow/dot_leaders_with_tabs/

9.1 Placing and Fitting Textlines 227

Fig. 9.9 Fitting a text line using leaders

9.1.7 Text on a Path
Instead of placing text on a straight line you can also place text on an arbitrary path.
PDFlib will place the individual characters along the path so that the text follows the
curvature of the path. Use the textpath option of PDF_fit_textline() to create text on a
path. The path must have been created earlier and is represented by a path handle. Path
handles can be created by explicitly constructing a path with PDF_add_path_point() and
related path object functions, or by retrieving a handle for the clipping path in an exist-
ing raster image. The following code fragment creates a simple path and places text on
the path (see Figure 9.10):

/* Define the path in the origin */
path = p.add_path_point(-1, 0, 0, "move", "");
path = p.add_path_point(path, 100, 100, "control", "");
path = p.add_path_point(path, 200, 0, "circular", "");

/* Place text on the path */
p.fit_textline("Long Distance Glider with sensational range!", x, y,
 "textpath={path=" + path + "} position={center bottom}");

/* We also draw the path for demonstration purposes */
p.draw_path(path, x, y, "stroke strokecolor=dodgerblue");

Cookbook A full code sample can be found in the Cookbook topic text_output/text_on_a_path.

Generated output Option list for PDF_fit_textline()

a)
boxsize={200 10}
leader={alignment={none right}}

b)

boxsize={200 10}
position={center bottom}
leader={alignment={left right}
text={+ }}

Features of Giant Wing ..

Description of Long Distance Glider.................................

Benefits of Cone Head Rocket ...

Giant Wing in purple!+ + + + + + + + + + + + + + + + + +

Long Distance Glider with sensational range!+ + + +

Cone Head Rocket incredibly fast!+ + + + + + + + + +

Lo
ng

 D
ist

an
ce Glider with sensational range!

Fig. 9.10
Text on a path

http://www.pdflib.com/pdflib-cookbook/text_output/text_on_a_path/

228 Chapter 9: Text and Table Formatting

Using an image clipping path for placing text. As an alternative to manually con-
structing a path object with the path functions you can extract the clipping path from
an image and place text on the resulting path. The image must have been loaded with
the honorclippingpath option, and the clippingpathname option must also be supplied to
PDF_load_image() if the target path is not the image’s default clipping path:

image = p.load_image("auto", "image.tif", "clippingpathname={path 1}");

/* create a path object from the image’s clipping path */
path = (int) p.info_image(image, "clippingpath", "");
if (path == -1)

throw new Exception("Error: clipping path not found!");

/* Place text on the path */
p.fit_textline("Long Distance Glider with sensational range!", x, y,
 "textpath={path=" + path + "} position={center bottom}");

Creating a gap between path and text. By default, PDFlib places individual characters
directly on the path, i.e. there is no space between the glyphs and the path. If you want
to create a gap between the path and the text you can increase the character boxes. This
can be achieved with boxheight suboption of the matchbox option which specifies the
vertical extension of the character boxes. The following option list takes the descenders
into account (see Figure 9.11):

p.fit_textline("Long Distance Glider with sensational range!", x, y,
 "textpath={path=" + path + "} position={center bottom} " +

"matchbox={boxheight={capheight descender}}");

9.1.8 Shadowed Text
The shadow option can be used to create a shadow effect for text. You can specify the
shadow color as well as its horizontal and vertical distance from the main text in subop-
tions:

p.fit_textline("Long Distance Glider", x, y,
 "fillcolor=rosybrown shadow={offset={3, -3}}");

Lo
ng

 D
ist

an
ce Glider with sensational range!

Fig. 9.11
Text on a path with an additional
gap between text and path

9.1 Placing and Fitting Textlines 229

9.1.9 Watermarks which can be edited in Acrobat
Cookbook A full code sample can be found in the Cookbook topic text_output/watermark.

The Textline functionality can be used to apply a variety of formatting options to text.
The text becomes an integral part of the page and cannot easily be modified in the final
PDF document. However, Acrobat offers a »Watermark« feature for page content which
can later be modified or deleted in Adobe Acrobat (but not the free Reader). Note that
this feature is not part of the PDF standard ISO 32000, but is a private extension imple-
mented in Acrobat. This feature is therefore not guaranteed to work in all standard-con-
forming PDF viewers.

Acrobat watermarks work by wrapping one or more lines of text, an image, or a PDF
page within a template (Form XObject) and adding an XML description of the water-
mark’s formatting properties. Proceed as follows to edit an existing watermark in Acro-
bat:

> Acrobat DC: click Tools, Edit PDF, Watermark, Update... or Remove... .
> Acrobat XI: click Tools, Pages, Edit Page Design, Watermark, Update... or Remove... .

This brings up the Watermark dialog (see Figure 9.12) where the watermark text, its
placement and appearance as well as the set of target pages can be specified. The text
appearance may change after using this dialog since the dialog does not support the full
range of text formatting options, e.g. character spacing, underline, text rendering mode
etc.

The watermark can be specified to appear on the screen display, printed page, or
both (Appearance Options... in the Acrobat dialog). This is achieved via a layer called
Watermark with the appropriate screen and print settings. Note that layers and layer op-
tions are subject to various restrictions in PDF/A, PDF/X and PDF/UA.

Fig. 9.12
Acrobat’s
Watermark
dialog

http://www.pdflib.com/pdflib-cookbook/text_output/watermark/

230 Chapter 9: Text and Table Formatting

PDFlib supports the watermark feature with an extension to the template function-
ality. When a template is created with PDF_begin_template_ext() it can be marked with
the watermark option. In this case the template must only contain a single line of text
which has been created with PDF_fit_textline(). The resulting watermark text is auto-
matically added to all pages (or optionally a subset of pages), and can later be modified
or removed with Acrobat.

Note Watermarks containing multiple lines, images, or PDF pages are not currently supported.

The following code fragment demonstrates the definition of an editable watermark. The
watermark is automatically added to all pages which are created after defining the wa-
termark. Note that the specified font size is irrelevant since the resulting template is fit-
ted in the page anyway:

p.begin_template_ext(0, 0, "watermark={location=ontop opacity=60%}");

p.fit_textline("Preliminary", 0, 0,
"fontsize=12 fontname=Helvetica-Bold encoding=unicode fillcolor=red " +
"boxsize={595 842} stamp=ll2ur");

p.end_template_ext(0, 0);

9.2 Multi-Line Textflows 231

9.2 Multi-Line Textflows
In addition to placing single lines of text on the page, PDFlib supports a feature called
Textflow which can be used to place arbitrarily long text portions. The text may extend
across any number of lines, columns, or pages, and its appearance can be controlled
with a variety of options. Character properties such as font, size, and color can be ap-
plied to any part of the text. Textflow properties such as justified or ragged text, para-
graph indentation and tab stops can be specified; line breaking opportunities designat-
ed by soft hyphens in the text will be taken into account. Figure 9.13 and Figure 9.14
demonstrate how various parts of an invoice can be placed on the page using the Text-
flow feature. We will discuss the options for controlling the output in more detail in the
following sections.

leading
= 140%

parindent
= 7%

leftindent
= 55

alignment
= left

rightindent
= 60

alignment
= justify

minlinecount
= 2

17, Aviation Road
Paperfield

Phone 7079-4301
Fax 7079-4302

www.kraxi.com
info@kraxi.com

Kraxi Systems, Inc.
Paper Planes

Kraxi Systems, Inc. 17, Aviation Road Paperfield

John Q. Doe
255 Customer Lane
Suite B
12345 User Town
Everland

INVOICE 14.03.2004

ITEM DESCRIPTION QUANTITY PRICE AMOUNT
1 Super Kite 2 20,00 40,00
2 Turbo Flyer 5 40,00 200,00
3 Giga Trash 1 180,00 180,00
4 Bare Bone Kit 3 50,00 150,00
5 Nitty Gritty 10 20,00 200,00
6 Pretty Dark Flyer 1 75,00 75,00
7 Free Gift 1 0,00 0,00

845,00

Terms of payment: 30 days net. 30 days warranty starting at the day of sale. This
warranty covers defects in workmanship only. Kraxi Systems, Inc., at its option, repairs or
replaces the product under warranty. This warranty is not transferable. Returns or
exchanges are not possible for wet products.

Have a look at our new paper plane models!
Our paper planes are the ideal way of passing the time. We offer revolutionary

new developments of the traditional common paper planes. If your lesson,
conference, or lecture turn out to be deadly boring, you can have a wonderful time
with our planes. All our models are folded from one paper sheet.

They are exclusively folded without using any adhesive. Several models are
equipped with a folded landing gear enabling a safe landing on the intended location
provided that you have aimed well. Other models are able to fly loops or cover long
distances. Let them start from a vista point in the mountains and see where they
touch the ground.

1. Long Distance Glider
With this paper rocket you can send all your messages even when
sitting in a hall or in the cinema pretty near the back.

2. Giant Wing
An unbelievable sailplane! It is amazingly robust and can even do

hortabmethod ruler
tabalignment left rightright right right

ruler 30 45 475375275

leftindent = 75

leftindent = 105

Fig. 9.13
Formatting
Textflows

232 Chapter 9: Text and Table Formatting

A multi-line Textflow can be placed into one or more rectangles (so-called fitboxes)
on one or more pages. The following steps are required for placing a Textflow on the
page:

> The function PDF_add_textflow() accepts portions of text and corresponding format-
ting options, creates a Textflow object, and returns a handle. As an alternative, the
function PDF_create_textflow() analyzes the complete text in a single call, where the
text may contain inline options for formatting control. These functions do not place
any text on the page.

> The function PDF_fit_textflow() places all or parts of the Textflow in the supplied fit-
box. To completely place the text, this step must possibly be repeated several times
where each of the function calls provides a new fitbox which may be located on the
same or another page.

> The function PDF_delete_textflow() deletes the Textflow object after it has been
placed in the document.

The functions PDF_add/create_textflow() for creating Textflows support a variety of op-
tions for controlling the formatting process. These options can be provided in the func-
tion’s option list, or embedded as inline options in the text when using PDF_create_
textflow(). PDF_info_textflow() can be used to query formatting results and many other
Textflow details. We will discuss Textflow placement using some common application
examples. A complete list of Textflow options can be found in the PDFlib API Reference.

Many of the options supported by PDF_add/create_textflow() are identical to those of
PDF_fit_textline(). It is therefore recommended to familiarize yourself with the exam-
ples in Section 9.1, »Placing and Fitting Textlines«, page 221. In the below sections we will
focus on options related to multi-line text.

Cookbook Code samples regarding text output issues can be found in the text_output category of the
PDFlib Cookbook.

9.2.1 Placing Textflows in the Fitbox
The fitbox for Textflow is the area where text will be placed. It is defined as the rectan-
gular area specified with the llx, lly, urx, ury parameters of PDF_fit_textflow().

Placing text in a single fitbox. Let’s start with an easy example. The following code
fragment uses two calls to PDF_add_textflow() to assemble a piece of bold text and a

aerobatics. But it is best suited to gliding.

3. Cone Head Rocket
This paper arrow can be thrown with big swing. We launched it from
the roof of a hotel. It stayed in the air a long time and covered a
considerable distance.

4. Super Dart
The super dart can fly giant loops with a radius of 4 or 5 meters and
cover very long distances. Its heavy cone point is slightly bowed
upwards to get the lift required for loops.

5. German Bi-Plane
Brand-new and ready for take-off. If you have lessons in the history of
aviation you can show your interest by letting it land on your teacher's
desk.

fillcolor, charspacing,
fontsize, fontname

Fig. 9.14
Formatting
Textflows

http://www.pdflib.com/pdflib-cookbook/text_output/

9.2 Multi-Line Textflows 233

piece of normal text. Font, font size, and encoding are specified explicitly. In the first
call to PDF_add_textflow(), -1 is supplied, and the Textflow handle will be returned to be
used in subsequent calls to PDF_add_textflow(), if required. text1 and text2 are assumed
to contain the actual text to be printed.

With PDF_fit_textflow(), the resulting Textflow is placed in a fitbox on the page using
default formatting options.

/* Add text with bold font */
tf = p.add_textflow(-1, text1, "fontname=Helvetica-Bold fontsize=9 encoding=unicode");
if (tf == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Add text with normal font */
tf = p.add_textflow(tf, text2, "fontname=Helvetica fontsize=9 encoding=unicode");
if (tf == -1)

throw new Exception("Error: " + p.get_errmsg());

/* Place all text */
result = p.fit_textflow(tf, left_x, left_y, right_x, right_y, "");
if (!result.equals("_stop"))

{ /* ... */}

p.delete_textflow(tf);

Placing text in two fitboxes on multiple pages. If the text placed with PDF_fit_
textflow() doesn’t completely fit into the fitbox, the output will be interrupted and the
function will return the string _boxfull. PDFlib will remember the amount of text al-
ready placed, and will continue with the remainder of the text when the function is
called again. In addition, it may be necessary to create a new page. The following code
fragment demonstrates how to place a Textflow in two fitboxes per page on one or
more pages until the text has been placed completely (see Figure 9.15).

Cookbook A full code sample can be found in the Cookbook topic textflow/starter_textflow.

/* Loop until all of the text is placed; create new pages as long as more text needs
* to be placed. Two columns will be created on all pages.

*/

1 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 2 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
3 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 4 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
5 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 6 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
7 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure

dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 8 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
9 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 10 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
11 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 12 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
13 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 14 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do

eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
15 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 16 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
17 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 18 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
19 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 20 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat

nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
21 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 22 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
23 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 24 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
25 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excep-
teur sint occaecat cupidatat non proident,
sunt in culpa qui officia deserunt mollit anim
id est laborum. 26 Lorem ipsum dolor sit
amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo con-
sequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
27 Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.

fitbox 1

Fig. 9.15
Placing a Textflow
in fitboxes

fitbox 2 fitbox 3 fitbox 4
page 1 page 2

http://www.pdflib.com/pdflib-cookbook/textflow/starter_textflow/

234 Chapter 9: Text and Table Formatting

do
{

String optlist = "verticalalign=justify linespreadlimit=120%";

p.begin_page_ext(0, 0, "width=a4.width height=a4.height");

/* Fill the first column */
result = p.fit_textflow(tf, llx1, lly1, urx1, ury1, optlist);

/* Fill the second column if we have more text*/
if (!result.equals("_stop"))

result = p.fit_textflow(tf, llx2, lly2, urx2, ury2, optlist);

p.end_page_ext("");

/* "_boxfull" means we must continue because there is more text;
 * "_nextpage" is interpreted as "start new column"
 */

} while (result.equals("_boxfull") || result.equals("_nextpage"));

/* Check for errors */
if (!result.equals("_stop"))
{

/* "_boxempty" happens if the box is very small and doesn't hold any text at all.
*/
if (result.equals("_boxempty"))

throw new Exception("Error: " + p.get_errmsg());
else
{

/* Any other return value is a user exit caused by the "return" option;
 * this requires dedicated code to deal with.
*/

}
}
p.delete_textflow(tf);

9.2.2 Paragraph Formatting Options
In the previous example we used default settings for the paragraphs. For example, the
default alignment is left-justified, and the leading is 100% (which equals the font size).

In order to fine-tune the paragraph formatting we can feed more options to PDF_
add_textflow(). For example, we can indent the text 15 units from the left and 10 units
from the right margin. The first line of each paragraph should be indented by an addi-
tional 20 units. The text should be justified against both margins, and the leading in-
creased to 140%. Finally, we’ll reduce the font size to 8 points. To achieve this, extend
the option list for PDF_add_textflow() as follows (see Figure 9.16):

String optlist =
"leftindent=15 rightindent=10 parindent=20 alignment=justify " +
"leading=140% fontname=Helvetica fontsize=8 encoding=unicode";

9.2.3 Inline Option Lists and Macros
The text in Figure 9.16 is not yet perfect. The headline »Have a look at our new paper
plane models!« should sit on a line of its own, should use a larger font, and should be
centered. There are several ways to achieve this.

9.2 Multi-Line Textflows 235

Inline option lists for PDF_create_textflow(). Up to now we provided formatting op-
tions in an option list supplied directly to the function. In order to continue the same
way we would have to split the text, and place it in two separate calls, one for the head-
line and another one for the remaining text. However, in certain situations, e.g. with
lots of formatting changes, this method might be pretty cumbersome.

For this reason, PDF_create_textflow() can be used instead of PDF_add_texflow(). PDF_
create_textflow() interprets text and so-called inline options which are embedded di-
rectly in the text. Inline option lists are provided as part of the body text. By default,
they are delimited by »<« and »>« characters. We will therefore integrate the options for
formatting the heading and the remaining paragraphs into our body text as follows.

Note Inline option lists are colorized in all subsequent samples; end-of-paragraph characters are vi-
sualized with arrows.

<leftindent=15 rightindent=10 alignment=center fontname=Helvetica fontsize=12
encoding=winansi>Have a look at our new paper plane models!
<alignment=justify fontname=Helvetica leading=140% fontsize=8 encoding=winansi>
Our paper planes are the ideal way of passing the time. We offer
revolutionary new developments of the traditional common paper planes.
<parindent=20>If your lesson, conference, or lecture
turn out to be deadly boring, you can have a wonderful time
with our planes. All our models are folded from one paper sheet.
They are exclusively folded without using any adhesive. Several
models are equipped with a folded landing gear enabling a safe

Have a look at our new paper plane models! Our paper planes
are the ideal way of passing the time. We offer revolutionary new
developments of the traditional common paper planes.

If your lesson, conference, or lecture turn out to be deadly boring,
you can have a wonderful time with our planes. All our models are
folded from one paper sheet.

They are exclusively folded without using any adhesive. Several
models are equipped with a folded landing gear enabling a safe landing
on the intended location provided that you have aimed well. Other
models are able to fly loops or cover long distances. Let them start
from a vista point in the mountains and see where they touch the
ground.

leading = 140%

parindent = 20

leftindent = 15
rightindent = 10

alignment =
justify

Fig. 9.16
Placing a Textflow

with options

Have a look at our new paper plane models!
Our paper planes are the ideal way of passing the time. We offer
revolutionary new developments of the traditional common paper
planes.

If your lesson, conference, or lecture turn out to be deadly boring,
you can have a wonderful time with our planes. All our models are
folded from one paper sheet.

They are exclusively folded without using any adhesive. Several
models are equipped with a folded landing gear enabling a safe landing
on the intended location provided that you have aimed well. Other
models are able to fly loops or cover long distances. Let them start
from a vista point in the mountains and see where they touch the
ground.

H1
Body

Body_indented

Fig. 9.17
Combining inline

options with macros

236 Chapter 9: Text and Table Formatting

landing on the intended location provided that you have aimed well.
Other models are able to fly loops or cover long distances. Let them
start from a vista point in the mountains and see
where they touch the ground.

The characters for bracketing option lists can be redefined with the begoptlistchar and
endoptlistchar options. Supplying the keyword none for the begoptlistchar option com-
pletely disables the search for option lists. This is useful if the text doesn’t contain any
inline option lists, and you want to make sure that »<« and »>« will be processed as reg-
ular characters.

Symbol characters and inline option lists. Symbolic characters can be used for Text-
flow even in combination with inline option lists. The code for the character which in-
troduces an inline option list (by default: ’<’ U+003C) will not be interpreted as a symbol
code within text for a font with encoding=builtin. In order to select the symbol glyph
with the same code, the same workarounds can be used which are available for text
fonts, i.e. by redefining the start character with the begoptlistchar option or by using the
textlen option to specify the number of symbolic glyphs. Note that character references
(e.g. <) can not be used as a workaround.

Macros. The text above contains several different types of paragraphs, such as head-
ing or body text with or without indentation. Each of these paragraph types is format-
ted differently and occurs multiply in longer Textflows. In order to avoid starting each
paragraph with the corresponding inline options, we can combine these in macros, and
refer to the macros in the text via their names. As shown in Figure 9.17 we define three
macros called H1 for the heading, Body for main paragraphs, and Body_indented for in-
dented paragraphs. In order to use a macro we place the & character in front of its name
and put it into an option list. The following code fragment defines three macros accord-
ing to the previously used inline options and uses them in the text:

<macro {
H1 {leftindent=15 rightindent=10 alignment=center
fontname=Helvetica fontsize=12 encoding=winansi}

Body {leftindent=15 rightindent=10 alignment=justify leading=140%
fontname=Helvetica fontsize=8 encoding=winansi}

Body_indented {parindent=20 leftindent=15 rightindent=10 alignment=justify
leading=140% fontname=Helvetica fontsize=8 encoding=winansi}
}>
<&H1>Have a look at our new paper plane models!
<&Body>Our paper planes are the ideal way of passing the time. We offer
revolutionary new developments of the traditional common paper planes.
<&Body_indented>If your lesson, conference, or lecture
turn out to be deadly boring, you can have a wonderful time
with our planes. All our models are folded from one paper sheet.
They are exclusively folded without using any adhesive. Several
models are equipped with a folded landing gear enabling a safe
landing on the intended location provided that you have aimed well.
Other models are able to fly loops or cover long distances. Let them
start from a vista point in the mountains and see
where they touch the ground.

9.2 Multi-Line Textflows 237

Explicitly setting options. Note that all options which are not set in macros will retain
their previous values. In order to avoid side effects caused by unwanted »inheritance«
of options you should explicitly specify all settings required for a particular macro. This
way you can ensure that the macros will behave consistently regardless of their order-
ing or combination with other option lists.

On the other hand, you can take advantage of this behavior for deliberately retaining
certain settings from the context instead of supplying them explicitly. For example, a
macro could specify the font name without supplying the fontsize option. As a result,
the font size will always match that of the preceding text.

Inline options or options passed as function parameters? When using Textflows it
makes an important difference whether the text is contained literally in the program
code or comes from some external source, and whether the formatting instructions are
separate from the text or part of it. In most applications the actual text will come from
some external source such as a database. In practise there are two main scenarios:

> Text contents from external source, formatting options in the program: An external
source delivers small text fragments which are assembled within the program, and
combined with formatting options (in the function call) at runtime.

> Text contents and formatting options from external source: Large amounts of text
including formatting options come from an external source. The formatting is pro-
vided by inline options in the text, represented as simple options or macros. When it
comes to macros a distinction must be made between macro definition and macro
call. This allows an interesting intermediate form: the text content comes from an
external source and contains macro calls for formatting. However, the macro defini-
tions are only blended in at runtime. This has the advantage that the formatting can
easily be changed without having to modify the external text. For example, when
generating greeting cards one could define different styles via macros to give the
card a romantic, technical, or other touch.

9.2.4 Tab Stops
In the next example we will place a simple table with left- and right-aligned columns
using tab characters. The table contains the following lines of text, where individual en-
tries are separated from each other with a tab character (indicated by arrows):

ITEM DESCRIPTION QUANTITY PRICE AMOUNT
1 Super Kite 2 20.00 40.00
2 Turbo Flyer 5 40.00 200.00
3 Giga Trash 1 180.00 180.00

 TOTAL 420.00

To place that simple table use the following option list in PDF_add/create_textflow(). The
ruler option defines the tab positions, tabalignment specifies the alignment of tab stops,
and hortabmethod specifies the method used to process tab stops (the result can be seen
in Figure 9.18):

String optlist =
"ruler ={30 150 250 350} " +
"tabalignment={left right right right} " +
"hortabmethod=ruler leading=120% fontname=Helvetica fontsize=9 encoding=winansi";

238 Chapter 9: Text and Table Formatting

Cookbook A full code sample can be found in the Cookbook topic textflow/tabstops_in_text.

Note PDFlib’s table feature is recommended for creating complex tables (see Section 9.3, »Table For-
matting«, page 251).

9.2.5 Numbered Lists and Paragraph Spacing
The following example demonstrates how to format a numbered list using the inline
option leftindent (see Figure 9.19):

1.<leftindent 10>Long Distance Glider: With this paper rocket you can send all
your messages even when sitting in a hall or in the cinema pretty near the back.
<leftindent 0>2.<leftindent 10>Giant Wing: An unbelievable sailplane! It is amazingly
robust and can even do aerobatics. But it is best suited to gliding.
<leftindent 0>3.<leftindent 10>Cone Head Rocket: This paper arrow can be thrown with big
swing. We launched it from the roof of a hotel. It stayed in the air a long time and
covered a considerable distance.

Cookbook Full code samples for bulleted and numbered lists can be found in the Cookbook topics
textflow/bulleted_list and textflow/numbered_list.

Setting and resetting the indentation value is cumbersome, especially since it is re-
quired for each paragraph. A more elegant solution defines a macro called list. For con-
venience it defines a macro indent which is used as a constant. The macro definitions are
as follows:

<macro {
indent {25}

list {parindent=-&indent leftindent=&indent hortabsize=&indent
hortabmethod=ruler ruler={&indent}}
}>
<&list>1. Long Distance Glider: With this paper rocket you can send all your messages
even when sitting in a hall or in the cinema pretty near the back.
2. Giant Wing: An unbelievable sailplane! It is amazingly robust and can even do
aerobatics. But it is best suited to gliding.

hortabmethod ruler
tabalignment left right right right

ruler 30 350250150

ITEM DESCRIPTION QUANTITY PRICE AMOUNT
1 Super Kite 2 20.00 40.00
2 Turbo Flyer 5 40.00 200.00
3 Giga Trash 1 180.00 180.00

TOTAL 420.00

Fig. 9.18
Placing text

as a table

1. Long Distance Glider: With this paper rocket you can send all your
messages even when sitting in a hall or in the cinema pretty near the
back.

2. Giant Wing: An unbelievable sailplane! It is amazingly robust and can
even do aerobatics. But it is best suited to gliding.

3. Cone Head Rocket: This paper arrow can be thrown with big swing. We
launched it from the roof of a hotel. It stayed in the air a long time and
covered a considerable distance.

Fig. 9.19
Numbered list

http://www.pdflib.com/pdflib-cookbook/textflow/tabstops_in_text/
http://www.pdflib.com/pdflib-cookbook/textflow/bulleted_list/
http://www.pdflib.com/pdflib-cookbook/textflow/numbered_list/

9.2 Multi-Line Textflows 239

3. Cone Head Rocket: This paper arrow can be thrown with big swing. We launched
it from the roof of a hotel. It stayed in the air a long time and covered a
considerable distance.

The leftindent option specifies the distance from the left margin. The parindent option,
which is set to the negative of leftindent, cancels the indentation for the first line of each
paragraph. The options hortabsize, hortabmethod, and ruler specify a tab stop which cor-
responds to leftindent. It makes the text after the number to be indented with the
amount specified in leftindent. Figure 9.20 shows the parindent and leftindent options at
work.

Setting the distance between two paragraphs. In many cases more distance between
adjacent paragraphs is desired than between the lines within a paragraph. This can be
achieved by inserting an extra empty line (which can be created with the nextline op-
tion), and specifying a suitable leading value for this empty line. This value is the dis-
tance between the baseline of the last line of the previous paragraph and the baseline of
the empty line. The following example will create 80% additional space between the
two paragraphs (where 100% equals the most recently set value of the font size):

1. Long Distance Glider: With this paper rocket you can send all your messages
even when sitting in a hall or in the cinema pretty near the back.
<nextline leading=80%><nextparagraph leading=100%>2. Giant Wing: An unbelievable
sailplane! It is amazingly robust and can even do aerobatics. But it is best suited to
gliding.

Cookbook A full code sample can be found in the Cookbook topic textflow/distance_between_
paragraphs.

9.2.6 Control Characters and Character Mapping

Control characters in Textflows. Various characters are given special treatment in
Textflows. PDFlib supports symbolic character names which can be used instead of the
corresponding character codes in the charmapping option (which replaces characters in
the text before processing it, see below). Table 9.1 lists all control characters which are
evaluated by the Textflow functions along with their symbolic names, and explains
their meaning. An option must only be used once per option list, but multiple option
lists can be provided one after the other. For example, the following sequence will cre-
ate an empty line:

<nextline><nextline>

leftindent = &indent
parindent = – &indent 1. Long Distance Glider: With this paper rocket you can send all your

messages even when sitting in a hall or in the cinema pretty near
the back.

2. Giant Wing: An unbelievable sailplane! It is amazingly robust and
can even do aerobatics. But it is best suited to gliding.

3. Cone Head Rocket: This paper arrow can be thrown with big swing.
We launched it from the roof of a hotel. It stayed in the air a long
time and covered a considerable distance.

Fig. 9.20
Numbered list with

macros

http://www.pdflib.com/pdflib-cookbook/textflow/distance_between_paragraphs/
http://www.pdflib.com/pdflib-cookbook/textflow/distance_between_paragraphs/

240 Chapter 9: Text and Table Formatting

Mapping/removing characters or sequences of characters. The charmapping option
can be used to map or remove some characters in the text to others. Let’s start with an
easy case where we will map all tabs in the text to space characters. The charmapping op-
tion to achieve this looks as follows:

charmapping={hortab space}

This command uses the symbolic character names hortab and space. To achieve multiple
mappings at once you can use the following command which will replace all tabs and
line break combinations with space characters:

charmapping={hortab space CRLF space LF space CR space}

The following command removes all soft hyphens:

charmapping={shy {shy 0}}

Each tab character will be replaced with four space characters:

charmapping={hortab {space 4}}

Each arbitrary long sequence of linefeed characters will be reduced to a single linefeed
character:

charmapping={linefeed {linefeed -1}}

Each sequence of CRLF combinations will be replaced with a single space:

Table 9.1 Control characters and their meaning in Textflows

Unicode character entity name
equiv. Text-
flow option meaning within Textflows

U+0020 SP, space space align words and break lines

U+00A0 NBSP, nbsp (none) (no-break space) space character which will not break lines

U+202F NNBSP,
nnbsp

(none) (narrow no-break space) fixed-width space character which will
not break lines, and will not change its width according to format-
ting options

U+0009 HT, hortab (none) horizontal tab: will be processed according to the ruler,
tabalignchar, and tabalignment options

U+002D HY, hyphen (none) separator character for hyphenated words

U+00AD SHY, shy (none) (soft hyphen) hyphenation opportunity, only visible at line breaks

U+000B
U+2028

VT, verttab
LS, linesep

nextline (next line) forces a new line

U+000A
U+000D
U+000D and
U+000A
U+0085
U+2029

LF, linefeed
CR, return
CRLF

NEL, newline
PS, parasep

next-
paragraph

(next paragraph) Same effect as nextline; in addition, the
parindent option will affect the next line.

U+000C FF, formfeed return PDF_fit_textflow() stops and returns the string _nextpage.

9.2 Multi-Line Textflows 241

charmapping={CRLF {space -1}}

We will take a closer look at the last example. Let’s assume you receive text where the
lines have been separated with fixed line breaks by some other software, and therefore
cannot be properly formatted. You want to replace the linebreaks with space characters
in order to achieve proper formatting within the fitbox. To achieve this we replace arbi-
trarily long sequences of linebreaks with a single space character. The initial text looks
as follows:

To fold the famous rocket looper proceed as follows:
Take a sheet of paper. Fold it
lengthwise in the middle.
Then, fold down the upper corners. Fold the
long sides inwards
that the points A and B meet on the central fold.

The following code fragment demonstrates how to replace the redundant linebreak
characters and format the resulting text:

/* assemble option list */
String optlist =

"fontname=Helvetica fontsize=9 encoding=winansi alignment=justify " +
"charmapping {CRLF {space -1}}"

/* place textflow in fitbox */
textflow = p.add_textflow(-1, text, optlist);
if (textflow == -1)

throw new Exception("Error: " + p.get_errmsg());

result = p.fit_textflow(textflow, left_x, left_y, right_x, right_y, "");
if (!result.equals("_stop"))

{ /* ... */ }

p.delete_textflow(textflow);

Figure 9.21 shows Textflow output with the unmodified text and the improved version
with the charmapping option.

To fold the famous rocket looper proceed as follows:

Take a sheet of paper. Fold it
lengthwise in the middle.
Then, fold down the upper corners. Fold the
long sides inwards
that the points A and B meet on the central fold.

To fold the famous rocket looper proceed as follows: Take a sheet of
paper. Fold it lengthwise in the middle. Then, fold down the upper
corners. Fold the long sides inwards that the points A and B meet on
the central fold.

Fig. 9.21
Top: text with redundant line
breaks

Bottom: replacing the linebreaks
with the charmapping option

242 Chapter 9: Text and Table Formatting

9.2.7 Hyphenation
PDFlib does not automatically hyphenate text, but can break words at hyphenation op-
portunities which are explicitly marked in the text by soft hyphen characters. The soft
hyphen character is at position U+00AD in Unicode, but several methods are available
for specifying the soft hyphen in non-Unicode environments:

> In all cp1250 – cp1258 (including winansi) and iso8859-1 – iso8859-16 encodings the soft
hyphen is at decimal 173, octal 255, or hexadecimal 0xAD.

> In ebcdic encoding the soft hyphen is at decimal 202, octal 312, or hexadecimal 0xCA.
> A character entity reference can be used if an encoding does not contain the soft hy-

phen character (e.g. macroman): ­

The glyph U+00AD will be used as hyphenation character if it is available in the font,
otherwise U+002D. In addition to breaking opportunities designated by soft hyphens,
words can be forcefully hyphenated in extreme cases when other methods of adjust-
ment, such as changing the word spacing or shrinking text, are not possible.

Justified text with or without hyphen characters. In the following example we will
print the following text with justified alignment. The text contains soft hyphen charac-
ters (visualized here as dashes):

Our paper planes are the ideal way of pas sing the time. We offer revolu tionary
brand new dev elop ments of the tradi tional common paper planes. If your lesson,
confe rence, or lecture turn out to be deadly boring, you can have a wonder ful time
with our planes. All our models are folded from one paper sheet. They are exclu sively
folded without using any adhe sive. Several models are equip ped with a folded
landing gear enab ling a safe landing on the intended loca tion provided that you
have aimed well. Other models are able to fly loops or cover long dist ances. Let them
start from a vista point in the mount ains and see where they touch the ground.

Figure 9.22 shows the generated text output with default settings for justified text. It
looks perfect since the conditions are optimal: the fitbox is wide enough, and there are
explicit break opportunities specified by the soft hyphen characters. As you can see in
Figure 9.23, the output looks okay even without explicit soft hyphens. The option list in
both cases looks as follows:

fontname=Helvetica fontsize=9 encoding=winansi alignment=justify

Our paper planes are the ideal way of
passing the time. We offer revolu-
tionary brand new developments of the
traditional common paper planes. If
your lesson, conference, or lecture turn
out to be deadly boring, you can have
a wonderful time with our planes. All
our models are folded from one paper
sheet. They are exclusively folded
without using any adhesive. Several
models are equipped with a folded
landing gear enabling a safe landing
on the intended location provided that
you have aimed well. Other models are
able to fly loops or cover long dist-
ances. Let them start from a vista point
in the mountains and see where they
touch the ground.

Our paper planes are the ideal way of
passing the time. We offer revolutionary
brand new developments of the
traditional common paper planes. If
your lesson, conference, or lecture turn
out to be deadly boring, you can have
a wonderful time with our planes. All
our models are folded from one paper
sheet. They are exclusively folded
without using any adhesive. Several
models are equipped with a folded
landing gear enabling a safe landing
on the intended location provided that
you have aimed well. Other models are
able to fly loops or cover long
distances. Let them start from a vista
point in the mountains and see where
they touch the ground.

Fig. 9.22
Justified text with soft hyphen characters,
using default settings and a wide fitbox

Fig. 9.23
Justified text without soft hyphens, using
default settings and a wide fitbox.

9.2 Multi-Line Textflows 243

9.2.8 Widow and Orphan Lines
If the first line (or lines) of a paragraph appears by itself at the bottom of a column or
page it is called an orphan. Similarly, if the last line (or lines) of a paragraph appears at
the beginning of the next column or page it is called a widow. Isolated orphan or widow
lines are considered as undesirable in high-quality typesetting.

Orphan control. The Textflow option minlinecount specifies the minimum number of
lines in the last paragraph of the fitbox. If there are fewer lines they are placed in the
next fitbox. The value minlinecount=2 can be used to prevent single orphan lines of a
paragraph at the end of a fitbox.

Widow control. Since PDFlib doesn’t know anything about future Textflow place-
ments it cannot directly control widow lines. However, you can implement widow con-
trol in the client code according to the following scheme:

> Fit the first part of the Textflow into the first fitbox in blind mode (option blind=
true), i.e. without creating any real output.

> Fit the next part of the Textflow into the second fitbox in blind mode. Call PDF_info_
textflow() with the keyword firstparalinecount to query the number of lines in the
first paragraph of the second fitbox. If the result is 1 you found a single-line widow.

> Now you can return to the first fitbox with the rewind option, and your algorithm
must adjust the fitting options to avoid the widow line. For example, this can be
achieved by reducing the number of lines in the first fitbox with the maxlines option.

Cookbook A full code sample can be found in the Cookbook topic textflow/widows_and_orphans.

9.2.9 Controlling the standard Linebreak Algorithm
PDFlib implements a sophisticated line-breaking algorithm. Table 9.2 lists Textflow op-
tions which control the line-breaking algorithm.

Line-breaking rules. When a word or other sequence of text surrounded by space char-
acters doesn’t fully fit into a line, it must be moved to the next line. In this situation the
line-breaking algorithm decides after which characters a line break is possible.

For example, a formula such as -12+235/8*45 will never be broken, while the string
PDF-345+LIBRARY may be broken to the next line at the minus character. If the text

contains soft hyphen characters it can also be broken after such a character.
For parentheses and quotation marks it depends on whether we have an opening or

closing character: opening parentheses and quotations marks do not offer any break
opportunity. In order to find out whether a quotation mark starts or ends a sequence,
pairs of quotation marks are examined.

An inline option list generally does not create a line break opportunity in order to al-
low option changes within words. However, when an option list is surrounded by space
characters there is a line break opportunity at the beginning of the option list. If a line
break occurs at the option list and alignment=justify, the spaces preceding the option list
will be discarded. The spaces after the option list will be retained, and will appear at the
beginning of the next line.

http://www.pdflib.com/pdflib-cookbook/textflow/widows_and_orphans/

244 Chapter 9: Text and Table Formatting

Table 9.2 Options for controlling the line-breaking algorithm

option explanation

adjust-
method

(Keyword) The method used to adjust a line when a text portion doesn’t fit into a line after compressing
or expanding the distance between words subject to the limits specified by the minspacing and max-
spacing options. Default: auto
auto The following methods are applied in order: shrink, spread, nofit, split.
clip Same as nofit (see below), except that the long part at the right edge of the fitbox (taking

into account the rightindent option) will be clipped.
nofit The last word will be moved to the next line provided the remaining (short) line will not be

shorter than the percentage specified in the nofitlimit option. Even justified paragraphs
will look slightly ragged in this case.

shrink If a word doesn’t fit in the line the text will be compressed subject to the shrinklimit option
until the word fits. If it still doesn’t fit the nofit method will be applied.

split The last word will not be moved to the next line, but will forcefully be hyphenated. For text
fonts a hyphen character will be inserted, but not for symbol fonts.

spread The last word will be moved to the next line and the remaining (short) line will be justified by
increasing the distance between characters in a word, subject to the spreadlimit option. If
justification still cannot be achieved the nofit method will be applied.

advanced-
linebreak

(Boolean) Enable the advanced line breaking algorithm which is required for complex scripts. This is re-
quired for linebreaking in scripts which do not use space characters for designating word boundaries, e.g.
Thai. The options locale and script will be honored. Default: false

avoidbreak (Boolean) If true, avoid any line breaks until avoidbreak is reset to false. Default: false

charclass (List of pairs, where the first element in each pair is a keyword, and the second element is either a unichar
or a list of unichars) The specified unichars will be classified by the specified keyword to determine the
line breaking behavior of those character(s):
letter behave like a letter (e.g. a B)
punct behave like a punctuation character (e.g. + / ; :)
open behave like an open parenthesis (e.g. [)
close behave like a close parenthesis (e.g.])
default reset all character classes to PDFlib’s builtin defaults
Example: charclass={ close » open « letter {/ : =} punct & }

hyphenchar (Unichar or keyword) Unicode value of the character which replaces a soft hyphen at line breaks. The val-
ue 0 and the keyword none completely suppress hyphens. Default: U+00AD (SOFT HYPHEN) if available
in the font, U+002D (HYPHEN-MINUS) otherwise

locale (Keyword) The locale which will be used for localized linebreaking methods if advancedlinebreak= true.
The keywords consists of one or more components, where the optional components are separated by an
underscore character ’_’ (the syntax slightly differs from NLS/POSIX locale IDs):
> A required two- or three-letter lowercase language code according to ISO 639-2 (see www.loc.gov/
standards/iso639-2), e.g. en, (English), de (German), ja (Japanese). This differs from the language op-
tion.

> An optional four-letter script code according to ISO 15924 (see www.unicode.org/iso15924/iso15924-
codes.html), e.g. Hira (Hiragana), Hebr (Hebrew), Arab (Arabic), Thai (Thai).

> An optional two-letter uppercase country code according to ISO 3166 (see www.iso.org/iso/country_
codes/iso_3166_code_lists), e.g. DE (Germany), CH (Switzerland), GB (United Kingdom)

The keyword _none specifies that no locale-specific processing will be done.
Specifying a locale is required for advanced line breaking for some scripts, e.g. Thai. Default: _none
Examples: Thai, de_DE, en_US, en_GB

http://www.loc.gov/standards/iso639-2
http://www.unicode.org/iso15924/iso15924-codes.html
http://www.iso.org/iso/country_codes/iso_3166_code_lists

9.2 Multi-Line Textflows 245

Preventing linebreaks. You can use the charclass option to prevent Textflow from
breaking a line after specific characters. For example, the following option will prevent
line breaks immediately after the / character:

charclass={letter /}

In order to prevent a sequence of text from being broken across lines you can bracket it
with avoidbreak...noavoidbreak.

Cookbook A full code sample can be found in the Cookbook topic textflow/avoid_linebreaking.

Formatting CJK text. The textflow engine is prepared to deal with CJK text, and prop-
erly treats CJK characters as ideographic glyphs as per the Unicode standard. As a result,
CJK text will never be hyphenated. For improved formatting the following options are
recommended when using Textflow with CJK text; they will disable hyphenation for in-
serted Latin text and create evenly spaced text output:

hyphenchar=none
alignment=justify
shrinklimit=100%
spreadlimit=100%

Vertical writing mode is not supported in Textflow.

Justified text in a narrow fitbox. The narrower the fitbox, the more important are the
options for controlling justified text. Figure 9.24 demonstrates the results of the various
methods for justifying text in a narrow fitbox. The option settings in Figure 9.24 are ba-
sically okay, with the exception of maxspacing which provides a rather large distance be-
tween words. However, it is recommended to keep this for narrow fitboxes since other-
wise the ugly forced hyphenation caused by the split method will occur more often.

If the fitbox is so narrow that occasionally forced hyphenations occur, you should
consider inserting soft hyphens, or modify the options which control justified text.

Option shrinklimit for justified text. The most visually pleasing solution is to reduce
the shrinklimit option which specifies a lower limit for the shrinking factor applied by

maxspacing
minspacing

(Float or percentage) Specifies the maximum or minimum distance between words (in user coordinates,
or as a percentage of the width of the space character). The calculated word spacing is limited by the pro-
vided values (but the wordspacing option will still be added). Defaults: minspacing=50%,
maxspacing=500%

nofitlimit (Float or percentage) Lower limit for the length of a line with the nofit method (in user coordinates or as
a percentage of the width of the fitbox). Default: 75%.

shrinklimit (Percentage) Lower limit for compressing text with the shrink method; the calculated shrinking factor is
limited by the provided value, but will be multiplied with the value of the horizscaling option. Default:
85%

spreadlimit (Float or percentage) Upper limit for the distance between two characters for the spread method (in user
coordinates or as a percentage of the font size); the calculated character distance will be added to the
value of the charspacing option. Default: 0

Table 9.2 Options for controlling the line-breaking algorithm

option explanation

http://www.pdflib.com/pdflib-cookbook/textflow/avoid_linebreaking/

246 Chapter 9: Text and Table Formatting

the shrink method. Figure 9.25a shows how to avoid forced hyphenation by compressing
text down to shrinklimit=50%.

Fig. 9.25 Options for justified text in a narrow fitbox

Option spreadlimit for justified text. Expanding text, which is achieved by the spread
method and controlled by the spreadlimit option, is another method for controlling line
breaks. This unpleasing method should be rarely used, however. Figure 9.25b demon-
strates a very large maximum character distance of 5 units using spreadlimit=5.

Option nofitlimit for justified text. The nofitlimit option controls how small a line can
get when the nofit method is applied. Reducing the default value of 75% is preferable to
forced hyphenation when the fitbox is very narrow. Figure 9.25c shows the generated
text output with a minimum text width of 50%.

9.2.10 Advanced script-specific Line Breaking
PDFlib implements an additional line breaking algorithm on top of the standard line
breaking algorithm. This advanced line breaking algorithm is required for some scripts,
and improves line breaking behavior for some other script/locale combinations even if

Generated output Option list for PDF_fit_textflow()

a)

alignment=justify shrinklimit=50%

b)

alignment=justify spreadlimit=5

c)

alignment=justify nofitlimit=50

Our paper planes
are the ideal way of
passing the time. We
offer revolutionary
brand new develop-
ments of the traditional
common paper planes.
If your lesson, conf-
erence, or lecture
turn out to be deadly
boring, you can have
a wonderful time
with our planes. All

decrease the distance between words (minspacing option)

compress the line (shrink method, shrinklimit option)

force hyphenation (split method)

increase the distance between words (spread method, maxspacing option)

Fig. 9.24 Justified text in a narrow fitbox with default settings

passing the time. We
offer revolutionary
brand new developments
of the traditional
common paper planes.
If your lesson, conference,
or lecture turn out to

Our paper planes
are the ideal way of
passing the time. We
offer revolutionary
b r a n d n e w
developments of the

ments of the traditional
common paper planes.
If your lesson,
conference, or lecture
turn out to be deadly
boring, you can have

9.2 Multi-Line Textflows 247

it is not required. It can be enabled with the advancedlinebreak option. Since line break-
ing depends on the language of the text, the advanced line breaking algorithm honors
the script option (see Table 7.2) and the locale option (see PDFlib API Reference). Ad-
vanced line breaking determines proper line break opportunities in the following situa-
tions:

> For scripts in which line breaking does not rely on the presence of space characters in
the text, e.g. Thai. The following Textflow option list enables advanced line breaking
for Thai:

<advancedlinebreak script=thai locale=tha>

> In script/locale combinations which require specific treatment of certain punctua-
tion characters, e.g. the « and » guillemet characters used as quotation marks in
French text. The following Textflow option list enables advanced line breaking for
French text. As a result, the guillemet characters surrounding a word will not be split
apart from the word at the end of a line:

<advancedlinebreak script=latn locale=fr>

Note that the locale Textflow option is different from the language text option (see Table
7.3): although the locale option can start with the same three-letter language identifier,
it can optionally contain one or two additional parts. However, these will rarely be re-
quired for PDFlib.

9.2.11 Wrapping Text around Paths and Images
The wrapping feature can be used to fill arbitrary shapes with text or wrap text around a
path. By means of matchboxes, explicit rectangles/polygons/circles/curves or path ob-
jects you can specify wrapping areas for the Textflow. If an image contains an integrat-
ed clipping path you can wrap text around the image clipping path automatically.

Wrapping text around an image with matchbox. In the first example we will place an
image within the Textflow and run the text around the whole image. First the image is
loaded and placed in the box at the desired position. To refer to the image by name later,
define a matchbox called img when fitting the image, and specify a margin of 5 units
with the option list matchbox={name=img margin=-5} as follows:

result = p.fit_image(image, 50, 35,
"boxsize={80 46} fitmethod=meet position=center matchbox={name=img margin=-5}");

The Textflow is added. Then we place it using the wrap option with the image’s match-
box img as the area to run around as follows (see Figure 9.26):

Have a look at our new paper plane models! Our
paper planes are the ideal way of passing the time.
We offer revolutionary new
developme- nts of the traditi-
onal com- mon paper planes.
If your les- son, conference,
or lecture turn out to be
deadly bor- ing, you can
have a wonderful time with our planes. All our
models are folded from one paper sheet. They are
exclusively folded without using any adhesive.

Fig. 9.27
Wrapping text around a triangular shape

Fig. 9.26
Wrapping text around an image with matchbox

Our paper planes are the ideal way of passing the time.
We offer a lot of revolutionary brand-new developments
of the traditional common paper planes. If your
lesson, conference, or lecture turn out to be
deadly boring, you can have a wonderful
time with our planes. All our models are
folded from one paper sheet. They
are exclusively folded without
using any adhesive.
Several models are equipped with a folded landing gear.
enabling a safe landing on the intended location provided
that you have aimed well. Other models are able to fly
loops or cover long distances.

50% 80%

20% 30% 80% 30%

248 Chapter 9: Text and Table Formatting

result = p.fit_textflow(textflow, left_x, left_y, right_x, right_y,
"wrap={usematchboxes={{img}}}");

Before placing the text you can fit more images using the same matchbox name. In this
case the text will run around all images.

Cookbook A full code sample can be found in the Cookbook topic textflow/wrap_text_around_images.

Wrapping text around arbitrary paths. You can create a path object (see Section 3.2.3,
»Direct Paths and Path Objects«, page 66) and use it as a wrap shape. The following frag-
ment constructs a path object with a simple shape (a circle) and supplies it to the wrap
option of PDF_fit_textflow(). The reference point for placing the path is expressed as per-
centage of the fitbox’s width and height:

path = p.add_path_point(-1, 0, 100, "move", "");
path = p.add_path_point(path, 200, 100, "control", "");
path = p.add_path_point(path, 0, 100, "circular", "");

/* Visualize the path if desired */
p.draw_path(path, x, y, "stroke");

result = p.fit_textflow(tf, llx1, lly1, urx1, ury1,
"wrap={paths={" +

"{path=" + path + " refpoint={100% 50%} }" +
"}}");

p.delete_path(path);

Use the inversefill option to wrap text inside the path instead of wrapping the text
around the path (i.e. the path serves as text container instead of creating a hole in the
Textflow):

result = p.fit_textflow(tf, llx1, lly1, urx1, ury1,
"wrap={inversefill paths={" +

"{path=" + path + " refpoint={100% 50%} }" +
"}}");

Wrapping text around an image clipping path. TIFF and JPEG images can contain an
integrated clipping path. The path must have been created in an image processing
application and will be evaluated by PDFlib. If a default clipping path is found in the im-
age it will be used, but you can specify any other clipping path in the image with the
clippingpathname option of PDF_load_image(). If the image has been loaded with a clip-
ping path you can extract the path and supply it to the wrap option PDF_fit_textflow() as
above. We also supply the scale option to enlarge the imported image clipping path:

image = p.load_image("auto", "image.tif", "clippingpathname={path 1}");

/* Create a path object from the image’s clipping path */
path = (int) p.info_image(image, "clippingpath", "");
if (path == -1)

throw new Exception("Error: clipping path not found!");

result = p.fit_textflow(tf, llx1, lly1, urx1, ury1,
"wrap={paths={{path=" + path + " refpoint={50% 50%} scale=2}}}");

p.delete_path(path);

http://www.pdflib.com/pdflib-cookbook/textflow/wrap_text_around_images/

9.2 Multi-Line Textflows 249

Placing an image and wrapping text around it. While the previous section used only
the clipping path of an image (but not the image itself), let’s now place the image inside
the fitbox of the Textflow and wrap the text around it. In order to achieve this we must
again load the image with the clippingpathname option and place it on the page with
PDF_fit_image(). In order to create the proper path object for wrapping the Textflow we
call PDF_info_image() with the same option list as PDF_fit_image(). This ensures that the
same transformations (e.g. scaling) are applied when the clipping path is retrieved and
when the image is actually placed. Finally, the reference point (the x/y parameters of
PDF_fit_image()) must be supplied to the refpoint suboption of the paths suboption of
the wrap option:

image = p.load_image("auto", "image.tif", "clippingpathname={path 1}");

/* Place the image on the page with some fitting options */
String imageoptlist = "scale=2";
p.fit_image(image, x, y, imageoptlist);

/* Create a path object from the image’s clipping path, using the same option list */
path = (int) p.info_image(image, "clippingpath", imageoptlist);
if (path == -1)

throw new Exception("Error: clipping path not found!");

result = p.fit_textflow(tf, llx1, lly1, urx1, ury1,
"wrap={paths={{path=" + path + " refpoint={" + x + " " + y + "} }}}");

p.delete_path(path);

You can supply the same wrap option in multiple calls to PDF_fit_textflow(). This is use-
ful if the placed image overlaps multiple Textflow fitboxes, e.g. for multi-column text.

Wrapping text around non-rectangular shapes. As an alternative to creating a path
object as wrap shape you can specify path elements directly in Textflow options.

In addition to wrapping text around a rectangle specified by a matchbox you can de-
fine arbitrary graphical elements as wrapping shapes. For example, the following op-
tion list will wrap the text around a triangular shape (see Figure 9.27):

wrap={ polygons={ {50% 80% 20% 30% 80% 30% 50% 80%} } }

Note that the showborder=true option has been used to illustrate the margins of the
shapes. The wrap option can contain multiple shapes. The following option list will
wrap the text around two triangle shapes:

wrap={ polygons={ {50% 80% 20% 30% 80% 30% 50% 80%}
{20% 90% 10% 70% 30% 70% 20% 90%} } }

Instead of percentages (relative coordinates within the fitbox) absolute coordinates on
the page can be used.

Note It is recommended to set fixedleading=true when using shapes with segments which are nei-
ther horizontally nor vertically oriented.

Cookbook A full code sample can be found in the Cookbook topic textflow/wrap_text_around_polygons.

http://www.pdflib.com/pdflib-cookbook/textflow/wrap_text_around_polygons/

250 Chapter 9: Text and Table Formatting

Filling non-rectangular shapes. The wrap feature can also be used to place the con-
tents of a Textflow in arbitrarily shaped areas. This is achieved with the addfitbox or
inversefill suboptions of the wrap option. Instead of wrapping the text around the speci-
fied shapes the text will be placed within one or more shapes. The following option list
can be used to flow text into a rhombus shape, where the coordinates are provided as
percentages of the fitbox rectangle (see Figure 9.28):

wrap={ addfitbox polygons={ {50% 100% 10% 50% 50% 0% 90% 50% 50% 100%} } }

Note that the showborder=true option has been again used to illustrate the margins of
the shape. Without the addfitbox option the rhombus shape will remain empty and the
text will be wrapped around it.

Filling overlapping shapes. In the next example we will fill a shape comprising two
overlapping polygons, namely a hexagon with a rectangle inside. Using the addfitbox
option the fitbox itself will be excluded from being filled, and the polygons in the sub-
sequent list will be filled except in the overlapping area (see Figure 9.29):

wrap={ addfitbox polygons=
{ {20% 10% 80% 10% 100% 50% 80% 90% 20% 90% 0% 50% 20% 10%}

{35% 35% 65% 35% 65% 65% 35% 65% 35% 35%} } }

Without the addfitbox option you will get the opposite effect: the previously filled area
will remain empty, and the previously empty areas will be filled with text.

Cookbook A full code sample can be found in the Cookbook topic textflow/fill_polygons_with_text.

Our
paper

planes are
the ideal way
of passing the

time. We offer a lot
of revolutionary brand-

new developments of the
traditional common paper

planes. If your lesson, con-
ference, or lecture turn
out to be deadly bor-

ing, you can have
a wonderful

time with
our pla-

nes.

Our paper planes are
the ideal way of pas-

sing the time. We offer
revolutionary new develop-

ments of the tradi-
tional co- mmon pa-

per planes. If your les-
son, conf- erence, or
lecture turn out to be
deadly boring,
you can have a wonderful
time with our planes. All
our models are folded
from one paper sheet.

Fig. 9.29
Filling overlapping shapesFig. 9.28

Filling a rhombus
shape with text

90% 50%10% 50%

50% 100%

50% 0%

http://www.pdflib.com/pdflib-cookbook/textflow/fill_polygons_with_text/

9.3 Table Formatting 251

9.3 Table Formatting
The table formatting feature can be used to automatically format complex tables. Table
cells may contain single- or multi-line text, images, SVG graphics or PDF pages. Tables
are not restricted to a single fitbox, but can span multiple pages.

Cookbook Code samples regarding table issues can be found in the table category of the PDFlib Cook-
book.

General aspects of a table. The description of the table formatter is based on the fol-
lowing concepts and terms (see Figure 9.30):

> A table is a virtual object with a rectangular outline. It is comprised of horizontal
rows and vertical columns.

> A simple cell is a rectangular area within a table, defined as the intersection of a row
and a column. A spanning cell spans more than one column, more than one row, or
both. The term cell will be used to designate both simple and spanning cells.

> The complete table may fit into one fitbox, or several fitboxes may be required. The
rows of the table which are placed in one fitbox constitute a table instance. Each call
to PDF_fit_table() will place one table instance in one fitbox (see Section 9.3.5, »Table
Instances«, page 261).

> The header or footer is a group of one or more rows at the beginning or end of the ta-
ble which are repeated at the top or bottom of each table instance. Rows which are
neither part of the header nor footer are called body rows.

> An optional caption (not shown in Figure 9.30) is an auxiliary element which can be
used to place a description of the table. It can be placed on any side of the table.

As an example, all aspects of creating the table in Figure 9.30 will be explained. A com-
plete description of the table formatting options can be found in the PDFlib API
Reference. Creating a table starts by defining the contents and visual properties of each

Our Paper Plane Models

2 Long Distance Glider

Material

Benefit

Drawing paper 180g/sqm

With this paper rocket you
can send all your messages
even when sitting in the
cinema pretty near the back.

1 Giant Wing

Material

Benefit

Offset print paper 220g/sqm

It is amazingly robust and
can even do aerobatics. But
it is best suited to gliding.

Amazingly robust!

3 Cone Head Rocket

Material

Benefit

Kent paper 200g/sqm

This paper arrow can be
thrown with big swing. It
stays in the air a long time.

With big swing!

Fig. 9.30
Sample table

Header

Cell containing
image and text line

Cell spanning
three rows

Cell spanning
three columns

Simple cell

Footer

Cell containing
Textflow

http://www.pdflib.com/pdflib-cookbook/table/

252 Chapter 9: Text and Table Formatting

table cell with PDF_add_table_cell(). Then you place the table using one or more calls to
PDF_fit_table().

When placing the table the size of its fitbox and the ruling and shading of table rows
or columns can be specified. Use the Matchbox feature for details such as cell-specific
shading (see Section 9.4, »Matchboxes«, page 267, for more information).

In this section the most important options for defining the table cells and fitting the
table will be discussed. All examples demonstrate the relevant calls of PDF_add_table_
cell() and PDF_fit_table() only, assuming that the required font has already been loaded.

Note Table processing is independent from the current graphics state. Table cells can be defined in
document scope while the actual table placement must be done in page or pattern/template/
glyph scope.

Cookbook A full code sample can be found in the Cookbook topic table/starter_table.

Analyzing table-related formatting problems. Depending on the number of cells and
the table formatting options the results of PDFlib’s table formatter may sometimes not
match your expectations. In almost all cases this can be rectified with suitable options.
However, it may be difficult to identify a problematic cells or group of cells with the
wrong options. In order to facilitate debugging of table-related formatting problems
PDFlib offers the following options in PDF_fit_table():

> The option showcells visualizes the border of each inner cell box. If the function is
called in page scope and PDF/A mode is not active, an annotation with details about
the cell contents is placed in the center of each table cell.

> If the option debugshow is true, all errors for tables which are too high, too wide, or
where the cells get too small are suppressed and are logged instead. The resulting ta-
ble instance is created as a debugging aid although the table is damaged.

> If the option showgrid is true, the vertical and horizontal boundary of all columns
and rows are stroked, i.e. the underlying tabular grid is visualized.

9.3.1 Placing a Simple Table
Before we describe the table concepts in more detail, we will demonstrate a simple ex-
ample for creating a table. The table contains six cells which are arranged in three rows
and two columns. Four cells contain text lines, and one cell contains a multi-line Text-
flow. All cell contents are horizontally aligned to the left, and vertically aligned to the
center with a margin of 4 points.

To create the table we first prepare the option list for the text line cells by defining
the required options font and fontsize and a position of {left center} in the fittextline sub-
option list. In addition, we define cell margins of 4 points. Then we add the text line cells
one after the other in their respective column and row, with the actual text supplied di-
rectly in the call to PDF_add_table_cell().

In the next step we create a Textflow, use the Textflow handle to assemble the option
list for the Textflow table cell, and add that cell to the table.

Finally we place the table with PDF_fit_table() while visualizing the table frame and
cell borders with black lines. Since we didn’t supply any column widths, they will be cal-
culated automatically from the supplied text lines plus the margins.

Cookbook A full code sample can be found in the Cookbook topic table/vertical_text_alignment.

http://www.pdflib.com/pdflib-cookbook/table/vertical_text_alignment/
http://www.pdflib.com/pdflib-cookbook/table/starter_table/

9.3 Table Formatting 253

The following code fragment shows how to create the simple table. The result is shown
in Figure 9.31a.

/* Text for filling a table cell with multi-line Textflow */
String tf_text = "It is amazingly robust and can even do aerobatics. " +

"But it is best suited to gliding.";

/* Define the column widths of the first and the second column */
int c1 = 80, c2 = 120;

/* Define the lower left and upper right corners of the table instance (fitbox) */
double llx=100, lly=500, urx=300, ury=600;

/* bail out on errors */
p.set_option("errorpolicy=exception");

/* Load the font */
font = p.load_font("Helvetica", "unicode", "");

/* Define the option list for the text line cells placed in the first column */
optlist = "fittextline={position={left center} font=" + font + " fontsize=8} margin=4" +

colwidth=" + c1;

/* Add a text line cell in column 1 row 1 */
tbl = p.add_table_cell(tbl, 1, 1, "Our Paper Planes", optlist);

/* Add a text line cell in column 1 row 2 */
tbl = p.add_table_cell(tbl, 1, 2, "Material", optlist);

/* Add a text line cell in column 1 row 3 */
tbl = p.add_table_cell(tbl, 1, 3, "Benefit", optlist);

/* Define the option list for a text line placed in the second column */
optlist = "fittextline={position={left center} font=" + font + " fontsize=8} " +

"colwidth=" + c2 + " margin=4";

/* Add a text line cell in column 2 row 2 */
tbl = p.add_table_cell(tbl, 2, 2, "Offset print paper 220g/sqm", optlist);

/* Add a Textflow */
optlist = "font=" + font + " fontsize=8 leading=110%";
tf = p.add_textflow(-1, tf_text, optlist);

/* Define the option list for the Textflow cell using the handle retrieved above */
optlist = "textflow=" + tf + " margin=4 colwidth=" + c2;

/* Add the Textflow table cell in column 2 row 3 */
tbl = p.add_table_cell(tbl, 2, 3, "", optlist);

p.begin_page_ext(0, 0, "width=200 height=100");

/* Define the option list for fitting the table with table frame and cell ruling */
optlist = "stroke={{line=frame linewidth=0.8} {line=other linewidth=0.3}}";

/* Place the table instance */
result = p.fit_table(tbl, llx, lly, urx, ury, optlist);

/* Check the result; "_stop" means all is ok. */

254 Chapter 9: Text and Table Formatting

if (!result.equals("_stop")) {
if (result.equals("_error"))

throw new Exception("Error: " + p.get_errmsg());
else {

/* Any other return value requires dedicated code to deal with */
}

}
p.end_page_ext("");

/* This also deletes Textflow handles used in the table */
p.delete_table(tbl, "");

Fine-tuning the vertical alignment of cell contents. When we vertically center con-
tents of various types in the table cells, they will be positioned with varying distance
from the borders. In Figure 9.31a, the four text line cells have been placed with the fol-
lowing option list:

optlist = "fittextline={position={left center} font=" + font +
" fontsize=8} colwidth=80 margin=4";

The Textflow cell is added without any special options. Since we vertically centered the
text lines, the Benefit line will move down with the height of the Textflow.

Fig. 9.31 Aligning text lines and Textflow in table cells

As shown in Figure 9.31b, we want all cell contents to have the same vertical distance
from the cell borders regardless of whether they are Textflows or text lines. To accom-
plish this we first prepare the option list for the text lines. We define a fixed row height
of 14 points, and the position of the text line to be on the top left with a margin of 4
points.

The fontsize=8 option which we supplied before doesn’t exactly represent the letter
height but adds some space below and above. However, the height of an uppercase let-
ter is exactly represented by the capheight value of the font. For this reason we use
fontsize={capheight=6} which will approximately result in a font size of 8 points and
(along with margin=4), will sum up to an overall height of 14 points corresponding to the
rowheight option. The complete option list of PDF_add_table_cell() for our text line cells
looks as follows:

Generated output

a)

b)

Our Paper Planes

Material

Benefit

Offset print paper 220g/sqm

It is amazingly robust and can
even do aerobatics. But it is
best suited to gliding.

Our Paper Planes
Material
Benefit

Offset print paper 220g/sqm
It is amazingly robust and can
even do aerobatics. But it is
best suited to gliding.

9.3 Table Formatting 255

/* option list for the text line cells */
optlist = "fittextline={position={left top} font=" + font +

" fontsize={capheight=6}} rowheight=14 colwidth=80 margin=4";

To add the Textflow we use fontsize={capheight=6} which will approximately result in a
font size of 8 points and (along with margin=4), will sum up to an overall height of 14
points as for the text lines above.

/* option list for adding the Textflow */
optlist = "font=" + font + " fontsize={capheight=6} leading=110%";

In addition, we want the baseline of the Benefit text aligned with the first line of the
Textflow. At the same time, the Benefit text should have the same distance from the top
cell border as the Material text. To avoid any space from the top we add the Textflow cell
using fittextflow={firstlinedist=capheight}. Then we add a margin of 4 points, the same as
for the text lines:

/* option list for adding the Textflow cell */
optlist = "textflow=" + tf + " fittextflow={firstlinedist=capheight} "

"colwidth=120 margin=4";

Cookbook A full code sample can be found in the Cookbook topic table/vertical_text_alignment.

9.3.2 Contents of a Table Cell
When adding cells to a table with PDF_add_table_cell(), you can specify various kinds of
cell contents. Table cells can contain one or more content types at the same time. Addi-
tional ruling and shading is available, as well as matchboxes which can be used for plac-
ing additional content in a table cell.

For example, the cells of the paper plane table contain the elements illustrated in
Figure 9.32.

Single-line text with Textlines. The text is supplied in the text parameter of PDF_add_
table_cell(). In the fittextline option list all formatting options of PDF_fit_textline() can be
specified. The default fit method is fitmethod=nofit. The cell will be enlarged if the text
doesn’t completely fit into the cell. To avoid this, use fitmethod=auto to shrink the text,
subject to the shrinklimit option. If no row height is specified the formatter assumes
twice the text size as height of the table cell (more precisely: twice the boxheight, which
has the default value {capheight none} unless specified otherwise). The same applies to
the row width for rotated text.

Use the fillcolor option in the fittextline option list to apply color to the text.

Text line
Text line

Text line

Text line

Text line

Textflow
..
..

Text line
Fig. 9.32
Contents of the
table cells

http://www.pdflib.com/pdflib-cookbook/table/vertical_text_alignment/

256 Chapter 9: Text and Table Formatting

Multi-line text with Textflow. The Textflow must have been prepared outside the ta-
ble functions and created with PDF_create_textflow() or PDF_add_textflow() before call-
ing PDF_add_table_cell(). The Textflow handle is supplied in the textflow option. In the
fittextflow option all formatting options of PDF_fit_textflow() can be specified.

The default fit method is fitmethod=clip. This means: First it is attempted to com-
pletely fit the text into the cell. If the cell is not large enough its height will be increased.
If the text do not fit anyway it will be clipped at the bottom. To avoid this, use
fitmethod=auto to shrink the text subject to the minfontsize option.

When the cell is too narrow the Textflow could be forced to split single words at un-
desired positions. If the checkwordsplitting option is true the cell width will be enlarged
until no word splitting occurs any more.

Images and templates. Images must be loaded with PDF_load_image() before calling
PDF_add_table_cell(). Templates must be created with PDF_begin_template_ext(). The im-
age or template handle is supplied in the image option. In the fitimage option all format-
ting options of PDF_fit_image() can be specified. The default fit method is fitmethod=
meet. This means that the image/template will be placed completely inside the cell
without distorting its aspect ratio. The cell size will not be changed due to the size of the
image/template.

Vector graphics. Graphics must be loaded with PDF_load_graphics() before calling PDF_
add_table_cell(). The graphics handle is supplied in the graphics option. In the fitgraphics
option all formatting options of PDF_fit_graphics() can be specified. The default fit
method is fitmethod=meet. This means that the graphics will be placed completely in-
side the cell without distorting its aspect ratio. The cell size will not be changed due to
the size of the graphics.

Pages from an imported PDF document. The PDI page must have been opened with
PDF_open_pdi_page() before calling PDF_add_table_cell(). The PDI page handle is sup-
plied in the pdipage option. In the fitpdipage option all formatting options of PDF_fit_
pdi_page() can be specified. The default fit method is fitmethod=meet. This means that
the PDI page will be placed completely inside the cell without distorting its aspect ratio.
The cell size will not be changed due to the size of the PDI page.

Path objects. Path objects must have been created with PDF_add_path_point() before
calling PDF_add_table_cell(). The path handle is supplied in the path option. In the fitpath
option all formatting options of PDF_draw_path() can be specified. The bounding box of
the path will be placed in the table cell. The lower left corner of the inner cell box will be
used as reference point for placing the path.

Annotations. Annotations in table cells can be created with the annotationtype option
of PDF_add_table_cell() which corresponds to the type parameter of PDF_create_
annotation() (but this function does not have to be called). In the fitannotation option all
options of PDF_create_annotation() can be specified. The cell box will be used as annota-
tion rectangle.

Form fields. Form fields in table cells can be created with the fieldname and fieldtype
options of PDF_add_table_cell() which correspond to the name and type parameters of

9.3 Table Formatting 257

PDF_create_field() (but this function does not have to be called). In the fitfield option all
options of PDF_create_field() can be specified. The cell box will be used as field rectangle.

Positioning cell contents in the inner cell box. By default, cell contents are positioned
with respect to the cell box. The margin options of PDF_add_table_cell() can be used to
specify some distance from the cell borders. The resulting rectangle is called the inner
cell box. If any margin is defined the cell contents will be placed with respect to the inner
cell box (see Figure 9.33). If no margins are defined, the inner cell box is identical to the
cell box.
In addition, cell contents may be subject to further options supplied in the content-spe-
cific fit options, as described in section Section 9.3.4, »Mixed Table Contents«, page 258.

9.3.3 Table and Column Widths
When adding a cell to the table, you define the number of columns and/or rows
spanned by the cell with the colspan and rowspan options. By default, a cell spans one
column and one row. The total number of columns and rows in the table is implicitly in-
creased by the respective values when adding a cell. Figure 9.34 shows an example of a
table containing three columns and four rows.

Furthermore you can explicitly supply the width of the first column spanned by the cell
with the colwidth option. Keep in mind that the supplied colwidth affects only the first
column, not all columns in the colspan group. By supplying each cell with a defined first
column width all width values implicitly add up to the total table width. Figure 9.35
shows an example.

Alternatively, you can specify the column widths as percentages if appropriate. In
this case the percentages refer to the width of the table’s fitbox. Either none or all col-
umn widths must be supplied as percentages.

inner cell box

cell box

left margin

top margin

bottom margin

right margin

Fig. 9.33
Fitting contents in
the inner cell box

cell spanning three columns

cell spanning two columns
2

4

33

4

2

11

1

1

1

2

2

3

simple cellsimple cell

simple cell simple cell

row 1

row 2

row 3

row 4

column 1 column 2 column 3

cell

.... spanning

.... three rows

Fig. 9.34
Simple cells and cells spanning
several rows or columns

258 Chapter 9: Text and Table Formatting

If some columns are combined to a column scaling group with the colscalegroup op-
tion of PDF_add_table_cell(), their widths will be adjusted to the widest column in the
group (see Figure 9.36),

If absolute coordinates are used (as opposed to percentages) and there are cells left
without any column width defined, the missing widths are calculated as follows: First,
for each cell containing a text line the actual width is calculated based on the column
width or the text width (or the text height in case of rotated text). Then, the remaining
table width is evenly distributed among the column widths which are still missing.

9.3.4 Mixed Table Contents
In the following sections we will create the sample table containing various kinds of
contents as shown in Figure 9.37 step by step.

Cookbook A full code sample can be found in the Cookbook topic table/mixed_table_contents.

As a prerequisite we need to load two fonts. We define the dimensions of the table’s fit-
box in terms of the coordinates of the lower left and upper right corners and specify the
widths of the three table columns. Then, we start a new page with A4 size:

double llx = 100, lly = 500, urx = 360, ury = 600; // coordinates of the table

int c1 = 50, c2 = 120, c3 = 90; // widths of the three table columns

boldfont = p.load_font("Helvetica-Bold", "unicode", "");
normalfont = p.load_font("Helvetica", "unicode", "");

p.begin_page_ext(0, 0, "width=a4.width height=a4.height");

2

4

33

4

2

11

1

1

1

2

2

3

colspan=1
colwidth=100

colspan=1
colwidth=50

colspan=1
colwidth=50

colspan=1
colwidth=100

50 100 90

colspan=2
colwidth=50

rowspan=3
colwidth=90

colspan=3
colwidth=50

total table width of 240

Fig. 9.35
Column widths define
the total table width.

Long Distance Glider

Giant Wing

Cone Head Rocket

M
ax

. L
oa

d

R
an

ge

12g

W
ei

gh
t

14g

11.2g

12.4g

5g

7g

30m

7m

18m

Sp
ee

d

8m/s

5m/s

6m/s

column scaling group

Fig. 9.36
The last four cells in the first row are in the
same column scaling group. They will have
the same widths.

http://www.pdflib.com/pdflib-cookbook/table/mixed_table_contents/

9.3 Table Formatting 259

Step 1: Adding the first cell. We start with the first cell of our table. The cell will be
placed in the first column of the first row and will span three columns. The first column
has a width of 50 points. The text line is centered vertically and horizontally, with a
margin of 4 points from all borders. The following code fragment shows how to add the
first cell:

optlist = "fittextline={font=" + boldfont + " fontsize=12 position=center} " +
"fillcolor=red margin=4 colspan=3 colwidth=" + c1;

tbl = p.add_table_cell(tbl, 1, 1, "Our Paper Plane Models", optlist);

Step 2: Adding one cell spanning two columns. In the next step we add the cell con-
taining the text line 1 Giant Wing. It will be placed in the first column of the second row
and spans two columns. The first column has a width of 50 points. The row height is 14
points. The text line is positioned on the top left, with a margin of 4 points from all bor-
ders. We use fontsize={capheight=6} to get a unique vertical text alignment as described
in »Fine-tuning the vertical alignment of cell contents«, page 254.

Since the Giant Wing heading cell doesn’t cover a complete row but only two of three
columns it cannot be filled with color using on of the row-based shading options. We
apply the Matchbox feature instead to fill the rectangle covered by the cell with a gray
background color. The Matchbox feature is discussed in detail in Section 9.4, »Match-
boxes«, page 267. The following code fragment demonstrates how to add the Giant Wing
heading cell:

optlist = "fittextline={position={left top} font=" + boldfont +
" fontsize={capheight=6}} rowheight=14 colwidth=" + c1 +
" margin=4 colspan=2 matchbox={fillcolor={gray .92}}";

tbl = p.add_table_cell(tbl, 1, 2, "1 Giant Wing", optlist);

Fig. 9.37 Adding table cells with various contents step by step

Step 3: Add three more Textline cells. The following code fragment adds the Material,
Benefit and Offset print paper... cells. The Offset print paper... cell will start in the second
column defining a column width of 120 points. The cell contents is positioned on the
top left, with a margin of 4 points from all borders.

optlist = "fittextline={position={left top} font=" + normalfont +
" fontsize={capheight=6}} rowheight=14 colwidth=" + c1 + " margin=4";

tbl = p.add_table_cell(tbl, 1, 3, "Material", optlist);
tbl = p.add_table_cell(tbl, 1, 4, "Benefit", optlist);

optlist = "fittextline={position={left top} font=" + normalfont +

Generated table Generation steps

Step 1: Add a cell spanning 3 columns
Step 2: Add a cell spanning 2 columns
Step 3: Add 3 more text line cells
Step 4: Add the Textflow cell
Step 5: Add the image cell with a text line
Step 6: Fitting the table

Our Paper Plane Models
1 Giant Wing
Material
Benefit

Offset print paper 220g/sqm
It is amazingly robust and can
even do aerobatics. But it is
best suited to gliding.

Amazingly robust!

260 Chapter 9: Text and Table Formatting

" fontsize={capheight=6}} rowheight=14 colwidth=" + c2 + " margin=4";

tbl = p.add_table_cell(tbl, 2, 3, "Offset print paper 220g/sqm", optlist);

Step 4: Add the Textflow cell. The following code fragment adds the It is amazingly...
Textflow cell. To add a table cell containing a Textflow we first create the Textflow. We
use fontsize={capheight=6} which will approximately result in a font size of 8 points and
(along with margin=4), will sum up to an overall height of 14 points as for the text lines
above.

tftext = "It is amazingly robust and can even do aerobatics. " +
"But it is best suited to gliding.";

optlist = "font=" + normalfont + " fontsize={capheight=6} leading=110%";

tf = p.add_textflow(-1, tftext, optlist);

The retrieved Textflow handle will be used when adding the table cell. The first line of
the Textflow should be aligned with the baseline of the Benefit text line. At the same
time, the Benefit text should have the same distance from the top cell border as the
Material text. Add the Textflow cell using fittextflow={firstlinedist=capheight} to avoid
any space from the top. Then add a margin of 4 points, the same as for the text lines:

optlist = "textflow=" + tf + " fittextflow={firstlinedist=capheight} " +
"colwidth=" + c2 + " margin=4";

tbl = p.add_table_cell(tbl, 2, 4, "", optlist);

Step 5: Add the image cell with a text line. In the fifth step we add a cell containing an
image of the Giant Wing paper plane as well as the Amazingly robust! text line. The cell
will start in the third column of the second row and spans three rows. The column width
is 90 points. The cell margins are set to 4 points. For a first variant we place a TIFF image
in the cell:

image = p.load_image("auto", "kraxi_logo.tif", "");

optlist = "fittextline={font=" + boldfont + " fontsize=9} image=" + image +
" colwidth=" + c3 + " rowspan=3 margin=4";

tbl = p.add_table_cell(tbl, 3, 2, "Amazingly robust!", optlist);

Alternatively, you could import the image as a PDF page. Make sure that the PDI page is
closed only after the call to PDF_fit_table():

int doc = p.open_pdi("kraxi_logo.pdf", "", 0);

page = p.open_pdi_page(doc, pageno, "");

optlist = "fittextline={font=" + boldfont + " fontsize=9} pdipage=" + page +
" colwidth=" + c3 + " rowspan=3 margin=4";

tbl = p.add_table_cell(tbl, 3, 2, "Amazingly robust!", optlist);

Step 6: Fit the table. In the last step we place the table with PDF_fit_table(). Using
header=1 the table header will include the first line. The fill option and the suboptions

9.3 Table Formatting 261

area=header and fillcolor={rgb 0.8 0.8 0.87} specify the header row(s) to be filled with the
supplied color. Using the stroke option and the suboptions line=frame linewidth=0.8 we
define a ruling of the table frame with a line width of 0.8. Using line=other linewidth=0.3
a ruling of all cells is specified with a line width of 0.3:

optlist = "header=1 fill={{area=header fillcolor={rgb 0.8 0.8 0.87}}} " +
"stroke={{line=frame linewidth=0.8} {line=other linewidth=0.3}}";

result = p.fit_table(tbl, llx, lly, urx, ury, optlist);

if (result.equals("_error"))
throw new Exception("Error: " + p.get_errmsg());

p.end_page_ext("");

9.3.5 Table Instances
The rows of the table which are placed in one fitbox comprise a table instance. One or
more table instances may be required to represent the full table. Each call to PDF_fit_
table() will place one table instance in one fitbox. The fitboxes can be placed on the
same page, e.g. with a multi-column layout, or on several pages.

The table in Figure 9.38 is spread over three pages. Each table instance is placed in
one fitbox on one page. For each call to PDF_fit_table() the first row is defined as header
and the last row is defined as footer.

The following code fragment shows the general loop for fitting table instances until the
table has been placed completely. New pages are created as long as more table instances
need to be placed.

do {
/* Create a new page */
p.begin_page_ext(0, 0, "width=a4.width height=a4.height");

/* Use the first row as header and draw lines for all table cells */

3 Cone Head Rocket

Material

Benefit

Kent paper 200g/sqm

This paper arrow can be
thrown with big swing. It
stays in the air a long time.

With big swing!

Our Paper Plane Models

Page 3

header

footer

row join
group

ta
bl

e
in

st
an

ce

2 Long Distance Glider

Drawing paper 180g/sqm

With this paper rocket you
can send all your messages
even when sitting in the
cinema pretty near the back.

Material

Benefit

Our Paper Plane Models

Page 2

Our Paper Plane Models

Material

Benefit

1 Giant Wing

Offset print paper 220g/sqm

It is amazingly robust and
can even do aerobatics. But
it is best suited to gliding.

Amazingly robust!

table’s fitbox

Page 1

Fig. 9.38
Table broken into several
table instances placed in
one fitbox each.

262 Chapter 9: Text and Table Formatting

optlist = "header=1 stroke={{line=other}}";

/* Place the table instance */
result = p.fit_table(tbl, llx, lly, urx, ury, optlist);
if (result.equals("_error"))

throw new Exception("Error: " + p.get_errmsg());

p.end_page_ext("");

} while (result.equals("_boxfull"));

/* Check the result; "_stop" means all is ok. */
if (!result.equals("_stop")) {

if (result.equals("_error"))
throw new Exception("Error: " + p.get_errmsg());

else {
/* Any other return value is a user exit caused by the "return" option;
 * this requires dedicated code to deal with. */
throw new Exception ("User return found in Textflow");

}
}
/* This will also delete Textflow handles used in the table */
p.delete_table(tbl, "");

Headers and footers. With the header and footer options of PDF_fit_table() you can de-
fine the number of initial or final table rows which will be placed at the top or bottom of
a table instance. Using the fill option with area=header or area=footer, headers and foot-
ers can be individually filled with color. Header rows consist of the first n rows of the ta-
ble definition and footer rows of the last m rows.

Headers and footers are specified per table instance in PDF_fit_table(). Consequently,
they can differ among table instances: while some table instances include headers/foot-
ers, others can omit them, e.g. to specify a special row in the last table instance.

Joining rows. In order to ensure that a set of rows will be kept together in the same ta-
ble instance, they can be assigned to the same row join group using the rowjoingroup op-
tion. The row join group contains multiple consecutive rows. All rows in the group will
be prevented from being separated into multiple table instances.

The rows of a cell spanning these rows don’t constitute a join group automatically.

Splitting a cell. If the last rows spanned by a cell don’t fit in the fitbox the cell will be
split. In case of an image, PDI page, SVG graphics or text line cell, the cell contents will be
repeated in the next table instance. In case of a Textflow cell the cell contents will con-
tinue in the remaining rows of the cell.

9.3 Table Formatting 263

Figure 9.39 shows how the Textflow cell will be split while the Textflow continues in
the next row. In Figure 9.40, an image cell is shown which will be repeated in the first
row of the next table instance.

Splitting a row. If the last body row doesn’t completely fit into the table’s fitbox, it will
usually not be split. This behavior is controlled by the minrowheight option of PDF_fit_
table() with a default value of 100%. With this default setting the row will not be split
but will completely be placed in the next table instance.

You can decrease the minrowheight value to split the last body row with the given
percentage of contents in the first instance, and place the remaining parts of the row in
the next instance.

Figure 9.40 illustrates how the Textflow It’s amazingly robust... is split and the Text-
flow is continued in the first body row of the next table instance. The image cell span-
ning several rows is split and the image is repeated. The Benefit cell is repeated as well.

9.3.6 Table Formatting Algorithm
This section details the steps performed by the table formatter when placing a table.
The description below applies to horizontal text. However, if you swap the terms »row
height« and »column width« it also applies to vertical or rotated text.

In the first call to PDF_fit_table() the options colwidth, rowheight, fittextline, and
fittextflow are examined for all cells, and the width and height of the full table is calcu-
lated based on column widths, row heights, Textline and Textflow contents and the
width of the first fitbox. The height of the fitbox is assumed as infinite. The first table
instance (i.e. the placement of the first part of the table in the first fitbox) is calculated
according to the fitmethod option of PDF_fit_table().

Calculate the height and width of table cells with Textlines. The table formatter ini-
tially determines the size of all those table cells with Textlines which span table col-
umns or rows without colwidth or rowheight. In order to achieve this it calculates the
width of the Textline and therefore the table cell according to the fittextline option. It as-
sumes twice the text size as height of the table cell (more precisely: twice the box height,

Material

1 Giant Wing

Offset print paper 220g/sqmtable
instance 1

table
instance 2 Benefit

It is amazingly robust and
can even do aerobatics. But
it is best suited to gliding.

Our paper planes are the
ideal way of passing the
time. We offer revolutionary

new developments of the
traditional common paper
planes.

Fig. 9.39
Splitting a cell

Material

Benefit

1 Giant Wing

Offset print paper 220g/sqm

It is amazingly robust and
can even do aerobatics. But

table
instance 1

table
instance 2 Benefit it is best suited to gliding.

Fig. 9.40
Splitting a row

264 Chapter 9: Text and Table Formatting

which has the default value {capheight none} unless specified otherwise). For vertical
text the width of the widest character will be used as cell width. For text orientated to
west or east twice the text height will be used as cell width.

The remaining width and height of the table cell is then distributed among all col-
umns and rows spanned by the cell for which colwidth or rowheight hasn’t been speci-
fied.

Calculate a tentative table size. In the next step the formatter calculates a tentative
table width and height as the sum of all column widths and row heights, respectively.
Column widths and row heights specified as percentages are converted to absolute val-
ues based on the width and height of the first fitbox. If there are still columns or rows
without colwidth or rowheight the remaining space is evenly distributed until the tenta-
tive table size equals the first fitbox.

The rowheightdefault option can be used to completely fill the height of the fitbox
(keywords auto and distribute) or to save space (keyword minimum). Explicitly specifying
the height of a row with the rowheight option always overrides the rowheightdefault set-
ting.

Enlarge cells which are too small. Now the formatter determines all inner cell boxes
(see Figure 9.33). If the combined margins are larger than the cell’s width or height, the
cell box is suitably enlarged by evenly enlarging all columns and rows which belong to
the cell.

Fit Textlines horizontally. The formatter attempts to increase the width of all cells
with Textlines so that the Textline fits into the cell without reducing the font size. If this
is not possible, the Textline is automatically placed with fitmethod=auto. This guaran-
tees that the Textline will not extend beyond the inner cell box. You can prevent the cell
width from being increased by setting fitmethod=auto in the fittextline option.

You can use the colscalegroup option to make sure that all columns which belong to
the same column scaling group will be scaled to equal widths, i.e. there widths will be
unified and adjusted to the widest column in the group (see Figure 9.36).

Avoid forced hyphenation. If the calculated table width is smaller than the fitbox the
formatter tries to increase the width of a Textflow cell so that the text fits without
forced hyphenation. This can be avoided with the option checkwordsplitting=false. The
widths of such cells will be increased until the table width equals the width of the fit-
box.

You can query the difference between table width and fitbox width with the horbox-
gap key of PDF_info_table().

Fit text vertically. The formatter attempts to increase the height of all Textline and
Textflow cells so that the Textline or Textflow fits into the inner cell box without reduc-
ing the font size. However, the cell height will not be increased if for a Textline or Text-
flow the suboption fitmethod=auto is set, or a Textflow is continued in another cell with
the continuetextflow option.

This process of increasing the cell height applies only to cells containing a Textline
or Textflow, but not for other types of cell contents, i.e. images, graphics, PDI pages,
path objects, annotations, and fields.

9.3 Table Formatting 265

You can use the rowscalegroup option to make sure that all rows which belong to the
same row scaling group will be scaled to equal heights.

Continue the table in the next fitbox. If the table’s resulting total height is larger than
the fitbox (i.e. not all table cells fit into the fitbox), the formatter stops placing rows in
the fitbox before it encounters the first row which doesn’t fit into the fitbox.

If a cell spans multiple lines and not all of those lines fit into the fitbox, this cell will
be split. If the cell contains an image, PDI page, SVG graphics, path object, annotation,
form field, or Textline, the cell contents will be repeated in the next fitbox unless
repeatcontent=false has been specified. Textflows, however, will be continued in the sub-
sequent rows spanned by the cell (see Figure 9.39).

You can use the rowjoingroup option to make sure that all rows belonging to a row
joining group will always appear together in a fitbox. All rows which belong to the head-
er or footer plus one body line automatically form a row joining group. The formatter
may therefore stop placing table rows before it encounters the first line which doesn’t
fit into the fitbox (see Figure 9.38).

You can use the return option to make sure that now more rows will be placed in the
table instance after placing the affected line.

Split a row. A row may be split if it is very high or if there is only a single body line. If
the last body line doesn’t fully fit into the table’s fitbox, it will completely be moved to
the next fitbox. This behavior is controlled by the minrowheight option of PDF_fit_
table(), which has a default value of 100%. If you reduce the minrowheight value the
specified percentage of the content of the last body line will be placed in the current fit-
box and the rest of the line in the next fitbox (see Figure 9.40).

You can check whether a row has been split with the rowsplit keyword of PDF_info_
table().

Shrink the table to the width of the fitbox. The table width as sum of the supplied col-
umn widths may be larger than the fitbox width after one of the previous steps, e.g. af-
ter fitting a Textline horizontally. In this case all columns are evenly reduced until the
table width equals the width of the fitbox. This shrinking process is limited by the
horshrinklimit option. In order to avoid any horizontal shrinking use
horshrinklimit=100%.

You can query the horizontal shrinking factor with the horshrinking keyword of PDF_
info_table().

If the horshrinklimit threshold is exceeded, i.e. the table would have to be squeezed
too much horizontally, the following error message appears:

Table width $1 exceeds fitbox width $2 (required shrinking factor $3 is smaller than
'horshrinklimit'

Here $1 designates the calculated table width, $2 the width of the fitbox as supplied to
PDF_fit_table(), and $3 the calculated shrinking percentage. If you run into this error you
must supply a larger value for the width of the fitbox.

Shrink the table to the height of the fitbox. The table height for the header and footer
rows plus at least one body row or row join group may be larger than the fitbox height.
In this case all rows are evenly reduced until the table height equals the height of the fit-

266 Chapter 9: Text and Table Formatting

box. This shrinking process is limited by the vertshrinklimit option. In order to avoid any
vertical shrinking use vertshrinklimit= 100%.

You can query the vertical shrinking factor with the vertshrinking keyword of PDF_
info_table().

If the vertshrinklimit threshold is exceeded, i.e. the table would have to be squeezed
too much vertically, the following error message appears:

Table height $1 exceeds fitbox height $2 (required shrinking factor $3 is smaller than
'vertshrinklimit'

Here $1 designates the calculated table height, $2 the height of the fitbox as supplied to
PDF_fit_table(), and $3 the calculated shrinking percentage. If you run into this error you
must supply a larger value for the height of the fitbox.

Subsequent fitboxes with different widths. If subsequent fitboxes are wider than the
first fitbox, the table cells are not expanded to completely fill the fitbox width. As a re-
sult all table instances whose fitboxes are wider than the first fitbox have the same
width by default. To completely fill the fitbox the option fitmethod=auto must be sup-
plied. With fitmethod=meet the cell heights are suitably scaled to preserve their aspect
ratio.

If subsequent fitboxes are narrower than the first fitbox, the widths of the table cells
are reduced to fit into the narrower fitbox. In order to calculate the table width anew,
call PDF_fit_table() with rewind=1.

9.4 Matchboxes 267

9.4 Matchboxes
Matchboxes provide access to coordinates calculated by PDFlib as a result of placing
some content on the page. Matchboxes are not defined with a dedicated API function,
but with the matchbox option in the function call which places the actual element, for
example PDF_fit_textline() and PDF_fit_image(). Matchboxes can be used for various pur-
poses:

> Matchboxes can be decorated, e.g. filled with color or surrounded by a frame.
> Matchboxes can be used to automatically create one or more annotations with PDF_

create_annotation().
> Matchboxes define the height of a text line which will be fit into a box with PDF_fit_

textline() or the height of a text fragment in a Textflow which will be decorated (box-
height option).

> Matchboxes define the clipping area for an image.
> The coordinates of the matchbox and other properties can be queried with PDF_info_

matchbox() to perform some other task, e.g. insert an image.

For each element PDFlib calculates the matchbox as a rectangle corresponding to the
bounding box which describes the position of the element on the page (as specified by
all relevant options). For Textflows and table cells a matchbox may consist of multiple
rectangles because of line or row breaking.

The rectangle(s) of a matchbox will be drawn before drawing the element to be
placed. As a result, the element may obscure the effect of the matchbox border or filling,
but not vice versa. In particular, those parts of the matchbox which overlap the area
covered by an image are hidden by the image. If the image is placed with fitmethod=slice
or fitmethod=clip the matchbox borders outside the image fitbox will be clipped as well.
To avoid this effect the matchbox rectangle can be drawn using the basic drawing func-
tions, e.g. PDF_rect(), after the PDF_fit_image() call. The coordinates of the matchbox
rectangle can be retrieved using PDF_info_matchbox() as far as the matchbox has been
provided with a name in the PDF_fit_image() call.

In the following sections some examples for using matchboxes are shown. For de-
tails about the functions which support the matchbox option list, see the PDFlib API
Reference.

Note Matchboxes are not supported in blind mode, i.e. formatting with the blind option.

9.4.1 Decorating a Textline
Let’s start with a discussion of matchboxes in text lines. In PDF_fit_textline() the match-
box is the text box of the supplied text. The width of the text box is the text width, and
the height is the capheight of the given font size, by default. To illustrate the matchbox
size the following code fragment will fill the matchbox with blue background color (see
Figure 9.41a).

String optlist =
"font=" + normalfont + " fontsize=8 position={left top} " +
"matchbox={fillcolor={rgb 0.8 0.8 0.87} boxheight={capheight none}}";

p.fit_textline("Giant Wing Paper Plane", 2, 20, optlist);

You can omit the boxheight option since boxheight={capheight none} is the default set-
ting. It will look better if we increase the box height so that it also covers the descenders
using the boxheight option (see Figure 9.41b).

To increase the box height to match the font size we can use boxheight={fontsize
descender} (see Figure 9.41c).

In the next step we extend the matchbox by some offsets to the left, right and bot-
tom to make the distance between text and box margins the same. In addition, we draw
a rectangle around the matchbox by specifying the border width (see Figure 9.41d).

Cookbook A full code sample can be found in the Cookbook topic textflow/text_on_color.

Fig. 9.41 Decorating a text line using a matchbox with various suboptions

9.4.2 Using Matchboxes in a Textflow

Decorating parts of a Textflow. In this section we will decorate some text within a
Textflow: The words very dangerous will be emphasized similar to a marker pen. To ac-
complish this the words are enclosed in the matchbox and matchbox=end inline options
(see Figure 9.42).

Fig. 9.42 Textflow with matchbox inline option

Adding a Web link to the Textflow matchbox. Now we will add a Web link to parts of a
Textflow. In the first step we create the Textflow with a matchbox called kraxi indicating
the text part to be linked. Second, we will create the action for opening a URL. Third, we
create an annotation of type Link with an invisible frame. In its option list we reference
the kraxi matchbox to be used as the link’s rectangle (the rectangle coordinates in PDF_
create_annotation() will be ignored).

Cookbook A full code sample can be found in the Cookbook topic textflow/weblink_in_text.

/* create and fit Textflow with matchbox "kraxi" */
String tftext =

"For more information about the Giant Wing Paper Plane see the Web site of " +
"<underline=true matchbox={name=kraxi boxheight={fontsize descender}}>" +
"Kraxi Systems, Inc.<matchbox=end underline=false>";

String optlist = "font=" + normalfont + " fontsize=8 leading=110%";

Generated output Suboptions of the matchbox option of PDF_fit_textline()

a) boxheight={capheight none}

b) boxheight={ascender descender}

c) boxheight={fontsize descender}

d)
boxheight={fontsize descender} borderwidth=0.3
offsetleft=-2 offsetright=2 offsetbottom=-2

Generated output Text and inline options for PDF_create_textflow()

It is <matchbox={fillcolor=red
boxheight={ascender descender}}>very dangerous
<matchbox=end> to fly the Giant Wing in a thunderstorm.

Giant Wing Paper Plane

Giant Wing Paper Plane

Giant Wing Paper Plane

Giant Wing Paper Plane

It is very dangerous to fly
the Giant Wing in a
thunderstorm.

http://www.pdflib.com/pdflib-cookbook/textflow/text_on_color/
http://www.pdflib.com/pdflib-cookbook/textflow/weblink_in_text/

9.4 Matchboxes 269

tflow = p.create_textflow(tftext, optlist);
if (tflow == -1)

throw new Exception("Error: " + p.get_errmsg());

result = p.fit_textflow(tflow, 0, 0, 50, 70, "fitmethod=auto");
if (!result.equals("_stop"))

{ /* ... */ }

/* create URI action */
optlist = "url={http://www.kraxi.com}";
act = p.create_action("URI", optlist);

/* create Link annotation on matchbox "kraxi" */
optlist = "action={activate " + act + "} linewidth=0 usematchbox={kraxi}";
p.create_annotation(0, 0, 0, 0, "Link", optlist);

Even if the text Kraxi Systems, Inc. spans several lines the appropriate number of link an-
notations will be created automatically with a single call to PDF_create_annotation(). The
result in shown in Figure 9.43.

9.4.3 Matchboxes and Images

Adding a Web link to an image. To add a Web link to the area covered by an image the
image matchbox can be used. The code is similar to »Adding a Web link to the Textflow
matchbox«, page 268, above. However, instead of placing the Textflow, fit the image us-
ing the following option list:

String optlist = "boxsize={130 130} fitmethod=meet matchbox={name=kraxi}";
p.fit_image(image, 10, 10, optlist);

Cookbook A full code sample can be found in the Cookbook topic interactive/link_annotations.

Drawing a frame around an image. In this example we want to use the image match-
box to draw a frame around the image. We completely fit the image into the supplied
box while maintaining its proportions using fitmethod=meet. We use the matchbox op-
tion with the borderwidth suboption to draw a thick border around the image. The
strokecolor suboption determines the border color, and the linecap and linejoin subop-
tions are used to round the corners.

Cookbook A full code sample can be found in the Cookbook topic images/frame_around_image.

The matchbox is always drawn before the image which means it would be partially hid-
den by the image. To avoid this we use the offset suboptions with 50 percent of the bor-
der width to enlarge the frame beyond the area covered by the image. Alternatively, we
could increase the border width accordingly. Figure 9.44 shows the option list used with
PDF_fit_image() to draw the frame.

For information about
Giant Wing Paper
Planes see the Web
site of Kraxi Systems,
Inc.

Fig. 9.43
Add Weblinks to parts of a Textflow

http://www.pdflib.com/pdflib-cookbook/interactive/link_annotations/
http://www.pdflib.com/pdflib-cookbook/images/frame_around_image/

270 Chapter 9: Text and Table Formatting

Fig. 9.44 Using the image matchbox to draw a frame around the image

Align text at an image. The following code fragment shows how to align vertical text
at the right margin of an image. The image is proportionally fit into the supplied box
with a fit method of meet. The actual coordinates of the fitbox are retrieved with PDF_
info_matchbox() and a vertical text line is placed relative to the lower right (x2, y2) corner
of the fitbox. The border of the matchbox is stroked (see Figure 9.45).

Cookbook A full code sample can be found in the Cookbook topic images/align_text_at_image.

/* use this option list to load and fit the image */
String optlist = "boxsize={300 200} position={center} fitmethod=meet " +

"matchbox={name=giantwing borderwidth=3 strokecolor={rgb 0.85 0.83 0.85}}";

/* load and fit the image */
...

/* retrieve the coordinates of the lower right (second) matchbox corner */
if ((int) p.info_matchbox("giantwing", 1, "exists") == 1)
{

x2 = p.info_matchbox("giantwing", 1, "x2");
y2 = p.info_matchbox("giantwing", 1, "y2");

}
/* start the text line at that corner with a small distance of 2 */
p.fit_textline("Foto: Kraxi", x2+2, y2+2, "font=" + font + " fontsize=8 orientate=west");

Fig. 9.45 Use the coordinates of the image matchbox to fit a text line

Generated output Option list for PDF_fit_image()

boxsize={60 60} position={center} fitmethod=meet
matchbox={name=kraxi borderwidth=4 offsetleft=-2 offsetright=2
offsetbottom=-2 offsettop=2 linecap=round linejoin=round
strokecolor={rgb 0.0 0.3 0.3}}

Generated output Generation steps

Step 1: Fit image with matchbox
Step 2: Retrieve matchbox info for coordinates (x2, y2)
Step 3: Fit text line starting at retrieved coordinates (x2, y2) with option
orientate=west

(x2, y2)

Fo
to

: K
ra

xi

http://www.pdflib.com/pdflib-cookbook/images/align_text_at_image/

10.1 Links, Bookmarks, and Annotations 271

10 Interactive Features
Cookbook Code samples for creating interactive elements can be found in the interactive category of

the PDFlib Cookbook.

10.1 Links, Bookmarks, and Annotations
This section explains how to create interactive elements such as bookmarks, form
fields, and annotations. Figure 10.1 shows the resulting document with all interactive el-
ements that we will create in this section. The document contains the following interac-
tive elements:

> At the top right there is an invisible Web link to www.kraxi.com at the text
www.kraxi.com. Clicking this area will bring up the corresponding Web page.

> A gray form field of type text is located below the Web link. Using JavaScript code it
will automatically be filled with the current date.

> The red pushpin contains an annotation with an attachment. Clicking it will open
the attached file.

> At the bottom left there is a form field of type button with a printer symbol. Clicking
this button will execute Acrobat’s menu item File, Print.

> The navigation page contains the bookmark »Our Paper Planes Catalog«. Clicking
this bookmark will bring up a page of another PDF document.

In the next paragraphs we will show in detail how to create these interactive elements
with PDFlib.

Web link. Let’s start with a link to the Web site www.kraxi.com. This is accomplished in
three steps. First, we fit the text on which the Web link should work. Using the matchbox
option with name=kraxi we specify the rectangle of the text’s fitbox for further refer-
ence.

Second, we create an action of type URI (in Acrobat: Open a web link). This will provide
us with an action handle which subsequently can be assigned to one or more interactive
elements.

Third, we create the actual link. A link in PDF is an annotation of type Link. The action
option for the link contains the event name activate which will trigger the action, plus

Fig. 10.1
Document with interactive
elements

http://www.pdflib.com/pdflib-cookbook/interactive/

272 Chapter 10: Interactive Features

the act handle created above for the action itself. By default the link will be displayed
with a thin black border. Initially this is convenient for precise positioning, but we dis-
abled the border with linewidth=0.

normalfont = p.load_font("Helvetica", "unicode", "");
p.begin_page_ext(pagewidth, pageheight, "topdown");

/* place the text line "Kraxi Systems, Inc." using a matchbox */
String optlist =

"font=" + normalfont + " fontsize=8 position={left top} " +
"matchbox={name=kraxi} fillcolor={rgb 0 0 1} underline";

p.fit_textline("Kraxi Systems, Inc.", 2, 20, optlist);

/* create URI action */
optlist = "url={http://www.kraxi.com}";
int act = p.create_action("URI", optlist);

/* create Link annotation on matchbox "kraxi" */
optlist = "action={activate " + act + "} linewidth=0 usematchbox={kraxi}";
/* 0 rectangle coordinates will be replaced with matchbox coordinates */
p.create_annotation(0, 0, 0, 0, "Link", optlist);

p.end_page_ext("");

For an example of creating a Web link on an image or on parts of a textflow, see Section
9.4, »Matchboxes«, page 267.

Cookbook A full code sample can be found in the Cookbook topic interactive/link_annotations.

Bookmark for jumping to another file. Now let’s create the bookmark »Our Paper
Planes Catalog« which jumps to another PDF file called paper_planes_catalog.pdf. First
we create an action of Type GoToR. In the option list for this action we define the name
of the target document with the filename option; the destination option specifies a cer-
tain part of the page which will be enlarged. More precisely, the document will be dis-
played on the second page (page=2) with a fixed view (type=fixed), where the middle of
the page is visible (left=50 top=200) and the zoom factor is 200% (zoom=2):

String optlist =
"filename=paper_planes_catalog.pdf " +
"destination={page=2 type=fixed left=50 top=200 zoom=2}";

goto_action = p.create_action("GoToR", optlist);

In the next step we create the actual bookmark. The action option for the bookmark con-
tains the activate event which will trigger the action, plus the goto_action handle created
above for the desired action. The option fontstyle=bold specifies bold text, and textcolor=
blue makes the bookmark blue. The bookmark text »Our Paper Planes Catalog« is pro-
vided as a function parameter:

String optlist =
"action={activate " + goto_action + "} fontstyle=bold textcolor=blue";

catalog_bookmark = p.create_bookmark("Our Paper Planes Catalog", optlist);

http://www.pdflib.com/pdflib-cookbook/interactive/link_annotations/

10.1 Links, Bookmarks, and Annotations 273

Clicking the bookmark will display the specified part of the page in the target docu-
ment.

Cookbook A full code sample can be found in the Cookbook topic interactive/nested_bookmarks.

Annotation with file attachment. In the next example we create a file attachment. We
start by creating an annotation of type FileAttachment. The filename option specifies the
name of the attachment, the option mimetype image/gif specifies its type (MIME is a
common convention for classifying file contents). The annotation will be displayed as a
pushpin (iconname pushpin) in red (annotcolor=red) and has a tooltip (contents {Get the
Kraxi Paper Plane!}). It will not be printed (display noprint):

String optlist =
"filename=kraxi_logo.gif mimetype=image/gif iconname=pushpin " +
"annotcolor=red contents={Get the Kraxi Paper Plane!} display=noprint";

p.create_annotation(left_x, left_y, right_x, right_y, "FileAttachment", optlist);

Note that the size of the symbol defined with iconname does not vary; the icon will be
displayed in its standard size in the top left corner of the specified rectangle.

http://www.pdflib.com/pdflib-cookbook/interactive/nested_bookmarks/

274 Chapter 10: Interactive Features

10.2 Form Fields and JavaScript
Button form field for printing. The next example creates a button form field which
can be used for printing the document. In the first version we add a caption to the but-
ton; later we will use a printer symbol instead of the caption. We start by creating an ac-
tion of type Named (in Acrobat: Execute a menu item). Also, we must specify the font for
the caption:

print_action = p.create_action("Named", "menuname=Print");
button_font = p.load_font("Helvetica-Bold", "unicode", "");

The action option for the button form field contains the up event (in Acrobat: Mouse Up)
as a trigger for executing the action, plus the print_action handle created above for the
action itself. The backgroundcolor=yellow option specifies yellow background, while bor-
dercolor=black specifies black border. The option caption=Print adds the text Print to the
button, and tooltip={Print the document} creates an additional explanation for the user.
The font option specifies the font using the button_font handle created above. By de-
fault, the size of the caption will be adjusted so that it completely fits into the button’s
area. Finally, the actual button form field is created with proper coordinates, the name
print_button, the type pushbutton and the appropriate options:

String optlist =
"action {up " + print_action + "} backgroundcolor=yellow " +
"bordercolor=black caption=Print tooltip={Print the document} font=" +
button_font;

p.create_field(left_x, left_y, right_x, right_y, "print_button", "pushbutton", optlist);

Now we extend the first version of the button by replacing the text Print with a little
printer icon. To achieve this we load the corresponding image file print_icon.jpg as a
template before creating the page. Using the icon option we assign the template handle
print_icon to the button field, and create the form field similarly to the code above:

print_icon = p.load_image("auto", "print_icon.jpg", "template");
if (print_icon == -1)
{

/* Error handling */
return;

}
p.begin_page_ext(pagewidth, pageheight, "");
...
String optlist = "action={up " + print_action + "} icon=" + print_icon +

" tooltip={Print the document} font=" + button_font;

p.create_field(left_x, left_y, right_x, right_y, "print_button", "pushbutton", optlist);

Cookbook A full code sample can be found in the Cookbook topic form_fields/form_pushbutton.

Simple text field. Now we create a text field near the upper right corner of the page.
The user will be able to enter the current date in this field. We acquire a font handle and
create a form field of type textfield which is called date, and has a gray background:

http://www.pdflib.com/pdflib-cookbook/form_fields/form_pushbutton/

10.2 Form Fields and JavaScript 275

textfield_font = p.load_font("Helvetica-Bold", "unicode", "");
String optlist = "backgroundcolor={gray 0.8} font=" + textfield_font;
p.create_field(left_x, left_y, right_x, right_y, "date", "textfield", optlist);

By default the font size is auto, which means that initially the field height is used as the
font size. When the input reaches the end of the field the font size is decreased so that
the text always fits into the field.

Cookbook Full code samples can be found in the Cookbook topics form_fields/form_textfield_layout
and form_fields/form_textfield_height.

Text field with JavaScript. In order to improve the text form field created above we au-
tomatically fill it with the current date when the page is opened. First we create an ac-
tion of type JavaScript (in Acrobat: Run a JavaScript). The script option in the action’s op-
tion list defines a JavaScript snippet which displays the current date in the date text
field in the format month-day-year:

String optlist =
"script={var d = util.printd('mmm dd yyyy', new Date()); " +
"var date = this.getField('date'); date.value = d;}"

show_date = p.create_action("JavaScript", optlist);

In the second step we create the page. In the option list we supply the action option
which attaches the show_date action created above to the trigger event open (in Acrobat:
Page Open):

String optlist = "action={open " + show_date + "}";
p.begin_page_ext(pagewidth, pageheight, optlist);

Finally we create the text field as we did above. It will automatically be filled with the
current date whenever the page is opened:

textfield_font = p.load_font("Helvetica-Bold", "winansi", "");
String optlist = "backgroundcolor={gray 0.8} font=" + textfield_font;
p.create_field(left_x, left_y, right_x, right_y, "date", "textfield", optlist);

Cookbook A full code sample can be found in the Cookbook topic form_fields/form_textfield_fill_
with_js.

Formatting Options for Text Fields. In Acrobat it is possible to specify various options
for formatting the contents of a text field, such as monetary amounts, dates, or percent-
ages. This is implemented via custom JavaScript code used by Acrobat. PDFlib does not
directly support these formatting features since they are not specified in the PDF refer-
ence. However, for the benefit of PDFlib users we present some information below
which will allow you to realize formatting options for text fields by supplying simple
JavaScript code fragments with the action option of PDF_create_field().

In order to apply formatting to a text field JavaScript snippets are attached to the
field as keystroke and format actions. The JavaScript code calls some internal Acrobat
function where the parameters control details of the formatting.

The following sample creates two keystroke and format actions, and attaches them to
a form field so that the field contents will be formatted with two decimal places and the
EUR currency identifier:

http://www.pdflib.com/pdflib-cookbook/form_fields/form_textfield_layout/
http://www.pdflib.com/pdflib-cookbook/form_fields/form_textfield_fill_with_js/
http://www.pdflib.com/pdflib-cookbook/form_fields/form_textfield_fill_with_js/
http://www.pdflib.com/pdflib-cookbook/form_fields/form_textfield_height/

276 Chapter 10: Interactive Features

keystroke_action = p.create_action("JavaScript",
"script={AFNumber_Keystroke(2, 0, 3, 0, \"EUR \", true); }");

format_action = p.create_action("JavaScript",
"script={AFNumber_Format(2, 0, 0, 0, \"EUR \", true); }");

String optlist = "font=" + font + " action={keystroke " + keystroke_action +
" format=" + format_action + "}";

p.create_field(50, 500, 250, 600, "price", "textfield", optlist);

Cookbook A full code sample can be found in the Cookbook topic form_fields/form_textfield_input_
format.

In order to specify the various formats which are supported in Acrobat you must use ap-
propriate functions in the JavaScript code. Table 10.1 lists the JavaScript function names
for the keystroke and format actions for all supported formats; the function parameters
are described in Table 10.2. These functions must be used similarly to the example
above.

Table 10.1 JavaScript formatting functions for text fields

format JavaScript functions to be used for keystroke and format actions

number AFNumber_Keystroke(nDec, sepStyle, negStyle, currStyle, strCurrency, bCurrencyPrepend)
AFNumber_Format(nDec, sepStyle, negStyle, currStyle, strCurrency, bCurrencyPrepend)

percentage AFPercent_Keystroke(ndec, sepStyle), AFPercent_Format(ndec, sepStyle)

date AFDate_KeystrokeEx(cFormat), AFDate_FormatEx(cFormat)

time AFTime_Keystroke(tFormat), AFTime_FormatEx(cFormat)

special AFSpecial_Keystroke(psf), AFSpecial_Format(psf)

Table 10.2 Parameters for the JavaScript formatting functions

parameters explanation and possible values

nDec Number of decimal places

sepStyle The decimal separator style:
0 1,234.56
1 1234.56
2 1.234,56
3 1234,56

negStyle Emphasis used for negative numbers:
0 Normal
1 Use red text
2 Show parenthesis
3 both

strCurrency Currency string to use, e.g. \u20AC for the Euro sign

bCurrency-
Prepend

false do not prepend currency symbol
true prepend currency symbol

http://www.pdflib.com/pdflib-cookbook/form_fields/form_textfield_input_format/
http://www.pdflib.com/pdflib-cookbook/form_fields/form_textfield_input_format/

10.2 Form Fields and JavaScript 277

Validating form field input. The following sample attaches JavaScript to a form field
as validate action to check whether the user input for a text field matches the required
format mm/dd/yyyy:

optlist =
"script={" +
 "// JavaScript code for date mask format MM/DD/YYYY\n" +
 "var re = /^[0-9]{2}\\/[0-9]{2}\\/[0-9]{4}$/\n" +
 "if (event.value !=\"\") {\n" +
 " if (re.test(event.value) == false) {\n" +
 " app.alert ({\n" +
 " cTitle: \"Incorrect Format\",\n" +
 " cMsg: \"Please enter date using mm/dd/yyyy format\"\n" +
 " });\n" +
 " }\n" +
 "}\n" +
"}";
validate_action = p.create_action("JavaScript", optlist);
textfield_font = p.load_font("Helvetica", "unicode", "");
optlist = "action={validate=" + validate_action + "} " +

cFormat A date format string. It may contain the following format placeholders, or any of the time formats listed
below for tFormat:
d day of month
dd day of month with leading zero
ddd abbreviated day of the week
m month as number
mm month as number with leading zero
mmm abbreviated month name
mmmm full month name
yyyy year with four digits
yy last two digits of year

tFormat A time format string. It may contain the following format placeholders:
h hour (0-12)
hh hour with leading zero (0-12)
H hour (0-24)
HH hour with leading zero (0-24)
M minutes
MM minutes with leading zero
s seconds
ss seconds with leading zero
t 'a' or 'p'
tt 'am' or 'pm'

psf Describes a few additional formats:
0 Zip Code
1 Zip Code + 4
2 Phone Number
3 Social Security Number

Table 10.2 Parameters for the JavaScript formatting functions

parameters explanation and possible values

278 Chapter 10: Interactive Features

"backgroundcolor={gray 0.8} font=" + textfield_font;
p.create_field(llx, lly, urx, ury, "startdate", "textfield", optlist);

10.3 Geospatial PDF 279

10.3 Geospatial PDF
Cookbook A full code sample can be found in the Cookbook topic geospatial/starter_geospatial.

10.3.1 Using georeferenced PDF in Acrobat
PDF 1.7ext3 allows geospatial reference information (world coordinates) to be added to
PDF page contents. Geospatially referenced PDF documents can be used in Acrobat for
several purposes. In Acrobat and Adobe Reader DC you must enable Tools, Measure; in
Acrobat X/XI you have to activate the Analyze toolbar using the button at the top of the
Tools pane; in Adobe Reader X/XI: Edit, Analysis, Geospatial Location Tool:

> Display the coordinates of the map point under the mouse cursor: Geospatial
Location Tool. You can copy the coordinates of the map point under the mouse cursor
by right-clicking and selecting Copy Coordinates to Clipboard;

> Search for a location on the map: Geospatial Location Tool, right-click and select Find a
Location, and enter the desired coordinates;

> Mark a location on the map: Geospatial Location Tool, right-click and select Mark
Location;

> Measure distance, perimeter and area on geographic maps: Measuring Tool;

Only the first two functions mentioned above are available in Adobe Reader. Various
settings for geospatial measuring can be changed in Edit, Preferences, [General...], Mea-
suring (Geo), e.g. the preferred coordinate system for coordinate readouts.

Geospatial features in PDFlib are implemented with the following functions and op-
tions:

> One or more georeferenced areas can be assigned to a page with the viewports option
(and suboption georeference) of PDF_begin/end_page_ext(). Viewports allow different
geospatial references (specified by the georeference option) to be used on different ar-
eas of the page, e.g. for multiple maps on the same page. This method works in all
PDF viewers with support for georeferenced PDF.

Cookbook A full code sample can be found in the Cookbook topic geospatial/starter_geospatial.

> The georeference option of PDF_load_image() can be used to assign an earth-based co-
ordinate system to an image.

Cookbook A full code sample can be found in the Cookbook topic geospatial/georeferenced_image.

> The georeference option of PDF_open_pdi_page(), PDF_load_graphics() and PDF_begin_
template_ext() can be used to assign an earth-based coordinate system to a Form
XObject. However, this method is not recommended since it is not supported in any
known viewer including Acrobat DC.

10.3.2 Geographic and projected Coordinate Systems
A geographic coordinate system describes the earth in geographic coordinates, i.e. an-
gular units of latitude and longitude. A projected coordinate system can be specified on
top of a geographic coordinate system and describes the transformation of points in
geographic coordinates to a two-dimensional (projected) coordinate system. The result-
ing coordinates are called Northing and Easting values; degrees are no longer required
for projected coordinate systems. While geographic coordinate systems are in use for

http://www.pdflib.com/pdflib-cookbook/geospatial/starter_geospatial/
http://www.pdflib.com/pdflib-cookbook/geospatial/starter_geospatial/
http://www.pdflib.com/pdflib-cookbook/geospatial/georeferenced_image/

280 Chapter 10: Interactive Features

GPS and other global applications, projections are required for map-making and other
applications with more or less local character.

For historical and mathematical reasons a variety of different coordinate systems is
in use around the world. Both geographic and projected coordinate systems can be de-
scribed using two well-established methods which are called EPSG and WKT.

EPSG. EPSG is a collection of thousands of coordinate systems which are referenced
via numeric codes. EPSG is named after the defunct European Petroleum Survey Group and
now maintained by the International Association of Oil and Gas Producers (OGP).

EPSG reference codes point to one of the coordinate systems in the EPSG database.
The full EPSG database can be downloaded from the following location:

www.epsg.org

Well-known text (WKT). The WKT (Well-Known Text) system is descriptive and consists
of a textual specification of all relevant parameters of a coordinate system. WKT is spec-
ified in the document OpenGIS® Implementation Specification: Coordinate Transformation
Services, which has been published as Document 01-009 by the Open Geospatial Consor-
tium (OGC).It is available at the following location:

www.opengeospatial.org/standards/ct

WKT has also been standardized in ISO 19125-1. Although both WKT and EPSG can be
used in Acrobat (and are supported in PDFlib), Acrobat does not implement all possible
EPSG codes. In particular, EPSG codes for geographic coordinate systems don’t seem to
be supported in Acrobat. In this case the use of WKT is recommended. The following
Web site delivers the WKT corresponding to a particular EPSG code:

www.spatialreference.org/ref/epsg

10.3.3 Coordinate System Examples

Examples for geographic coordinate systems. The WGS84 (World Geodetic System)
geographic coordinate system is the basis for GPS and many applications (e.g. Open-
StreetMap). It can be expressed as follows in the worldsystem suboption of the geo-
reference option:

worldsystem={type=geographic wkt={
GEOGCS["WGS 84",
 DATUM["WGS_1984", SPHEROID["WGS 84", 6378137, 298.257223563]],
 PRIMEM["Greenwich", 0],
 UNIT["degree", 0.01745329251994328]]
}}

The ETRS (European Terrestrial Reference System) geographic coordinate system is al-
most identical to WGS84. It can be specified as follows:

worldsystem={type=geographic wkt={
GEOGCS["ETRS_1989",

DATUM["ETRS_1989", SPHEROID["GRS_1980", 6378137.0, 298.257222101]],
PRIMEM["Greenwich", 0.0],
UNIT["Degree", 0.0174532925199433]]

}}

10.3 Geospatial PDF 281

Note EPSG codes for the WGS84 and ETRS systems are not shown here because Acrobat doesn’t seem
to support EPSG codes for geographic coordinate systems, but only for projected coordinate
systems (see below).

Examples for projected coordinate systems. A projection is based on an underlying
geographic coordinate system. In the following example we specify a projected coordi-
nate system suitable for use with GPS coordinates.

In middle Europe the system called ETRS89 UTM zone 32 N applies. It uses the com-
mon UTM (Universal Mercator Projection), and can be expressed as follows in the
worldsystem suboption of the georeference option:

worldsystem={type=projected wkt={
 PROJCS["ETRS_1989_UTM_Zone_32N",
 GEOGCS["GCS_ETRS_1989",
 DATUM["D_ETRS_1989", SPHEROID["GRS_1980", 6378137.0, 298.257222101],
 TOWGS84[0, 0, 0, 0, 0, 0, 0]],
 PRIMEM["Greenwich", 0.0],
 UNIT["Degree", 0.0174532925199433]],
 PROJECTION["Transverse_Mercator"],
 PARAMETER["False_Easting", 500000.0],
 PARAMETER["False_Northing", 0.0],
 PARAMETER["Central_Meridian", 9.0],
 PARAMETER["Scale_Factor", 0.9996],
 PARAMETER["Latitude_Of_Origin", 0.0],
 UNIT["Meter", 1.0]]
}}

The corresponding EPSG code for this coordinate system is 25832. As an alternative to
WKT, the system above can also be specified via its EPSG code as follows:

worldsystem={type=projected epsg=25832}

10.3.4 Georeferenced PDF Restrictions in Acrobat
We experienced the following shortcomings when working with georeferenced PDF in
Acrobat X/XI/DC:

> EPSG codes don’t seem to work at all for geographic coordinate systems, but only for
projected systems.
Workaround: use the corresponding WKT instead of the EPSG code.

> Attaching geospatial data to Form XObjects does not work. For this reason the
georeference option for PDF_open_pdi_page(), PDF_begin_template_ext() and PDF_
load_graphics() is not recommended although it should work according to the PDF
Reference.
Workaround for creating vector-based maps: you can attach the geospatial data to
the page, i.e. use the viewports option of PDF_begin_page_ext().

> Overlapping maps: you can place multiple image-based maps on the same page. If
the maps overlap and you display the coordinates of a point in the overlapping area,
Acrobat uses the coordinates of the map which has been placed last (this makes
sense since this is also the map which is visible). However, if both image handles are
identical (i.e. retrieved with a single call to PDF_load_image()), Acrobat does no longer
take into account the different image geometries: the coordinates of the first image
are incorrectly extended to the area of second image, resulting in wrong coordinate

282 Chapter 10: Interactive Features

readouts.
Workaround: if you need multiple instances of the same image-based map on the
same page, open the image multiply.

> The area measurement tool doesn’t work correctly for geographic coordinate sys-
tems, but only for projected systems.

11.1 XMP Metadata 283

11 Document Interchange
11.1 XMP Metadata

As an alternative or in addition to document information fields PDFlib supports XMP
(Extensible Metadata Platform) as a framework for specifying metadata. XMP has been
standardized as ISO 16684-1:2012. There are several aspects of XMP support in PDFlib as
detailed below.

Cookbook A simple XMP sample can be found in the Cookbook topic interchange/embed_xmp.

Most commonly XMP is used to attach metadata to the whole document. In addition to
document-level metadata, XMP can be supplied for pages, fonts, ICC profiles, images,
graphics, templates, and imported PDF pages. This can be achieved with the metadata
option of various functions, for example:

metadata={filename=info.xmp inputencoding=winansi}

The metadata option expects full or partial XMP metadata streams. PDFlib validates the
user-supplied XMP metadata according to XML and XMP/RDF rules. For PDF/A addition-
al rules for custom XMP properties apply; see Section 12.3.8, »XMP Metadata for PDF/A«,
page 328.

Internal and reserved XMP properties. PDFlib creates several XMP properties internal-
ly, e.g. CreationDate. Other XMP properties are required to signal conformance to vari-
ous PDF standards such as PDF/A or PDF/X. Internal properties as well as standards-re-
lated identification properties can not be overridden by user-supplied XMP.

Automatic XMP synchronization for document info fields. If the autoxmp option in
PDF_begin/end_document() is true, PDFlib synchronizes document information fields
supplied to PDF_set_info() as well as several internally generated entries (e.g. Creation-
Date) to the corresponding entries in the document-level XMP metadata.

Document info fields which correspond to a well-known property in one of the stan-
dard XMP schemas are placed in the appropriate schema. Unknown info fields are gen-
erally placed in the extended PDF (pdfx) schema, but will be ignored in PDF/A.

Cloning XMP metadata. If most or all pages of a PDF document are imported it is rec-
ommended to clone XMP metadata if it is present in the input. XMP metadata can be
cloned with the following code fragment:

if (p.pcos_get_string(indoc, "type:/Root/Metadata").equals("stream"))
{

xmp = p.pcos_get_stream(indoc, "", "/Root/Metadata");
p.create_pvf("/xmp/document.xmp", xmp, "");
optlist += " metadata={filename=/xmp/document.xmp}";

}

p.end_document(optlist);
p.delete_pvf("/xmp/document.xmp");

http://www.pdflib.com/pdflib-cookbook/interchange/embed_xmp/

284 Chapter 11: Document Interchange

11.2 Web-Optimized (Linearized) PDF
PDFlib can apply a process called linearization to PDF documents (linearized PDF is also
called Optimized or Fast Web View). Linearization reorganizes the objects within a PDF file
and adds supplemental information which can be used for faster access.

While non-linearized PDFs must be fully transferred to the client, a Web server can
transfer linearized PDF documents one page at a time using a process called byte-
serving. It allows Acrobat (running as a browser plugin) to retrieve individual parts of a
PDF document separately. The result is that the first page of the document will be pre-
sented to the user without having to wait for the full document to download from the
server. This provides enhanced user experience.

Note that the Web server streams PDF data to the browser, not PDFlib. Instead, PDFlib
prepares the PDF files for byteserving. All of the following requirements must be met in
order to take advantage of byteserving PDFs:

> The PDF document must be linearized. This can be achieved with the linearize option
in PDF_begin_document() as follows:

p.begin_document(outfilename, "linearize");

In Acrobat you can check whether a file is linearized by looking at its document
properties (»Fast Web View: yes«).

> The Web server must support byteserving. The underlying byterange protocol is part
of HTTP 1.1 and therefore implemented in all current Web servers.

> The user must use Acrobat as a Browser plugin, and have page-at-a-time download
enabled in Acrobat (Edit, Preferences, [General...,] Internet, Allow fast web view). Note
that this is enabled by default.

The larger a PDF file (measured in pages or MB), the more it will benefit from lineariza-
tion when delivered over the Web.

Linearization and file size. Since linearization aims at improving the Web-based dis-
play of large PDF documents it doesn’t make much sense for single-page documents.
Due to a bug in Acrobat small linearized documents are not always treated as linearized.
For example, Acrobat regards documents < 4KB as non-linearized, regardless of the actu-
al linearization status.

Acrobat also doesn’t regard PDF documents larger than 2 GB as linearized.

Temporary storage requirements for linearization. PDFlib must create the full docu-
ment before it can be linearized; the linearization process will be applied in a separate
step after the document has been created. For this reason PDFlib has additional storage
requirements for linearization. Temporary storage will be required which has roughly
the same size as the generated document (without linearization). Subject to the
inmemory option in PDF_begin_document() PDFlib will place the linearization data either
in memory or on a temporary disk file.

11.3 Tagged PDF Basics 285

11.3 Tagged PDF Basics
Tagged PDF is a requirement for the PDF/UA, PDF/A-1a, PDF/A-2a, and PDF/A-3a ISO
standards, Section 508 in the U.S., BITV in Germany and many other regulations. Tagged
PDF enhances PDF with document structure information which offers the following ad-
vantages:

> Accessibility: Tagged PDF is accessible for users with disabilities, e.g. via Acrobat’s
built-in Read Aloud feature or more advanced screen reader software (see Figure 11.1).

> Reliable export and conversion to other document formats: converting Tagged PDF
to other formats such as RTF, XML or HTML results in more accurate output.

PDF/UA enhances Tagged PDF by specifying requirements for the document tags. If you
want to create accessible PDF documents we recommend to follow the additional rules
for PDF/UA; see Section 12.6, »PDF/UA for Universal Accessibility«, page 348, for details.

If you cannot obey all PDF/UA requirements (e.g. because you must assemble docu-
ments from existing PDFs which themselves don’t conform to PDF/UA) we recommend
to disable PDF/UA mode and obey as many PDF/UA rules as possible.

Cookbook Code samples for generating Tagged PDF can be found in the pdfua category of the PDFlib
Cookbook. All Tagged PDF samples in the Cookbook create PDF/UA.

11.3.1 The Logical Structure Tree (Structure Hierarchy)
Tagged PDF can only be created if the client provides information about the document’s
internal structure, and obeys certain rules when generating PDF output. In order to cre-
ate Tagged PDF the tagged document option must be set to true, and the lang option is
recommended:

Fig. 11.1
A screen reader captures text
on the screen and displays it
on a Braille device

http://www.pdflib.com/pdflib-cookbook/pdfua/

286 Chapter 11: Document Interchange

if (p.begin_document("tagged.pdf", "tagged=true lang=en") == -1) {
throw new Exception("Error: " + p.get_errmsg());

The logical structure in a Tagged PDF document is described by a hierarchy of elements,
called the structure hierarchy or logical structure tree. Starting at the root level, the
structure hierarchy consists of an arbitrary number of levels. On each level an element
may contain zero or more items of the following kinds:

> Other structure elements, e.g. the Document element may contain multiple Art (ar-
ticle) elements. Each Art element in turn may contain multiple P (paragraph) ele-
ments.

> Content items, i.e. sequences of text and graphics on the page, XObjects created from
imported images, and OBJR references to annotations and form fields. These items
represent the graphical content associated with a structure element.

Structure hierarchy in Acrobat. You can display tag names and structure hierarchy in
Acrobat X/XI/DC as follows:

> select View, Show/Hide, Navigation Panes, Tags (see Figure 11.2)

Tag nesting functions. Structure elements can be created explicitly with the PDF_
begin_item() function which must always be paired with a corresponding call to PDF_
end_item(). For example, the code fragment below creates a hierarchy consisting of a
section which contains a heading and a paragraph. The hierarchical relationship is visu-
alized with indentation:

/* Create a structure element of type "Sect" (section) */
id_sect = p.begin_item("Sect", "Title={Past and Future}");

Fig. 11.2
Acrobat’s tag pane displays the
document’s logical structure tree

11.3 Tagged PDF Basics 287

/* Create a structure element of type "H1" (heading) */
id_h1 = p.begin_item("H1", "Title={Company History}");

p.fit_textline(...);
p.end_item(id_h1);

/* Create a structure element of type "P" (paragraph) */
id_p = p.begin_item("P", "");

p.fit_textline(...);
p.end_item(id_p);

/* Close "Sect" */
p.end_item(id_sect);

By default, structure elements are inserted as a child of the currently active item after
all other child items which may already be present. This leads to the correct tree struc-
ture if the elements are created in logical order. See Section 11.4.4, »Creating Contents
out of Order«, page 309, for more advanced techniques.

Structure elements may carry one or more attributes which are supplied via options,
e.g. lang for specifying the natural language of a content element or Alt for alternative
text for images. The set of available options depends on the structure element type.

Abbreviated tagging. In many situations the content of a structure element can be
created with a single call to a PDFlib fitting function, resulting in the typical sequence
PDF_begin_item()/PDF_fit_*()/PDF_end_item(). This sequence can be reduced with abbre-
viated tagging. Placing content and supplying tagging information can be combined in
a single function call using the tag option which is supported by most functions for cre-
ating page content. The code fragment above can be simplified by supplying the tag op-
tion to the text and image placement functions:

/* Create a structure element of type "Sect" (section) */
id_sect = p.begin_item("Sect", "Title={Past and Future}");

/* Create a structure element of type "H1" (heading) */
p.fit_textline(..., "tag={tagname=H1 Title={Company History}}");

/* Create a structure element of type "P" (paragraph) */
p.fit_textline(..., "tag={tagname=P}");

/* Close "Sect" */
p.end_item(id_sect);

Since the tag nesting function PDF_begin_item() also supports the tag option both
methods can be combined. This is useful in situations where a tag requires a nested tag
which in turn contains multiple content items. For example, a Caption element contain-
ing a P element which in turn contains multiple text items can be created as follows:

id_caption = p.begin_item("Caption", "tag={tagname=P}");
p.fit_textline(...);
p.fit_textline(...);

p.end_item(id_caption);

A second tag option can also be nested as suboption in the option list of a tag option. In-
deed, tag options can be nested to an arbitrary level. If a nested structure element con-

288 Chapter 11: Document Interchange

tains only a single content item the code fragment above can be further simplified by
applying abbreviated tagging directly in the call for placing the text on the page:

p.fit_textline(..., "tag={tagname=Caption tag={tagname=P}");

Since abbreviated tagging does not expose the handle of the generated structure ele-
ment it cannot be used with PDF_activate_item() or the parent suboption of the tag op-
tion since these require a structure element id. The detailed operation of the tag option
is as follows:

> A new structure element is created for the generated content, and closed before re-
turning from the call. The following situations are exceptions from this rule:
> A structure element created with the tag option in PDF_begin_document() will be

closed in PDF_end_document().
> When multiple tags are supplied with the tag option of PDF_begin_item() all of

these tags will be closed in the corresponding call to PDF_end_item().
> PDF_fit_table(): tagname=Table or a tag name which is role-mapped to Table in PDF_

fit_table() instructs PDFlib to create the required table tags (see Section 11.4.1, »Auto-
matic Table Tagging«, page 301). Automatically generated TH and TD tags for table
cells can be further qualified with the tag option of PDF_add_table_cell().

> PDF_fit_textflow(): the complete Textflow instance forms the new structure element.
> The generated element is a child of the currently active item or the item which has

been supplied in the parent option.
> Grouping elements can only be created with PDF_begin_item(), but not with abbrevi-

ated tagging except PDF_begin_document().
> Except for PDF_begin_document() and PDF_add_table_cell() abbreviated tagging can

only be used in page scope.

11.3.2 Standard and custom Element Types

Standard element types. PDF supports standard element types which are designed to
support a wide range of document classes. PDFlib supports all these standard elements
types according to Table 11.1. The descriptions provided in the table are intended to as-
sist in selecting appropriate types. Table 11.1 also contains the BLSE/ILSE distinction
which is explained in »Regular elements vs. direct elements«, page 293.

Grouping elements are containers which hold other structure elements. They cannot
contain direct page contents. A Document element should be used as root of the struc-
ture tree if the PDF contains a complete document. Part or Sect should be used as root of
the structure tree if the PDF contains a fragment of a document. The root element can
conveniently be provided with the tag option of PDF_begin_document().

Pseudo element types do not create any structure element, but are used for marking
up content with certain characteristics. They are mainly used for marking up Artifacts
(see Section 11.3.3, »Artifacts«, page 294).

Table 11.1 Standard element types (tags) in Tagged PDF and pseudo element types added by PDFlib

type description

Grouping (container) elements (cannot contain direct page content)

Document Complete document; recommended as root element of the structure tree

11.3 Tagged PDF Basics 289

Part Encloses a grouping of structure elements without consideration for their hierarchy (semantic equivalent
of Div).

Sect (Section) Encloses a grouping of structure elements with consideration for their hierarchy.

Div (Division) Generic block-level element or group of elements. It should be used for non-semantic grouping,
such as associating a lang attribute with a sequence of block-level elements, or for role-mapping a cus-
tom grouping structure element for which none of the other grouping elements are suitable.

Caption (Caption) Brief portion of text describing a table, list or figure

Heading and paragraph elements (BLSEs)

H (Heading; in PDF/UA-1 only with structuretype=strong) Heading for a subdivision of a document’s con-
tent. It should be the first child of its parent. H elements are intended for hierarchical nesting. This ele-
ment is not recommended; weak structuring with H1...H6 should be used instead.

H1...H6 Headings with specific levels for weakly structured documents. They should be used if the application
cannot hierarchically nest sections and thus cannot determine the level of a heading from its level of
nesting.

P (Paragraph) Generic paragraph element, i.e. a low-level division of text which is not a heading

Label and List elements (BLSEs)

L (List) Sequence of items of like meaning and importance

LI (List item) Individual member of a list

Lbl (Label) Name or number that distinguishes a given item from others in the same list or other group of
like items. For example, in a bulleted or numbered list, it contains the bullet character or the number of
the list item and associated punctuation.

LBody (List body) Descriptive content of a list item

Table elements (all table tags can be created automatically, see Section 11.4.1, »Automatic Table Tagging«, page 301)

Table (BLSE) Two-dimensional layout of rectangular cells, possibly having a complex substructure

TR (Table row) Row of headings or data in a table

TH (Table header cell) Table cell containing header text describing one or more rows or columns of the table

TD (Table data cell) Table cell containing data that is part of the table’s content

THead (Table header row group; PDF 1.5) Group of rows that constitute the header of a table

TBody (Table body row group; PDF 1.5) Group of rows that constitute the main body portion of a table

TFoot (Table footer row group; PDF 1.5) Group of rows that constitute the footer of a table

Inline element

Span (Not related to row or column spans in tables) Generic inline portion of text having no particular inher-
ent characteristics.

Elements for interactive features (see Section 11.4.2, »Tagging Interactive Elements«, page 304)

Link Association between a portion of the element’s content and one or more corresponding link annotations

Annot (PDF 1.5) Association between a portion of the element’s content and a corresponding PDF annotation. It
shall be used for all annotations unless Link or Form is more appropriate

Form Interactive form field

Table 11.1 Standard element types (tags) in Tagged PDF and pseudo element types added by PDFlib

type description

290 Chapter 11: Document Interchange

Deprecated standard element types in PDF 2.0. The element types listed in Table 11.2
were available in PDF 1.7/ISO 32000-1, but are deprecated in PDF 2.0/ISO 32000-2 and
should not be used.

Illustration elements

Figure Item of graphical content

Formula Mathematical formula. This element type identifies an entire content element as a formula. If the formu-
la is represented as an image, the Formula element must still be used (and not Figure).

Elements for Japanese Ruby and Warichu (PDF 1.5)

Ruby A side note written in a smaller text size and placed adjacent to the base text to which it refers. The Ruby
element serves as wrapper around the entire ruby assembly.

RB (Ruby base text) Full-size text to which the ruby annotation is applied.

RT (Ruby annotation text) The smaller-size text that shall be placed adjacent to the ruby base text.

RP (Ruby punctuation) Punctuation surrounding the ruby annotation text. It is used only when a ruby anno-
tation cannot be properly formatted in a ruby style and instead is formatted as a normal comment, or
when it is formatted as a warichu.

Warichu (Warichu) Comment or annotation in a smaller text size and formatted onto two smaller lines within the
height of the containing text line and placed following (inline) the base text to which it refers. The
Warichu element serves as wrapper around the entire warichu assembly.

WT (Warichu text) Smaller-size text of a warichu comment that is formatted into two lines and placed be-
tween surrounding WP elements

WP (Warichu punctuation) Punctuation that surrounds the WT text

Non-structural

NonStruct (Nonstructural element) Grouping element having no inherent structural significance; it serves solely for
grouping purposes

Pseudo element types

Artifact Artifact, to be distinguished from real page content (see Section 11.3.3, »Artifacts«, page 294).

ASpan (Accessibility span; written to PDF as Span, but must be distinguished from the inline item Span) Attach
accessibility properties to content which does not belong to a structure element or which resembles a
part of a structure element. The ASpan pseudo element is written as Span with an accessibility attribute
such as Alt, ActualText, Lang, or E. An ASpan is not associated with any structure element.

ReversedChars (Not recommended) Specifies text in a right-to-left script with reversed characters.

Clip (Not recommended) Specifies a marked clipping sequence. This is a sequence containing only clipping
paths or text in text rendering mode 7, but no visible graphics or PDF_save() / PDF_restore().

Table 11.2 Deprecated standard element types (tags) as of PDF 2.0; these types should not be used

type description

Art (Article) A relatively self-contained body of text constituting a single narrative or exposition

BibEntry (Bibliography entry) Reference identifying the external source of some cited content

BlockQuote (Block quotation) Portion of text consisting of one or more paragraphs attributed to someone other than
the author of the surrounding text

Table 11.1 Standard element types (tags) in Tagged PDF and pseudo element types added by PDFlib

type description

11.3 Tagged PDF Basics 291

Nesting rules for structure elements. Various rules must be observed for creating
structure elements. These rules are summarized in Table 11.3. The rules apply to the list-
ed standard element types as well as to custom element types which are role-mapped to
the respective standard types (see »Custom element types and role map«, page 293). Ad-
ditional rules apply to PDF/UA-1 (see Section 12.6, »PDF/UA for Universal Accessibility«,
page 348).

The nesting rules for new structure elements can be disabled or relaxed with the
checktags option of PDF_begin_document(). However, this is not recommended since it
may result in an invalid structure hierarchy. This option is intended as a migration aid
for legacy applications. Some rules in Table 11.3 are marked as »strict rule«. The option
checktags=relaxed enforces all but the strict rules.

Code Fragment of computer program text

Index (Index) Sequence of entries containing identifying text accompanied by Reference elements that point
out occurrences of the specified text in the main body of the document

Note Item of explanatory text, such as a footnote or an endnote, that is referred to from within the body of
the document. This element may have Lbl as a child.

Private (Private element) Grouping element containing private content belonging to the application

Quote (Quotation) Inline portion of text attributed to someone other than the author of the surrounding text.
The quoted text should be contained inline within a single paragraph.

Reference Citation to content elsewhere in the document. It should be used for local links.

TOC (Table of contents) List made up of table of contents items (element type TOCI)

TOCI (Table of contents item) Member of a table of contents. It should contain a suitable Link element.

Table 11.3 Tag nesting rules for PDF_begin_item() and the tag option of various functions

item rule

content items The following elements may contain page content, i.e. text, image or vector graphics:
H, H1, H2, ...

P

Lbl, LBody

TH, TD

Span, Quote1, Note1, Reference1, BibEntry1, Code1

Link, Annot

Figure, Formula

RB, RT, RP, WT, WP

Artifact, ASpan, ReversedChars, Clip

All other elements require an intermediate structure element before direct page content can be
added. PDFlib throws an exception when attempting to add content items.

grouping elements Grouping elements must not contain content items, ASpan or ILSEs as children, i.e. a BLSE must be
created before content can be created:
Document, Part, Art1, Sect, Div, BlockQuote1, Caption, TOC1, TOCI1, Index1, NonStruct, Private1

The option Placement=Block is recommended for the following elements as children of grouping
elements: Figure, Formula, Form, Link, Annot.

Table 11.2 Deprecated standard element types (tags) as of PDF 2.0; these types should not be used

type description

292 Chapter 11: Document Interchange

block-level elements The following block-level elements must not contain content items, i.e. a suitable grouping ele-
ment or BLSE must be created before content can be created:
L, LI, Table, TR, THead, TFoot, TBody
Strict rule: the P element may not contain grouping elements.

pseudo and
inline elements

Pseudo elements (i.e. Artifact, ASpan, ReversedChars, Clip) and the following ILSEs cannot
have any descendants if direct=true:
Code1, BibEntry1, Note1, Quote1, Reference1, Span

However, these elements may have children if direct=false.
Artifacts cannot be created within pseudo elements and the following ILSEs with direct=true:
Span,Quote1, Note1, Reference1, BibEntry1, Code1

table elements Table elements may contain one or more TR elements, or an optional THead followed by one or
more TBody elements and an optional TFoot. TBody should not be the only child of Table. In addi-
tion, Table elements may have a Caption element as its first or last child.
TR elements may contain TH and TD elements.
TH and TD elements may not contain TR, TH, TD, THead, TBody, or TFoot
THead, TBody, TFoot elements can contain only TR elements, and can only have Table as parent.
TR may only have Table, THead, TBody, or TFoot as parent.

list elements L elements may optionally contain a Caption element and one or more LI elements.
LI elements may contain one or more Lbl or LBody elements or both. LI may only have L as par-
ent. LBody may only have LI as parent.

table of contents1 TOC1 elements may contain an optional Caption element as first child, and one or more TOCI and
TOC elements (also in combination).
TOCI1 elements may contain only Lbl, Reference, NonStruct, P, and TOC elements. TOCI may only
have TOC as parent.

label element Lbl may only have Annot, LI, Link, TOCI, BibEntry1, or Note1 as parent.

interactive ele-
ments: links, form
fields and
annotations

The following element types are not allowed for the tag option of PDF_create_field() and PDF_
create_annotation() or as parent for Link, Annot, and Form: table elements, ILSEs, Ruby and
Warichu elements, pseudo elements.
Annot elements cannot be nested.
Link elements cannot be nested.
Form elements must not contain any elements other than the OBJR element which is created by
PDF_create_field() automatically.

Japanese
Ruby and Warichu

Ruby can have RB, RT, and RP as children, but not any other element types.
Warichu can have WT and WP as children, but not any other element types.

PDF 2.0 consistency
rules

The following nesting rules for rarely used PDF 1.7 parent/child tag combinations have been intro-
duced for consistency with the PDF 2.0 nesting rules:
Incompatible changes (stricter nesting rules):
> RB, RT, and RP can only be children of Ruby
> WT and WP can only be children of Warichu
> Document may not contain Caption
> Caption is no longer allowed to contain Document and Caption
> H, H1 etc. are no longer allowed to contain Document, Part, and Div
> TH and TD are no longer allowed to contain Document and Caption
> Inline elements with direct=false are no longer allowed to contain L, Table or Document

1. Deprecated in PDF 2.0

Table 11.3 Tag nesting rules for PDF_begin_item() and the tag option of various functions

item rule

11.3 Tagged PDF Basics 293

Regular elements vs. direct elements. Most structure elements are emitted to PDF by
marking up the corresponding text or graphics and adding a corresponding entry in the
document structure tree. Such elements are displayed in Acrobat’s tags pane; they are
called regular elements.

In contrast, an element may consist only of marked content without any entry in the
structure tree. Such elements are not visible in Acrobat’s tags pane. The advantage of
such direct elements is that they require fewer bytes in the PDF output. The status of
some structure types can be changed with the direct option (the default is true). Table
11.4 compares regular structure elements and direct elements. The option direct=false is
required in cases where an element which is direct by default contains another indirect
element as child, e.g. Reference contains Link.

Empty structure elements. In general, structure elements which contain neither child
elements nor content items should be avoided. However, there are some exceptions to
this rule in cases where an empty structure element conveys a semantic role in some
other structure as in the following examples:

> Empty TD elements are required for empty table cells. This rule is honored by
PDFlib’s automatic table formatting (see Section 11.4.1, »Automatic Table Tagging«,
page 301).

> Empty LI elements inside a list structure.

Programming scope and page boundaries. Most structure elements can only be creat-
ed in page scope. Grouping elements may span multiple pages and can also be created
in document scope. Pseudo items as well as direct items must be closed before ending or
suspending a page.

Custom element types and role map. In addition to the predefined standard structure
element types listed in Table 11.1 custom element type names can be used. Custom ele-
ment type names are typically used to localize element type names (e.g. German Ab-
bildung maps to Figure) or to work with application-specific type names (e.g. Normal
maps to P). In order to facilitate repurposing documents which contain custom element
type names the custom names must be mapped to their exact or approximate equiva-
lent in the set of standard structure element types. You can also remap standard ele-

Table 11.4 Regular and direct items

regular elements
(direct=false) direct elements (direct=true)

affected items all other element types Code, BibEntry, Note, Quote, Reference,
Span,
Lbl as child of BibEntry, TOCI, or Note
pseudo items ASpan, ReversedChars, Clip

part of the structure tree yes no

can extend across page boundaries yes no

can be interrupted by other items yes no

can be activated withPDF_activate_item() yes no

nesting rules for child elements may contain regular and di-
rect elements

may contain only direct elements, and only
if the parent can contain direct contain

294 Chapter 11: Document Interchange

ment types to other standard types in order to change their semantics. Custom ele-
ments types cannot be mapped to inline and pseudo elements. Element mapping is
achieved with the rolemap document option, e.g.

p.begin_document("tagged.pdf",
"tagged=true lang=en rolemap={ {Heading H1} {Subhead H2} {Paragraph P} }");

Role map in Acrobat. You can view and edit the role map in Acrobat X/XI/DC as fol-
lows:

> Select View, Show/Hide, Navigation Panes, Tags, click the menu button at the top of the
Tags pane, and select Edit Role Map from the drop-down list.

11.3.3 Artifacts

Relevant content and Artifacts. The contents of a page fall into one of the following
categories:

> Relevant content has been created by the document author to convey the docu-
ment’s meaning. The document’s logical structure tree describes the objects which
comprise real content, and may also contain annotations.

> Graphic or text objects which do not contribute relevant page content, but have been
created for pagination or layout purposes are called Artifacts. Artifacts are not in-
cluded in the structure tree and are not read by a screen reader.

Marking Artifacts is strongly recommended in order to improve accessibility and is re-
quired in PDF/UA-1. Typical Artifacts are repeated headers and footers, page numbers,
background images, and other items which are repeated on each page.

Artifacts in Acrobat. You can check Artifacts in Acrobat X/XI/DC with one of the fol-
lowing methods:

> Select Tools, Accessibility, Reading Order (Acrobat DC) or TouchUp Reading Order (Acrobat
X/XI) to display or edit content elements on the page. Artifacts are called Background
in Acrobat’s Reading Order Tool. Unlike structure elements, they are not visualized
with a frame and tag name when this tool is activated.

> Identify Artifacts by selecting View, Show/Hide, Navigation Panes, Content. The Content
pane lists all page contents along with the respective structure element type name
or Artifact as appropriate. Because Artifacts are not read, there is no corresponding
numbered block on the page. However, clicking on an Artifact in the list highlights
the corresponding content element on the page.

> Search for Artifacts: select View, Show/Hide, Navigation Panes, Tags, click the menu but-
ton at the top of the Tags pane, Find..., and select Artifacts from the drop-down list.
Since Artifacts are not part of the document structure, there is no corresponding en-
try in the Tags navigation pane nor the Order pane.

> Activate View, Read Out Loud... to let Acrobat read the structure elements on the page.
Artifacts will not be read.

Designating content as Artifact. Artifacts can be specified in PDFlib with the Artifact
tag name in PDF_begin_item() (despite the fact that Artifacts are not actually tags in the
sense of structure elements):

id = p.begin_item("Artifact", "");

11.3 Tagged PDF Basics 295

Alternatively, Artifacts can be specified with abbreviated tagging, i.e. with the tag op-
tion of various functions:

p.fit_textline(text, x, y, "tag={tagname=Artifact}");

It is recommended to create Artifacts only if no BLSE is currently active. However, since
this may not always be possible for applications, PDFlib automatically interrupts the
currently active element when an Artifact is created and activates it again after the Arti-
fact. Note that the tag nesting rules (see »Nesting rules for structure elements«, page
291) don’t allow Artifacts within ILSEs.

Classifying Artifacts. Irrelevant page content should be identified with the Artifact
pseudo tag, and classified according to one of the following keywords of the artifacttype
option:

> Pagination Artifacts: page features such as running heads and page numbers. Pagina-
tion Artifacts can be further classified with the artifactsubtype option and one of the
keywords Header, Footer, Watermark.

> Layout Artifacts: typographic or design elements such as rules and table shadings;
> Page Artifacts: production aids, such as trim marks and color bars;
> Background Artifacts: images or colored areas that run the entire width or height of

the page or the entire dimensions of a structure element.

Pagination and Background Artifacts support the Attached option which specifies to
which page edge or edges the Artifact is attached (Top/Bottom/Left/Right).

The following example creates a pagination Artifact with subtype Header:

id = p.begin_item("Artifact",
"artifacttype=Pagination artifactsubtype=Header Attached={Top Left}");

Automatic Artifact tagging. Since all page contents should be tagged either as struc-
ture element or as Artifact PDFlib automatically tags certain graphical elements. The
following decorative elements are automatically tagged as Artifact with artifacttype=
Layout in Tagged PDF mode:

> Block decoration: all decorative elements created by PDF_fill_*block(), i.e. stroking
and filling created according to the backgroundcolor and bordercolor properties.

> Matchbox decoration: matchbox rectangles created according to the matchbox op-
tions fillcolor, shading, and strokecolor

> Table decoration: if automatic table tagging is active (see Section 11.4.1, »Automatic
Table Tagging«, page 301), table ruling and shading, i.e. stroking and filling according
to the options fill, stroke, showborder, showgrid

> Textline Artifacts: leader, shadow, showborder
> Textflow Artifacts: leader, shadow, showborder, showtabs
> Text decoration: underline, overline, strikeout

Like all Tagged PDF features, automatic Artifact tagging works only in page scope.

296 Chapter 11: Document Interchange

11.3.4 Text Handling

Language specification. In Tagged PDF the natural language of text should be speci-
fied explicitly; this allows screen readers to switch to the appropriate language when
reading the document. The natural language can be specified on different levels:

> The lang option in PDF_begin_document() should be set to specify the primary lan-
guage, i.e. the natural language of the document as a whole. This specification covers
page contents as well as interactive elements such as bookmarks and annotations.

> The document language can be overridden for individual items on any structure lev-
el with the lang option in PDF_begin_item() or the tag option of various functions.

> Hypertext strings may include Unicode escape sequences for specifying the lan-
guage (see below).

Contents which are encoded as text but are not part of a natural language, such as pro-
gramming code, musical notes, type samples or mathematical notation, should use an
empty language code, e.g. lang={ }.

Unicode language identifiers are comprised of the following sequence:
> The Unicode value U+001B (two bytes).
> An ISO 639 language code (two ASCII bytes), e.g. en, ja, de.
> Optionally an ISO 3166 country code (two ASCII bytes), e.g. US, JP.
> The Unicode value U+001B (two bytes).

Examples in hexadecimal notation:

001B656E5553001B (=enUS)
001B7A68001B (=zh)
001B6465001B (=de)

In Unicode-capable languages such as Java the two ASCII characters must be packed to
form a single Unicode value:

\u001B\u6465\u001B (=de)

In the C language the two ASCII characters must be packed into a single Unicode charac-
ter. With charref=true the sequence can be expressed as follows:

摥 (=de)

Generating Tagged PDF with Textflow. The Textflow feature (see Section 9.2, »Multi-
Line Textflows«, page 231) offers powerful features for text formatting. Since individual
text fragments are no longer under client control, but will be formatted automatically
by PDFlib, some care must be taken when generating Tagged PDF with Textflows:

> The complete contents of a single Textflow fitbox may be part of a structure ele-
ment. However, a Textflow box can not contain individual structure elements.

> All parts of a Textflow (all calls to PDF_fit_textflow() with a specific Textflow handle)
should be contained in a single structure element.

> Since the parts of a Textflow may be spread over several pages which may contain
other structure items, attention should be paid to choosing the proper parent item
(rather than using a parent option of -1, which may point to the wrong parent ele-
ment).

> If you use the matchbox feature for creating links or other annotations in a Textflow
it is difficult to position the annotation correctly in the structure tree.

11.3 Tagged PDF Basics 297

Separate words with space characters. Words should be separated by space characters
(U+0020). The autospace option can be used for automatically generating space charac-
ters after each call to one of the text output functions.

Hyphenation. Hyphenation, i.e. splitting a word in two parts at the end of a line, must
be represented using a soft hyphen character (U+00AD) as opposed to a hard hyphen or
minus character (U+002D). The soft hyphen character ensures that Acrobat can correct-
ly recombine (dehyphenate) the hyphenated word when searching for text. When text
contains a soft hyphen U+00AD PDFlib’s text engine uses the glyph for U+00AD if it is
available in the font, and U+002D otherwise. If the font contains two separate glyphs
for U+00AD and U+002D using the soft hyphen U+00AD in the text is sufficient for ful-
filling Tagged PDF requirements for hyphenation.

If the font doesn’t contain a separate glyph for U+00AD (or another hyphenation
character is used), the hyphen must be tagged as Span or ASpan with an ActualText attri-
bute containing U+00AD (note that this is not possible in PDF 1.4). When multiline text
is created with Textflow the ActualText is assigned automatically to the specified
hyphenchar (and autospace is suppressed).

Attaching the required ActualText for Textlines can be achieved as follows:
> In PDF_fit_textline() the option tagtrailinghyphen results in suitable ActualText and

suppressed autospace. Since the option defaults to U+00AD proper tagging happens
automatically if the text uses U+00AD as hyphen.

> If a font does not contain a separate glyph for U+00AD you can amend it with the
soft hyphen from a suitable fallback font using the following font loading option:

fallbackfonts={{fontname=AuxiliaryFont encoding=unicode embedding forcechars=x00AD}}

> Suitable ActualText can be assigned manually as follows; keep in mind that this is
only required if the font doesn’t contain two separate glyphs for U+00AD and
U+002D (this code works only with PDF 1.5 or above; add the option direct=false for
PDF 1.4):

p.set_option("charref=true");
p.fit_textline("-", x, y, "tag={tagname=ASpan ActualText=­}");

11.3.5 Alternate Description, Replacement Text and Abbreviation
Expansion
Tagged PDF provides features which enhance accessibility of images and text which
cannot easily be read without additional information.

Alternate Description (Alt). Items which do not translate naturally to text can be as-
signed an alternate description via the Alt option. Examples are images, formulas, and
annotations without the contents option.

The alternate description should consist of a whole word or phrase which can be read
by a screen reader. The description should end with a period or space character as ap-
propriate to ensure that screen readers don’t merge it with subsequent text. It is recom-
mended to avoid initial phrases such as »This image shows...« in the alternate descrip-
tion. The Alt value provides a description of the structure element and all of its children.
The ASpan pseudo element can be used to assign Alt to some part of a structure element.

For example, the image of a company logo could be described via the Alt option:

p.fit_image(image, x, y, "tag={tagname=Figure Alt={Kraxi company logo }}")

298 Chapter 11: Document Interchange

Replacement text (ActualText). Items which translate to text, but where the text is
represented in some non-standard way can be assigned replacement text via the
ActualText option. Examples are illustrations with swash characters or drop caps, and
images which use pixels to represent a word. On the other hand, OCR text for a scanned
page should not be supplied as ActualText, but rather as invisible text (i.e. textrender-
ing=3).

The replacement text should contain one or more characters which are equivalent to
what a person would see when viewing the content. The ActualText value serves as re-
placement for the structure element and all of its children. The ASpan pseudo element
can be used to assign ActualText to some part of a structure element.

For example, the symbolic flower glyph for which no Unicode value is available can
be assigned suitable ActualText to make it clear that this glyph is actually used as a bullet
character U+2022:

p.fit_textline("&.flower;", x, y, "tag={tagname=ASpan ActualText={•} } ...");

Nesting rules for alternate and replacement text. The following rules must be obeyed
when using the Alt and ActualText attributes:

> Since Alt and ActualText cover the full sub-hierarchy below the affected structure ele-
ment, both options are not allowed for a structure element if any of its ancestors in
the structure hierarchy already contains an ActualText or Alt attribute.

> An element with an Alt or ActualText attribute must include content items or one or
more Link elements; if the attribute is applied to a Link element it must contain con-
tent items or one or more OBJR references created by PDF_create_annotation() (see
»Links and other annotation types«, page 304). Otherwise it would be impossible to
determine the page on which the attribute should be read. This rule applies to the el-
ement itself; it is not sufficient to have child elements with content items.

Alternate and replacement text in Acrobat. You can display the Alt and ActualText at-
tributes of a structure element with Acrobat X/XI/DC as follows:

> Select View, Show/Hide, Navigation Panes, Tags, right-click on a structure element in
the hierarchy and select Properties... to display the object properties dialog. The Tag
tab displays the Actual Text and Alternate Text attributes.

Abbreviation expansion (E). Abbreviations and acronyms can be assigned expansion
text with the E suboption of the tag option. The expansion text should consist of a
whole word or phrase which can be read by a screen reader. If an abbreviation doesn’t
have any expansion text the E attribute can be supplied nevertheless in order to assist
the text-to-speech conversion process. For example, the term IBM may have expansion
text I B M (with intermediate space characters) assigned to it.

In the following code fragment the expansion text Mister is assigned to the abbrevia-
tion Mr.:

p.fit_textline("Mr.", x, y, "tag={tagname=ASpan E={Mister} } ...");

11.3.6 Print Stream Order and Logical Reading Order
There are two fundamentally different concepts for content ordering in PDF. Figure 11.3
visualizes a sample page with two main text columns, interrupted by a table and an in-
serted summary on a gray background as well as header and footer.

11.3 Tagged PDF Basics 299

The order of PDFlib API function calls determines the order of PDF text and drawing
operators in the page content stream (called »raw print stream order« in Acrobat). Since
page contents may be created in any way which suits the controlling application this is
only a technical ordering which doesn’t necessarily have any semantic significance. The
print stream order is displayed in Acrobat’s Order and Contents panes.

Logical reading order is the order in which a human reads the text. It determines the
ordering used by a screen reader and Acrobat’s Read Aloud feature. The logical reading
order is determined by the logical structure tree. Tagged PDF requires that all content is
tagged in semantically correct order, i.e. the structure hierarchy must include the page
contents in the order in which they will be read by a human. Proper tagging ensures
that screen readers present the contents in logical order. Since Artifacts are not part of
the structure tree they are excluded from the logical reading order.

Reading order and print stream order in Acrobat. You can check the logical reading or-
der in Acrobat X/XI/DC with the following methods:

> Select View, Show/Hide, Navigation Panes, Tags and check the order of elements from
top to bottom. This ordering should accurately reflect the desired reading order.

> Activate View, Read Out Loud... to have Acrobat read the page contents in the reading
order specified in the document.

The Order and Content panes list page contents in print stream order.

Creating content in logical reading order. The natural method which works in many
situations is to sequentially generate all constituent parts of a structure element, and
then move on to the next element in the logical sequence. In technical terms, the struc-
ture tree is created by a single depth-first traversal, and PDFlib functions to create page
contents are called in the order in which the contents will be read.

PDFlib supports several methods for creating contents in any order while still creat-
ing the structure hierarchy in logical order. These methods are discussed in Section
11.4.4, »Creating Contents out of Order«, page 309.

Fig. 11.3
Logical reading order

(left) and print stream
order (right).

1

2 3
4

5
6

7

2

4 6
7

3
5

1

88

300 Chapter 11: Document Interchange

11.3.7 Tagged PDF Problems in Adobe Acrobat
This section mentions observations that we made while testing Tagged PDF output in
Adobe Acrobat. Table 11.5 lists bugs and inconsistent behavior in Acrobat DC, grouped
according to the following features:

> Acrobat’s accessibility checker: Acrobat’s accessibility checker can be used to deter-
mine the suitability of Tagged PDF documents for consumption with assisting tech-
nology such as a screen reader.

> Acrobat’s Read Aloud Feature: Tagged PDF enhances Acrobat’s capability to read text
aloud.

> The »Find...« function in Acrobat’s Tags pane can be used to search for Artifacts and
unmarked content.

Table 11.5 Acrobat DC problems related to Tagged PDF

Description, recommendations and workarounds

Acrobat’s accessibility checker

The Alt attribute is ignored for Figure tags.

The accessibility checker complains about form fields of type check box with a check mark symbol »Character en-
coding – failed« although Read aloud perfectly reads the field contents.

Acrobat’s Read Aloud feature

When a tagged page has been placed with PDI and contains only Artifacts, Read Aloud nevertheless reads the
contents of the placed page.

Other Acrobat functions

 The Find... function in the Tags pane incorrectly reports Artifacts as unmarked content, e.g. table decoration.
In contrast, these items are correctly displayed as »Container <Artifact>« in the Content pane.

11.4 Advanced Tagged PDF Topics 301

11.4 Advanced Tagged PDF Topics
11.4.1 Automatic Table Tagging

PDF_fit_table() can automatically create suitable tags for the generated table based on
the information supplied to the PDF_add_table_cell() calls for the table contents. The tag
option of PDF_fit_table() with tagname=Table triggers automatic table tagging as de-
tailed in Table 11.6.

Note Automatic table tagging can only be leveraged if PDFlib’s table engine is used. While it is possi-
ble to correctly tag tables which are created manually (i.e. without PDFlib’s table engine), this
process requires detailed knowledge of the table structure in the client application. In addition
to the row/column structure relevant information about header cells and row/column spans is
required. Empty cells must also be tagged.

Visualizing table tags in Acrobat. You can visualize the structure of table elements
with Acrobat X/XI/DC as follows:

> Select Tools, Accessibility, Reading Order (Acrobat DC) or TouchUp Reading Order (Acrobat
X/XI). Table elements are highlighted and marked with a small number near the top
left corner of the table. If a table summary is present, it is displayed next to the small
number.

> Select the number or structure type name in the top left corner of the table and click
Table Editor in the Reading Order dialog. The table structure is visualized with horizon-
tal and vertical lines. In the Table Editor Options dialog you can instruct Acrobat to dis-
play TH/TD icons according to the type of table cell (see Figure 11.4).

> Right-click on a table cell and select Table Cell Properties... to check the cell type (Head-
er cell TH vs. data cell TD), the scope attribute, rowspan and colspan attributes and
header/ID values.

Note the following restrictions when working with the Table Editor in Acrobat:
> The lines which visualize table cells may be displayed in wrong positions.
> Acrobat does not activate the Table Editor if the table uses a custom structure ele-

ment which is role mapped to Table (as opposed to the standard element Table).

Table 11.6 The tag option in PDF_fit_table() and automatic table tagging

tag option in
PDF_fit_table() result

tagname=Table Activates automatic table tagging. Instead of tagname=Table a custom tag which is role-mapped
to Table can also be used.

tagname=Artifact The whole table contents including the caption are marked as Artifact; the BBox attribute is add-
ed automatically.

any other tagname No Table structure will be created, but the cell contents are added as children of the element
specified in the tag option. Pseudo and inline items are not allowed for PDF_fit_table().

tag option not
supplied

No automatic table tagging. If the tag option is supplied to individual calls to PDF_add_table_
cell() (as suboption to one of the fit* options) the corresponding structure elements for the cell
contents will be created, but without any table structure. This may be useful if the table is used
for layout purposes instead of as a data table.

302 Chapter 11: Document Interchange

> The Table Editor does not display Caption elements which may be present in a table.
> If a table cell contains vertical text (e.g. a Textline with orientate=east or west) this cell

and its immediate neighbor to the right are not displayed in the Table Editor al-
though they are present in the logical structure tree and their contents are visible on
the page.

Automatically created table tags and attributes. Automatic table tagging works only
in page scope and operates as follows:

> A separate Table element is created for each table instance. For example, if a table is
split in two or more instances, multiple Table elements are created. The Summary at-
tribute is added to the Table element if the Summary suboption has been supplied to
the tag option of PDF_fit_table().

> A Caption element is created if the caption option was specified in PDF_fit_table(). As a
grouping element Caption does not allow any content items. You must therefore
supply the tag suboption of the caption option to specify a structure element as child
of Caption. This element can hold the actual contents of the caption.

> A TR element is created for each table row. Rows which are specified in the header op-
tion of PDF_fit_table() are wrapped by THead, rows which are specified in the footer
option are wrapped by TFoot. All other rows are wrapped by TBody if headers or foot-
ers are present.

> Each table cell is wrapped in a TH (table header) or TD (table data) element according
to the tagname suboption of the tag option of PDF_add_table_cell(). If this option has
not been supplied the cell type is selected as follows:
> The Scope attribute for a cell enforces TH (even if tagname=TD is specified).
> If another cell contains the Headers option with the id of the cell, the target cell is

forced to TH (even if tagname=TD is specified).
> If the cell is included in a table row which is part of the table header as specified by

the header option of PDF_fit_table() it is wrapped by TH, and Scope=Column is added.
> An empty TD dummy element is created for each table cell for which PDF_add_table_

cell() has not been called.
> TH and TD elements get appropriate RowSpan and ColSpan attributes according to the

rowspan and colspan options of PDF_add_table_cell(). The RowSpan and ColSpan subop-
tions of the tag option can not be used.

Fig. 11.4
Acrobat’s Table Editor for Tagged

PDF tables displays header (TH)
and data (TD) cells.

11.4 Advanced Tagged PDF Topics 303

> Table, TH and TD elements are assigned appropriate Width and Height attributes; Table
elements are also assigned the BBox attribute.

> Other table cell attributes may be supplied as suboptions for the tag option of PDF_
add_table_cell(). The following options are not allowed: RowSpan, ColSpan, Height,
index, parent, Width.

> Table rows and cells are emitted in zigzag order starting from the top left cell (i.e. col-
umn 1, row 1) to the bottom right cell, regardless of the order of calls to PDF_add_
table_cell().

> Decorative table elements are automatically tagged as Artifact with artifacttype=
Layout, i.e. ruling and shading (fill/stroke) of table cells, rows, columns or the full ta-
ble, matchbox filling and ruling, showborder rules, and visualization aids controlled
via debugshow, showcells, and showgrid.

Cookbook Code samples for automatic table tagging can be found in the tagged_table and invoice_
pdfua1 topics in the pdfua category of the PDFlib Cookbook.

Adding tags and attributes to table cells. Abbreviated tagging can be applied to the ta-
ble caption, a table cell, or the contents of a table cell. Supplying the tag option to PDF_
add_table_cell() is useful in the following situations:

> Table cells can be forced to be header cells (instead of TD data cells) with tagname=TH
if they are not included in header rows or don’t have any Scope attribute.

> Create the proper tag structure required for links; see »Tagging links in a table cell«,
page 305, for details.

Some restrictions apply to the suboptions of the tag option in PDF_add_table_cell():
> The following options can not be used: ColSpan, Height, index, parent, RowSpan, Width.
> The tagname option can only have the value TH or TD to specify the type of table cell.

However, descendant tags can be specified by nesting the tag option.
> Since the id option must be unique within a document, it is not allowed for table

cells which are repeated in multiple table instances, e.g. cells in a header or footer
row for tables which create more than one table instance.

Adding tags and attributes to table cell contents. You can also supply tag as subop-
tion to the following options (or corresponding suboptions of the caption option) of
PDF_add_table_cell():

fitannotation, fitfield, fitgraphics, fitimage, fitpath,
fitpdipage, fittextflow, fittextline

This is useful in the following situations:
> Specify sub-structure for the contents of a table cell. The tag option creates a child el-

ement of the cell’s TH or TD element. The following values for tagname are not al-
lowed for the tag option if automatic table tagging is active (in other words, nested
tables are not supported):

Table, TR, TH, TD, THead, TBody, TFoot

> The table attributes listed below cannot be created automatically, but may be re-
quired for accessibility purposes. They must be supplied by the user:
> The Headers option must be supplied for TD cells which reference one or more TH

cells inside the table (i.e. they reference header cells which are not part of the
header option of PDF_fit_table()).

http://www.pdflib.com/pdflib-cookbook/pdfua/table_pdfua1/
http://www.pdflib.com/pdflib-cookbook/pdfua/invoice_pdfua1/
http://www.pdflib.com/pdflib-cookbook/pdfua/invoice_pdfua1/

304 Chapter 11: Document Interchange

> The Id and Scope=Row options must be supplied for TH cells which are referenced in
any Headers option (Scope=Column is created automatically for TH column header
cells).

> The caption may contain arbitrary contents which can itself be tagged. For example,
the following option list creates a Caption element containing a single Textline with-
in a nested P element:

caption={ fittextline={tag={tagname=P title={Travel Expense Report}} ... } ... }

11.4.2 Tagging Interactive Elements
Links, annotations and form fields must also be made accessible. The corresponding in-
teractive elements must be represented in the structure tree at the proper location in
the structure tree. It is not possible to create interactive elements as Artifacts.

Cookbook Code samples for creating tagged links can be found in the starter_pdfua1 sample. The image_
with_link_pdfua1 topic creates a link with a background image. The table_of_contents_
pdfua1 topic creates a table of contents with TOC and TOCI structure elements and actionable
links.

Links and other annotation types. Annotations require the following items for acces-
sibility (see Figure 11.5):

> A Link element (for link annotations) or Annot element (for all other annotation
types) serves as container for the next two items. Alt or ActualText options may be
provided to supply an alternate description or replacement text. The Alt attribute of
a Link element should describe the purpose of the link. If the link target is located in
the current document (GoTo action) the Link element should additionally be con-
tained in a Reference element (with option direct=false).

> Text which represents the interactive element should be created inside the contain-
er element. If no text is required this element can be skipped, e.g. for a Text annota-
tion. If the annotation is represented by a raster image or vector graphics this should
be tagged as Artifact. In this case the alternative text of the link describes both the
graphic and the link. It is recommended to use the matchbox option of various con-
tent creation functions to prepare geometry information for the next element. The
currently active element when the matchbox option is supplied must be a structure
item, i.e. the option structureitem=false is not allowed.

> The annotations must be created with PDF_create_annotation(). In addition to the an-
notation this function creates a corresponding structure element of type OBJR (ob-
ject reference) for the annotation. The contents option of PDF_create_annotation()
should be provided for link annotations (this is required in PDF/UA-1). Other annota-
tion types should be created with the contents option of PDF_create_annotation() or
the ActualText tagging option. The usematchbox option can be used to conveniently
supply the geometry of the visual content created in the second step.

The second and third items may be created in either order. The annotation require-
ments above also apply to annotations created in table cells with the option
fitannotation of PDF_add_table_cell().

The following code fragment creates an interactive link with the required three
items (the resulting tag structure is shown in Figure 11.5):

/* Create the parent Link element */
id_link = p.begin_item("Link", "Title={Kraxi on the Web} Alt={Kraxi on the Web}");

http://www.pdflib.com/pdflib-cookbook/pdfua/table_of_contents_pdfua1/
http://www.pdflib.com/pdflib-cookbook/pdfua/table_of_contents_pdfua1/
http://www.pdflib.com/pdflib-cookbook/pdfua/image_with_link_pdfua1/
http://www.pdflib.com/pdflib-cookbook/pdfua/image_with_link_pdfua1/

11.4 Advanced Tagged PDF Topics 305

/* Create visible content which represents the link */
p.fit_textline("Click here to go to the Kraxi website", x, y,

"matchbox={name={kraxi}} fontsize=14 font=" + font);

/* Create URI action */
action = p.create_action("URI", "url={http://www.kraxi.com}");

/* Create Link annotation on named matchbox "kraxi". */
p.create_annotation(0, 0, 0, 0, "Link",

"action={activate=" + action + "} "
"usematchbox={kraxi} contents={Link to Kraxi Inc. Web site}");

p.end_item(id_link);

Note The required tagging sequence for interactive elements cannot be achieved with Textflow and
matchboxes because tags cannot be created inside a Textflow, and creating the tags for inter-
active elements after placing the Textflow would spoil reading order.

Tagging links in a table cell. Links in a table cell require the tag structure described
above. However, this can be a bit tricky because the structure elements TH/TD, Link, OBJR
and possibly content must be properly nested. In order to achieve this you must supply
the tag option to PDF_add_table_cell() and make use of its nesting feature. The option
list below fills a table cell with a line of text and a link annotation. The enclosing TD ele-
ment is supplied in the outer tag option (since TD is created automatically by the table
engine the outer tagname suboption can be omitted), and the Link element is supplied
in the inner tag option. Finally, the required OBJR element is created automatically by
the fitannotation option which serves as equivalent to PDF_create_annotation():

fittextline={font=... fontsize=25 fillcolor=blue}
annotationtype=Link fitannotation={contents={Kraxi home page} action={activate ...}}
tag={tagname=TD tag={tagname=Link}}

Tagging form fields. Form fields require the following structure elements for accessi-
bility:

> A group of related form fields may be enclosed with a Part structure element.
> A Div structure element is recommended which contains the following constituents

of an individual form field.
> A Caption structure element with a P structure element which encloses text on the

page which describes the purpose of the field.
> For checkboxes and radio buttons it is recommended to create another Div element

which encloses the check boxes/radio buttons and their corresponding captions.
Since the Caption structure element logically usually precedes the field it comes first
in th structure hierarchy, even if they are placed in reverse order on the page.

> A Form structure element serves as container for the next element. Alt or ActualText
options may be provided to supply an alternate description or replacement text.

Fig. 11.5
Representation of an accessible link
in the structure tree

306 Chapter 11: Document Interchange

Keep in mind that pseudo elements, table elements, ILSEs, Ruby and Warichu ele-
ments are not allowed as parents for Form. When creating radio buttons, no Form ele-
ment is required in PDF_create_fieldgroup() for the radio button group, but only in
PDF_create_field() for creating the individual radio buttons.

> A structure element of type OBJR (object reference) for the form field, nested inside
the Form structure element, is created automatically by PDF_create_field(). The tooltip
option of PDF_create_field() should be provided to enhance accessibility of the field
(this is required in PDF/UA-1).

The following code fragment creates the recommended structure for a text field as
shown in Figure 11.6. The nested Caption/P structure elements are created with nested
abbreviated tagging using the tag option in PDF_fit_textline(). Abbreviated tagging in
PDF_create_field() is used to create the Form structure element:
id_Div = p.begin_item("Div", "");

labeltext = "Enter name:";

p.fit_textline(labeltext, x1, y1, "tag={tagname=Caption tag={tagname=P}}");

optlist = "tag={tagname=P tag={tagname=Form}} tooltip={" + labeltext + "} " +

"bordercolor={gray 0} font=" + font;

p.create_field(x2, y2, x3, y3, "name", "textfield", optlist);

p.end_item(id_Div);The form field requirements above also apply to form fields created
in table cells with the option fitfield of PDF_add_table_cell().

Cookbook A code sample for creating all types of Tagged form fields can be found in the topic form_
fields in the pdfua category of the PDFlib Cookbook.

Structured bookmarks. Bookmarks can be assigned a structure element in addition to
the usual destination. Such bookmarks are called structured bookmarks and Acrobat of-
fers additional features for them. Upon right-clicking a structured bookmark in Acrobat

Fig. 11.6
Representation of a form field in the structure tree

http://www.pdflib.com/pdflib-cookbook/pdfua/form_fields_pdfua1/
http://www.pdflib.com/pdflib-cookbook/pdfua/form_fields_pdfua1/
http://www.pdflib.com/pdflib-cookbook/pdfua/

11.4 Advanced Tagged PDF Topics 307

the functions Delete Page(s) and Extract Page(s) are available which operate on the page
or pages which contain the structure element. Structured bookmarks create a connec-
tion between a bookmark and a structure element. This connection can be created in
two different ways:

> Create a bookmark with PDF_create_bookmark() and supply its handle to the
bookmark option in PDF_begin_item() or the tag option of various functions:

bm = p.create_bookmark("Section 1", "");
id = p.begin_item("H1", "Title={Section 1} bookmark=" + bm);
p.fit_textline(text, x, y, "");
p.end_item(id);

This method can also be used with abbreviated tagging:

bm = p.create_bookmark("Section 1", "");
p.fit_textline(text, x, y,

"tag={tagname=H1 Title={Section 1} bookmark=" + bm + "}");

The disadvantage of this method is that the bookmark text must be available before
the structure element and its contents are created. This may be inconvenient if the
referenced structure element is located higher up in the structure tree.

> Create a structure item with PDF_begin_item() and supply its handle to the item op-
tion of PDF_create_bookmark(). Instead of an item handle the keyword current can be
supplied as a shortcut which refers to the current structure element at the time PDF_
create_bookmark() is called:

id = p.begin_item("H1", "Title={Section 1} ");
bm = p.create_bookmark("Section 1", "item=current");
p.fit_textline(text, x, y, "");
p.end_item(id);

This method has the advantage that the bookmark text must only be available when
the structure element and its contents are created. However, it cannot be used with
abbreviated tagging.

Structured bookmarks can only refer to open structure elements, and can not refer to
pseudo or inline items. The client code must ensure that the bookmark’s destination
matches the structure element (otherwise activating the bookmark in Acrobat would
not jump to the element, but to a different location in the document). If the associated
structure element spans more than one page the bookmark should point to the first
page in this range.

11.4.3 Lists
Lists are used to group related items. They are represented by the following structure el-
ements (see Figure 11.7):

> An L element which contains all of the following structure elements. The List-
Numbering option can be used to specify the numbering system used in the Lbl ele-
ments. The ListNumbering option may be useful for screen readers even without Lbl
elements.

> An optional Caption element. Since Caption is a grouping element it cannot contain
content items, but only other structure elements (e.g. P).

> One or more list items (LI) containing the following:

308 Chapter 11: Document Interchange

> An optional label (Lbl) with a bullet, number, etc.
> An LBody element with the actual contents of the list item. LBody may contain ei-

ther content items or other structure elements including a nested list.

The following code fragment creates a list with a caption and three items. Each list item
is preceded by a bullet character U+2022 which is tagged as label (the resulting tag struc-
ture is shown in Figure 11.7):

id_list = p.begin_item("L", "ListNumbering=Disc");

/* Create both Caption and P elements at once */
p.fit_textline("The following kinds of fruit are available:",

x1, y, "tag={tagname=Caption tag={tagname=P}}");
 y -= leading;

id_listitem = p.begin_item("LI", "");
 p.fit_textline("•", x1, y, "tag={tagname=Lbl}");
 p.fit_textline("Apples", x2, y, "tag={tagname=LBody}"); y -= leading;
p.end_item(id_listitem);

id_listitem = p.begin_item("LI", "");
 p.fit_textline("•", x1, y, "tag={tagname=Lbl}");
 p.fit_textline("Oranges", x2, y, "tag={tagname=LBody}"); y -= leading;
p.end_item(id_listitem);

id_listitem = p.begin_item("LI", "");

Fig. 11.7
Representation of an accessible list
in the structure tree

11.4 Advanced Tagged PDF Topics 309

 p.fit_textline("•", x1, y, "tag={tagname=Lbl}");
 p.fit_textline("Bananas", x2, y, "tag={tagname=LBody}"); y -= leading;
p.end_item(id_listitem);

p.end_item(id_list);

Cookbook A code sample for creating a Tagged PDF list can be found in the topics list_pdfua1 in the
pdfua category of the PDFlib Cookbook.

11.4.4 Creating Contents out of Order
As mentioned in Section 11.3.6, »Print Stream Order and Logical Reading Order«, page
298, it is crucial to create the elements in the structure hierarchy in logical reading or-
der. If the application processes page contents in an order which is different from logi-
cal reading order (e.g. always top to bottom regardless of column relationships), several
PDFlib features can be used to maintain proper ordering in the structure hierarchy:

> Create child elements out of order with the index option. It modifies the position
where a new structure element is inserted within its parent element.

> Create structure elements out of order with the parent option. It modifies the parent
element where a new structure element is inserted.

> Jump back and forth in the structure hierarchy with the PDF_activate_item() func-
tion. It can be used to add more structure elements or content items to some ele-
ment in the structure hierarchy.

These methods are discussed in more detail below.

Cookbook Code samples for tagging elements out of order can be found in the topics out_of_order and
parallel_columns_pdfua1 in the pdfua category of the PDFlib Cookbook.

Creating child elements out of order. In order to create child elements within a struc-
ture element out of order you can specify a location in the structure tree with the index
option of PDF_begin_item() or suboptions of the tag option of various functions. The fol-
lowing code fragment emits text fragments in reverse order, and corrects the order in
the structure tree by inserting each new text fragment as the new first child (index=0) of
the parent element. Since each new element is inserting as the new first child element
of the parent, as a result the logical ordering will be the reverse of the creation order:

p.fit_textline("three", x, y, "tag={tagname=P index=0}");
y += leading;
p.fit_textline("two", x, y, "tag={tagname=P index=0}");
y += leading;
p.fit_textline("one", x, y, "tag={tagname=P index=0}");

You can query the index of the currently active tag within its parent element with PDF_
get_option() and the activeitemindex or the activeitemkidcount keyword, and later return
to this position in the structure tree. The following code fragment inserts a new ele-
ment after the element at the stored index:

nextindex = p.get_option("activeitemindex", "") + 1;

...create more elements on the same level...

p.fit_textline(text, x, y, "tag={tagname=P index=" + nextindex + "}");

http://www.pdflib.com/pdflib-cookbook/pdfua/out_of_order_pdfua1/
http://www.pdflib.com/pdflib-cookbook/pdfua/parallel_columns_pdfua1/
http://www.pdflib.com/pdflib-cookbook/pdfua/
http://www.pdflib.com/pdflib-cookbook/pdfua/
http://www.pdflib.com/pdflib-cookbook/pdfua/list_pdfua1/
http://www.pdflib.com/pdflib-cookbook/pdfua/

310 Chapter 11: Document Interchange

Creating structure elements out of order. In order to create child elements at some
other location within the structure tree instead of at the current position, use the parent
option. It must refer to a structure element which has not yet been closed. Since ele-
ments created with abbreviated tagging are created and closed in the same function call
they cannot be used as target of the parent option. You can query the id of the currently
active tag with PDF_get_option() and the activeitemid keyword, and later return to this
position in the structure tree:

parent_id = p.get_option("activeitemid", "");
...
p.fit_textline(text, x, y, "tag={tagname=P parent=" + parent_id + "}");

For even more flexibility the parent and index options can be used in combination. Use
PDF_suspend/resume_page() to interrupt a page, continue on another page, and then go
back to add more content to the suspended page.

Activating items for complex layouts. In order to facilitate the creation of structure in-
formation for complex non-linear page layouts PDFlib offers a feature called item acti-
vation. It can be called to activate a previously created structure element in situations
where the developer must keep track of multiple structure branches where each branch
could span one or more pages. Typical situations which benefit from this technique are
the following:

> multiple columns on a page
> inserts which interrupt the main text, such as summaries or other non-linear text

items
> tables and illustrations which are placed between columns.

The function PDF_activate_item() allows you to switch back and forth between different
branches of the structure tree. The »logical order« approach requires the client applica-
tion to construct the page contents in logical order even if it would be easier to create it
in visual order. In contrast, with item activation the contents can be created in visual or-
der (or any other ordering which is convenient for the application). This technique can
also be applied if the content spans multiple pages.

In order to work around problems in Acrobat, no content items should be added im-
mediately after calling PDF_activate_item(), but only other structure elements.

Querying the currently active structure element. In order to use the parent and index
options or PDF_activate_item() some knowledge about the currently active structure ele-
ment and its children is required. This status information can be maintained by the ap-
plication, but can also be queried from PDFlib. The function PDF_get_option() with the
keywords activeitemid, activeitemindex, activeitemkidcount, activeitemname, activeitem-
standardname delivers the id, index, number of child elements, name, and standard
name (if it is rolemapped) of the current element.

11.4.5 Importing Tagged PDF Pages with PDI
Cookbook Code samples for importing pages from Tagged PDF documents can be found in the topics

clone_pdfua and merge_and_stamp_pdfua1 in the pdfua category of the PDFlib Cookbook.

In Tagged PDF mode pages from a Tagged PDF document are imported along with their
structure element tags. We abbreviate a page from a Tagged PDF document imported in

http://www.pdflib.com/pdflib-cookbook/pdfua/clone_pdfua/
http://www.pdflib.com/pdflib-cookbook/pdfua/merge_and_stamp_pdfua1/
http://www.pdflib.com/pdflib-cookbook/pdfua/

11.4 Advanced Tagged PDF Topics 311

Tagged PDF mode with usetags=true as »tagged page«. This status can be queried with
the tagged keyword of PDF_info_pdi_page(). Importing tagged pages works as described
below.

Opening a Tagged PDF document. PDF_open_pdi_document() checks whether the im-
ported document is compatible to the current PDF/A-1a/2a/3a or PDF/UA mode and
reads the structure tree of the imported document.

If the usetags option is false the document’s structure information is ignored, and no
tags can be imported from the document. Note that the default of usetags is false if PDF_
open_pdi_document() is called in object scope, i.e. before PDF_begin_document().

Note Attribute classes and class maps are not imported.

Cloning input document language. If most or all pages of a PDF document are import-
ed with PDI it is recommended to clone the document language entry (see »Language
specification«, page 296) if it is present in the input document. The document language
can be cloned with pCOS and the following code fragment:

if (p.pcos_get_string(indoc, "type:/Root/Lang").equals("string"))
{

inputlang = p.pcos_get_string(indoc, "/Root/Lang");
optlist += " lang=" + inputlang;

}

p.begin_document(filename, optlist);

Opening a tagged page. PDF_open_pdi_page() selects the structure elements compris-
ing the imported page’s contents and filters the tags present on the page. For example,
tags for annotations are removed since PDI does not import interactive elements. Final-
ly, one or more structure elements on the imported page are selected which form the
top of the imported structure sub-tree. If the usetags option is false the page’s structure
information is completely ignored.

Entries in the imported document’s role map are copied to the output document’s
role map if the corresponding element is used on the page. Conflicting role map entries
(i.e. a custom tag is already mapped to a different standard tag in the generated docu-
ment’s role map or a previously imported document) are ignored. However, pages with
conflicting role map entries are rejected in PDF/UA mode, i.e. the call to PDF_open_pdi_
page() fails.

Importing documents with invalid tag structure. PDFlib implements strict checks for
the tag nesting rules imposed by ISO 32000-1 as detailed in »Nesting rules for structure
elements«, page 291. These checks can also be applied to imported documents and the
tag structure created from imported pages. The nesting rules in imported pages are not
checked by default. However, these checks can be enabled with the checktags option of
PDF_open_pdi_document(). If checktags=strict all tag nesting rules are enforced in PDF_
open_pdi_page(). If the structure hierarchy of the imported page violates the nesting
rules for structure elements the call to PDF_open_pdi_page() fails, and PDF_get_errmsg()
reports an error similar to the following:

Grouping element type 'Document' cannot contain content items
(but only other structure elements)

312 Chapter 11: Document Interchange

Since many existing real-world Tagged PDF documents violate the tag nesting rules you
can address these problems in imported documents with one of the following methods:

> Inserting an additional tag on top of the imported structure hierarchy (e.g. with the
tags option of PDF_fit_pdi_page()) is useful to fix common problems where the im-
ported page contains content items immediately under the document root.

> Other problems cannot be solved by inserting additional tags, e.g. when the struc-
ture elements for tables or lists are incomplete. You should consider fixing the input
documents if possible. If this is not a viable solution you can set checktags=none in
PDF_open_pdi_document() to import tagged PDF pages with a nonconforming tag
structure.

> If the imported structure itself is correct, but conflicts with the generated new tags of
the output document you should try to adjust the new tags appropriately. If this is
not feasible you can set checktags=none in PDF_begin_document() to ignore conflicts
in the generated tagging structure. This is not allowed in PDF/UA-1 mode.

Since nonconforming input processed with either variant of checktags=none may result
in nonconforming PDF output this setting is not recommended.

Querying and checking the tags in an imported page. In some situations it can be dif-
ficult to properly integrate imported structure elements in the generated new structure
hierarchy. In order to assist in this process, several properties of an imported tagged
PDF page can be queried with PDF_info_pdi_page() after a page has been successfully
opened:

> The keyword fittingpossible reports whether the page can be placed in the current
context. If the tag option is supplied you can check whether the page can be placed
with an additional top-level tag. Only the tagname suboption of the tag option is
evaluated; other suboptions should not be supplied. Using this keyword is recom-
mended in situations where you are not sure about the structure information in im-
ported pages and want to avoid an exception in PDF_fit_pdi_page() because of un-
suitable imported structure elements. If a page is rejected by the fittingpossible test
you can try to insert an additional tag via the tag option.

> The keyword topleveltagcount reports the number of top-level structure elements
since there may be more than one top-level tags. Note that topleveltagcount may be 0
in rare cases where the page contents are not covered by any structure element. Such
a page behaves like an untagged page. Like other content items it cannot be placed as
child of a grouping element, but requires an additional tag on top of the page.

> The keyword topleveltag reports the top-level structure element(s) of the imported
page. This may be useful to determine whether or not additional structure elements
can or must be inserted above the imported page structure.

> The keyword lang reports the lang attribute of all top-level imported structure ele-
ment(s). This helps to decide whether a lang attribute is required in higher structure
elements.

Placing a tagged page. PDF_fit_pdi_page() places the imported page on a new page and
integrates its structure hierarchy in the generated document’s structure tree, using the
currently active element as parent for the imported structure tree. An additional struc-
ture element can be created with the tag option of PDF_fit_pdi_page(). It serves as new
parent for the imported structure hierarchy.

11.4 Advanced Tagged PDF Topics 313

If Alt or ActualText attributes are present in the imported hierarchy they are removed
if a conflict with existing attributes higher up in the generated document structure is
found (see »Nesting rules for alternate and replacement text«, page 298).

If the page has been opened with usetags=true in PDF_open_pdi_document() and PDF_
open_pdi_page() it can be placed at most once in the output document since the import-
ed structure must be integrated at a unique location of the output document’s struc-
ture hierarchy. If a page contributes content and structure at more than one location it
can be opened multiply, however (i.e. different page handles are placed).

The following strategy is recommended for importing pages with unknown docu-
ment structure:

> If the topleveltagcount keyword of PDF_info_pdi_page() reports a tag count of 0, the
page is either empty or contains only Artifacts. Some applications may decide to skip
such pages since they don’t contribute any relevant content. If the page is neverthe-
less imported, it is recommended to a supply an additional Artifact tag to work
around an Acrobat problem.

> If the fittingpossible keyword of PDF_info_pdi_page() returns 1 for this page it can safe-
ly be placed with PDF_fit_pdi_page(). This test is not required if the page is placed as
Artifact.

> Otherwise, an additional tag can be inserted on top of the imported page’s structure.
The choice of this tag depends on application, especially the type of structure ele-
ment where the imported page is inserted into the structure tree.

> If the fittingpossible keyword of PDF_info_pdi_page() still rejects the page with the ad-
ditional tag, the application could try another tag or give up the page.

The following code fragment implements the strategy outlined above. It inserts an ad-
ditional P element if the page cannot be placed directly:

fittingpossible = true;
additionaltag = "";

topleveltagcount = (int) p.info_pdi_page(page, "topleveltagcount", "");

if (topleveltagcount == 0)
{

/* The page doesn't contain any structure elements,
 * i.e. it is empty or contains only Artifacts.
 * We add an "Artifact" tag to work around an Acrobat bug.
 */
additionaltag = "tag={tagname=Artifact} ";

}
else
/*
* Try to place the page without any additional tag;
* if this doesn't work we insert another tag.
*/
if (p.info_pdi_page(page, "fittingpossible", "") == 0)
{

additionaltag = "tag={tagname=P} ";

if (p.info_pdi_page(page, "fittingpossible", additionaltag) == 0)
{

fittingpossible = false;
}

}

314 Chapter 11: Document Interchange

if (fittingpossible)
{

p.fit_pdi_page(page, 0, 0, "adjustpage " + additionaltag);
}
else
{

System.err.println("Skipping page: " + p.get_errmsg());
}

Use cases. The use cases below for importing pages in Tagged PDF mode can be distin-
guished; Table 11.7 summarizes options and other requirements for these use cases:

> Honor tags: import a page from a Tagged PDF document and copy its tags to the out-
put. The structure elements comprising the page become part of the new structure
hierarchy. Optionally an additional tag can be placed on top of the imported hierar-
chy.

> Drop tags: import a page from a Tagged or untagged PDF document and tag the
whole page with a new tag. Existing structure elements are dropped and the con-
tents of the imported page comprise a single tag without any internal structure.

> Place as Artifact: import a page from a Tagged or untagged PDF document and mark
the whole page as Artifact, e.g. for a background graphic. Existing structure elements
are dropped.

Table 11.7 Importing tagged and untagged PDF pages in Tagged PDF mode

use case
imported
page options requirements and comments

honor tags tagged usetags=true in
PDF_open_pdi_document()
and PDF_open_pdi_page()

> parent1 must not be inline or pseudo element
> imported page can be placed only once
> top-level element(s) of imported page must meet nesting

rules

1. Currently active tag specified with PDF_begin_item() or the tag option of PDF_fit_pdi_page()

drop tags tagged or
untagged2

2. This situation may also arise for Tagged PDF pages where no structure element actually refers to any page content.

usetags=false in
PDF_open_pdi_document()
or PDF_open_pdi_page()

> contents of imported page become part of currently ac-
tive item

> only non-grouping parent elements allowed

place as
Artifact

tagged or
untagged

tag={tagname=Artifact}
in PDF_fit_pdi_page()

> contents of imported page become Artifact

12.1 Acrobat and PDF Versions 315

12 PDF Versions and Standards
12.1 Acrobat and PDF Versions

At the user’s option PDFlib generates output according to the following PDF versions:
> PDF 1.4 (Acrobat 5, released 2001)
> PDF 1.5 (Acrobat 6, released 2003)
> PDF 1.6 (Acrobat 7, released 2005)
> PDF 1.7 (Acrobat 8, released 2006), technically identical to ISO 32000-1:2008
> PDF 1.7 Adobe extension level 3 (Acrobat 9, released 2008)
> PDF 1.7 Adobe extension level 8 (Acrobat X/XI/DC, released 2010/2012/2015-2019)
> PDF 2.0 according to ISO 32000-2:2017 including the dated revision ISO 32000-2:2020

The PDF output version can be controlled with the compatibility option in PDF_begin_
document(). In each PDF compatibility mode the PDFlib features for higher levels are not
available (see Table 12.1). Trying to use such features will result in an exception.

PDF version of documents imported with PDI. In all compatibility modes only PDF
documents with a lower or the same PDF version can be imported with PDI. If you must
import a PDF with a newer PDF version you must set the compatibility option according-
ly (see Section 8.3.3, »Document and Page-related Checks«, page 210). As an exception to
the cannot-import-higher-PDF-version rule, documents according to PDF 1.7 extension lev-
el 3 (Acrobat 9) and PDF 1.7 extension level 8 (Acrobat X/XI/DC) can also be imported
into PDF 1.7 documents.

Changing the PDF version of a document. If you must create output according to a
particular PDF version, but need to import PDFs which use a higher PDF version you
must convert the documents to the desired lower PDF version before you can import
them with PDI. You can use the menu item File, Save As Other..., Optimized PDF...
(Acrobat XI/DC) or File, Save As..., Optimized PDF... (Acrobat X) to change the PDF version.

Table 12.1 PDFlib features which require a specific PDF compatibility mode

Feature PDFlib API functions and options

Features which require PDF 2.0 = ISO 32000-2 or a specific PDF/A or PDF/VT standard

Document part hierarchy PDF_begin/end_dpart(): A document part hierarchy requires PDF 2.0 or PDF/VT.

Relationship of file attachments Option relationship for PDF_load_asset() with type=Attachment, for PDF_add_
portfolio_file(), and for use as suboption for the attachments option of PDF_be-
gin/end_document() and the attachment option of PDF_create_annotation(): re-
lationship specifications require PDF 2.0 or PDF/A-3.

Associated files Option associatedfiles for PDF_end_document(), PDF_begin/end_page_ext(),
PDF_begin/end_dpart(), PDF_begin_template_ext(), PDF_load_image(), PDF_
open_pdi_page(), PDF_load_graphics(): Associated files require PDF 2.0 or PDF/A-
3.

316 Chapter 12: PDF Versions and Standards

Features which require PDF 1.7 extension level 8 (Acrobat X/XI/DC) or above

AES encryption with 256-bit keys PDF_begin_document(): AES encryption with 256-bit and a stronger encryption
algorithm than in extension level 3 is automatically used with compatibi-
lity=1.7ext8 if the masterpassword, userpassword, attachmentpassword, or
permissions option is supplied

Features which require PDF 1.7 extension level 3 (Acrobat 9) or above

Multimedia PDF_load_asset()
PDF_create_annotation(): option type=RichMedia
PDF_create_action(): option type=RichMediaExecute

Geospatial PDF PDF_begin_document(): option viewports
PDF_load_image(): option georeference

PDF portfolios with folders PDF_add_portfolio_folder()

AES encryption with 256-bit keys PDF_begin_document(): AES encryption with 128-bit according to PDF 1.7 is auto-
matically used with compatibility=1.7ext3 if the masterpassword, user-
password, attachmentpassword, or permissions option is supplied to avoid a
weakness in the AES-256 encryption algorithm according to PDF 1.7ext3

embed 3D models in PRC format PDF_load_3ddata(): option type=PRC

barcode fields PDF_create_field() and PDF_create_fieldgroup(): option barcode

Features which require PDF 1.7 = ISO 32000-1 (Acrobat 8) or above

PDF portfolios PDF_begin_document(): option portfolio
PDF_add_portfolio_file()

Unicode file names for attachments PDF_begin/end_document(): option attachments, suboption filename

Features which require PDF 1.6 (Acrobat 7) or above

NChannel color PDF_create_devicen(): option subtype=nchannel

user units PDF_begin/end_document(): option userunit

print scaling PDF_begin/end_document(): suboption printscaling for viewerpreferences
option

document open mode PDF_begin/end_document(): option openmode=attachments

AES encryption with 128-bit keys PDF_begin_document(): AES encryption is automatically used with
compatibility=1.6 or 1.7 when the masterpassword, userpassword,
attachmentpassword, or permissions option is supplied

encrypt file attachments only PDF_begin/end_document(): option attachmentpassword

attachment description PDF_begin/end_document(): suboption description for option attachments

embed 3D models in U3D format PDF_load_3ddata(), PDF_create_3dview()
PDF_create_annotation(): option type=3D
PDF_create_action(): option type=GoTo3DView

Features which require PDF 1.5 (Acrobat 6) or above

DeviceN color space with more than
8 colorants

PDF_create_devicen(): option names

various field options PDF_create_field() and PDF_create_fieldgroup()

Table 12.1 PDFlib features which require a specific PDF compatibility mode

Feature PDFlib API functions and options

12.1 Acrobat and PDF Versions 317

page layout PDF_begin/end_document(): option pagelayout=twopageleft/right

various annotation options PDF_create_annotation()

extended permission settings permissions=plainmetadata in PDF_begin_document(), see Table 3.4

Tagged PDF various options for PDF_begin_item();
PDF_begin/end_page_ext(): option taborder

Layers PDF_define_layer(), PDF_begin_layer(), PDF_end_layer(), PDF_layer_
dependency()

JPEG2000 images imagetype=jpeg2000 in PDF_load_image()

compressed object streams compressed object streams will automatically be generated with
compatibility=1.5 or above unless objectstreams=none has been set in PDF_
begin_document()

Table 12.1 PDFlib features which require a specific PDF compatibility mode

Feature PDFlib API functions and options

318 Chapter 12: PDF Versions and Standards

12.2 The PDF Standard ISO 32 000
ISO 32000-1. PDF 1.7 has been standardized as ISO 32000-1. The technical contents of
this international standard are identical to Adobe’s PDF 1.7 reference, the file format of
Acrobat 8. PDF documents created with PDFlib conform to ISO 32000-1. A copy of this
standard is freely available at the following location:

http://www.adobe.com/devnet/pdf/pdf_reference.html

ISO 32000-2. ISO 32000-2:2017 specifies PDF 2.0 and incorporates features from the
following groups:

> Acrobat 9 features which are supported in PDFlib with the compatibility=pdf1.7ext3
document option, e.g. georeferenced PDF, hierarchical Portfolios, and AES-256 en-
cryption; see Table 12.1 for a detailed list.

> Acrobat X features which are supported in PDFlib with compatibility=pdf1.7ext8, par-
ticularly AES-256 encryption with a stronger encryption algorithm.

> Features introduced with the PDF/A-3 and PDF/VT standards such as associated files
and Document Part Hierarchy.

> Other features which are not supported in Acrobat DC and below, e.g. new structure
element types.

More details about PDF 2.0 can be found on the PDFlib Web site.

Deprecated PDF 2.0 features. PDF 2.0 deprecates the features listed in Table 12.2 which
were available in earlier PDF versions. If any of these features is used, PDFlib emits a
warning. We recommend to avoid these features even in PDF 1.x mode.

Table 12.2 PDFlib features which are deprecated in PDF 2.0

Feature PDFlib API methods and options

accessibility restrictions PDF_begin_document(): option permissions, keyword noaccessible

viewer preferences for viewing and
printing

PDF_begin/end_document(): option viewerpreferences, suboptions printarea,
printclip, viewarea, viewclip

separation dictionaries PDF_begin_page_ext() and PDF_end_page_ext(): option separationinfo

platform-specific action parameters PDF_create_action(): options defaultdir, parameters and operation for
type=Launch

Movie actions PDF_create_action() with type=Movie (use type=RichMediaExecute instead)

Movie annotations PDF_create_annotation() with type=Movie (use type=RichMedia instead)

Flash-based multimedia PDF_load_asset() with type=Flash

Flash navigators for portfolios PDF_end_document(), option portfolio, suboptions initialview=custom and
navigator

blendmode arrays PDF_create_gstate(): option blendmode accepts only a single keyword, but not a
list with multiple values

barcode fields PDF_create_field() and PDF_create_fieldgroup(): barcode

http://www.adobe.com/devnet/pdf/pdf_reference.html

12.3 PDF/A for Archiving 319

12.3 PDF/A for Archiving
12.3.1 The PDF/A Standards

Note General information about the PDF/A standard can be found on the PDFlib Web site.

The PDF/A formats specified in the ISO 19005 standard series provide a consistent and
robust subset of PDF which can safely be archived over a long period of time, or used for
reliable data exchange in enterprise and government environments.

PDF/A in the PDF Association. PDFlib GmbH is a found-
ing member of the PDF Association which hosts the
PDF/A Technical Working Group (TWG) as one of its
activities. The aim of this industry organization is »to
promote Open Standards-based electronic document
implementations using PDF technology through educa-
tion, expertise and shared experience for stakeholders
worldwide«. For more information visit the PDF Associa-
tion’s Web site at www.pdfa.org.

PDF/A-1a:2005 and PDF/A-1b:2005 according to ISO 19005-1. PDF/A-1 is based on
PDF 1.4 and imposes restrictions on the use of color, fonts, annotations, and other ele-
ments. There are two flavors of PDF/A-1:

> ISO 19005-1 Level B conformance (PDF/A-1b) ensures that the visual appearance of a
document is preservable over the long term. Simply put, PDF/A-1b ensures that the
document will look the same when it is processed some time in the future.

> ISO 19005-1 Level A conformance (PDF/A-1a) is based on level B, but adds properties
which are known from Tagged PDF: it requires structure information and reliable
text semantics in order to preserve the document's logical structure and natural
reading order. PDF/A-1a not only ensures that the document will look the same when
it is processed in the future, but also that its contents can be reliably interpreted and
will be accessible to physically impaired users.

PDF/A-1 support in PDFlib is based on the following documents:
> The PDF/A-1 standard (ISO 19005-1:2005)
> Technical Corrigendum 1 (ISO 19005-1:2005/Cor.1:2007)
> Technical Corrigendum 2 (ISO 19005-1:2005/Cor.2:2011)
> TechNote 0010 »Clarifications of ISO 19005« published by the PDF Association.

When PDF/A-1 (without any conformance level) is mentioned, both conformance levels
PDF/A-1a and PDF/A-1b are meant.

PDF/A-2a, PDF/A-2b, and PDF/A-2u according to ISO 19005-2. The PDF/A-2 standard
flavors are based on ISO 32000-1 (i.e. PDF 1.7), which means that they support more fea-
tures than PDF/A-1. Unlike PDF/A-1 the newer PDF/A-2 standard allows transparency,
layers, JPEG 2000 compression, PDF/A file attachments, PDF packages and other PDF
features. PDF/A-2 defines the following flavors:

> ISO 19005-2 Level B conformance (PDF/A-2b) ensures the visual appearance of a doc-
ument.

http://www.pdfa.org

320 Chapter 12: PDF Versions and Standards

> ISO 19005-2 Level A conformance (PDF/A-2a) adds reliable Unicode text semantics
and Tagged PDF with structure information. The tags make sure that PDF/A-2a docu-
ments are fully accessible.

> ISO 19005-2 Level U conformance (PDF/A-2u) sits in between PDF/A-2a and PDF/A-2b
in that it requires reliable Unicode text semantics, but not structure information.
PDF/A-2u guarantees that the pages can faithfully be reproduced and that the text
can be extracted and searched.

PDF/A-2 support in PDFlib is based on the following documents:
> The PDF/A-2 standard (ISO 19005-2:2011)
> TechNote 0010 »Clarifications of ISO 19005« published by the PDF Association.

When PDF/A-2 (without any conformance level) is mentioned, all three conformance
levels PDF/A-2a, PDF/A-2b, and PDF/A-2u are meant.

PDF/A-3a, PDF/A-3b, and PDF/A-3u as defined in ISO 19005-3. PDF/A-3 is similar to
PDF/A-2 with the following differences:

> While PDF/A-2 allows only file attachments which conform to PDF/A-1 or PDF/A-2,
PDF/A-3 allows arbitrary file types as attachments.

> Attached files are associated with the whole document, a page, or some other ele-
ment of the document. The relationship between the file attachment and the corre-
sponding part of the document must be specified explicitly, e.g. source, alternative,
or supplemental data.

PDF/A-3 support in PDFlib is based on the following document:
> The PDF/A-3 standard (ISO 19005-3:2012)
> TechNote 0010 »Clarifications of ISO 19005« published by the PDF Association.

When PDF/A-3 (without any conformance level) is mentioned, all three conformance
levels PDF/A-3a, PDF/A-3b, and PDF/A-3u are meant.

The ZUGFeRD standard for electronic invoices is an important application based on
PDF/A-3. It embeds a machine-readable XML version of the invoice in a human-readable
document which conforms to PDF/A-3. More information on ZUGFeRD can be found on
the PDFlib Website.

12.3.2 General Requirements
Cookbook Code samples for generating PDF/A can be found in the pdfa category of the PDFlib Cookbook.

If the PDFlib client program obeys to the rules documented in this chapter, valid PDF/A
output is guaranteed. If PDFlib detects a violation of PDF/A rules it will throw an excep-
tion which must be handled by the application. No PDF output is created in this case.
Table 12.3 lists general requirements for creating conforming PDF/A output.

Creating combined PDF/A and PDF/UA-1 documents. A PDF/A document can at the
same time conform to PDF/UA-1. In fact, if you want to create PDF/A-1a/2a/3a we recom-
mend to adhere to the PDF/UA requirements in order to improve the accessibility of the
generated documents. See »Creating combined PDF/UA-1 and PDF/A documents«, page
348, for details and restrictions.

http://www.pdflib.com/pdflib-cookbook/pdfa/

12.3 PDF/A for Archiving 321

Creating combined PDF/A and PDF/X documents. A PDF/A document can at the same
time conform to PDF/X-1a, PDF/X-3, or PDF/X-4, but not to PDF/X-4p or PDF/X-5. In order
to create such a combo file supply appropriate values for the pdfa and pdfx options of
PDF_begin_document(), e.g.:

ret = p.begin_document("combo.pdf", "pdfa=PDF/A-2b pdfx=PDF/X-4");

12.3.3 Color and Image Requirements
PDF/A guarantees faithful color reproduction by requiring device-independent color
specifications. Color spaces may come from the following sources:

> images loaded directly with PDF_load_image() and PDF_fill_imageblock (), and indi-
rectly via PDF_load_graphics()

> explicit color specifications with PDF_set_graphics_option() or PDF_setcolor()
> color specifications through option lists, e.g. in Textflows
> blending color spaces for transparency groups: PDF_begin/end_page_ext(), PDF_

begin_template_ext(), and PDF_load_graphics(): option transparencygroup with subop-
tion colorspace

> alternate color space of spot or DeviceN colors
> annotations and form fields may specify colors for borders, backgrounds and con-

tents.

Table 12.3 General requirements for PDF/A conformance levels A, B, and U

item PDFlib requirements for PDF/A conformance (all conformance levels)

PDF/A conformance
level and PDF
compatibility

PDF_begin_document(): the pdfa option must be set to the required PDF/A conformance level,
e.g. pdfa=PDF/A-2b
PDF/A-1: Operations that require PDF 1.5 or above (e.g. layers) must be avoided.
PDF/A-2/3: Operations that require PDF 1.7ext3 or above (e.g. PDF Portfolios) must be avoided.

fonts The font option embedding must be true. The options unicodemap=false and dropcorewidths=
true are not allowed.
Embedding is also required for the PDF core fonts. The only exception to the embedding require-
ment applies to fonts which are exclusively used for invisible text (mainly useful for OCR results).
This can be controlled with the optimizeinvisible option.

page sizes PDF_begin/end_page_ext(): there are no strict page size limits in PDF/A. However, it is recom-
mended to keep the page size (width and height, and all box entries) in the range 3...14400 points
(508 cm) in PDF/A-1, or 3...14400 user units in PDF/A-2/3.

layers PDF/A-1: PDF_define_layer() and PDF_set_layer_dependency() must be avoided.
PDF/A-2/3: layers can be used, but some options of PDF_define_layer() must be avoided.

security PDF_begin_document(): the userpassword, masterpassword, attachmentpassword and
permissions options must be avoided.

external content PDF_begin_template_ext(), PDF_load_graphics() and PDF_open_pdi_page(): the reference op-
tion must be avoided.
PDF_load_asset(): the external option must be avoided.

file size The file size of the generated PDF document must not exceed 2 GB, and the number of PDF ob-
jects must be smaller than 8.388.607. See Section 3.1.6, »Maximum Size of PDF Documents and
other Limits«, page 61, for more details about these limits.

PDF import PDF_open_pdi_document() is restricted unless infomode=true; see Section 12.3.7, »Importing
PDF/A Documents with PDI«, page 326.

322 Chapter 12: PDF Versions and Standards

Table 12.4 lists PDF/A requirements for color processing which must be obeyed in all of
the operations listed above.

Table 12.4 Color and image requirements for PDF/A conformance levels A, B, and U

item PDFlib requirements for PDF/A (all conformance levels)

output condition
(output intent)

PDF_load_iccprofile() with usage=outputintent or PDF_process_pdi() with action=copyout-
putintent must be called immediately after PDF_begin_document() if any of the device-
dependent colors spaces Gray, RGB, or CMYK is used in the document and no suitable default color
space is present for the page.

grayscale color Grayscale color can only be used if a grayscale, RGB, or CMYK output intent is present or the
defaultgray option has been set (the defaultgray option is not available for form fields).

RGB color RGB color can only be used if an RGB output intent is present or the defaultrgb option has been
set. As an exception, RGB color can always be used for form fields.

CMYK color CMYK color can only be used if a CMYK output intent is present or the defaultcmyk option has
been set (the defaultcmyk option is not available for form fields).

Separation (spot)
and DeviceN color

> The alternate color space must conform to the rules above.
> PDF/A-2/3: PDF_makespotcolor() must be called before PDF_create_devicen() for all custom

spot colors in the DeviceN color space.

transparency
and overprinting

PDF/A-1: Transparency must be avoided; this affects the following API features:
> PDF_load_image(): the masked option must be avoided unless the mask refers to a 1-bit image.
> PDF_load_image(): images with implicit transparency (alpha channel) are not allowed; they

must be loaded with the ignoremask option.
> PDF_load_graphics(): SVG graphics containing transparent elements must be avoided.
> PDF_create_gstate(): the opacityfill and opacitystroke options must be avoided unless

they have a value of 1; if blendmode is used it must be Normal; if softmask is used it must be
none.

> PDF_create_annotation(): the opacity option must be avoided.
PDF/A-2/3: Transparency is allowed, but the following rule must be obeyed in PDF_create_
gstate(): overprintmode=1 is not allowed if the current color space is an ICCBased CMYK color
space and overprintfill or overprintstroke is true.

transparency groups PDF_begin/end_page_ext(), PDF_begin_template_ext(), PDF_open_pdi_page() and PDF_load_
graphics(): the option transparencygroup is restricted as follows:
> PDF/A-1: Option transparencygroup is not allowed.
> PDF/A-2/3: The suboption colorspace of the transparencygroup option must meet the re-

quirements stated above for grayscale, RGB, and CYMK color. For PDF_open_pdi_page() and
PDF_load_graphics() transparencygroup=auto is enforced.

> PDF/A-2/3: The suboption colorspace of the transparencygroup option must meet the re-
quirements stated above for Grayscale, RGB and CMYK color. The option transparencygroup=
none and the suboption colorspace=none are not allowed for PDF_begin/end_page_ext().

images and
templates

PDF_load_image(): the interpolate=true option must be avoided.
PDF/A-2/3: JPEG 2000 images must meet certain conditions, see »JPEG 2000 images«, page 187,
for details.

12.3 PDF/A for Archiving 323

Output intents. The output condition defines the intended target device, which is im-
portant for consistent color rendering. Unlike PDF/X, which always requires an output
intent, the use of an output intent ICC profile is optional in PDF/A. An output intent is
only required if device-dependent colors, e.g. RGB, are used in the document. If only de-
vice-independent colors, e.g. ICC-based colors, are used in the document no output in-
tent is required. While PDF/X supports only printer ICC profiles as output intents, in
PDF/A also monitor profiles are allowed. This makes it possible to use the widely used
sRGB profile as output intent. The output intent can be specified with an ICC profile as
follows:

icc = p.load_iccprofile("sRGB", "usage=outputintent");

As an alternative to loading an ICC profile, the output intent can be copied from an im-
ported PDF/A document (see »Copying the PDF/A output intent from an imported doc-
ument«, page 327). The output intent of the generated output document must be set ex-
actly once. It should be set immediately after PDF_begin_document().

Color strategies for creating PDF/A. The summary of color strategies in Table 12.5 may
be helpful for planning PDF/A applications. The easiest approach which works in many
situations is to use the sRGB output intent ICC profile since it supports grayscale and
RGB color. In addition, sRGB is known to PDFlib internally and thus doesn’t require any
external profile data or configuration.

In order to create black text without the need for any output intent profile the
CIELab color space can be used. The Lab color value (0, 0, 0) specifies pure black in a de-
vice-independent manner, and conforms to PDF/A without any output intent profile
(unlike DeviceGray, which requires an output intent profile). PDFlib initializes the cur-
rent color to black at the beginning of each page. Depending on whether or not an ICC
output intent was specified, it will use the DeviceGray or Lab color space for black. Use
the following call to manually set Lab black color:

p.set_graphics_option("fillcolor={lab 0 0 0}");

Table 12.5 PDF/A color strategies for conformance levels A, B, and U

output intent
ICC profile

color spaces which can be used in the document

CIELab ICCBased separation and
DeviceN

Grayscale1

1. Device color space without any ICC profile or default color space for the page, pattern or template

RGB1, 2

2. RGB color is always allowed for form fields.

CMYK1

none yes yes yes – – –

grayscale yes yes yes yes – –

RGB, e.g. sRGB yes yes yes yes yes –

CMYK yes yes yes yes – yes

324 Chapter 12: PDF Versions and Standards

In addition to the color spaces listed in Table 12.5, custom spot colors can be used subject
to the corresponding alternate color space. Since PDFlib uses CIELab as the alternate col-
or space for the builtin HKS and PANTONE spot colors, these can always be used with the
PDF/A standard. For custom spot colors the alternate color space must be chosen so that
it is compatible with the output intent. For all custom spot colors used in a DeviceN col-
or space PDF_makespotcolor() must be called.

12.3.4 Requirements for Interactive Features
Table 12.6 lists all operations which are restricted when generating PDF/A-conforming
output. Calling one of the prohibited functions in PDF/A mode triggers an exception.

Table 12.6 Requirements for interactive features for all PDF/A conformance levels

item PDFlib requirements for PDF/A (all conformance levels)

annotations PDF/A-1: PDF_create_annotation() is subject to the following restrictions:
> Annotations with type=FileAttachment and Movie must be avoided.
> The zoom and rotate options for Text annotations must not be set to true.
> The annotcolor and interiorcolor options can only be used if an RGB output intent has been

specified. The fillcolor option can only be used if an RGB or CMYK output intent has been
specified, and a corresponding rgb or cmyk color space must be used.

> The opacity option must not be used.
PDF/A-2/3: PDF_create_annotation(): only type=Link is allowed.

attachments PDF/A-1: PDF_begin/end_document(): the attachments option must be avoided.
PDF/A-2: PDF_begin/end_document(): the attachments option must refer to PDF/A-1 or PDF/A-2
documents.
PDF/A-3: Arbitrary file types can be attached with the associatedfiles option, but the
attachments option must be avoided. The following conditions must be obeyed:
> Attachments can be associated with various parts of the document with the associatedfiles

option of PDF_end_document(), PDF_begin/end_page_ext(), PDF_begin/end_dpart(), PDF_
begin_template_ext(), PDF_load_image(), PDF_open_pdi_page(), PDF_load_graphics(). Each
attachment must be associated with exactly one part of the document, i.e. each asset handle
created with PDF_load_asset() must be supplied to exactly one associatedfiles option.

> The mimetype and relationship suboptions are required.
> The description suboption is recommended.
> The external=true suboption must be avoided.

actions and
JavaScript

PDF_create_action(): actions with type=Hide, Launch, Movie, ResetForm, ImportData, Java-
Script must be avoided; for type=name only NextPage, PrevPage, FirstPage, and LastPage are
allowed.
PDF_begin/end_document(): the option action can only be used with the trigger event open.
PDF_begin/end_page_ext(): option action must be avoided.

form fields PDF_create_field/fieldgroup() are subject to the following restrictions:
> All used fonts must be embedded.
> Options backgroundcolor, bordercolor, fillcolor, and strokecolor: RGB colors are always

allowed, Grayscale colors are only allowed with an output intent (any type), and CMYK colors
are only allowed with a CMYK output intent (see also Table 12.4).

> The action option is not allowed.

12.3 PDF/A for Archiving 325

12.3.5 Additional PDF/A Requirements for Level U Conformance
Most standard requirements for PDF/A-2u and PDF/A-3u are met automatically by
PDFlib. When generating documents with Level U conformance only the operation list-
ed in Table 12.7 is restricted. In other words, if your application already creates PDF/A-2b
or PDF/A-3b and you observe the restriction in Table 12.7 the generated documents can
also be declared as PDF/A-2u or PDF/A-3u, respectively.

12.3.6 Additional PDF/A Requirements for Level A Conformance
When creating PDF/A-1a, PDF/A-2a and PDF/A-3a all Tagged PDF requirements according
to Section 11.3, »Tagged PDF Basics«, page 285, must be met. Table 12.8 lists required and
recommended operations for generating output according to Level A. In addition to the
general Tagged PDF rules we strongly recommend to obey the PDF/UA requirements to
improve the accessibility of the generated documents; see Section 12.6, »PDF/UA for
Universal Accessibility«, page 348, for details.

The user is responsible for creating correct structure information. A document
which contains all of its text in a single structure element is technically correct PDF/A,
but violates the goal of faithful semantic reproduction.

PUA characters. PDF/A-2a and PDF/A-3a include additional requirements for charac-
ters with a Unicode value in the Private Use Area or PUA, i.e. mainly the range U+E000 -
U+F8FF (see »BMP and PUA«, page 105, for details). PUA characters are usually decorative
and symbolic glyphs, or custom glyphs such as a company logo. PDF/A-2a/3a require
that PUA characters are accompanied by an ActualText attribute which contains a textu-
al representation of the character. The ActualText may be assigned to an individual PUA
character or to a longer sequence of characters which includes a PUA character. It is re-
commended to supply the ActualText option with a Span inline-level element.

Table 12.7 Additional restriction for PDF/A conformance level U

item PDFlib function and option requirements for PDF/A-2u/3u conformance

fonts The font option unicodemap=false must be avoided.

Table 12.8 Additional requirements for PDF/A conformance level A

item PDFlib requirements for PDF/A-1a/2a/3a conformance

fonts The font option unicodemap=false must be avoided.

Tagged PDF All requirements for Tagged PDF must be met (see Section 11.3, »Tagged PDF Basics«, page 285).
The structure hierarchy of the document should reflect the logical structure of the document as
accurately as possible.

word boundaries Words must be separated by space characters (U+0020). The autospace option can be used to
simplify this task.

text output and PUA
Unicode characters

PDF/A-2a/3a: PUA Unicode characters (e.g. logos and symbols) must have appropriate replace-
ment text specified in the ActualText option of PDF_begin_item() for the enclosing content item
or the equivalent tag option of the corresponding output function (see below for details).

annotations PDF_create_annotation(): the contents option is recommended for annotations which do not
display any text.

326 Chapter 12: PDF Versions and Standards

You can use PDF_info_font() to check the Unicode value of a particular code for a spe-
cific font (see Section 6.6.2, »Font-specific Encoding, Unicode, and Glyph Name Que-
ries«, page 153):

uv = (int) p.info_font(font, "unicode", "code=" + c);

If the resulting Unicode value uv falls into the PUA it requires an ActualText attribute.
The following code fragment assumes a font called PDFlibLogo which includes a graphi-
cal representation of the PDFlib corporate logo. When placing the logo on a page a Span
element with a suitable ActualText suboption containing the text PDFlib Logo is supplied
in the tag option:

p.fit_textline(text, 50, 700,
"fontname=PDFlibLogo encoding=unicode embedding fontsize=24 " +
"tag={tagname=Span ActualText={PDFlib Logo}}");

If you don’t have any information about the glyph and therefore no suitable ActualText
is readily available you may use the name of the glyph in the font. It can be determined
as follows:

gn_idx = (int) p.info_font(font, "glyphname", "code=" + c);
glyphname = p.get_option(gn_idx, "");

The glyph name may be used in ActualText, probably in combination with a fixed
phrase. For example, code 0x1A in the Wingdings font contains an image of a computer
keyboard with the glyph name keyboard. This glyph maps to U+F037, i.e. a PUA value. Us-
ing the ActualText symbol for keyboard may make sense for this symbol. It should be not-
ed that programmatically constructing ActualText must be considered a makeshift solu-
tion. Human-selected text is always preferable to machine-generated ActualText.

12.3.7 Importing PDF/A Documents with PDI
Additional rules apply when pages from an existing PDF document are to be imported
into a PDF/A-conforming output document (see Section 8.3, »Importing PDF Pages with
PDI«, page 208, for details on PDF import). All imported documents must conform to a
PDF/A conformance level which is compatible to the current PDF/A mode according to
Table 12.9.

Note PDFlib does not validate PDF input documents for PDF/A conformance, nor can it convert arbi-
trary input PDF documents to PDF/A.

If a certain PDF/A conformance level is configured in PDFlib and the imported docu-
ments adhere to a compatible level, the generated output is guaranteed to conform to

12.3 PDF/A for Archiving 327

the selected PDF/A conformance level. Documents which are incompatible to the cur-
rent PDF/A level will be rejected in PDF_open_pdi_document().

Cookbook A full code sample can be found in the Cookbook topic pdfa/clone_pdfa.

If one or more PDF/A documents are imported, they must all have been prepared for a
compatible output condition according to Table 12.10. The output intents in all import-
ed documents must be identical or compatible; it is the user’s responsibility to make
sure that this condition is met.

While PDFlib can correct certain items, it is not intended to work as a PDF/A validator or
to enforce PDF/A conformance for imported documents. For example, PDFlib will not
embed fonts which are missing from imported PDF pages.

If you want to combine imported pages such that the resulting PDF output docu-
ment conforms to the same PDF/A conformance level and output condition as the in-
put document(s), you can query the PDF/A status of the imported PDF as follows:

pdfalevel = p.pcos_get_string(doc, "pdfa");

This statement retrieves a string designating the PDF/A conformance level of the im-
ported document if it conforms to a PDF/A level, or none otherwise. The returned string
can be used to set the PDF/A conformance level of the output document appropriately,
using the pdfa option in PDF_begin_document().

Copying the PDF/A output intent from an imported document. In addition to query-
ing the PDF/A conformance level you can also copy the PDF/A output intent from an

Table 12.9 Compatible PDF/A input levels for various PDF/A output levels

PDF/A level of the imported document

PDF/A output level PDF/A-1a:2005 PDF/A-1b:2005
PDF/A-2a,
PDF/A-3a

PDF/A-2b,
PDF/A-3b

PDF/A-2u,
PDF/A-3u

PDF/A-1a:2005 allowed – – – –

PDF/A-1b:2005 allowed allowed – – –

PDF/A-2a, PDF/A-3a allowed – allowed – –

PDF/A-2b, PDF/A-3b allowed allowed allowed allowed allowed

PDF/A-2u, PDF/A-3u allowed – allowed – allowed

Table 12.10 Output intent compatibility when importing PDF/A documents (all conformance levels)

output intent of imported document

output intent of generated document none Grayscale RGB CMYK

none yes – – –

Grayscale ICC profile yes yes1

1. The 0utput intent of the imported document and the output intent of the generated document must be identical.

– –

RGB ICC profile yes – yes1 –

CMYK ICC profile yes – – yes1

http://www.pdflib.com/pdflib-cookbook/pdfa/clone_pdfa/

328 Chapter 12: PDF Versions and Standards

imported document. Since PDF/A documents do not necessarily contain any output in-
tent you must first use pCOS to check for the existence of an output intent before at-
tempting to copy it.

Cookbook A full code sample can be found in the Cookbook topic pdfa/clone_pdfa.

This can be used as an alternative to setting the output intent via PDF_load_iccprofile(),
and will copy the imported document’s output intent to the generated output docu-
ment. Copying the output intent works for imported PDF/A and PDF/X documents.

12.3.8 XMP Metadata for PDF/A
PDF/A relies on the XMP format for embedding metadata in PDF documents. PDF/A sup-
ports two kinds of XMP metadata: a set of well-known metadata schemas called pre-
defined schemas which are taken from the underlying version of the XMP specification,
and custom extension schemas. PDFlib automatically creates the required PDF/A con-
formance entries in the XMP as well as several common entries (e.g. CreationDate).

Document-level XMP. XMP document metadata can be supplied with the metadata
option of PDF_begin_document(), PDF_end_document(), or both. In PDF/A mode PDFlib
verifies whether user-supplied XMP document metadata conforms to the PDF/A re-
quirements. XMP metadata from imported PDF documents can be fetched from the in-
put PDF via the pCOS path /Root/Metadata.

Cookbook A full code sample can be found in the Cookbook topic interchange/import_xmp_from_pdf.

Component-level XMP. In addition to the document as a whole, XMP metadata can
also be attached to other components in a PDF document such as pages or images.
While there are no PDF/A-1 requirements for component-level metadata, PDF/A-2 and
PDF/A-3 mandate that custom properties in component-level XMP are also described by
an extension schema description similar to document-level XMP.

Component-level XMP metadata can be supplied with the metadata option of PDF_
begin/end_page_ext(), PDF_load_image() and other functions.

Predefined XMP schemas. The use of XMP for document metadata in PDF/A is based
on the following specifications:

> PDF/A-1: XMP 2004 specification
> PDF/A-2 and PDF/A-3: XMP 2005

The schemas described in the respective XMP specification are called predefined sche-
mas, and are listed in Table 12.11 along with their namespace URI and the preferred
namespace prefix. Only properties of predefined schemas can be used with PDF/A un-
less an extension schema description is present (see below). The full list of properties in
the predefined XMP 2004 schemas for PDF/A-1 is available in TechNote 0008 from the
PDF/A Competence Center of the PDF Association. PDF/A-2/3 add predefined schemas
from XMP 2005, but the additional schemas are related to images and dynamic media,
and are therefore unlikely to be useful for document metadata.

XMP extension schema descriptions. If your metadata requirements are not covered
by the predefined schemas you can define an XMP extension schema. PDF/A describes
an extension mechanism which must be used when custom schemas are to be embed-

http://www.pdflib.com/pdflib-cookbook/pdfa/clone_pdfa/
http://www.pdflib.com/pdflib-cookbook/interchange/import_xmp_from_pdf/

12.3 PDF/A for Archiving 329

ded in a document. Table 12.12 summarizes the schemas which must be used for describ-
ing one or more extension schemas and their properties, along with their namespace
URI and the required namespace prefix. Note that the namespace prefixes are required
(unlike the preferred namespace prefixes for predefined schemas).

If custom XMP properties for component-level XMP (e.g. on page level) are used, the
corresponding extension schema description can be supplied together with the custom
XMP properties in the same function (e.g. PDF_begin_page_ext()). As an alternative, the
extension schema description for component-level XMP can be supplied with the docu-
ment-level XMP in PDF_begin_document().

More details of constructing XMP extension schema descriptions and an example
are available in TechNote 0009 from the PDF/A Competence Center.

Cookbook Full code and XMP samples can be found in the Cookbook topics pdfa/pdfa_extension_schema
and pdfa/pdfa_extension_schema_with_type.

Table 12.11 Predefined XMP schemas for PDF/A (see XMP 2004 and XMP 2005 for details)

Schema name and description namespace URI
preferred
namespace prefix

XMP 2004 schemas for use in PDF/A-1, PDF/A-2, and PDF/A-3

Adobe PDF schema http://ns.adobe.com/pdf/1.3/ pdf

Dublin Core schema http://purl.org/dc/elements/1.1/ dc

EXIF schema for EXIF-specific properties http://ns.adobe.com/exif/1.0/ exif

EXIF schema for TIFF properties http://ns.adobe.com/tiff/1.0/ tiff

Photoshop schema http://ns.adobe.com/photoshop/1.0/ photoshop

XMP Basic Job Ticket schema http://ns.adobe.com/xap/1.0/bj xmpBJ

XMP Basic schema http://ns.adobe.com/xap/1.0/ xmp

XMP Media Management schema http://ns.adobe.com/xap/1.0/mm/ xmpMM

XMP Paged-Text schema http://ns.adobe.com/xap/1.0/t/pg/ xmpTPg

XMP Rights Management schema http://ns.adobe.com/xap/1.0/rights/ xmpRights

Additional XMP 2005 schemas for use in PDF/A-2 and PDF/A-3

Camera Raw Schema http://ns.adobe.com/camera-rawsettings/1.0/ crs

EXIF Schema for Additional EXIF Properties http://ns.adobe.com/exif/1.0/aux/ aux

XMP Dynamic Media Schema http://ns.adobe.com/xmp/1.0/DynamicMedia/ xmpDM

Table 12.12 PDF/A extension schema container schema and auxiliary schemas

Schema name and description namespace URI1
required
namespace prefix

PDF/A extension schema container schema:
container for all embedded extension sche-
ma descriptions

http://www.aiim.org/pdfa/ns/extension/ pdfaExtension

PDF/A schema value type: describes a single
extension schema with an arbitrary num-
ber of properties

http://www.aiim.org/pdfa/ns/schema# pdfaSchema

http://www.pdflib.com/pdflib-cookbook/pdfa/pdfa_extension_schema/
http://www.pdflib.com/pdflib-cookbook/pdfa/pdfa_extension_schema_with_type/

330 Chapter 12: PDF Versions and Standards

PDF/A property value type: describes a sin-
gle property

http://www.aiim.org/pdfa/ns/property# pdfaProperty

PDF/A ValueType value type: describes a
custom value type used in extension sche-
ma properties; only required if types be-
yond the XMP 2004 list of types are used.

http://www.aiim.org/pdfa/ns/type# pdfaType

PDF/A field type schema: describes a field in
a structured type

http://www.aiim.org/pdfa/ns/field# pdfaField

1. The namespace URIs are incorrectly listed in ISO 19005-1, and have been corrected in Technical Corrigendum 1.

Table 12.12 PDF/A extension schema container schema and auxiliary schemas

Schema name and description namespace URI1
required
namespace prefix

12.4 PDF/X for Print Production 331

12.4 PDF/X for Print Production
12.4.1 The PDF/X Family of Standards

Note If you are new to PDF/X the document »PDF/X in a Nutshell« published by the PDF Association
is recommended as an introduction (see www.pdfa.org/pdfx-in-a-nutshell/).

The PDF/X formats specified in ISO 15930 strive to provide a consistent and robust sub-
set of PDF which can be used to exchange data suitable for commercial printing. PDFlib
can generate output and process input conforming to the PDF/X flavors described be-
low. Table 12.13 summarizes the main differences between the PDF/X flavors.

PDF/X-1a:2003 as defined in ISO 15930-4. This standard is based on PDF 1.4, with some
features (e.g. transparency) prohibited. PDF/X-1a supports only CMYK and spot colors,
but not modern color management with ICC profiles. For this reason PDF/X-1a is consid-
ered outdated.

PDF/X-3:2003 as defined in ISO 15930-6. This standard is based on PDF 1.4 and sup-
ports workflows based on device-independent color in addition to grayscale, CMYK, and
spot colors. Output devices can be monochrome, RGB, or CMYK. Some PDF 1.4 features,
especially transparency, are prohibited. Because of the old PDF version and the exclu-
sion of transparency PDF/X-3 is considered outdated.

PDF/X-4 as defined in ISO 15930-7. This standard is based on PDF 1.6. In PDF/X-4 trans-
parency and layers are allowed, but some other PDF 1.6 features are still prohibited. The
variant PDF/X-4p allows output intent ICC profiles to be kept external from the PDF
document to save space.

PDFlib implements 15930-7:2010. Compared to the 2008 version the 2010 version in-
troduced changes related to layer handling.

PDF/X-5 as defined in ISO 15930-8. This standard is targeted at »partial exchange«
which requires prior discussion between producer and receiver of a file. It can be regard-
ed as an extension of PDF/X-4 and PDF/X-4p (i.e. based on PDF 1.6) and consists of the
following flavors:

> PDF/X-5g (deprecated) allows graphical content external from the PDF document;

Table 12.13 Comparison of PDF/X flavors

PD
F/

X-
3

PD
F/

X-
4

PD
F/

X-
4p

PD
F/

X-
5n

PDF version PDF 1.4 PDF 1.6 PDF 1.6 PDF 1.6

CMYK and spot color yes yes yes yes

device-independent color (ICCBased and Lab) yes yes yes yes

transparency and layers – yes yes yes

externally referenced output intent ICC profile – – yes yes

n-colorant output intent ICC profile – – – yes

externally referenced content – – – –

332 Chapter 12: PDF Versions and Standards

> PDF/X-5pg (deprecated) allows external graphical content and external output in-
tent ICC profiles;

> PDF/X-5n supports external output intent ICC profiles for n-colorant print character-
izations, also called xCLR profiles.

If no specific features of PDF/X-5 are required the document should be prepared accord-
ing to PDF/X-4 or PDF/X-4p since these are the more general standards.

PDFlib implements ISO 15930-8:2010 including Corrigendum 1 published in 2011.

12.4.2 General Requirements
Cookbook Code samples for generating PDF/X can be found in the pdfx category of the PDFlib Cookbook.

If the PDFlib client program obeys to the rules documented in this chapter, valid PDF/X
output is guaranteed. If PDFlib detects a violation of PDF/X rules it throws an exception
and no PDF output is created. Table 12.14 lists general requirements for creating con-
forming PDF/X output.

Table 12.14 General requirements for PDF/X conformance

item PDFlib requirements for PDF/X compatibility

PDF/X conformance
level and PDF
compatibility

PDF_begin_document(): the pdfx option must be set to the required PDF/X conformance level,
e.g. pdfx=PDF/X-4.
PDF/X-1a and PDF/X-3: Operations that require PDF 1.5 or above must be avoided.
PDF/X-4 and PDF/X-5: Operations that require PDF 1.7 or above must be avoided.

fonts The font option embedding must be true. Embedding is also required for the PDF core fonts.

page sizes PDF_begin/end_page_ext(): The page boxes, which are settable via the cropbox, bleedbox,
trimbox, and artbox options, must satisfy the following requirements:
> The TrimBox or ArtBox must be set, but not both of these box entries. If both TrimBox and Art-
Box are missing PDFlib will take the CropBox (if present) as the TrimBox, and the MediaBox if the
CropBox is also missing.

> The BleedBox, if present, must fully contain the ArtBox and TrimBox.
> The CropBox, if present, must fully contain the ArtBox and TrimBox.

layers PDF/X-1a and PDF/X-3: Layers must be avoided.
PDF/X-4 and PDF/X-5: Layers can be used, but some options of PDF_define_layer() must be avoid-
ed.

document info fields
and XMP metadata

The Creator and Title info fields must be set to a non-empty value with PDF_set_info() or (in
PDF/X-4 and PDF/X-5) with the xmp:CreatorTool and dc:title XMP properties in the metadata
option of PDF_begin/end_document()
Values other than True or False for the Trapped info field in PDF_set_info() or the corresponding
XMP property pdf:Trapped in the metadata option of PDF_begin/end_document() must be
avoided.

security PDF_begin_document(): the userpassword, masterpassword, and permissions options must be
avoided.

http://www.pdflib.com/pdflib-cookbook/pdfx/

12.4 PDF/X for Print Production 333

12.4.3 Output Intent and Color Requirements
PDF/X guarantees faithful color reproduction by requiring device-independent color
specifications. Color spaces may come from the following sources:

> images loaded directly with PDF_load_image() and PDF_fill_imageblock(), and indi-
rectly via PDF_load_graphics()

> explicit color specifications with PDF_set_graphics_option() or PDF_setcolor()
> color specifications through option lists, e.g. in Textflows
> alternate color space of spot or DeviceN colors
> blending color spaces for transparency groups: PDF_begin/end_page_ext(), PDF_

begin_template_ext(), and PDF_load_graphics(): option transparencygroup with subop-
tion colorspace

The operations above are subject to various restrictions when creating PDF/X output as
detailed below.

Output intents and standard output conditions. The output intent (also called output
condition) defines the intended target device or printing condition, which is mainly
useful for reliable proofing. The PDF/X output intent is usually described by a Gray-
scale, RGB or CMYK ICC printer profile with the exception of PDF/X-5n which supports
n-colorant ICC profiles. The details vary among PDF/X flavors:

> PDF/X-1a/3/4/5g: the output intent can be specified by embedding an ICC profile for
the target device or printing condition.

> PDF/X-4p, PDF/X-5pg,and PDF/X-5n: by referencing an external ICC profile for the
output intent (the p in the name of the standard means that an external profile is
referenced). The output intent ICC profile is not only referenced by name, but a
strong reference is created which is protected by a checksum. Although a referenced
ICC profile is not embedded in the PDF output, it must nevertheless be available at
PDF creation time to create a strong reference. The urls option must be provided with
one or more valid URLs where the ICC profile can be found:

if (p.load_iccprofile("CGATS TR 001",

"usage=outputintent urls={http://www.color.org}") == -1)

{

external graphical
content (references)

PDF/X-1a/3/4: The reference option in PDF_begin_template_ext(), PDF_load_graphics() and
PDF_open_pdi_page() must be avoided.
PDF/X-5g and PDF/X-5pg (deprecated): The target provided in the reference option in PDF_be-
gin_template_ext(), PDF_load_graphics() or PDF_open_pdi_page() must conform to one of the
following standards: PDF/X-1a, PDF/X-3, PDF/X-4, PDF/X-4p, PDF/X-5g, or PDF/X-5pg, and must
have been prepared for the same output intent. Since certain XMP metadata entries are required
in the target, not all PDF/X documents are acceptable as target. PDF/X documents generated
with PDFlib 8 or above can be used as target.

file size PDF/X-4 and PDF/X-5: The file size of the generated PDF document must not exceed 2 GB, and the
number of PDF objects must be smaller than 8.388.607. See Section 3.1.6, »Maximum Size of PDF
Documents and other Limits«, page 61, for more details about these limits.

PDF import PDF_open_pdi_document() is restricted unless infomode=true; see Section 12.4.6, »Importing
PDF/X Documents with PDI«, page 338.

Table 12.14 General requirements for PDF/X conformance

item PDFlib requirements for PDF/X compatibility

334 Chapter 12: PDF Versions and Standards

/* Error */
}

PDF/X-5n: in order to make the output intent ICC profile available to the recipient of
the PDF document, the ICC profile can be included in the PDF document via the
embedprofile option. This attaches the ICC profile to the PDF document similar to a
file attachment. If the profile is embedded this way, the urls option is not required.

> PDF/X-1a and PDF/X-3: by supplying the name of a standard output intent without
embedding the corresponding ICC profile. However, this feature is deprecated.

Table 12.15 compares output intent handling in all PDF/X flavors. The ICC profile for the
output intent should be specified by the print provider based on the intended printing
process and paper. If the printing process is unknown or the print provider doesn’t
specify any output intent you can find some recommendations for selecting a suitable
ICC profile at www.pdflib.com.

Color requirements for PDF/X-1a. PDF/X-1a is targeted towards CMYK-based work-
flows. It allows only the color spaces Grayscale, CMYK as well as separation and DeviceN.
Table 12.16 lists requirements for the CMYK-based PDF/X-1a standard.

Table 12.15 Output intent handling for various PDF/X flavors

PD
F/

X-
1a

PD
F/

X-
3

PD
F/

X-
4

PD
F/

X-
4p

PD
F/

X-
5n

output intent
color space

Grayscale
or CMYK

Grayscale,
RGB or
CMYK

Grayscale, RGB or CMYK
ICC profile

n-colorant
ICC profile (xCLR)

output intent ICC
profile embedding

otherwise required always
embedded

external reference, but ICC
profile can be attached

other restrictions – – CMYK output intent
profile cannot be

used for other purposes

output intent pro-
file cannot be used
for other purposes

Table 12.16 Color requirements for PDF/X-1a conformance

item PDFlib requirements for PDF/X-1a compatibility

output condition
(output intent)

PDF_load_iccprofile() with usage=outputintent or PDF_process_pdi() with action=copyout-
putintent must be called immediately after PDF_begin_document(). A Grayscale or CMYK out-
put intent must be provided.

grayscale color The defaultgray option must be avoided.

RGB color RGB color and the defaultrgb option must be avoided.

CMYK color The defaultcmyk option must be avoided.

ICC-based color The iccbasedgray/rgb/cmyk color space in PDF_set_graphics_option() or PDF_setcolor() and
the iccprofilegray/rgb/cmyk options must be avoided.

Lab color The Lab color space in PDF_set_graphics_option() or PDF_setcolor() must be avoided.

Separation (spot)
and DeviceN color

The alternate color space must be Grayscale or CMYK. Since the built-in Pantone database is
based on Lab alternate colors these colors cannot be used.

12.4 PDF/X for Print Production 335

Color requirements for PDF/X-3, PDF/X-4/4p and PDF/X-5g/pg. PDF/X-3/4 and PDF/X-
5g/5pg support device-independent workflows with ICC profiles. Table 12.17 lists re-
quirements for these standards. Since PDF/X-5n targets different workflows its require-
ments are listed separately in the next section.

A special rule applies to PDF/X-4/5: a CMYK output intent profile (i.e. loaded with
usage=outputintent) cannot be used for an ICCBased color space (i.e. loaded with
usage=iccbased) in the same document. This requirement is mandated by the PDF/X
standard and applies only to CMYK profiles, but not to Grayscale or RGB profiles. If you
run into this conflict you can simply omit the ICC profile and use plain CMYK color in-
stead since the output intent CMYK profile is applied anyway. In order to avoid unnec-
essary error messages PDFlib ignores a CMYK ICC profile embedded in an image or SVG
graphics if it is identical to the PDF/X output intent.

The restriction still applies to imported PDF documents: if an imported page uses
the same CMYK ICC profile as the generated document’s output intent it is rejected by
PDF_open_pdi_page().

Output intent and color requirements for PDF/X-5n. The output intent ICC profile for
PDF/X-5n must describe an n-colorant printing device. Such profiles contain the color
space designation xCLR, where x is a hexadecimal digit in the range 2 to F, i.e. 2CLR...FCLR
for 2...15 colorants. xCLR profiles are not supported in plain PDF, but can only be used as
PDF/X-5n output intent. As PDF doesn’t support such profiles directly, they cannot be
embedded as output intent, but must be referenced as external file. As an external ob-
ject, however, it can be embedded as file attachment to enhance availability.

xCLR profiles contain a colorant table with the names and color values of named col-
orants. With respect to the allowed color spaces in a PDF/X-5n document it is relevant
whether the xCLR output intent profile contains the colorant Black, or possibly all of the
CMYK colorants Cyan, Magenta, Yellow, Black. For example, a 7CLR profile for a printing
process with CMYK, Orange, Green and Violet colorants (CMYKOGV) satisfies both con-
ditions.

Table 12.17 Color requirements for PDF/X-3, PDF/X-4/4p and PDF/X-5g/5pg conformance

item PDFlib requirements for PDF/X-3, PDF/X-4/4p, PDF/X-5g/5pg compatibility

output condition
(output intent)

PDF_load_iccprofile() with usage=outputintent or PDF_process_pdi() with action=copyout-
putintent must be called immediately after PDF_begin_document(). A Grayscale, RGB or CMYK
output intent must be provided.
PDF/X-3: If HKS or Pantone spot colors, ICC-based colors, or Lab colors are used, an output device
ICC profile must be embedded; using a standard output condition is not allowed in this case.

grayscale color Grayscale color can only be used if a Grayscale or CMYK output intent is present or the
defaultgray option has been set.

RGB color RGB color can only be used if an RGB output intent is present or the defaultrgb option has been
set.

CMYK color CMYK color can only be used if a CMYK output intent is present or the defaultcmyk option has
been set.

Separation (spot)
and DeviceN color

> PDF/X-3/4 and PDF/X-5g/pg: The alternate color space must conform to the rules above.
> PDF/X-4 and PDF/X-5g/pg: PDF_makespotcolor() must be called before PDF_create_devicen()

for all custom spot colors in the DeviceN color space.
> PDF/X-4 and PDF/X-5g/pg: the colorspace suboption of the process option of PDF_create_

devicen() must match the PDF/X output intent.

336 Chapter 12: PDF Versions and Standards

Table 12.18 lists requirements for PDF/X-5n.

Choosing a suitable PDF/X output intent. The PDF/X output intent is usually selected
as a result of discussions between you and the print service provider who takes care of
print production. If your printer cannot provide any information regarding the choice
of output intent, you can find suitable ICC output intent profiles on the Internet.

Color strategies for PDF/X-3/4/5. Regarding color handling the following two strate-
gies can be implemented, possibly in combination:

> Device-independent color: regardless of the type of output intent ICC profile, device-
independent color spaces can be used, i.e. ICC-based or CIELab. The Lab color value
(0, 0, 0) specifies pure black in a device-independent manner. Use the following call
to manually set Lab black color:

p.set_graphics_option("fillcolor={lab 0 0 0}");

> Device-dependent color: device-specific grayscale, RGB, or CMYK color can be used.
While grayscale color can be used with any kind of output intent, RGB or CMYK col-
ors can only be used with a matching output intent.

Spot and DeviceN colors can be used subject to the corresponding alternate color space.
Since PDFlib uses CIELab as the alternate color space for the builtin HKS and Pantone
spot colors, these can always be used with PDF/X-3/4/5. For custom spot colors the alter-
nate color space must be chosen so that it is compatible with the output intent. For all
custom spot colors used in a DeviceN color space PDF_makespotcolor() must be called.

The summary of color strategies in Table 12.19 may be helpful for planning PDF/X ap-
plications.

12.4.4 Image and Transparency Requirements
Raster images must obey the color-related requirements discussed in Section 12.4.3,
»Output Intent and Color Requirements«, page 333. Table 12.20 lists additional image-re-
lated requirements for PDF/X conformance.

Table 12.18 Color requirements for PDF/X-5n conformance

item PDFlib requirements for PDF/X-5n compatibility

output condition
(output intent)

PDF_load_iccprofile() with usage=outputintent or PDF_process_pdi() with action=copyout-
putintent must be called immediately after PDF_begin_document(). An n-colorant (xCLR) pro-
file must be provided.

grayscale color Grayscale color can only be used if the output intent contains the colorant Black or the default-
gray option has been set.

RGB color RGB color can only be used if the defaultrgb option has been set.

CMYK color CMYK color can only be used if the output intent contains all of the colorants Cyan, Magenta,
Yellow and Black or the defaultcmyk option has been set.

Separation (spot)
and DeviceN color

> The alternate color space must conform to the rules above.
> PDF_makespotcolor() must be called before PDF_create_devicen() for all custom spot colors in

the DeviceN color space. Spot colors in the colorant list of the output intent are exempted from
this requirement.

> The options subtype=nchannel and process of PDF_create_devicen() are not allowed.

12.4 PDF/X for Print Production 337

Table 12.19 PDF/X-3/4/5 color strategies

output intent
ICC profile

color spaces which can be used in the document

CIELab ICCBased separation and
DeviceN

Grayscale1 RGB1 CMYK1

grayscale yes yes yes yes – –

RGB2 yes yes yes yes yes –

CMYK yes yes yes yes – yes

xCLR for PDF/X-5n yes yes yes yes – –

1. Device color space without any ICC profile or default color space for the page
2. The PDF/X standard requires a printer profile; monitor profiles, e.g. sRGB, can not be used. RGB printer profiles are very rare.

Table 12.20 image requirements for PDF/X conformance

item PDFlib requirements for PDF/X compatibility

images > PDF/X-1a: Images and graphics with RGB, ICC-based, YCbCr, or Lab color must be avoided.
> PDF/X-1a/3: JBIG2 images must be avoided.
> PDF/X-4/5: JPEG 2000 images must satisfy certain conditions, see »JPEG 2000 images«, page

187, for details.

transparency PDF/X-1a and PDF/X-3: Transparency must be avoided; this affects the following API features:
> PDF_load_image(): the masked option must be avoided unless the mask refers to an image with

1-bit depth.
> PDF_load_image(): images with implicit transparency (alpha channel) are not allowed; they

must be loaded with the ignoremask option.
> PDF_load_graphics(): SVG graphics containing transparent elements must be avoided.
> PDF_create_gstate(): the opacityfill and opacitystroke options must be avoided unless

they have a value of 1; if blendmode is used it must be Normal; if softmask is used it must be
none.

PDF/X-4/5: Transparent images and graphics can be used.

transparency groups PDF_begin/end_page_ext(), PDF_begin_template_ext(), PDF_open_pdi_page() and PDF_load_
graphics(): the option transparencygroup is restricted as follows:
> PDF/X-1a and PDF/X-3: The option transparencygroup is not allowed.
> PDF/X-4/5p/5pg: The suboption colorspace of the transparencygroup option must meet the

requirements in Table 12.17 for Grayscale, RGB and CMYK color. For PDF_open_pdi_page() and
PDF_load_graphics() transparencygroup=auto is enforced.

> PDF/X-5n: The suboption colorspace of the transparencygroup option must meet the require-
ments stated in Table 12.18 for Grayscale, RGB and CMYK color. The option transparencygroup=
none and suboption colorspace=none are not allowed for PDF_begin/end_page_ext().

338 Chapter 12: PDF Versions and Standards

12.4.5 Requirements for interactive Features
Table 12.21 lists all operations which are restricted when generating PDF/X-conforming
output. Calling one of the prohibited functions in PDF/X mode triggers an exception.

12.4.6 Importing PDF/X Documents with PDI
Additional rules apply when pages from an existing PDF document are imported into a
PDF/X output document (see Section 8.3, »Importing PDF Pages with PDI«, page 208, for
details). All imported documents must conform to a PDF/X level which is compatible to
the current PDF/X mode according to Table 12.22. For all allowed combinations with
PDF/X-4/5 output the following additional rule must be observed: if an imported page
uses the same CMYK ICC profile as the generated document’s output intent, it is reject-
ed by PDF_open_pdi_page() since this would violate the PDF/X-4/5 standard.

If a certain PDF/X conformance level is configured in PDFlib and the imported docu-
ments adhere to a compatible level, the generated output is guaranteed to conform to
the selected PDF/X conformance level. Documents which are incompatible to the cur-
rent PDF/X level will be rejected in PDF_open_pdi_document().

Table 12.21 PDF/X requirements for interactive features

item PDFlib function and option requirements for PDF/X compatibility

annotations and
form fields

PDF_create_annotation(), PDF_create_field(): annotations inside the BleedBox (or TrimBox/
ArtBox if no BleedBox is present) must be avoided.

file attachments PDF/X-1a/3: PDF_begin/end_document(): option attachments must be avoided; PDF_create_
annotation() with type=FileAttachment must be avoided.

actions and
JavaScript

PDF_create_action(): all actions including JavaScript must be avoided.

viewer preferences /
view and print areas

PDF_begin/end_document(): if the viewarea, viewclip, printarea, and printclip suboptions
for the viewerpreferences option are used values other than media or bleed are not allowed.

Table 12.22 Compatible PDF/X input levels for various PDF/X output levels

PDF/X level of the imported document

PDF/X output level PD
F/

X-
1a

PD
F/

X-
3

PD
F/

X-
4

PD
F/

X-
4p

PD
F/

X-
5g

PD
F/

X-
5p

g

PD
F/

X-
5n

PDF/X-1a allowed

PDF/X-3 allowed allowed

PDF/X-4 allowed allowed allowed allowed

PDF/X-4p allowed allowed allowed allowed1

1. PDF_process_pdi() with action=copyoutputintent copies the reference to the external output intent ICC profile.

PDF/X-5g allowed allowed allowed allowed allowed2

2. If the imported page contains referenced XObjects, PDF_open_pdi_page() copies both proxy and reference.

allowed2

PDF/X-5pg allowed allowed allowed allowed1 allowed2 allowed1,2

PDF/X-5n allowed3

3. The imported document must use the same output intent (identical checksum).

12.4 PDF/X for Print Production 339

If multiple PDF/X documents are imported, they must all have been prepared for the
same output condition.

While PDFlib can correct certain items, it is not intended to work as a PDF/X validator
or to enforce PDF/X compatibility for imported documents. For example, PDFlib will not
embed fonts which are missing from imported PDF pages, and does not apply any color
correction to imported pages.

If you want to combine imported pages such that the resulting PDF output docu-
ment conforms to the same PDF/X conformance level and output condition as the in-
put document(s), you can query the PDF/X status of the imported PDF as follows:

pdfxlevel = p.pcos_get_string(doc, "pdfx");

This statement retrieves a string designating the PDF/X conformance level of the im-
ported document if it conforms to an ISO PDF/X level, or none otherwise. The returned
string can be used to set the PDF/X conformance level of the output document appro-
priately, using the pdfx option in PDF_begin_document().

Copying the PDF/X output intent from an imported document. In addition to query-
ing the PDF/X conformance level you can also copy the output intent from an imported
document.

Cookbook A full code sample can be found in the Cookbook topic pdfx/clone_pdfx.

This can be used as an alternative to setting the output intent via PDF_load_iccprofile(),
and will copy the imported document’s output intent to the generated output docu-
ment. Copying the output intent works for imported PDF/A and PDF/X documents.

http://www.pdflib.com/pdflib-cookbook/pdfx/clone_pdfx/

340 Chapter 12: PDF Versions and Standards

12.5 PDF/VT for Variable and Transactional Printing
12.5.1 The PDF/VT Standard

Note General information about the PDF/VT standard can be found on the PDFlib Web site. If you
are new to PDF/VT the document »PDF/VT Application notes« published by the PDF Association
is also recommended (see www.pdfa.org/publication/pdfvt-application-notes/).

The PDF/VT standard has been published in 2010 as ISO 16612-2. It is »designed to enable
variable document printing (VDP) in a variety of environments«. PDF/VT documents
contain the final content elements and associated metadata, but not any variables or
templates. PDF/VT is based on PDF/X-4/4p and PDF/X-5g/pg, and supports PDF 1.6 fea-
tures including transparency and layers. In addition to the requirements of PDF/X the
PDF/VT standard adds supplementary features to PDF to meet the requirements of
high-volume personalized printing. PDF/VT enables high-performance rendering
(RIPping) of digital print files by adding efficient resource management to PDF.

PDF/VT-1 conformance levels. ISO 16612-2 specifies several PDF/VT conformance lev-
els, all of which are based on PDF 1.6:

> PDF/VT-1 is designed for single-file exchange and is based on PDF/X-4 (PDF/X-4p is
not allowed). All resources required for rendering a PDF document are contained in a
single PDF/VT-1 file.

> PDF/VT-2 (deprecated) is designed for multi-file exchange and based on one of PDF/
X-4p, PDF/X-5g, or PDF/X-5pg. PDF/VT-2 documents may reference external ICC pro-
files, external page contents, or both. A PDF/VT document and all its referenced PDF
files and external ICC profiles are collectively called a PDF/VT-2 file set.

12.5.2 PDF/VT Concepts
This section provides an overview of the technical concepts on which PDF/VT is based.

Document part hierarchy. The document part (DPart) hierarchy specifies the sequence
and relationship of documents or parts of documents in a PDF/VT file. In a common sce-
nario the PDF/VT file contains sub-documents for many recipients and each document
part corresponds to the pages comprising the sub-document for a single recipient. In
addition to assigning pages to recipients, the document part hierarchy can also reflect
more complex structures. For example, the recipients may be grouped according to the
ZIP code in their address, the ZIP codes may be organized according to the state, the
states according to the countries, etc. This kind of document organization creates a tree-
like structure which includes all pages in the document. The elements of this tree are
called DPart nodes, where each inner node contains other DPart nodes and each leaf
node specifies one or more pages for a recipient.

The document part hierarchy in a PDF/VT file can be used for accessing pages, alter-
natively to other methods such as access by page number or by page label. The DPart hi-
erarchy is required in PDF/VT files. The optional record level value selects the level in
the DPart hierarchy which corresponds to a record for an individual recipient. This is
relevant for the scope hints (see below).

Document Part Metadata (DPM). Each node in the document part hierarchy from the
root node down to the leaves in the document tree may contain Document Part Meta-

https://www.pdfa.org/publication/pdfvt-application-notes/

12.5 PDF/VT for Variable and Transactional Printing 341

data (DPM). It can be used to communicate information about a recipient’s document
and its parts. In particular, properties which are relevant for production (e.g. number of
copies of a document part) or information about the recipient (e.g. the corresponding
ZIP code) can be encoded in DPM.
JDF (or other) production metadata is not required in PDF/VT, but adds substantial val-
ue in JDF-enabled workflows. The PDF/VT standard also specifies a method for repre-
senting document part metadata as an external XML document.

Optimizations for recurring graphical content. Print elements are often re-used on
multiple pages, e.g. a company logo or product image which appears on all pages of a
mailing. Optimized processing of recurring graphical content is an important strategy
for improving file size and processing speed of print files. PDF has always supported
XObjects as a means for optimizing the file size by including the required data for a
print element only once in the file, and allowing references to this data from multiple
pages (or multiple instances on the same page). XObjects may contain a raster image or
arbitrary text and vector graphics contents. While XObjects in PDF aim at optimizing
the overall size of a document, PDF up to now did not include any means for optimized
rendering of repeated page contents. There is nothing in PDF which could tell the con-
suming software that, say, an image on a particular page will appear again on another
page later in the same document or maybe in the next print job. PDF/VT extends the ex-
isting concept of XObjects in PDF and adds the following means for optimizing print
performance:

> Unique identification: XObjects can be assigned an identifier (called GTS_XID) which is
unique across all documents. This identifier can be used for caching implementa-
tions which need to identify equivalent XObjects. In simple terms, the graphic which
has already been processed for job 1 and is found to be re-used in job 2 does not have
to be ripped again, but the rendered results can be taken from the cache.

> Scope hints and environment context: XObjects may contain information (called GTS_
Scope) regarding the range of pages or documents where the graphical content is re-
used. This way XObjects can carry information about the useful lifetime of their ren-
dered results in the cache: will the content be re-used only for the current recipient,
re-used anywhere else in the same file or file stream, or not at all. If an environment
context (called GTS_Env) is provided, the XObject may specify global use, i.e. it will be
re-used in more than one PDF/VT instance. There are no restrictions regarding the
environment context string. For example, a customer or job name can be used for
identifying the environment.

> Encapsulation hints: XObject caching algorithms in RIPs must take into account the
interaction of an XObject with the calling context and existing print elements on the
same page (or other pages, e.g. when imposing multiple pages on the same sheet).
For example, if an XObject does not specify the color or line width, but varies its ap-
pearance based on the color and line width in effect when it is referenced, caching of
the rendered result is ineffective due to the varying appearance. A similar situation
arises if the XObject contains transparent elements so that the existing background
must be blended with the XObject. In order to facilitate caching of XOBjects in the
RIP, PDF/VT introduces the concept of Encapsulated XObjects which can be marked
as such using the GTS_Encapsulated key. Encapsulated XObjects must satisfy certain
rules which facilitate caching in the RIP.

342 Chapter 12: PDF Versions and Standards

All of these entries are optional: PDF/VT does not require any of the optimizations for
recurring graphical content, but using them offers significant print performance ad-
vantages with PDF/VT capable RIPs.

12.5.3 Summary of Rules for generating PDF/VT-1 and PDF/VT-2
Cookbook A code sample for generating PDF/VT-1 can be found in the pdfvt category of the PDFlib Cook-

book.

Creating PDF/VT-1 and PDF/VT-2 with PDFlib is achieved by the following means:
> Since PDF/VT is based on PDF/X, all requirements for the underlying PDF/X confor-

mance level must be met. The pdfvt and pdfx document options must be used with
suitable values.

> Document parts must be specified with the DPart API. Each node in the document
part hierarchy may optionally carry DPM metadata. The record level in the DPart
tree can be specified.

> Scope hints for recurring graphical content should be provided.
> If the document contains transparency additional effort should be spent in order to

satisfy the conditions for encapsulated XObjects.
> Additional rules apply when importing pages from existing PDF documents (see Sec-

tion 12.5.7, »Importing PDF/X and PDF/VT Documents with PDI«, page 347).

Table 12.23 summarizes required and optional operations for generating PDF/VT-con-
forming output in addition to the corresponding PDF/X requirements listed in Section
12.4.2, »General Requirements«, page 332. The items apply to both PDF/VT-1 and PDF/VT-
2 unless otherwise noted. Specific aspects are discussed in more detail in subsequent
sections below.

Table 12.23 Required and optional operations for PDF/VT-1 and PDF/VT-2 conformance

item PDFlib requirements for PDF/VT conformance

conformance level The pdfvt option in PDF_begin_document() must be set to the required PDF/VT conformance
level, e.g. pdfvt=PDF/VT-1
PDF/VT-1: The option pdfx=PDF/X-4 is automatically set; supplying any other value for the pdfx
option is an error.
PDF/VT-2: The option pdfx must be specified as well with one of the values PDF/X-4p, PDF/X-5g,
or PDF/X-5pg.

document part
hierarchy

The document part hierarchy must be specified. This involves the following operations:
> PDF_begin_document(): The nodenamelist option must specify names for all levels of the

DPart tree. The recordlevel option can be used to specify the level of the DPart tree which cor-
responds to recipient records.

> PDF_begin_dpart() and PDF_end_dpart(): The document part hierarchy must be constructed.
> Document parts may optionally carry document part metadata (DPM). DPM can be generated

by constructing a DPM dictionary with the POCA interface.

scope hints for
recurring graphical
content

PDF_load_image(), PDF_open_pdi_page(), PDF_begin_template_ext() and templateoptions
option of PDF_load_graphics(): The scope suboption should be supplied to the pdfvt option with
one of the values unknown, singleuse, record, file, stream, or global to provide usage hints for
recurring images, templates, and imported PDF pages.
For scope=stream and scope=global the suboption environment must specify a PDF/VT environ-
ment context, i.e. an identifier that can be used by a conforming PDF/VT reader to provide a man-
agement interface for managing related XObjects. For example, the customer name or job name
could be used to identify the environment.

http://www.pdflib.com/pdflib-cookbook/pdfvt/

12.5 PDF/VT for Variable and Transactional Printing 343

Creating combined PDF/VT and PDF/A documents. It may be useful to create PDF/VT
print documents which at the same time conform to PDF/A for archiving (see Section
12.3, »PDF/A for Archiving«, page 319, for more information on PDF/A). Keep the follow-
ing in mind when creating such dual-use documents:

> Since PDF/A does not allow any external references, only PDF/VT-1 can be combined
with PDF/A, but not PDF/VT-2. The following document options can be used to create
PDF/VT and PDF/A at the same time:

ret = p.begin_document("combo.pdf", "pdfx=PDF/X-4 pdfvt=PDF/VT-1 pdfa=PDF/A-2b");

> The restrictions stated in this manual for PDF/VT and PDF/A must be obeyed, and
only features which are allowed in both standards can be used.

> Imported PDF documents must adhere to both the PDF/X and PDF/A standards in or-
der to be acceptable.

12.5.4 Document Part Hierarchy and Document Part Metadata (DPM)
Cookbook Code samples for generating PDF/VT with a document part hierarchy can be found in the pdfvt

category of the PDFlib Cookbook.

Creating the document part hierarchy. All pages in the document must be organized
in the document part hierarchy. In simple cases, e.g. invoices, this tree structure con-
sists of two levels, the root level and the recipient level. The pages in the document com-
prise a linear arrangement of recipient records, where each record contains one or more
pages. The structure of the document part hierarchy must be specified in the document
option list, e.g.

if (p.begin_document(outfile,
"pdfvt=PDF/VT-1 nodenamelist={root recipient} recordlevel=1") == -1)

More complex documents may require a deeper document hierarchy, e.g. customized
brochures consisting of front, body, and back parts which are maintained in the docpart
level:

if (p.begin_document(outfile,
"pdfvt=PDF/VT-1 nodenamelist={root recipient docpart} recordlevel=1") == -1)

The recordlevel option specifies a zero-based index into the nodenamelist where the re-
cipient or record level can be found, which is relevant for the scope=record option.

external graphical
content (references)

PDF/VT-1 and PDF/VT-2 based on PDF/X-4p: PDF_begin_template_ext(), PDF_open_pdi_page()
and PDF_load_graphics(): The reference option must be avoided since it is not allowed in the
underlying PDF/X standards.

encapsulated
XObjects

PDF_begin_document(): If the document doesn’t contain any transparent elements the option
usestransparency=false should be supplied so that PDFlib can encapsulate all Form XObjects
without a transparency group.
PDF_load_image(): Images should use the renderingintent or mask option. Otherwise the rules
in Section 12.5.6, »Encapsulated XObjects«, page 346, should be obeyed in order to allow as many
XObjects as possible to be marked as encapsulated.

Table 12.23 Required and optional operations for PDF/VT-1 and PDF/VT-2 conformance

item PDFlib requirements for PDF/VT conformance

http://www.pdflib.com/pdflib-cookbook/pdfvt/

344 Chapter 12: PDF Versions and Standards

After defining the structure of the hierarchy the pages must be grouped in docu-
ment hierarchy nodes. This is achieved with PDF_begin/end_dpart():

/* Create root node of the DPart hierarchy */
p.begin_dpart("");

p.begin_dpart(""); /* Create a new node at the recipient level */
p.begin_page_ext(...); /* Create one or more pages */
...
p.end_page_ext(...);

p.end_dpart(""); /* Close recipient node */

p.begin_dpart(""); /* Create next node at the recipient level */
p.begin_page_ext(...); /* Create one or more pages */
...
p.end_page_ext(...);

p.end_dpart(""); /* Close recipient node */
/* Close root node */
p.end_dpart("");

The calls to PDF_begin/end_dpart() must create a tree structure according to the node-
namelist option, i.e. the maximum nesting level must correspond to the number of en-
tries in the nodenamelist array.

The groups option of PDF_begin_document() and the group and pagenumber options of
PDF_begin/end_page_ext() are not allowed in PDF/VT mode since they would interfere
with the DPart hierarchy.

Creating Document Part Metadata (DPM). For each node in the document part hierar-
chy metadata information can be supplied which applies to the corresponding pages
for a leaf node, or the whole subtree under this node. While PDF/VT does not prescribe
any particular kind of metadata, it is intended to be used with the JDF standard pub-
lished by the CIP4 organization. In particular, the document called »ICS — Common
Metadata for Document Production Workflows« (available from the CIP4 Web site) de-
scribes metadata for use in print production workflows.

The CIP4 metadata format makes use of common PDF data types, and the metadata
is written to the PDF output in a manner specified in the PDF/VT standard.

PDFlib users can use the POCA (PDF Object Creation API) interface to create arbitrary
data structures consisting of PDF dictionaries, arrays, and other data types. The top-lev-
el dictionary for DPM metadata can be passed to the dpm option of PDF_begin/end_
dpart():

dpm = p.poca_new("type=dict usage=dpm");
cip4_root = p.poca_new("type=dict usage=dpm");
cip4_metadata = p.poca_new("type=dict usage=dpm");

p.poca_insert(dpm, "type=dict key=CIP4_Root value=" + cip4_root);
p.poca_insert(cip4_root, "type=dict key=CIP4_Metadata value=" + cip4_metadata);
p.poca_insert(cip4_metadata, "type=string key=CIP4_Conformance value=base");
p.poca_insert(cip4_metadata, "type=string key=CIP4_Creator value=starter_pdfvt1");
p.poca_insert(cip4_metadata, "type=string key=CIP4_JobID value={Kraxi Systems invoice}");

/* Create node in the DPart hierarchy and add DPM metadata */
p.begin_dpart("dpm=" + dpm);

p.poca_delete(dpm, "recursive=true");

12.5 PDF/VT for Variable and Transactional Printing 345

Cookbook The PDFlib pCOS Cookbook includes a code sample for retrieving DPM from a PDF/VT document
and creating the corresponding XML representation.

12.5.5 Scope Hints for recurring Graphical Content

Scope hints. The scope suboption of the pdfvt option should be supplied with suitable
values to PDF_load_image(), PDF_load_graphics(), PDF_open_pdi_page(), and PDF_begin_
template_ext(). In order to achieve this, the client application must know where and
how often images, pages, and templates will be re-used in the current PDF document or
(even better) across multiple documents. Although the scope option is not required, it is
strongly recommended since it provides important optimization information for the
RIP. If no such information is available, the scope option should be omitted or specified
with the value unknown instead of supplying possibly wrong values.

For the scopes singleuse, record and file PDFlib checks whether the scope value is con-
sistent with the actual use of the XObject, and emits a warning in the log file if the scope
is too large, e.g. as follows:

XObject with handle 9 was assigned PDF/VT scope 'record', but was used only once
(use 'scope=singleuse' instead)

If you get such a warning you should check whether you can assign more suitable scope
values to the corresponding image, graphic, imported PDF page, or template to avoid
unnecessary caching in the RIP, thereby improving print performance.

While too few references to an XObject (relative to the scope option) trigger only a
warning which indicates a possible optimization in client code, referencing an XObject
too often is an error since this would violate the PDF/VT standard. More specifically, an
exception will be thrown in the following situations:

> Option scope=singleuse was supplied and the XObject is used more than once in the
document.

> Option scope=record was supplied and the XObject is used in more than one recipient
record.

The environment suboption must be provided for scope=stream and scope=global. It
should contain a suitable string which will be used to identify cached objects across doc-
uments. Depending on the workflow a customer or job reference may be used for this
option. For example, a corporate logo which is heavily used across single print jobs may
be identified this way.

Unique IDs. PDFlib automatically assigns unique IDs for all imported PDF pages, imag-
es and graphics (for graphics the templateoptions option must be provided). Equivalent
images, pages, and graphics will be assigned identical ID values to enable efficient cach-
ing in the RIP. Unique IDs for templates should be provided by the user via the xid sub-
option of the pdfvt option. Identifiers for templates should be identical for template
definitions which create equivalent PDF Form XObjects according to PDF/VT (i.e. tem-
plates with the same visual output). Templates which are not equivalent must have dif-
ferent identifiers or no identifier at all.

If the application needs the unique ID strings created by PDFlib, e.g. for use in DPM
metadata, they can be retrieved with the xid option of PDF_info_image() for images and
templates, PDF_info_graphics() for graphics, and PDF_info_pdi_page() for imported PDF
pages.

346 Chapter 12: PDF Versions and Standards

12.5.6 Encapsulated XObjects
Encapsulating XObjects can greatly improve ripping performance. However, XObjects
can only be encapsulated in fully opaque documents, or (in documents where transpar-
ency is used) if certain requirements are met.

Transparency in the document. Since PDFlib does not know in advance whether or not
transparency will be used in the document the usestransparency option can be supplied
to PDF_begin_document() as a hint. If the client uses this option to assert that no trans-
parency will be used, all XObjects can be encapsulated. If transparency is used in the
document the client must obey certain rules in order to have XObjects encapsulated. If
usestransparency=false is supplied but the document contains transparent elements
nevertheless PDFlib throws an exception.

Transparency is considered as being used in the generated document if one or more
of the following conditions are true:

> PDF_load_image() or PDF_fill_imageblock() is called with any of the following options:
> the image contains an alpha channel and the ignoremask option is false;
> the masked option with a handle to an image with more than 1 bit per pixel.

> Graphics imported with PDF_load_graphics() contain any transparent element.
> PDF_create_gstate() is called with any of the following options:

> the softmask option with an option list (i.e. not with the keyword none);
> one of the options opacityfill or opacitystroke with a value different from 1;
> the blendmode option with a value other than None and Normal.

> PDF pages imported with PDF_open_pdi_page() or PDF_fill_pdfblock() contain any
transparent element. Transparency in imported PDF pages can be identified with the
pCOS interface and the usespagetransparency pseudo object (see pCOS Path Reference
for details).

Encapsulating XObjects. PDFlib encapsulates most XObjects according to the follow-
ing rules:

> Image XObjects created with PDF_load_image() or PDF_fill_imageblock() are encapsu-
lated if any of the following conditions is true:
> the renderingintent option of PDF_load_image() has been supplied with a value dif-

ferent from Auto;
> the mask option of PDF_load_image() has been supplied with the value true.

> Form XObjects created with PDF_begin_template_ext() are encapsulated if the docu-
ment option usestransparency=false has been supplied, or the transparencygroup op-
tion has been supplied with the suboptions colorspace and isolated=true.

> Form XObjects created with PDF_load_graphics() or PDF_load_image() with the
templateoptions option are always encapsulated. If the document option usestrans-
parency=true has been supplied a transparency group with a suitable color space is
attached to the Form XObject; otherwise no group is created.

> Form XObjects created with PDF_open_pdi_page() are encapsulated if the imported
PDF page doesn’t contain any layers or PDF_open_pdi_document() has been called
with uselayers=false. If the document option usestransparency=true has been supplied
a transparency group with a suitable color space is attached to the Form XObject;
otherwise no group is created. If an imported page contains XObjects which are al-
ready encapsulated this property is retained unmodified when importing the page.

If an XObject cannot be encapsulated a warning is written to the log file.

12.5 PDF/VT for Variable and Transactional Printing 347

Scope for encapsulated XObjects. It is recommended to supply the scope suboption of
the pdfvt option for all encapsulated XObjects created with PDF_load_image(), PDF_fill_
imageblock(), PDF_load_graphics() and PDF_begin_template_ext(). Since it is allowed to
supply the scope suboption for unencapsulated XObjects as well, it can be supplied to all
relevant API calls if the lifetime of an image, graphic, imported page or template is
known, regardless of the encapsulation status of the generated XObject.

12.5.7 Importing PDF/X and PDF/VT Documents with PDI
Special rules apply when pages from an existing PDF document will be imported into a
PDF/VT-conforming output document (see Section 8.3, »Importing PDF Pages with PDI«,
page 208, for details on PDI). All imported documents must conform to compatible PDF/
X and PDF/VT conformance levels according to Table 12.24. If a particular PDF/VT con-
formance level is configured in PDFlib and the imported documents adhere to one of
the compatible PDF/X levels, the generated output is guaranteed to conform to the se-
lected PDF/VT conformance level. Imported documents which do not adhere to one of
the acceptable PDF/X levels will be rejected.

DPart and DPM limitations with PDF/VT import. Note the following restriction when
importing PDF/VT documents: Document part hierarchy (DPart) and document part
metadata (DPM) are not imported. They can be queried with pCOS and reconstructed
with PDF_begin/end_dpart() and POCA functions.

Table 12.24 Compatible PDF/X and PDF/VT input levels for various PDF/VT output levels

PDF/X and PDF/VT level of the imported document

PDF/VT output level

PD
F/

X-
1a

PD
F/

X-
3

PD
F/

X-
4

PD
F/

VT
-1

PD
F/

X-
4p

PD
F/

VT
-2

 b
as

ed
on

 P
DF

/X
-4

p

PD
F/

X-
5g

PD
F/

VT
-2

 b
as

ed
on

 P
DF

/X
-5

g

PD
F/

X-
5p

g
PD

F/
VT

-2
 b

as
ed

on
 P

DF
/X

-5
pg

PDF/VT-1 (always based on PDF/X-4) allowed allowed

PDF/VT-2 based on PDF/X-4p allowed allowed1

1. PDF_process_pdi() with action=copyoutputintent will copy the reference to the external output intent ICC profile.

PDF/VT-2 based on PDF/X-5g allowed allowed allowed2

2. If the imported page contains referenced XObjects, PDF_open_pdi_page() will copy both proxy and reference to the target.

allowed2

PDF/VT-2 based on PDF/X-5pg allowed allowed1 allowed2 allowed1,2

348 Chapter 12: PDF Versions and Standards

12.6 PDF/UA for Universal Accessibility
12.6.1 The PDF/UA-1 Standard

Note General information about the PDF/UA standard can be found on the PDFlib Web site.

Note If you are new to PDF/UA the document »PDF/UA in a Nutshell« published by the PDF Associa-
tion is recommended (see www.pdfa.org/publication/pdfua-in-a-nutshell/).

PDF/UA-1 improves the universal accessibility of PDF documents by specifying details
of Tagged PDF elements and other document aspects. PDF/UA-1 can be regarded as an
application of WCAG 2.0 (Web Content Accessibility Guidelines1) to PDF documents.

PDF/UA-1 is based on Tagged PDF as defined in PDF 1.7 and ISO 32000-1. It doesn’t add
any new features to the PDF file format, but mainly makes some accessibility and tag-
ging aspects required which are optional in PDF 1.7. It also clarifies the relationship of
different types of structure elements.

PDF/UA-1 as defined in ISO 14289-1. PDF/UA-1 improves the accessibility of PDF docu-
ments with the following means:

> enforcing certain requirements regarding the document structure, i.e. tagging rules;
> requiring certain pieces of auxiliary information, e.g. metadata and alternate text

for graphics;
> preventing certain PDF elements which defeat the purpose of accessibility.

PDFlib’s implementation of PDF/UA-1 is based on the following document:
> The PDF/UA-1 standard (ISO 14289-1:2014)

Creating combined PDF/UA-1 and PDF/A documents. It may be useful to create PDF/
UA documents which at the same time conform to PDF/A for archiving (see Section 12.3,
»PDF/A for Archiving«, page 319). In fact, if you want to create PDF/A-1a/2a/3a we recom-
mend to adhere to the PDF/UA requirements in order to improve the accessibility of the
generated documents. In order to create combined PDF/A and PDF/UA-1 documents
supply appropriate values for the pdfa and pdfua options of PDF_begin_document(), e.g.:

ret = p.begin_document("combo.pdf", "pdfa=PDF/A-2a pdfua=PDF/UA-1 lang=en");

When creating such dual-use documents keep in mind that combo files which adhere to
both standards must obey the requirements imposed by both standards. The PDF com-
patibility level is the minimum of the PDF compatibility of the involved standards; im-
ported PDF documents must adhere to both PDF/UA and PDF/A standards.

We recommend to avoid PDF/A-1a for Tagged PDF output and work with the newer
PDF/A-2a or PDF/A-3a standards instead because there is a minor conflict between PDF/
UA-1 and PDF/A-1a: PDF/UA-1 requires the page option taborder=structure in the presence
of annotations. However, the taborder option requires PDF 1.5 and thus cannot be used
in PDF/A-1a. As a result, annotations cannot be used in combined PDF/A-1a and PDF/UA-
1 documents.

Cookbook The invoice_pdfua1 sample in the PDFlib Cookbook demonstrates how to create a combined
PDF/UA-1 and PDF/A-2a document.

1. See www.w3.org/TR/WCAG20/

https://www.pdfa.org/publication/pdfua-in-a-nutshell/

12.6 PDF/UA for Universal Accessibility 349

If PDFlib detects a violation of technical PDF/UA requirements it throws an exception.
No PDF output is created in this case. Table 12.25 lists general requirements for creating
conforming PDF/UA output.

12.6.2 Tagging Requirements
Since PDF/UA is based on Tagged PDF the requirements discussed in Section 11.3,
»Tagged PDF Basics«, page 285, must be obeyed. However, PDF/UA-1 imposes a number
of additional tagging requirements to improve accessibility.

Semantic Requirements. The user must create a document hierarchy and obey the se-
mantic rules listed below. Selecting appropriate structure elements is a crucial compo-
nent of PDF/UA standard conformance. It is important to understand that the applica-
tion is responsible for these aspects since PDFlib cannot check them:

> Tagging must use structure elements which are appropriate for the document struc-
ture: if it’s a heading, it must be tagged as heading. If it’s a table, it must be tagged as
a table.

> Contents which are not meaningful for the document must not be included in the
document hierarchy, but instead must be tagged as Artifact.

Table 12.25 General requirements for PDF/UA conformance

item PDFlib requirements for PDF/UA-1 conformance

general document
requirements

PDF_begin/end_document(): the pdfua option must be set to PDF/UA-1 which requires Tagged
PDF (the tagged option is automatically set). Operations which require PDF 1.7ext3 or above (e.g.
rich media annotations, portfolios) must be avoided. The lang option is required.
Option viewerpreferences: only true allowed for suboption displaydoctitle
Option permissions: keyword noaccessible not allowed

tagging All tagging rules (see »Nesting rules for structure elements«, page 291) must be obeyed; the
checktags document option must not be set to none.

fonts The font option embedding must be true. The options unicodemap=false and dropcorewidths=
true are not allowed. Embedding is also required for PDF core fonts.

text output and PUA
Unicode characters

PUA Unicode characters (e.g. logos and symbols) must have appropriate replacement text speci-
fied in the ActualText option of PDF_begin_item() for the enclosing content item or the equiva-
lent tag option of the corresponding output function (see »PUA characters«, page 325).

invisible text The only exception to the embedding requirement applies to fonts which are exclusively used for
invisible text (mainly useful for OCR results), i.e. textrendering=3. This can be controlled with
the optimizeinvisible option.
If invisible text does not have any rendered equivalent (e.g. a scanned image) it must be marked
as Artifact.

layers Layers can be used, but some options of PDF_define_layer() must be avoided (see PDFlib API Ref-
erence).

external content PDF_begin_template_ext(), PDF_load_graphics() and PDF_open_pdi_page(): the reference op-
tion must be avoided.

PDF import PDF_open_pdi_document(): imported documents must conform to PDF/UA; see Section 12.6.4,
»Importing PDF/UA Documents with PDI«, page 352.

metadata PDF_set_info() with key=Title or metadata in PDF_begin/end_document() with dc:title in the
supplied XMP must be provided with a non-empty value.

350 Chapter 12: PDF Versions and Standards

> Structure elements must be arranged in logical reading order. This can be accom-
plished most easily by creating the tags in reading order. However, for complex lay-
outs this can also be accomplished with PDF_activate_item() (see Section 11.4.4, »Cre-
ating Contents out of Order«, page 309).

> Content must be tagged appropriately if the intended information is not otherwise
accessible because of the content’s color, format or layout.

> Text represented in a graphic requires the Alt option with an explanation if it doesn’t
contain text in a natural language (e.g. font or script samples).

> Image captions must be marked with a Caption tag.
> List elements (L) must be created if the content is intended to be read as a list.
> Headers and footers must be tagged as Artifact with artifacttype=Pagination and arti-

factsubtype=Header or Footer.
> Only a single Figure tag must be created for groups of graphical elements which logi-

cally belong together.
> Footnotes, endnotes, note labels and references to locations within the document

must be tagged as Note or Reference as appropriate.

Note The document »Tagged PDF Best Practice Guide: Syntax« published by the PDF Association pro-
vides guidance regarding the correct use of Tagged PDF structure elements for PDF/UA-1.

Tag-specific requirements. Table 12.26 lists requirements for specific tags to achieve
PDF/UA-1 conformance. These rules must also be obeyed for custom element types
which are mapped to the listed standard types. For example, if the custom tag
Illustration is mapped to Figure in the rolemap option, it is also subject to the conditions
for Figure.

Headings. Appropriate heading tags must be used for all headings. There are two ap-
proaches regarding the hierarchic nesting of headings in a PDF document:

> Strongly structured documents: grouping elements nest as deeply as required to re-
flect the organization of the content with articles, sections, subsections etc. At each

Table 12.26 Tag-specific requirements for PDF/UA-1 conformance

element type PDFlib requirements for PDF/UA-1 conformance

standard element
types

PDF_begin_document(): the rolemap option must not map standard element types.

Figure One of the options Alt or ActualText must be supplied.

Formula The option Alt must be supplied.

Table Table elements must be created for logical tables, but must not be created for tables which are
created for layout purposes. Tables formatted by PDFlib can be tagged automatically, see Section
11.4.1, »Automatic Table Tagging«, page 301.

TH Tables should include headers. The option Scope is recommended for TH elements (it is always cre-
ated by automatic table tagging if the header option of PDF_fit_table() is used).

L The element type L (list) requires the ListNumbering option. If none of its LI (list item) children
contains a Lbl (label) element ListNumbering must be None. On the other hand, if ListNum-
bering=None, but there are visible list labels these should be marked as Artifacts.

Note The id option is required for footnotes and endnotes tagged as Note (although this doesn’t pro-
vide any advantage since the id isn’t referenced anywhere).

12.6 PDF/UA for Universal Accessibility 351

level, the children of the grouping element should consist of a heading H, one or
more paragraphs P for content at that level, and additional grouping elements for
nested subsections. Strong structure is typically used in XML documents.

> Weakly structured documents: the document’s structure hierarchy is relatively flat,
having only one or two levels of grouping elements, with all the headings, para-
graphs, and other BLSEs as their immediate children. The organization of the content
is not reflected in the logical structure, but may be expressed by specific heading lev-
els H1, H2, H3 etc. Heading tags may not have any descendants. Weak document struc-
ture is typically used in HTML.

In PDF/UA-1 mode this distinction must be made explicit with the structuretype option
in PDF_begin_document(). PDFlib enforces the following rules regarding the use of head-
ing elements depending on the type of document structure.

> All documents:
> The Title option should be used in all heading tags to denote document sections

(e.g. »Chapter 1«)
> Heading elements H, H1, H2, etc. must not have any descendants.

> Weakly structured documents, i.e. structuretype=weak (the default):
> Heading sequences must start at H1 and must not skip any numeric level. For ex-

ample, the sequence H1 H3 is not allowed.
> Additional heading levels H7, H8 etc. may be used if more than six heading levels

are required. Since these are not standard element types they require an entry in
the rolemap option. The recommended mapping is P.

> Unnumbered heading elements H must not be used.
> Strongly structured documents (structuretype=strong):

> H must be used for headings, but there cannot be more than one H tag in each
node of the structure hierarchy.

> Numbered heading elements H1, H2, etc. must not be used.

12.6.3 Additional Requirements for specific Content Types
Table 12.27 lists PDF/UA-1 requirements and recommendations related to various con-
tent types and interactive elements.

Table 12.27 PDF/UA-1 requirements and recommendations for specific content types and interactive elements

Content type PDFlib requirements for PDF/UA-1 conformance

text The natural language of all text on a page must be declared; changes of natural language within
a sequence of text must also be declared. The natural language can be declared with the lang op-
tion of PDF_begin_document() and other means; see »Language specification«, page 296, for de-
tails. The language attribute of an element is inherited to all its descendants.

vector graphics and
raster images

Raster images and vector graphics must be tagged as Artifact, Figure, or Formula.
This affects low-level path construction functions like PDF_rect() etc., path objects with PDF_
draw_path(), PDF_fit_image() and similar functions. SVG graphics containing vector graphics or
raster images are also affected by this requirement.

imported PDF pages PDF pages placed with PDF_fit_pdi_page() which contain a graphic should be tagged as
Artifact or Figure.

352 Chapter 12: PDF Versions and Standards

12.6.4 Importing PDF/UA Documents with PDI
Additional rules apply when pages from an existing PDF document are imported into a
PDF/UA-conforming output document (see Section 8.3, »Importing PDF Pages with
PDI«, page 208, for details on PDF import). In order to import pages from existing PDF
documents the imported documents and pages must be compatible to the current doc-
ument according to the following criteria (otherwise they will be rejected):

> PDF_open_pdi_document(): only PDF/UA-1 documents can be imported and the
usetags option must be true. Documents which do not conform to PDF/UA-1 accord-
ing to the standard identification in the XMP document metadata will be rejected in
PDF_open_pdi_document().

> PDF_open_pdi_page(): the rolemap of the imported document must be compatible
with the mapping provided by the rolemap option of PDF_begin_document(). This
means that custom element types must not be mapped to different standard types
by the rolemap option and the rolemap of the imported document (or the rolemap of
a previously imported document)

> PDF_open_pdi_page(): the heading structure of the imported page must be compati-
ble with the structure type of the generated document, i.e. if structuretype=weak only
H1, H2, etc. (but not H) must be used on the page; if structuretype=strong only H (but
not H1, H2, etc.) must be used on the imported page. Pages with both numbered and
unnumbered headings will be rejected.

annotations If annotations are present on the page: PDF_begin/end_page_ext(): only the value structure is al-
lowed for the option taborder.
PDF_create_annotation() with type=Link:
> The annotation must be contained in a Link structure element.
> The ismap option of PDF_create_action() is not allowed for actions in Link annotations.
PDF_create_annotation() with a type different from Link and Popup:
> The annotation must be contained in an Annot structure element.
> The contents option or the tag option with the suboption ActualText is required for visible

annotations1.

form fields If any form field is present on the page: PDF_begin/end_page_ext(): only the value structure is al-
lowed for option taborder.
PDF_create_field() and options fieldname, fieldtype of PDF_add_table_cell(): a Form tag must
be created with PDF_create_field() or the tag option. The tooltip option of PDF_create_field()
and PDF_create_fieldgroup() is required.

page labels Page labels created with the labels option in PDF_begin/end_document() and label option in
PDF_begin/end_page_ext() should be semantically appropriate.

bookmarks Generating bookmarks with PDF_create_bookmark() is recommended. The bookmarks should re-
flect proper reading order and nesting of the content.

attachments PDF_load_asset(): option description is recommended. Attachments should be accessible in
their own right.

1. An annotation is regarded as visible if its rectangle lies at least partially inside the page’s CropBox and the display option of PDF_
create_annotation() is different from hidden and noview.

Table 12.27 PDF/UA-1 requirements and recommendations for specific content types and interactive elements

Content type PDFlib requirements for PDF/UA-1 conformance

12.6 PDF/UA for Universal Accessibility 353

If PDF/UA-1 conformance is configured in PDFlib and the imported document adheres
to the requirements above, the generated output is guaranteed to conform to PDF/UA-1
as well.

Note PDFlib does not validate PDF input documents for PDF/UA conformance, nor can it convert ar-
bitrary input PDF documents to PDF/UA.

354 Chapter 12: PDF Versions and Standards

13.1 Installing the PDFlib Block Plugin 355

13 PPS and the PDFlib Block Plugin
The PDFlib Personalization Server (PPS) supports a template-driven PDF workflow for
variable data processing. Using the Block concept, imported pages can be populated
with variable amounts of single- or multi-line text, images, PDF pages or vector graph-
ics. This can be used to easily implement applications which require customized PDF
documents, for example:

> mail merge
> flexible direct mailings
> transactional and statement processing
> business card personalization

You can create and edit Blocks interactively with the PDFlib Block Plugin, convert exist-
ing PDF form fields to PDFlib Blocks with the form field conversion Plugin. Blocks can be
filled with PPS. The results of Block filling with PPS can be previewed in Acrobat since
the Block Plugin contains an integrated version of PPS.

Note Block processing requires the PDFlib Personalization Server (PPS). Although PPS is contained in
all PDFlib packages, you must purchase a license key for PPS; a PDFlib or PDFlib+PDI license key
is not sufficient. The PDFlib Block Plugin for Adobe Acrobat is required for creating Blocks in PDF
templates interactively.

Cookbook Code samples regarding variable data and Blocks can be found in the blocks category of the
PDFlib Cookbook.

13.1 Installing the PDFlib Block Plugin
The Block Plugin works with the following Acrobat versions (it doesn’t work with Adobe
Reader):

> Windows: Acrobat 8/9/X/XI/DC 32-bit
> Windows: Acrobat DC 64-bit
> macOS: Acrobat DC

Since Acrobat DC is available in 32-bit and 64-bit versions two different installers are
available. It is important to use the appropriate installer which matches the installed
Acrobat version.

Installing the PDFlib Block Plugin on Windows. To install the PDFlib Block Plugin and
the PDF form field conversion Plugin in Acrobat, the plugin files must be placed in a
subdirectory of the Acrobat plugin folder. This is done automatically by the plugin in-
staller, but can also be done manually. The plugin files are called Block.api and AcroForm-
Conversion.api.

The plugin folder for Acrobat 32-bit on 64-bit Windows typically looks as follows:

C:\Program Files (x86)\Adobe\Acrobat DC\Acrobat\plug_ins\PDFlib Block Plugin

The plugin folder for Acrobat 64-bit typically looks as follows:

C:\Program Files\Adobe\Acrobat DC\Acrobat\plug_ins\PDFlib Block Plugin

https://www.pdflib.com/pdflib-cookbook/blocks/

356 Chapter 13: PPS and the PDFlib Block Plugin

Installing the PDFlib Block Plugin on macOS. Proceed as follows to install the Plugin
for all users:

> Double-click the disk image to mount it. A folder with the Plugin files will be visible.
> Copy the Plugin folder to the following path in the system’s Library folder (create the

Plug-Ins folder if it doesn’t yet exist):

/Library/Application Support/Adobe/Acrobat/XXX/Plug-ins

Alternatively you can install the Plugin only for a single user as follows:
> Click the desktop to make sure you’re in the Finder, hold down the Option key, and

choose Go, Library to open the user’s Library folder.
> Copy the Plugin folder to the following path in the user’s Library folder (create the

Plug-Ins folder if it doesn’t yet exist):

/Users/<username>/Library/Application Support/Adobe/Acrobat/XXX/Plug-ins

Multi-lingual Interface. The PDFlib Block Plugin supports multiple languages in the
user interface. Depending on the application language of Acrobat, the Block Plugin
chooses its interface language automatically. Currently English, German and Japanese
interfaces are available. If Acrobat runs in any other language mode, the Block Plugin
uses the English interface.

Sandbox Protection for Acrobat DC on Windows. Acrobat DC 2020 introduced a new
security model called Sandbox Protections which can be activated via Preferences, Security
(Enhanced), Protected Mode and Protected View. If it is enabled various operations are re-
stricted and a yellow bar with a security message appears at the top of the document
window. More information about Sandbox Protections can be found at:

helpx.adobe.com/acrobat/using/whats-new/2020-august.html
www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/sandboxprotections.html

If Sandboxing is enabled it affects the Preview feature of the PDFlib Block Plugin. Pro-
tected View by default grants access to Acrobat’s AppData directory, the temp directory
and several other directories, but not to arbitrary user directories. The Block Plugin can
only read from and write to directories which are included in the default directory list
of Protected View or which have been configured (whitelisted) in a policy file at the fol-
lowing location (for 32-bit and 64-bit versions of Acrobat):

C:\Program Files (x86)\Adobe\Acrobat DC\Acrobat\PDFlibBlockCustomPolicies.txt
C:\Program Files\Adobe\Acrobat DC\Acrobat\PDFlibBlockCustomPolicies.txt

By default the policy file grants access to the following directories, but more directory
names can be added by the Administrator:

; Protected Path Section
FILES_ALLOW_ANY = C:\Users\<username>*.*
FILES_ALLOW_ANY = C:\Users\Public*.*

If Protected Mode or Protected View is enabled and directories are used which are not
whitelisted, some features of the Block Plugin including Preview and Block import/ex-
port may fail.

https://helpx.adobe.com/acrobat/using/whats-new/2020-august.html
https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/sandboxprotections.html
https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/sandboxprotections.html

13.1 Installing the PDFlib Block Plugin 357

Troubleshooting. If the PDFlib Block Plugin doesn’t seem to work check the following:
> Make sure that in Edit, Preferences, [General...], General the box Use only certified plug-ins

is unchecked. The plugins are not loaded if Acrobat runs in Certified Mode.
> Some PDF forms created with Adobe Designer or Adobe Experience Manager may

prevent the Block Plugin as well as other Acrobat plugins from working properly
since they interfere with Acrobat’s internal security model. For this reason we sug-
gest to avoid Designer’s static PDF forms, and only use dynamic PDF forms as input
for the Block Plugin.

358 Chapter 13: PPS and the PDFlib Block Plugin

13.2 Overview of the Block Concept
13.2.1 Separation of Document Design and Program Code

PDFlib Blocks make it easy to place variable text, images, PDF pages or vector graphics
on imported pages. In contrast to simple PDF pages, pages with Blocks intrinsically car-
ry information about the required processing which will be performed later on the serv-
er side. The Block concept separates the following tasks:

> The designer creates the page layout and specifies the location of variable page ele-
ments along with relevant properties such as font size, color, or image scaling. After
creating the layout as a PDF document, the designer uses the PDFlib Block Plugin for
Acrobat to specify variable data Blocks and their associated properties.

> The programmer writes code to connect the information contained in PDFlib Blocks
on imported PDF pages with dynamic information, e.g., database fields. The pro-
grammer doesn’t need to know any details about a Block (whether it contains a
name or a ZIP code, the exact location on the page, its formatting, etc.) and is there-
fore independent from any layout changes. PPS will take care of all Block-related de-
tails based on the Block properties found in the file.

In other words, the code written by the programmer is »data-blind« – it is generic and
does not depend on the particulars of any Block. For example, the designer can move
the Block with name of the addressee in a mailing to a different location on the page, or
change the font size. The generic Block handling code doesn’t need to be changed, and
will generate correct output once the designer changed the Block properties with the
Acrobat plugin to use the first name instead of the last name.

As an intermediate step Block filling can be previewed in Acrobat to accelerate the
development and test cycles. Block previews are based on default data (e.g. a string or an
image file name) which is specified in the Block definitions.

13.2.2 Block Properties
The behavior of Blocks can be controlled with Block properties. Properties are assigned
to a Block with the Block Plugin.

Predefined Block properties. Blocks are defined as rectangles on the page which are as-
signed a name, a type, and an open set of properties which will later be processed by
PPS. The name is an arbitrary string which identifies the Block, such as firstname,
lastname, or zipcode. PPS supports different kinds of Blocks:

> Textline Blocks hold a single line of textual data which will be processed with the Text-
line output method in PPS.

> Textflow Blocks hold one or more lines of textual data. Multi-line text will be format-
ted with the Textflow formatter in PPS. Textflow Blocks can be linked so that one
Block holds the overflow text of the previous Block (see »Linking Textflow Blocks«,
page 379).

> Image Blocks hold a raster image. This is similar to placing a TIFF or JPEG file in a DTP
application.

> PDF Blocks hold arbitrary PDF contents imported from a page in another PDF docu-
ment. This is similar to placing a PDF page in a DTP application.

> Graphics Blocks hold vector graphics. This is similar to placing an SVG file in a layout
application.

13.2 Overview of the Block Concept 359

Blocks can carry a number of predefined properties depending on their type. Properties
can be created and modified with the Block Plugin (see Section 13.3.2, »Editing Block
Properties«, page 364). A full list of predefined Block properties can be found in Section
13.7, »Block Properties«, page 382. For example, a text Block can specify the font and size
of the text, an image or PDF Block can specify the scaling factor or rotation PPS offers
dedicated functions for processing the Block types, e.g. PDF_fill_textblock(). These func-
tions search a placed PDF page for a Block by its name, analyze its properties, and place
client-supplied data (single- or multi-line text, raster image, PDF page, or vector graph-
ics) on the new page according to the specified Block properties. The programmer can
override Block properties by specifying the corresponding options in the Block filling
functions.

Properties for default contents. Special Block properties can be defined which hold
the default contents of a Block, i.e. the text, image, PDF, or graphics contents that will be
placed in the Block if no variable data is supplied to the Block filling functions, or in sit-
uations where the Block contents are currently constant, but may change in the next
print run.

Default properties are also used by the Preview feature of the Block Plugin (see Sec-
tion 13.5, »Previewing Blocks in Acrobat«, page 372).

Custom Block properties. Predefined Block properties make it possible to quickly im-
plement variable data processing applications, but they are restricted to the set of prop-
erties which are internally known to PPS and can automatically be processed. In order to
provide more flexibility, the designer can also assign custom properties to a Block.
These can be used to extend the Block concept in order to match the requirements of
more advanced variable data processing applications.

There are no rules for custom properties since PPS will not process custom proper-
ties in any way, except making them available to the client. The client code can retrieve
the value of custom properties and process it as appropriate. Based on a custom proper-
ty of a Block the application may make layout-related or data-gathering decisions. For
example, a custom property for a scientific application could specify the number of dig-
its for numerical output, or a database field name may be defined as a custom Block
property for retrieving the data corresponding to this Block.

13.2.3 Why not use PDF Form Fields?
Experienced Acrobat users may ask why we implemented a new Block concept instead
of relying on the existing form field mechanism available in PDF. The primary distinc-
tion is that PDF form fields are optimized for interactive filling, while PDFlib Blocks are
targeted at automated filling. Applications which need both interactive and automated
filling can combine PDF forms and PDFlib Blocks with the form field conversion plugin
(see Section 13.4, »Converting PDF Form Fields to PDFlib Blocks«, page 369).

Although there are many parallels between both concepts, PDFlib Blocks offer sever-
al advantages over PDF form fields as detailed in Table 13.1.

360 Chapter 13: PPS and the PDFlib Block Plugin

Table 13.1 Comparison of PDF form fields and PDFlib Blocks

feature PDF form fields PDFlib Blocks

design objective for interactive use for automated filling

typographic features (beyond
choice of font and font size)

– kerning, word and character spacing, underline/
overline/strikeout

OpenType layout features – dozens of OpenType layout features, e.g. ligatures,
swash characters, oldstyle figures

complex script support limited shaping and bidirectional formatting, e.g. for Ara-
bic and Devanagari

font control font embedding font embedding and subsetting, encoding

text formatting controls left-, center-, right-aligned left-, center-, right-aligned, justified; various for-
matting algorithms and controls; inline options
can be used to control the appearance of text

change font or other text attributes
within text

– yes

merged result is integral part of PDF
page description

– yes

users can edit merged field contents yes no

extensible set of properties – yes (custom Block properties)

use image files for filling – BMP, CCITT, GIF, PNG, JPEG, JBIG2, JPEG 2000, TIFF

use vector graphics for filling – SVG

color support RGB grayscale, RGB, CMYK, Lab, spot color (HKS and Pan-
tone spot colors integrated in the Block Plugin),
DeviceN

PDF standards – PDF/A, PDF/X, PDF/VT, PDF/UA

graphics and text properties can be
overridden upon filling

– yes

transparent contents – yes

Text Blocks can be linked – yes

13.3 Editing Blocks with the Block Plugin 361

13.3 Editing Blocks with the Block Plugin
13.3.1 Creating Blocks

Activating the Block tool. The Block Plugin for creating PDFlib Blocks is similar to the
form tool in Acrobat. All Blocks on the page will be visible when the Block tool is active.
When another Acrobat tool is selected the Blocks will be hidden, but they are still pres-
ent. You can activate the Block tool in the following ways:

> By clicking the Block icon which you can locate as follows in Acrobat DC: click
Tools, Advanced Editing.

> Via the menu item PDFlib Blocks, PDFlib Block Tool.

Creating and modifying Blocks. When the Block tool is active you can drag the cross-
hair pointer to create a Block at the desired position on the page and with the desired
size. Blocks are always rectangular with edges parallel to the page edges (use the rotate
property for Block contents which are not parallel to the page edges). After dragging a
Block rectangle the Block properties dialog appears where you can edit the properties of
the Block (see Section 13.3.2, »Editing Block Properties«, page 364). The Block tool auto-
matically creates a Block name which can be changed in the properties dialog. Block
names must be unique on a page, but can be repeated on another page.

You can change the Block type in the top area to one of Textline, Textflow, Image, PDF,
or Graphics. Different colors are used for representing the Block types (see Figure 13.1).
The Block Properties dialog hierarchically organizes the properties in groups and sub-
groups depending on the Block type.

Note After you added Blocks or made changes to existing Blocks in a PDF, use Acrobat’s »Save as...«
command (as opposed to »Save«) to achieve smaller file sizes.

Selecting Blocks. Several Block operations, such as copying, moving, deleting, or edit-
ing Properties, work with one or more selected Blocks. You can select Blocks with the
Block tool as follows:

> To select a single Block simply click on it.
> To select multiple Blocks hold down the Shift key while clicking on the second and

subsequent Block.
> Press Ctrl-A (on Windows) or Cmd-A (on macOS) or Edit, Select All to select all Blocks

on a page.

The context menu. When one or more Blocks are selected you can open the context
menu to quickly access Block-related functions (which are also available in the PDFlib
Blocks menu). To open the context menu, click on the selected Block(s) with the right
mouse button on Windows, or Ctrl-click the Block(s) on macOS. For example, to delete a
Block, select it with the Block tool and press the Delete key, or use Edit, Delete in the con-
text menu.

If you right-click (or Ctrl-click on macOS) an area on the page where no Block is locat-
ed the context menu contains entries for creating a Block Preview and for configuring
the Preview feature.

362 Chapter 13: PPS and the PDFlib Block Plugin

Block size and position. Using the Block tool you can move one or more selected
Blocks to a different position. Hold down the Shift key while dragging a Block to restrain
the positioning to horizontal and vertical movements. This may be useful for exactly
aligning Blocks. When the pointer is located near a Block corner, the pointer will change
to a double arrow and you can resize the Block.

To adjust the position or size of multiple Blocks, select two or more Blocks and use
the Align, Center, Distribute, or Size commands from the PDFlib Blocks menu or the context
menu. The position of one or more Blocks can also be changed in small increments by
using the arrow keys.

Fig. 13.1
Visualization of Blocks

13.3 Editing Blocks with the Block Plugin 363

Alternatively, you can enter numerical Block coordinates in the properties dialog.
The origin of the coordinate system is in the upper left corner of the page. The coordi-
nates will be displayed in the unit which is currently selected in Acrobat:

> To change the display units in Acrobat DC proceed as follows: go to Edit, Preferences,
[General...], Units & Guides, Page & Ruler Units and choose one of Points, Inches, Milli-
meters, Picas, Centimeters.

> To display cursor coordinates use View, Show/Hide, Cursor Coordinates.

Note that the selected unit will only affect the Rect property, but not any other numeri-
cal properties (e.g. fontsize).

Using a grid to position Blocks. You can take advantage of Acrobat’s grid feature for
precisely positioning and resizing Blocks:

> Display the grid: View, Show/Hide, Rulers & Grids, Grid;
> Enable grid snapping: View, Show/Hide, Rulers & Grids, Snap to Grid;
> Change the grid: go to Edit, Preferences, [General...], Units & Guides. Here you can

change the spacing and position of the grid as well as the color of the grid lines.

Fig. 13.2
The Block properties dialog

364 Chapter 13: PPS and the PDFlib Block Plugin

If Snap to Grid is enabled the size and position of Blocks will be aligned with the config-
ured grid. Snap to Grid affects newly generated Blocks as well as existing Blocks which
are moved or resized with the Block tool.

Creating Blocks by selecting an image or graphic. As an alternative to manually drag-
ging Block rectangles you can use existing page contents to define the Block size. First,
make sure that the menu item PDFlib Blocks, Click Object to define Block is enabled. Now
you can use the Block tool to click on an image on the page in order to create a Block
with the same size and location as the image. You can also click on other graphical ob-
jects, and the Block tool will try to select the surrounding graphic (e.g., a logo). The Click
Object feature is intended as an aid for defining Blocks. If you want to reposition or re-
size the Block you can do so afterwards without any restriction. The Block will not be
locked to the image or graphics object which was used as a positioning aid.

The Click Object feature tries to recognize which vector graphics and images form a
logical element on the page. When some page content is clicked, its bounding box (the
surrounding rectangle) will be selected unless the object is white or very large. In the
next step other objects which are partially contained in the detected rectangle will be
added to the selected area, and so on. The final area will be used as the basis for the gen-
erated Block rectangle. The end result is that the Click Object feature will try to select
complete graphics, not only individual lines.

Automatically detect font properties. The Block Plugin can analyze the underlying
font which is present at the location where a Textline or Textflow Block is positioned,
and can automatically fill in the corresponding properties of the Block:

fontname, fontsize, fillcolor, charspacing, horizscaling, wordspacing,
textrendering, textrise

Since automatic detection of font properties can result in undesired behavior if the
background shall be ignored, it can be activated or deactivated using PDFlib Blocks, Detect
underlying font and color. By default this feature is turned off.

Locking Blocks. Blocks can be locked to protect them against accidentally moving, re-
sizing, or deleting. With the Block tool active, select the Block and choose Lock from its
context menu. While a Block is locked you cannot move, resize, or delete it, nor edit its
properties.

13.3.2 Editing Block Properties
When you create a new Block, double-click an existing one, or choose Properties from a
Block’s context menu, the properties dialog will appear where you can edit all settings
related to the selected Block (see Figure 13.2). As detailed in Section 13.7, »Block Proper-
ties«, page 382, there are several groups of properties available, subject to the Block type.
The Apply button will only be enabled if you changed one or more properties in the dia-
log. The Apply button will be inactive for locked Blocks.

Note Some properties may be inactive depending on the Block type and certain property settings.
For example, the property subgroup Ruler tabs for hortabmethod=ruler where you can edit
tabulator settings is enabled only if the hortabmethod property in the group Text formatting,
Tabs is set to ruler.

13.3 Editing Blocks with the Block Plugin 365

Note If you enter text for a Block property you may experience character replacements, e.g. straight
quotes are replaced by smart quotes. This substitution is done by the operation system and can
be disabled via »System Preferences«, »Keyboard«, »Text«, »Use smart quotes and dashes«.

To change a property’s value enter the desired number or string in the property’s input
area (e.g. linewidth), choose a value from a drop-down list (e.g. fitmethod, orientate), or se-
lect a font, color value or file name by clicking the »...« button at the right-hand side of
the dialog (e.g. backgroundcolor, defaultimage). For the fontname property you can either
choose from the list of fonts installed on the system or type a custom font name. Re-
gardless of the method for entering a font name, the font must be available on the sys-
tem where the Blocks will be filled with PPS.

Modified properties will in be displayed in bold face in the Block Properties dialog. If
any of the properties in a Block has been modified, the suffix (*) will be appended to the
displayed Block name. When you are done editing properties click the Apply button to
update the Block. The properties just defined will be stored in the PDF file as part of the
Block definition.

Stacked Blocks. Overlapping Blocks can be difficult to select since clicking an area will
always select the topmost Block. In this situation the Select Block entry in the context
menu can be used to select one of the Blocks by name. As soon as a Block has been se-
lected this way, the next action within its area will not affect other Blocks, but only the
selected one. For example, press Enter to edit the selected Block’s properties. This way
Block properties can easily be edited even for Blocks which are partially or completely
covered by other Blocks.

Using and restoring repeated values of Block properties. In order to save some
amount of typing and clicking, the Block tool remembers the property values which
have been entered into the previous Block’s properties dialog. These values will be re-
used when you create a new Block. Of course you can override these values with differ-
ent ones at any time.

Pressing the Reset all button in the properties dialog resets most Block properties to
their respective default values. The following items remain unmodified:

> the Name, Type, Rect, and Description properties;
> all custom properties.

Note Do not confuse the default values of predefined Block properties with the defaulttext,
defaultimage, defaultpdf, and defaultgraphics properties which hold placeholder data for
generating previews (see »Default Block contents«, page 372).

Editing multiple Blocks at once. Editing the properties of multiple Blocks at once is a
big time saver. You can select multiple Blocks as follows:

> Activate the Block tool via the menu item PDFlib Blocks, PDFlib Block Tool.
> Click on the first Block to select it. The first selected Block is the master Block. Shift-

click other Blocks to add them to the set of selected Blocks. Alternatively, click Edit,
Select All to select all Blocks on the current page.

> Double-click on any of the Blocks to open the Block Properties dialog. The Block
where you double-click will be the new master Block.

> Alternatively, you can click on a single Block to designate it as master Block, and then
press the Enter key to open the Block Properties dialog.

366 Chapter 13: PPS and the PDFlib Block Plugin

The Properties dialog displays only the subset of properties which apply to all selected
Blocks. The dialog is populated with property values taken from the master Block. Now
you can apply properties to all selected Blocks as follows:

> If the checkbox Apply all properties of the master Block is unchecked: upon clicking
Apply only the properties changed manually in the dialog (highlighted in black) are
copied to all selected Blocks.

> If the checkbox Apply all properties of the master Block is checked: upon pressing Apply
all current properties of the master Block as well as all properties changed manually
in the dialog are copied to all selected Blocks. This can be used to copy all properties
from a particular Block to one or more other Blocks.

The following predefined properties as well as custom properties can not be shared, i.e.
they can not be edited for multiple Blocks at once:

Name, Description, Subtype, Type, Rect, Status

13.3.3 Copying Blocks between Pages and Documents
The Block Plugin offers several methods for moving and copying Blocks within the cur-
rent page, the current document, or between documents:

> move or copy Blocks by dragging them with the mouse, or pasting Blocks to another
page or open document

> duplicate Blocks on one or more pages of the same document using standard copy/
paste operations

> export Blocks to a new file (with empty pages) or to an existing document (apply the
Blocks to existing pages)

> import Blocks from another document

In order to update the page contents while maintaining Block definitions you can re-
place the underlying page(s) while keeping the Blocks. Use Tools, Organize Pages, Replace
for this purpose.

Moving and copying Blocks. You can relocate Blocks or create copies of Blocks by se-
lecting one or more Blocks and dragging them to a new location while pressing the Ctrl
key (on Windows) or Alt key (on macOS). The mouse cursor will change while this key is
pressed. A copied Block has the same properties as the original Block, with the exception
of its name and position which will automatically be adjusted in the new Block.

You can also use copy/paste to copy Blocks to another location on the same page, to
another page in the same document, or to another document which is currently open in
Acrobat:

> Activate the Block tool and select the Blocks you want to copy.
> Use Ctrl-C (on Windows) or Cmd-C (on macOS) or Edit, Copy to copy the selected

Blocks to the clipboard.
> Navigate to the target page (if necessary).
> Make sure that the Block Tool is active, and use Ctrl-V (on Windows) or Cmd-V (on

macOS) or Edit, Paste to paste the Blocks from the clipboard to the current page and
document.

Duplicating Blocks on other pages. You can create duplicates of one or more Blocks on
an arbitrary number of pages in the current document simultaneously:

> Activate the Block tool and select the Blocks you want to duplicate.

13.3 Editing Blocks with the Block Plugin 367

> Choose Import and Export, Duplicate... from the PDFlib Blocks menu or the context
menu.

> Choose which Blocks to duplicate (Selected Blocks or All Blocks on this Page) and the
range of target pages to which you want to duplicate the selected Blocks.

Exporting and importing Blocks. Using the export/import feature for Blocks it is possi-
ble to share the Block definitions on a single page or all Blocks in a document among
multiple PDF files. This is useful for updating the page contents while maintaining ex-
isting Block definitions. To export Block definitions to a separate file proceed as follows:

> Activate the Block tool and select the Blocks you want to export.
> Choose Import and Export, Export... from the PDFlib Blocks menu or the context menu.

Enter the page range and a file name of the new PDF with the Block definitions.

You can import Block definitions via PDFlib Blocks, Import and Export, Import... . Upon im-
porting Blocks you can choose whether to apply the imported Blocks to all pages in the
document or only to a page range. If more than one page is selected the Block defini-
tions will be copied unmodified to the pages. If there are more pages in the target range
than in the imported Block definition file you can use the Repeate Template checkbox. If
it is enabled the sequence of Blocks in the imported file will be repeated in the current
document until the end of the document is reached.

Copying Blocks to another document upon export. When exporting Blocks you can
immediately apply them to the pages in another document, thereby propagating the
Blocks from one document to another. In order to do so choose an existing document to
export the Blocks to. If you activate the checkbox Delete existing Blocks all Blocks which
may be present in the target document will be deleted before copying the new Blocks
into the document.

13.3.4 Customizing the Block Plugin User Interface with XML
Some aspects of the Block Plugin user interface are stored/reloaded upon each Acrobat
session, and can be controlled via an XML configuration file. A sample configuration file
factory settings.xml is included in the distribution. If the configuration has been modi-
fied the new settings are stored in user settings.xml. The modified configuration will be
loaded every time Acrobat is started and written when Acrobat is closed. The configura-
tion file is stored in a location similar to the following (the names of system directories
may be localized; replace DC with another Acrobat track name as appropriate):

Windows: C:\Users\<user>\AppData\Local\Adobe\Acrobat\DC\PDFlib\Block Plugin 5
macOS: /Users\<user>/Library/Application Support/Adobe/Acrobat/DC/PDFlib/Block Plugin 5

The following XML elements can be used to modify the configuration manually:
> The element /Block_Plugin/MainDialog/CloseOnApply controls the initial status of the

Close dialog on apply checkbox in the Block properties dialog. This checkbox deter-
mines whether the Block Properties dialog will be kept open after creating a Block or
modifying Block properties.

> The element /Block_Plugin/MainDialog/ApplyAllProps controls the initial status of the
Apply all properties of the mastesr Block checkbox in the Block properties dialog. This
checkbox determines whether all properties of the master Block are copied to multi-
ple selected Blocks or only those properties which have been modified in the dialog.

368 Chapter 13: PPS and the PDFlib Block Plugin

> The element /Block_Plugin/FontDialog/ShowBaseFonts controls whether the base 14
fonts will be displayed in the font list of the Block Properties dialog (property group
Appearance, property fontname) in addition to the fonts installed on the system.

> The element /Block_Plugin/Command/ControlByClick controls the initial status of the
menu item PDFlib Blocks, Click object to define Block.

> The element /Block_Plugin/Command/DetectFonts controls the initial status of the
menu item PDFlib Blocks, Detect underlying font and color.

> The element /Block_Plugin/Command/KeyAccelerator with the possible values control
(which designates the Ctrl key on Windows and the Command key on macOS), shift
for the Shift key, control+shift or none specifies the accelerator key for the following
keyboard shortcuts:

A (select all), C (copy), I (Block Properties dialog), V (paste), X (cut)

The change will be effective upon the next start of Acrobat since keyboard shortcuts
cannot be changed at runtime. If this entry is absent, no accelerators are available.
The default is control.

> The element Configuration/Preferences/PreviewStatusMessage controls whether a sta-
tus message dialog (e.g. »10 Block(s) processed: ...«) is shown after each Preview opera-
tion.

13.4 Converting PDF Form Fields to PDFlib Blocks 369

13.4 Converting PDF Form Fields to PDFlib Blocks
As an alternative to creating PDFlib Blocks manually, you can automatically convert
PDF form fields to Blocks. This is especially convenient if you have complex PDF forms
which you want to fill automatically with PPS or need to convert a large number of ex-
isting PDF forms for automated filling. In order to convert all form fields on a page to
PDFlib Blocks choose PDFlib Blocks, Convert Form Fields, Current Page. To convert all form
fields in a document choose All Pages instead. Finally, you can convert only selected
form fields (choose Acrobat’s Select Object Tool via Tools, Rich Media) to select one or more
form fields) with Selected Form Fields.

Form field conversion details. Automatic form field conversion will convert form
fields of the types selected in the PDFlib Blocks, Convert Form Fields, Conversion Options...
dialog to Blocks of type Textline or Textflow. By default all form field types will be con-
verted. Attributes of the converted fields will be transformed to the corresponding
Block properties according to Table 13.3.

Multiple form fields with the same name. Multiple form fields on the same page are
allowed to have the same name, while Block names must be unique on a page. When
converting form fields to Blocks a numerical suffix will therefore be added to the name
of generated Blocks in order to create unique Block names (see also »Associating form
fields with corresponding Blocks«, page 369).

Note that due to a problem in Acrobat the field attributes of form fields with the
same names are not reported correctly. If multiple fields have the same name, but dif-
ferent attributes these differences will not be reflected in the generated Blocks. The Con-
version process will issue a warning in this case and provide the names of affected form
fields. In this case you should carefully check the properties of the generated Blocks.

Associating form fields with corresponding Blocks. Since the form field names will be
modified when converting multiple fields with the same name (e.g. radio buttons) it is
difficult to reliably identify the Block which corresponds to a particular form field. This
is especially important when using an FDF or XFDF file as the source for filling Blocks
such that the final result resembles the filled form.

In order to solve this problem the AcroFormConversion plugin records details about
the original form field as custom properties when creating the corresponding Block. Ta-
ble 13.2 lists the custom properties which can be used to reliably identify the Blocks; all
properties have type string.

Table 13.2 Custom properties for identifying the original form field corresponding to the Block

custom property meaning

PDFlib:field:name Fully qualified name of the form field

PDFlib:field:pagenumber Page number (as a string) in the original document where the form field was located

PDFlib:field:type Type of the form field; one of pushbutton, checkbox, radiobutton, listbox, combobox,
textfield, signature

PDFlib:field:value (Only for type=checkbox) Export value of the form field

370 Chapter 13: PPS and the PDFlib Block Plugin

Table 13.3 Conversion of PDF form fields to PDFlib Blocks

PDF form field attribute... ...will be converted to the PDFlib Block property

all fields

Position Rect

Name Name

Tooltip Description

Appearance, Text, Font fontname

Appearance, Text, Font Size fontsize; auto font size will be converted to a fixed font size of 2/3 of the Block
height, and fitmethod will be set to auto. For multi-line fields/Blocks this combi-
nation will automatically result in a suitable font size which may be smaller than
the initial value of 2/3 of the Block height.

Appearance, Text, Text Color strokecolor and fillcolor

Appearance, Border, Border Color bordercolor

Appearance, Border, Fill Color backgroundcolor

Appearance, Border, Line Thickness linewidth: Thin=1, Medium=2, Thick=3

General, Common Properties, Form
Field

Status:
Visible=active
Hidden=ignore
Visible but doesn’t print=ignore
Hidden but printable=active

General, Common Properties, Orien-
tation

orientate: 0=north, 90=west, 180=south, 270=east

text fields

Options, Default Value defaulttext

Options, Alignment position:
Left={left center}
Center={center center}
Right={right center}

Options, Multi-line checked creates Textflow Block
unchecked creates a Textline Block

radio buttons and check boxes

If »Check box/Button is checked by
default« is selected: Options, Check
Box Style or Options, Button Style

defaulttext:
Check=4
Circle=l
Cross=8
Diamond=u
Square=n
Star=H
(these characters represent the respective symbols in the ZapfDingbats font)

list boxes and combo boxes

Options, Selected (default) item defaulttext

buttons

Options, Icon and Label, Label defaulttext

13.4 Converting PDF Form Fields to PDFlib Blocks 371

Binding Blocks to the corresponding form fields. In order to keep PDF form fields and
the generated PDFlib Blocks synchronized, the generated Blocks can be bound to the
corresponding form fields. This means that the plugin will internally maintain the rela-
tionship of form fields and Blocks. When the conversion process is activated again,
bound Blocks will be updated to reflect the attributes of the corresponding PDF form
fields. Bound Blocks are useful to avoid duplicate work: when a form is updated for in-
teractive use, the corresponding Blocks can automatically be updated, too.

If you do not want to keep the converted form fields after Blocks have been generat-
ed you can choose the option Delete converted Form Fields in the PDFlib Blocks, Convert
Form Fields, Conversion Options... dialog. This option will permanently remove the form
fields after the conversion process. Any actions (e.g., JavaScript) associated with the af-
fected fields will also be removed from the document.

Batch conversion. If you have many PDF documents with form fields that you want to
convert to PDFlib Blocks you can automatically process an arbitrary number of docu-
ments using the batch conversion feature. The batch processing dialog is available via
PDFlib Blocks, Convert Form Fields, Batch conversion...:

> The input files can be selected individually; alternatively the full contents of a folder
can be processed.

> The output files can be written to the same folder where the input files are, or to a
different folder. The output files can receive a prefix to their name in order to distin-
guish them from the input files.

> When processing a large number of documents it is recommended to specify a log
file. After the conversion it will contain a full list of processed files as well as details
regarding the result of each conversion along with possible error messages.

During the conversion process the converted PDF documents will be visible in Acrobat,
but you cannot use Acrobat’s menu functions or tools until the conversion is finished.

372 Chapter 13: PPS and the PDFlib Block Plugin

13.5 Previewing Blocks in Acrobat
Note You can try the Preview feature with the block_template.pdf document in the PDFlib distribu-

tion. The required resources (e.g. font and image) are also included in the PDFlib distribution.

PDFlib Blocks will be processed by PPS where the Block filling process can be customized
regarding the data sources (e.g. text from a database, image files on disk) as well as visu-
al and interactive aspects of the generated documents. This process is detailed in Sec-
tion 13.6, »Filling Blocks with PPS«, page 377.

However, the Block Plugin contains an integrated version of PPS which can be used
to generate Preview versions of the filled Blocks interactively in Acrobat without any
programming. Although this Preview feature cannot offer the same flexibility as cus-
tom programming, it provides a quick overview of Block filling results. The Block Pre-
view can be used for improving the position and size of Blocks as well as for checking
the Block properties (e.g. font name and size). You can change the Blocks and create a
new Preview until you are satisfied with the results shown in the Preview. Previews can
be generated for the current page or the whole document.

The Preview will always be shown in a new PDF document. The original document
(which contains the Blocks) will not be modified by generating a Preview. You can save
or discard the generated Preview documents according to your requirements.

Default Block contents. Since the server-side data sources (e.g. a database) for the text,
image, vector graphics or PDF contents of a Block are not available in the Plugin, the Pre-
view feature always uses the Block’s default contents, i.e. the values specified in the
defaulttext, defaultimage, defaultpdf, or defaultgraphics properties. Usually, a sample data
set will be used as default data which is representative for the real Block contents used
with PPS. Blocks without any default contents are ignored when generating the Preview,
as well as Blocks with Status=ignoredefault.

The default properties are empty for new Blocks. Before using the Preview feature
you must fill the defaulttext, defaultimage, defaultpdf, or defaultgraphics properties (de-
pending on the Block type) in the Default contents property group, or supply suitable
values for the options of the same name in the Advanced PPS options... dialog.

Note Entering default text for symbolic fonts can be a bit tricky; see »Using symbolic fonts for de-
fault text«, page 375, for details.

Generating Block Previews. You can create Block Previews with one of the following
methods:

> By clicking the PDFlib Block Preview icon which you can locate as follows in
Acrobat DC: click Tools, Advanced Editing.

> Via the menu item PDFlib Blocks, Preview, Generate Preview.
> If the Block tool is active you can right-click outside of any Block to bring up a con-

text menu with the entries Generate Preview and Preview Configuration.

The Previews will be created based on the PDF file on disk. Any changes that you may
have applied in Acrobat will only be reflected in the Preview if the Block PDF has been
saved to disk using File, Save or File, Save As... . You can identify modified Blocks by the as-
terisk after the Block name. The Preview feature can be configured to save the Block PDF
automatically before creating a Preview. This way you can make sure that interactive
changes will immediately be reflected in the Preview.

13.5 Previewing Blocks in Acrobat 373

Configuring the Preview. Several aspects of Block Preview creation and the underlying
PPS operation can be configured via PDFlib Blocks, Preview, Preview Configuration...:

> Preview for the current page or the full document;
> Output directory for the generated Preview documents;
> Automatically save the Block PDF before creating the Preview;
> Add Block info layers and annotations;
> Copy Blocks to the generated output;
> Clone PDF/A, PDF/UA or PDF/X status of Block PDF: since these standards restrict the use

of layers and annotations the Block info layers and annotations option is mutually ex-
clusive with this option.

> Copy Blocks to Preview File allows you copy the PDFlib Blocks to the generated Preview
upon filling. All Blocks will be copied, regardless of whether or not they could suc-
cessfully be filled.

Fig. 13.3 Preview PDF for the document shown in Figure 13.1. It contains Block info layers and annotations

374 Chapter 13: PPS and the PDFlib Block Plugin

> The Advanced PPS options dialog can be used to specify additional option lists for PPS
functions according to the PPS API. For example, the searchpath option for PDF_set_
option() can be used to specify a directory where fonts or images for Block filling are
located. It is recommended to specify advanced options in cooperation with the de-
veloper of the PPS code.

Block ordering. When the document is stored with »Save as...« in Acrobat the Blocks
are sorted in alphabetical order according to the Block name. This is also the ordering in
which Blocks are processed by Preview and reported by pCOS. However, applications
will typically fill Blocks based on their name (as opposed to the storage order on file), so
the ordering in the PDF document is usually not relevant.

Information provided with the Preview. The generated Preview documents contain
the original page contents (the background), the filled Blocks, and optionally various
other pieces of information. This information can be useful for checking and improving
Blocks and PPS configuration. The following items will be created for each active Block
with default contents:

> Error markers: Blocks which could not be filled successfully are visualized by a
crossed-out rectangle so that they can easily be identified. Error markers will always
be created if a Block couldn’t be processed.

> Bookmarks: The processed Blocks will be summarized in bookmarks which are struc-
tured according to the page number, the Block type, and possible errors. Bookmarks
can be displayed via View, Show/Hide, Navigation Panes, Bookmarks (Acrobat X/XI/DC).
Bookmarks will always be created.

> Annotations: For each processed Block an annotation will be created on the page in
addition to the actual Block contents. The annotation rectangle visualizes the origi-
nal Block boundary (depending on the default contents and filling mode this may
differ from the boundary of the Block contents). The annotation contains the name
of the Block and an error message if the Block couldn’t be filled. Annotations are gen-
erated by default, but can be disabled in the Preview configuration. Since the use of
annotations is restricted in the PDF/A and PDF/X standards, annotations are not cre-
ated if the Clone PDF/A, PDF/UA or PDF/X status of Block PDF option is enabled.

Fig. 13.4 Block Preview configuration

13.5 Previewing Blocks in Acrobat 375

> Layers: The page contents will be placed on layers to facilitate analysis and debug-
ging. A separate layer will be created for the page background (i.e. the contents of the
original page), each Block type, error Blocks which couldn’t be filled, and the annota-
tions with Block information. If a layer remains empty (e.g. no errors occurred) it will
not be created. The layer list can be displayed via View, Navigation Panels, Layers. By
default, all layers on the page will be displayed. In order to hide the contents of a lay-
er click on the eye symbol to the left of the layer name. Layer creation can be disabled
in the Preview configuration. Since the use of layers is restricted in the standards
PDF/A-1 and PDF/X-3, layers are not created if the Clone PDF/A, PDF/UA or PDF/X status
of Block PDF option is enabled.

Cloning PDF/A, PDF/UA or PDF/X status. The Clone PDF/A , PDF/UA or PDF/X status of
Block PDF configuration is useful when PDF output according to one of these standards
must be created. Clone mode can be enabled if the input conforms to one of the follow-
ing standards:

PDF/A-1a:2005, PDF/A-1b:2005
PDF/A-2a, PDF/A-2b, PDF/A-2u
PDF/A-3a, PDF/A-3b, PDF/A-3u

PDF/UA-1

PDF/X-3:2003
PDF/X-4, PDF/X-4p
PDF/X-5n

When Previews are created in clone mode, PPS duplicates the following aspects of the
Block PDF in the generated Preview:

> the PDF standard identification;
> output intent condition;
> page sizes including all page boxes;
> Tagged PDF: document language (if present);
> XMP document metadata.

When cloning standard-conforming PDF documents all Block filling operations must
conform to the respective standard. For example, if no output intent is present RGB im-
ages without ICC profile can not be used. Similarly, all used fonts must be embedded.
The full list of requirements can be found in Section 12.3, »PDF/A for Archiving«, page
319, and Section 12.4, »PDF/X for Print Production«, page 331. If a Block filling operation
in PDF/A or PDF/X cloning mode would violate the selected standard (e.g. because a de-
fault image uses RGB color space, but the document does not contain a suitable output
intent) an error message pops up and no Preview will be generated. This way users can
catch potential standard violations very early in the workflow.

Using symbolic fonts for default text. Two methods are available to supply default
text for Blocks with symbolic fonts:

> Working with 8-bit legacy codes, e.g. as shown in the Windows character map appli-
cation: supply the 8-bit codes for the defaulttext either by entering the correspond-
ing 8-bit character literally (e.g. by copy/pasting from the Windows character map)
or as a numerical escape sequence. In this case you must keep the default value of
the charref property in the Text preparation property group as false and can not work

376 Chapter 13: PPS and the PDFlib Block Plugin

with character references. For example, the following default text will produce the
»smiley« glyph from the symbolic Wingdings font if charref=false:

J
\x4A
\112

> Working with the Unicode values or glyph names used in the font: set the charref
property in the Text preparation property group to true and supply character refer-
ences or glyph name references for the symbols (see Section 5.6.2, »Character Refer-
ences«, page 119). For example, the following default text will produce the »smiley«
glyph from the symbolic Wingdings font if charref=true:


&.smileface;

Keep in mind that with both methods an alternate representation will be visible instead
of the actual symbolic glyphs in the Block properties dialog.

13.6 Filling Blocks with PPS 377

13.6 Filling Blocks with PPS
In order to fill Blocks with PPS you must first place the page containing the Blocks on
the output page with the PDF_fit_pdi_page() function. After placing the page its Blocks
can be filled with the PDF_fill_*block() functions.

Simple example: add variable text to a template. Adding dynamic text to a PDF tem-
plate is a very common task. The following code fragment opens a page in an input PDF
document (the template or Block container), places it on the output page, and fills some
variable text into a text Block called firstname:

doc = p.open_pdi_document(filename, "");
if (doc == -1)

throw new Exception("Error: " + p.get_errmsg());

page = p.open_pdi_page(doc, pageno, "");
if (page == -1)

throw new Exception("Error: " + p.get_errmsg());

p.begin_page_ext(width, height, "");
/* Place the imported page */
p.fit_pdi_page(page, 0.0, 0.0, "");

/* Fill a single Block on the placed page */
p.fill_textblock(page, "firstname", "Serge", "encoding=winansi");

p.close_pdi_page(page);
p.end_page_ext("");
p.close_pdi_document(doc);

Cookbook A full code sample can be found in the Cookbook topic blocks/starter_block.

Overriding Block properties. In certain situations the programmer wants to use only
some of the properties provided in a Block definition, but override other properties
with custom values. This can be useful in various situations:

> Business logic may decide to enforce certain overrides.
> The scaling factor for an image or PDF page will be calculated by the application in-

stead of taken from the Block definition.
> Change the Block coordinates programmatically, for example when generating an

invoice with a variable number of data items.
> Individual spot color names could be supplied in order to match customer require-

ments in a print shop application.

Property overrides can be achieved by supplying property names and the correspond-
ing values in the option list of the PDF_fill_*block() functions, e.g.

p.fill_textblock(page, "firstname", "Serge", "fontsize=12");

This will override the Block’s internal fontsize property with the supplied value 12. Al-
most all property names can be used as options.

Property overrides apply only to the respective function calls; they will not be stored
in the Block definition.

https://www.pdflib.com/pdflib-cookbook/blocks/starter_block/

378 Chapter 13: PPS and the PDFlib Block Plugin

Moving Textflow Blocks while filling. The fixed size of a Textflow Block may not
match its varying textual contents. If there is only few text a gap between two Blocks
may arise; if there is too much text it may not fit into the Block rectangle. In this situa-
tion you can query the results of Textflow fitting to adjust the position of the next
Block:

> The default fitmethod is auto, i.e. the text is forced to fit into the Block rectangle. To
allow excess text to overflow the Block you must set the fitmethod to nofit. This can
be specified in the Block properties in the Block template at design time or by sup-
plying the fitmethod option to PDF_fill_textblock().

> Supply the dummy option textflowhandle=-1 (in PHP: textflowhandle=0) to PDF_fill_
textblock() so that this method returns a Textflow handle for the contents of the
Block.

> The returned Textflow handle is supplied to PDF_info_textflow() to query the end po-
sition of the text using the keyword textendy.

> Query the Block’s lower vertical position with PDF_pcos_get_number() and the pCOS
path pages[..]/blocks/<blockname>/Rect[1].

> Calculate the difference between both values. If this offset is positive the Textflow
didn’t completely fill the Block; if it is negative the Textflow overflowed the Block. In
both cases you can move the next Block up or down by this offset. This can be
achieved with the refpoint option of PDF_fill_textblock() which overrides the Rect
property. Since this option requires absolute coordinates you must query the verti-
cal position of the Block (see previous step) and supply the sum of the original posi-
tion and the offset to the refpoint option.

> You can apply this method to an arbitrary number of Textflow Blocks by accumulat-
ing the per-Block offsets. Depending on the contents each Block will move successive
Blocks up or down by an appropriate amount.

Cookbook A full code sample can be found in the starter_block sample.

Placing the imported page on top of the filled Blocks. The imported page must have
been placed on the output page before using any of the Block filling functions. This
means that the original page will usually be placed below the Block contents. However,
in some situations it may be desirable to place the original page on top of the filled
Blocks. This can be achieved by placing the page once with the blind option of PDF_fit_
pdi_page() in order to make its Blocks and their position known to PPS, and place it
again after filling the Blocks in order to actually show the page contents:

/* Place the page in blind mode to prepare the Blocks, without the page being visible */
p.fit_pdi_page(page, 0.0, 0.0, "blind");

/* Fill the Blocks */
p.fill_textblock(page, "firstname", "Serge", "encoding=winansi");
/* ... fill more Blocks ... */

/* Place the page again, this time visible */
p.fit_pdi_page(page, 0.0, 0.0, "");

Cookbook A full code sample can be found in the Cookbook topic blocks/block_below_contents.

Ignoring the container page when filling Blocks. Imported Blocks can also be useful as
placeholders without any reference to the underlying contents of the Block’s page. You

https://www.pdflib.com/pdflib-cookbook/blocks/starter_block/
https://www.pdflib.com/pdflib-cookbook/blocks/block_below_contents/

13.6 Filling Blocks with PPS 379

can place a container page with Blocks in blind mode on one or more pages, i.e. with the
blind option of PDF_fit_pdi_page(), and subsequently fill its Blocks. This way you can
take advantage of the Block and its properties without placing the container page on
the output page, and can duplicate Blocks on multiple pages (or even on the same out-
put page).

Cookbook A full code sample can be found in the Cookbook topic blocks/duplicate_block.

Linking Textflow Blocks. Textflow Blocks can be linked so that one Block holds the
overflow text of a previous Block. For example, if you have long variable text which may
need to be continued on another page you can link two Blocks and fill the remaining
text of the first Block into the second Block.

PPS internally creates a Textflow from the text provided to PDF_fill_textblock() and
the Block properties. For unlinked Blocks this Textflow is placed in the Block and the
corresponding Textflow handle is deleted at the end of the call; overflow text is lost in
this case.

With linked Textflow Blocks the overflow text of the first Block can be filled into the
next Block. The remainder of the first Textflow is used as Block contents instead of cre-
ating a new Textflow. Linking Textflow Blocks works as follows:

> In the first call to PDF_fill_textblock() within a chain of linked Textflow Blocks the val-
ue -1 (in PHP: 0) must be supplied for the textflowhandle option. The Textflow handle
created internally is returned by PDF_fill_textblock(), and must be stored by the appli-
cation.

> In the next call to PDF_fill_textblock() the Textflow handle returned in the previous
step can be supplied to the textflowhandle option (the text supplied in the text pa-
rameter is ignored in this case, and should be empty). The Block is filled with the re-
mainder of the Textflow.

> This process can be repeated with more Textflow Blocks.
> The returned Textflow handle can be supplied to PDF_info_textflow() in order to de-

termine the results of Block filling, e.g. the end condition or the end position of the
text.

Note that the fitmethod property should be set to clip (this is the default anyway if text-
flowhandle is supplied). The basic code fragment for linking Textflow Blocks looks as fol-
lows:

p.fit_pdi_page(page, 0.0, 0.0, "");
tf = -1;

for (i = 0; i < blockcount; i++)
{

String optlist = "encoding=winansi textflowhandle=" + tf;
int reason;
tf = p.fill_textblock(page, blocknames[i], text, optlist);
text = null;

if (tf == -1)
break;

/* check result of most recent call to fit_textflow() */
reason = (int) p.info_textflow(tf, "returnreason");
result = p.get_string(reason, "");

https://www.pdflib.com/pdflib-cookbook/blocks/duplicate_block/

380 Chapter 13: PPS and the PDFlib Block Plugin

/* end loop if all text was placed */
if (result.equals("_stop"))
{

p.delete_textflow(tf);
break;

}
}

Cookbook A full code sample can be found in the Cookbook topic blocks/linked_textblocks.

Block filling order. The Block functions PDF_fill_*block() process properties and Block
contents in the following order:

> Background: if the backgroundcolor property is present and contains a color space
keyword different from None, the Block area will be filled with the specified color.

> Border: if the bordercolor property is present and contains a color space keyword dif-
ferent from None, the Block border will be stroked with the specified color and line-
width.

> Contents: the supplied Block contents and all other properties except bordercolor and
linewidth will be processed.

> Textline and Textflow Blocks: if neither text nor default text has been supplied,
there won’t be any output at all, not even background color or Block border.

Nested Blocks. Before Blocks can be filled the page containing the Blocks must have
been placed on the output page before (since otherwise PPS wouldn’t know the location
of the Blocks after scaling, rotating, and translating the page). If the page only serves as
a Block container without bringing static content to the new page you can place the im-
ported page with the blind option.

For successful Block filling it doesn’t matter how the imported page was placed on
the output page:

> The page can be placed directly with PDF_fit_pdi_page().
> The page can be placed indirectly in a table cell with PDF_fit_table().
> The page can be placed as contents of a another PDF Block with PDF_fill_pdfblock().

The third method, i.e. filling a PDF Block with another page containing Blocks, allows
nested Block containers. This allows simple implementations of interesting use cases.
For example, you can implement both imposition and personalization with a two-step
Block filling process:

> The first-level Block container page contains several large PDF Blocks which indicate
the major areas on the paper to be printed on. The arrangement of PDF Blocks re-
flects the intended post-processing of the paper (e.g. folding or cutting).

> Each of the first-level PDF Blocks is then filled with a second-level container PDF
page which contains Text, Image, PDF, or Graphics Blocks to be filled with variable
text for personalization.

With this method Block containers can be nested. Although Block nesting works to an
arbitrary level, a nesting level of three or more will only rarely be required.

The second-level Block containers (e.g. a template page for a letter) may be identical
or different for each imposed page. If they are identical the Blocks on the letter template
must be filled before placing the letter template itself in the next first-level Block since
PPS always uses the location of the most recent placement of the template page.

https://www.pdflib.com/pdflib-cookbook/blocks/linked_textblocks/

13.6 Filling Blocks with PPS 381

Cookbook A full code sample can be found in the Cookbook topic blocks/nested_blocks.

Block coordinates. The Rectangle coordinates of a Block refer to the PDF default coor-
dinate system. When the page containing the Block is placed on the output page with
PPS, several positioning and scaling options can be supplied to PDF_fit_pdi_page().
These options are taken into account when the Block is being processed. This makes it
possible to place a template page on the output page multiply, every time filling its
Blocks with data. For example, a business card template may be placed four times on an
imposition sheet. The Block functions will take care of the coordinate system transfor-
mations, and correctly place the text for all Blocks in all invocations of the page. The
only requirement is that the client must place the page and then process all Blocks on
the placed page. Then the page can be placed again at a different location on the output
page, followed by more Block processing operations referring to the new position, and
so on.

The Block Plugin displays the Block coordinates differently from what is stored in
the PDF file. The plugin uses Acrobat’s convention which has the coordinate origin in
the upper left corner of the page, while the internal coordinates (those stored in the
Block) use PDF’s convention of having the origin at the lower left corner of the page. The
coordinate display in the Properties dialog is also subject to the units specified in Acro-
bat (see »Block size and position«, page 362).

Spot colors in Block properties. To use a separation (spot) color in a Block property you
can click the »...« button which will present a list of all HKS and Pantone spot colors.
These color names are built into PPS and can be used without further preparations. For
custom spot colors an alternate color can be defined in the Block Plugin. If no alternate
color is specified in the Block properties, the custom spot color must have been defined
earlier in the PPS application using PDF_makespotcolor() or a suitable color option list.
Otherwise Block filling will fail.

https://www.pdflib.com/pdflib-cookbook/blocks/nested_blocks/

382 Chapter 13: PPS and the PDFlib Block Plugin

13.7 Block Properties
PPS and the Block Plugin support general properties which can be assigned to any type
of Block. In addition there are properties which are specific to the Block types Textline,
Textflow, Image, PDF, and Graphics.

Properties support the same data types as option lists except handles and action
lists. The names of Block properties are generally identical to options for API functions
such as PDF_fit_textline(), PDF_fit_image() (e.g., fitmethod, charspacing). In these cases the
behavior is exactly the same as the one documented for the respective option.

13.7.1 Administrative Properties
Administrative properties apply to all Block types. Required entries will automatically
be generated by the Block Plugin. Table 13.4 lists the administrative Block properties.

Table 13.4 Administrative properties

keyword possible values and explanation

Description (String) Human-readable description of the Block’s function, coded in PDFDocEncoding or Unicode (in the
latter case starting with a BOM). This property is for user information only, and will be ignored by PPS.

Locked (Boolean) If true, the Block and its properties can not be edited with the Block Plugin. This property will
be ignored by PPS. Default: false

Name (String; required) Name of the Block. Block names must be unique within a page, but not within a docu-
ment. The three characters [] / are not allowed in Block names. Block names are restricted to a maxi-
mum of 125 characters.

Subtype (Keyword; required) Depending on the Block type, one of Text, Image, PDF, or Graphics. Note that Text-
line and Textflow Blocks both have Subtype Text, but are distinguished by the textflow property.

textflow (Boolean) Controls single- or multiline processing. This property is not available explicitly in the user in-
terface of the Block Plugin, but will be mapped to Textline or Textflow Blocks, respectively (Default:
false):

false Textline Block: text spans a single line and will be processed with PDF_fit_textline().
true Textflow Block: text can span multiple lines and will be processed with PDF_fit_textflow(). In

addition to the standard text properties Textflow-related properties can be specified (see
Table 13.9).

Type (Keyword; required) Always Block

13.7 Block Properties 383

13.7.2 Rectangle Properties
Rectangle properties apply to all Block types. They describe the appearance of the Block
rectangle itself. Required entries will automatically be generated by the Block Plugin.
Table 13.5 lists the rectangle properties.

Table 13.5 Rectangle properties

keyword possible values and explanation

background-
color

(Color) If this property is present and contains a color space keyword different from None, a rectangle will
be drawn and filled with the supplied color. This may be useful to cover existing page contents. Default:
None

bordercolor (Color) If this property is present and contains a color space keyword different from None, a rectangle will
be drawn and stroked with the supplied color. Default: None

linewidth (Float; must be greater than 0) Stroke width of the line used to draw the Block rectangle; only used if
bordercolor is set. Default: 1

Rect (Rectangle; required) The Block coordinates. The origin of the coordinate system is in the lower left corner
of the page. However, the Block Plugin displays the coordinates in Acrobat’s notation, i.e., with the origin
in the upper left corner of the page. The coordinates will be displayed in the unit which is currently select-
ed in Acrobat, but will always be stored in points in the PDF file.

Status (Keyword) Describes how the Block will be processed by PPS and the Preview feature (default: active):
active The Block will be fully processed according to its properties.
ignore The Block will be ignored.
ignoredefault

Like active, except that the defaulttext/image/pdf/graphics properties and options are
ignored, i.e. the Block remains empty if no variable contents are available (especially in the
Preview). This may be useful to make sure that the Block’s default contents are not used for
filling Blocks on the server side although the Block may contain default contents for
generating Previews. It can also be used to disable the default contents for previewing a Block
without removing the default contents from the Block properties.

static No variable contents will be placed; instead, the Block’s default text, image, PDF, or graphics
contents will be used if available.

384 Chapter 13: PPS and the PDFlib Block Plugin

13.7.3 Appearance Properties
Appearance properties specify formatting details:

> Table 13.6 lists transparency appearance properties for all Block types.
> Table 13.7 lists text appearance properties for Textline and Textflow Blocks.

Table 13.6 Transparency appearance properties for all Block types

keyword possible values and explanation

blendmode (Keyword list; if used in PDF/A-1 mode it must have the value Normal) Name of the blend mode: None,
Color, ColorDodge, ColorBurn, Darken, Difference, Exclusion, HardLight, Hue, Lighten, Luminosity,
Multiply, None, Normal, Overlay, Saturation, Screen, SoftLight. Default: None

opacityfill (Float; if used in PDF/A mode it must have the value 1) Opacity for fill operations in the range 0..1. The val-
ue 0 means fully transparent; 1 means fully opaque.

opacitystroke (Float; if used in PDF/A mode it must have the value 1) Opacity for stroke operations in the range 0..1. The
value 0 means fully transparent; 1 means fully opaque.

13.7 Block Properties 385

Table 13.7 Text appearance properties for Textline and Textflow Blocks

keyword possible values and explanation

charspacing (Float or percentage) Character spacing. Percentages are based on fontsize. Default: 0

decoration-
above

(Boolean) If true, the text decoration enabled with the underline, strikeout, and overline options will
be drawn above the text, otherwise below the text. Changing the drawing order affects visibility of the
decoration lines. Default: false

fillcolor (Color) Fill color of the text. Default: gray 0 (=black)

fontname1 (String) Name of the font as required by PDF_load_font(). The Block plugin will present a list of fonts
available in the system. However, these font names may not be portable between macOS, Windows, and
Unix systems. If fontname starts with an ’@’ character the font will be applied in vertical writing mode.
The encoding for the text must be specified as an option for PDF_fill_textblock() when filling the Block
unless the font option has been supplied.

fontsize1 (Float) Size of the font in points

horizscaling (Float or percentage) Horizontal text scaling. Default: 100%

italicangle (Float) Italic angle of text in degrees. Default: 0

kerning (Boolean) Kerning behavior. Default: false

overline (Boolean) Overline mode. Default: false

shadow (Composite) Create a shadow effect (default: no shadow). The following subproperties are available:
fillcolor (Color) Color of the shadow. Default: {gray 0.8}
offset (List of 2 floats or percentages) The shadow’s offset from the reference point of the text in user

coordinates or as a percentage of the font size. Default: {5% -5%}

strikeout (Boolean) Strikeout mode. Default: false

strokecolor (Color) Stroke color of the text. Default: gray 0 (=black)

strokewidth (Float, percentage, or keyword; only effective if textrendering is set to stroke text) Line width for outline
text (in user coordinates or as a percentage of the fontsize). The keyword auto or the equivalent value
0 uses a built-in default. Default: auto

textrendering (Integer) Text rendering mode. Only the value 3 has an effect on Type 3 fonts (default: 0):

0 fill text 4 fill text and add it to the clipping path

1 stroke text (outline) 5 stroke text and add it to the clipping path

2 fill and stroke text 6 fill and stroke text and add it to the clipping path

3 invisible text 7 add text to the clipping path (not for Blocks)

textrise (Float pr percentage) Text rise parameter. Percentages are based on fontsize. Default: 0

underline (Boolean) Underline mode. Default: false

underline-
position

(Float, percentage, or keyword) Position of the stroked line for underlined text relative to the baseline.
Percentages are based on fontsize. Default: auto

underline-
width

(Float, percentage, or keyword) Line width for underlined text. Percentages are based on fontsize. De-
fault: auto

wordspacing (Float or percentage) Word spacing. Percentages are based on fontsize. Default: 0

1. This property is required in Textline and Textflow Blocks; it will be enforced by the Block Plugin.

P
P

386 Chapter 13: PPS and the PDFlib Block Plugin

13.7.4 Text Preparation Properties
Text preparation properties specify preprocessing steps for Textline and Textflow
Blocks. Table 13.8 lists text preparation properties for Textline and Textflow Blocks.

Table 13.8 Text preparation properties for Textline and Textflow Blocks

keyword possible values and explanation

charref (Boolean) If true, enable substitution of numeric and character entity references and glyph name refer-
ences. Default: the global charref option

escape-
sequence

(Boolean) If true, enable substitution of escape sequences in content strings, hypertext strings, and name
strings. Default: the global escapesequence option

features (List of keywords) Specifies which typographic features of an OpenType font will be applied to the text,
subject to the script and language options. Keywords for features which are not present in the font will
silently be ignored. The following keywords can be supplied:
_none Apply none of the features in the font. As an exception, the vert feature must explicitly be

disabled with the novert keyword.
<name> Enable a feature by supplying its four-character OpenType tag name. Some common feature

names are liga, ital, tnum, smcp, swsh, zero. The full list with the names and descriptions of
all supported features can be found in Section 7.3.1, »Supported OpenType Layout Features«,
page 164.

no<name> The prefix no in front of a feature name (e.g. noliga) disables this feature.
Default: _none for horizontal writing mode. In vertical writing mode vert will automatically be applied.
The readfeatures option in PDF_load_font() is required for OpenType feature support.

language (Keyword; only relevant if script is supplied) The text will be processed according to the specified lan-
guage, which is relevant for the features and shaping options. A full list of keywords can be found in
Section 7.4.2, »Script and Language«, page 172, e.g. ARA (Arabic), JAN (Japanese), HIN (Hindi). Default:
_none (undefined language)

script (Keyword; required if shaping=true) The text will be processed according to the specified script, which is
relevant for the features, shaping, and advancedlinebreaking options. The most common keywords
for scripts are the following: _none (undefined script), latn, grek, cyrl, armn, hebr, arab, deva, beng,
guru, gujr, orya, taml, thai, laoo, tibt, hang, kana, han. The keyword _auto selects the script to which
the majority of characters in the text belong, where _latn and _none are ignored. A full list of keywords
can be found in Section 7.4.2, »Script and Language«, page 172. Default: _none

shaping (Boolean) If true, the text will be formatted (shaped) according to the script and language options. The
script option must have a value different from _none and the required shaping tables must be available
in the font. Default: false

13.7 Block Properties 387

13.7.5 Text Formatting Properties
Table 13.9 lists properties which can only be used for Textflow Blocks, with the excep-
tion of the stamp property which can also be used for Textline Blocks. They will be used
to construct the initial option list for processing the Textflow (corresponding to the
optlist parameter of PDF_create_textflow()). Inline option lists for Textflows can not be
specified with the plugin, but they can be supplied on the server as part of the text con-
tents when filling the Block with PDF_fill_textblock(), or in the Block’s defaulttext proper-
ty.

Table 13.9 Text formatting properties (mostly for Textflow Blocks)

keyword possible values and explanation

adjust-
method

(Keyword) Method used to adjust a line when a text portion doesn’t fit into a line after compressing or
expanding the distance between words subject to the limits specified by the minspacing and maxspacing
options (default: auto):
auto The following methods are applied in order: shrink, spread, nofit, split.
clip Same as nofit, except that the long part at the right edge of the fit box (taking into account

the rightindent option) will be clipped.
nofit The last word will be moved to the next line provided the remaining (short) line will not be

shorter than the percentage specified in the nofitlimit option. Even justified paragraphs
may look slightly ragged.

shrink If a word doesn’t fit in the line the text will be compressed subject to shrinklimit. If it still
doesn’t fit the nofit method will be applied.

split The last word will not be moved to the next line, but will forcefully be hyphenated. For text
fonts a hyphen character will be inserted, but not for symbol fonts.

spread The last word will be moved to the next line and the remaining (short) line will be justified by
increasing the distance between characters in a word, subject to spreadlimit. If justification
still cannot be achieved the nofit method will be applied.

advanced-
linebreak

(Boolean) Enable the advanced line breaking algorithm which is required for complex scripts. This is re-
quired for linebreaking in scripts which do not use space characters for designating word boundaries, e.g.
Thai. The options locale and script will be honored. Default: false

alignment (Keyword) Specifies formatting for lines in a paragraph. Default: left.
left left-aligned, starting at leftindent
center centered between leftindent and rightindent
right right-aligned, ending at rightindent
justify left- and right-aligned

avoid-
emptybegin

(Boolean) If true, empty lines at the beginning of a fitbox will be deleted. Default: false

fixedleading (Boolean) If true, the first leading value found in each line will be used. Otherwise the maximum of all
leading values in the line will be used. Default: false

hortab-
method

(Keyword) Treatment of horizontal tabs in the text. If the calculated position is to the left of the current
text position, the tab will be ignored (default: relative):
relative The position will be advanced by the amount specified in hortabsize.
typewriter The position will be advanced to the next multiple of hortabsize.
ruler The position will be advanced to the n-th tab value in the ruler option, where n is the number

of tabs found in the line so far. If n is larger than the number of tab positions the relative
method will be applied.

hortabsize (Float or percentage) Width of a horizontal tab1. The interpretation depends on the hortabmethod op-
tion. Default: 7.5%

388 Chapter 13: PPS and the PDFlib Block Plugin

lastalignment (Keyword) Formatting for the last line in a paragraph. All keywords of the alignment option are support-
ed, plus the following (default: auto):
auto Use the value of the alignment option unless it is justify. In the latter case left will be used.

leading (Float or percentage) Distance between adjacent text baselines in user coordinates, or as a percentage of
the font size. Default: 100%

locale (Keyword) The locale which will be used for localized linebreaking methods if advancedlinebreak=true.
The keywords consists of one or more components, where the optional components are separated by an
underscore character ’_’ (the syntax slightly differs from NLS/POSIX locale IDs):
> A required two- or three-letter lowercase language code according to ISO 639-2 (see www.loc.gov/
standards/iso639-2), e.g. en, (English), de (German), ja (Japanese). This differs from the language op-
tion.

> An optional four-letter script code according to ISO 15924 (see www.unicode.org/iso15924/iso15924-
codes.html), e.g. Hira (Hiragana), Hebr (Hebrew), Arab (Arabic), Thai (Thai).

> An optional two-letter uppercase country code according to ISO 3166 (see www.iso.org/iso/country_
codes/iso_3166_code_lists), e.g. DE (Germany), CH (Switzerland), GB (United Kingdom)

Specifying a locale is not required for advanced line breaking: the keyword _none specifies that no locale-
specific processing will be done. Default: _none
Examples: de_DE, en_US, en_GB

maxspacing
minspacing

(Float or percentage) The maximum or minimum distance between words (in user coordinates, or as a
percentage of the width of the space character). The calculated word spacing is limited by the provided
values (but the wordspacing option will still be added). Defaults: minspacing=50%, maxspacing=500%

minlinecount (Integer) Minimum number of lines in the last paragraph of the fitbox. If there are fewer lines they will
be placed in the next fitbox. The value 2 can be used to prevent single lines of a paragraph at the end of a
fitbox (»orphans«). Default: 1

nofitlimit (Float or percentage) Lower limit for the length of a line with the nofit method (in user coordinates or as
a percentage of the width of the fitbox). Default: 75%

parindent (Float or percentage) Left indent of the first line of a paragraph1. The amount will be added to
leftindent. Specifying this option within a line will act like a tab. Default: 0

rightindent
leftindent

(Float or percentage) Right or left indent of all text lines1. If leftindent is specified within a line and the
determined position is to the left of the current text position, this option will be ignored for the current
line. Default: 0

ruler2 (List of floats or percentages) List of absolute tab positions for hortabmethod=ruler1. The list may con-
tain up to 32 non-negative entries in ascending order. Default: integer multiples of hortabsize

shrinklimit (Percentage) Lower limit for compressing text with the shrink method; the calculated shrinking factor is
limited by the provided value, but will be multiplied with the value of the horizscaling option. Default:
85%

spreadlimit (Float or percentage) Upper limit for the distance between two characters for the spread method (in user
coordinates or as a percentage of the font size); the calculated character distance will be added to the
value of the charspacing option. Default: 0

stamp (Keyword; Textline and Textflow Blocks) This option can be used to create a diagonal stamp within the
Block rectangle. The text comprising the stamp will be as large as possible. The options position,
fitmethod, and orientate (only north and south) will be honored when placing the stamp text in the
box. Default: none.
ll2ur The stamp will run diagonally from the lower left corner to the upper right corner.
ul2lr The stamp will run diagonally from the upper left corner to the lower right corner.
none No stamp will be created.

Table 13.9 Text formatting properties (mostly for Textflow Blocks)

keyword possible values and explanation

https://www.loc.gov/standards/iso639-2
http://www.unicode.org/iso15924/iso15924-codes.html
https://www.iso.org/iso/country_codes/iso_3166_code_lists

13.7 Block Properties 389

tabalignchar (Unichar) Unicode value of the character at which decimal tabs will be aligned. Default: the period char-
acter ’.’ (U+002E)

tabalignment2 (List of keywords) Alignment for tab stops. Each entry in the list defines the alignment for the correspond-
ing entry in the ruler option (default: left):
center Text will be centered at the tab position.
decimal The first instance of tabalignchar will be left-aligned at the tab position. If no tabalignchar

is found, right alignment will be used instead.
left Text will be left-aligned at the tab position.
right Text will be right-aligned at the tab position.

1. In user coordinates, or as a percentage of the width of the fit box
2. Tab settings can be edited in the property subgroup Ruler Tabs for hortabmethod=ruler in the Block properties dialog.

Table 13.9 Text formatting properties (mostly for Textflow Blocks)

keyword possible values and explanation

390 Chapter 13: PPS and the PDFlib Block Plugin

13.7.6 Object Fitting Properties
Fitting properties are available for all Block types, although some properties are specific
to a certain Block type. They control how the contents will be placed in the Block:

> Table 13.10 lists fitting properties for Textline, Image, PDF, and Graphics Blocks
> Table 13.11 lists fitting properties for Textflow Blocks (mostly related to aspects of

vertical fitting).

The object fitting algorithm uses the Block rectangle as fitbox. Except for fitmethod=clip
there will be no clipping; if you want to make sure that the Block contents do not exceed
the Block rectangle avoid fitmethod=nofit.

Table 13.10 Fitting properties for Textline, Image, PDF, and Graphics Blocks

keyword possible values and explanation

alignchar (Unichar or keyword; only for Textline Blocks) If the specified character is found in the text, its lower left
corner will be aligned at the lower left corner of the Block rectangle. For horizontal text with
orientate=north or south the first value supplied in the position option defines the position. For hori-
zontal text with orientate=west or east the second value supplied in the position option defines the
position. This option will be ignored if the specified alignment character is not present in the text. The
value 0 and the keyword none suppress alignment characters. The specified fitmethod will be applied, al-
though the text cannot be placed within the Block rectangle because of the forced positioning of
alignchar. Default: none

dpi (Float list; only for image Blocks) One or two values specifying the desired image resolution in pixels per
inch in horizontal and vertical direction. With the value o the image’s internal resolution will be used if
available, or 72 dpi otherwise. This property will be ignored if the fitmethod property has been supplied
with one of the keywords auto, meet, slice, or entire. Default: 0

fitmethod (Keyword) Strategy to use if the supplied content doesn’t fit into the Block rectangle: auto, clip, entire,
meet, nofit or slice (default: meet).

margin (Float list; only for Textline Blocks) One or two float values describing additional horizontal and vertical
reduction of the Block rectangle. Default: 0

orientate (Keyword) Specifies the desired orientation of the content when it is placed. Possible values are north,
east, south, west. Default: north

position (Float list) One or two values specifying the position of the reference point within the content. The posi-
tion is specified as a percentage within the Block. Only for Textline Blocks: the keyword auto can be used
for the first value in the list. It indicates right if the writing direction of the text is from right to left (e.g.
for Arabic and Hebrew text), and left otherwise (e.g. for Latin text).
Default: {0 0}, i.e. the lower left corner

rotate (Float) Rotation angle in degrees by which the Block will be rotated counter-clockwise before processing
begins. The reference point is center of the rotation. Default: 0

scale (Float list; only for image, PDF, and Graphics Blocks) One or two values specifying the desired scaling fac-
tor(s) in horizontal and vertical direction. This option will be ignored if the fitmethod property has been
supplied with one of the keywords auto, meet, slice, or entire. Default: 1

shrinklimit (Float or percentage; only for Textline Blocks) The lower limit of the shrinkage factor which will be ap-
plied to fit text with fitmethod=auto. Default: 0.75

13.7 Block Properties 391

Table 13.11 Fitting properties for Textflow Blocks

keyword possible values and explanation

firstlinedist (Float, percentage, or keyword) The distance between the top of the Block rectangle and the baseline for
the first line of text, specified in user coordinates, as a percentage of the relevant font size (the first font
size in the line if fixedleading=true, and the maximum of all font sizes in the line otherwise), or as a
keyword (default: leading):
leading The leading value determined for the first line; typical diacritical characters such as À will

touch the top of the fitbox.
ascender The ascender value determined for the first line; typical characters with larger ascenders, such

as d and h will touch the top of the fitbox.
capheight The capheight value determined for the first line; typical capital uppercase characters such as

H will touch the top of the fitbox.
xheight The xheight value determined for the first line; typical lowercase characters such as x will

touch the top of the fitbox.
If fixedleading=false the maximum of all leading, ascender, xheight, or capheight values found in
the first line will be used.

fitmethod (Keyword) Strategy to use if the Block is too small for the Textflow:
auto fontsize and leading are decreased until the text fits.
clip Text is clipped at the Block margin (useful for linking Textflow Blocks).
nofit Text runs beyond the bottom margin of the Block (useful for moving Blocks).
Default: clip if the textflowhandle option is supplied, otherwise auto

lastlinedist (Float, percentage, or keyword) Will be ignored for fitmethod=nofit) The minimum distance between
the baseline for the last line of text and the bottom of the fitbox, specified in user coordinates, as a per-
centage of the font size (the first font size in the line if fixedleading= true, and the maximum of all
font sizes in the line otherwise), or as a keyword. Default: 0, i.e. the bottom of the fitbox will be used as
baseline, and typical descenders will extend below the Block rectangle.
descender The descender value determined for the last line; typical characters with descenders, such as g

and j will touch the bottom of the fitbox.
If fixedleading=false the maximum of all descender values found in the last line will be used.

linespread-
limit

(Float or percentage; only for verticalalign=justify) Maximum amount in user coordinates or as per-
centage of the leading for increasing the leading for vertical justification. Default: 200%

maxlines (Integer or keyword) The maximum number of lines in the fitbox, or the keyword auto which means that
as many lines as possible will be placed in the fitbox. When the maximum number of lines has been
placed PDF_fit_textflow() will return the string _boxfull.

minfontsize (Float or percentage) Minimum allowed font size when text is scaled down to fit into the Block rectangle
with fitmethod=auto when shrinklimit is exceeded. The limit is specified in user coordinates or as a
percentage of the height of the Block. If the limit is reached the text will be created with the specified
minfontsize as fontsize. Default: 0.1%

orientate (Keyword) Specifies the desired orientation of the text when it is placed. Possible values are north, east,
south, west. Default: north

rotate (Float) Rotate the coordinate system, using the lower left corner of the fitbox as center and the specified
value as rotation angle in degrees. This results in the box and the text being rotated. The rotation will be
reset when the text has been placed. Default: 0

392 Chapter 13: PPS and the PDFlib Block Plugin

verticalalign (Keyword) Vertical alignment of the text in the fitbox (default: top):
top Formatting will start at the first line, and continue downwards. If the text doesn’t fill the

fitbox there may be whitespace below the text.
center The text will be vertically centered in the fitbox. If the text doesn’t fill the fitbox there may be

whitespace both above and below the text.
bottom Formatting will start at the last line, and continue upwards. If the text doesn’t fill the fitbox

there may be whitespace above the text.
justify The text will be aligned with top and bottom of the fitbox. In order to achieve this the leading

will be increased up to the limit specified by linespreadlimit. The height of the first line will
only be increased if firstlinedist=leading.

Table 13.11 Fitting properties for Textflow Blocks

keyword possible values and explanation

13.7 Block Properties 393

13.7.7 Properties for default Contents
Properties for default contents specify how to fill the Block if no specific contents are
provided. They are especially useful for the Preview feature since it will fill the Blocks
with their default contents. Table 13.12 lists properties for default contents.

13.7.8 Custom Properties
Custom properties apply to Blocks of any type of Block, and will be ignored by PPS and
the Preview feature. Table 13.13 lists the naming rules for custom properties.

Table 13.12 Properties for default contents

keyword possible values and explanation

default-
graphics

(String; only for graphics Blocks) Path name of a graphics file which will be used if no graphics is supplied
by the client application.1

1. It is recommended to use file names without absolute paths, and use the SearchPath feature in the PPS client application. This makes
Block processing independent from platform and file system details.

defaultimage (String; only for image Blocks) Path name of an image which will be used if no image is supplied by the
client application.1

defaultpdf (String; only for PDF Blocks) Path name of a PDF document which will be used if no substitution PDF is
supplied by the client application.1

default-
pdfpage

(Integer; only for PDF Blocks) Page number of the page in the default PDF document. Default: 1

defaulttext (String; only for Textline and Textflow Blocks) Text which will be used if no variable text is supplied by the
client application2

2. The text will be interpreted in winansi encoding or Unicode.

Table 13.13 Custom Block properties for all Block types

keyword possible values and explanation

any name not containing
the three characters [] /

(String, name, float, or float list) The interpretation of the values of custom properties is
completely up to the client application; they will be ignored by PPS.

394 Chapter 13: PPS and the PDFlib Block Plugin

13.8 Querying Block Names and Properties with pCOS
In addition to automatic Block processing with PPS, the integrated pCOS facility can be
used to enumerate Block names and query standard or custom properties.

Cookbook A full code sample for querying the properties of Blocks contained in an imported PDF can be
found in the Cookbook topic blocks/query_block_properties.

Finding the number and names of Blocks. The client code must not even know the
names or number of Blocks on an imported page since these can also be queried. The
following statement returns the number of Blocks on page with number pagenum:

blockcount = (int) p.pcos_get_number(doc, "length:pages[" + pagenum + "]/blocks");

The following statement returns the name of Block number blocknum on page pagenum
(Block and page counting start at 0):

blockname = p.pcos_get_string(doc,
"pages[" + pagenum + "]/blocks[" + blocknum + "]/Name");

The returned Block name can subsequently be used to query the Block’s properties or
fill the Block with text, image, PDF or graphics contents. If the specified Block doesn’t
exist an exception will be thrown. You can avoid this by using the length prefix to deter-
mine the number of Blocks and therefore the maximum index in the blocks array (keep
in mind that the Block count will be one higher than the highest possible index since ar-
ray indexing starts at 0).

Checking for the presence of a Block. For additional flexibility of the client applica-
tion code you can check whether for the presence of a Block before attempting to fill it.
This way the designer can move Blocks between pages without breaking the application
which fills the Blocks.

The following code checks whether a Block with the name foo is present on a page:

/* pCOS object type "dictionary" means that the Block is present */
if (pcos_get_string(doc, "type:pages[" + pagenum + "]/blocks/" + "foo").equals("dict"))
{

/* Block "foo" is present on the page */
}

Addressing Blocks by number or name. In the pCOS path syntax for addressing Block
properties the following expressions are equivalent, assuming that the Block with num-
ber 6 has its Name property set to foo:

pages[...]/blocks[6]
pages[...]/blocks/foo

Querying Block coordinates. The two coordinate pairs (llx, lly) and (urx, ury) describing
the lower left and upper right corner of a Block named foo can be queried as follows:

llx = p.pcos_get_number(doc, "pages[" + pagenum + "]/blocks/foo/rect[0]");
lly = p.pcos_get_number(doc, "pages[" + pagenum + "]/blocks/foo/rect[1]");
urx = p.pcos_get_number(doc, "pages[" + pagenum + "]/blocks/foo/rect[2]");
ury = p.pcos_get_number(doc, "pages[" + pagenum + "]/blocks/foo/rect[3]");

https://www.pdflib.com/pdflib-cookbook/blocks/query_block_properties/

13.8 Querying Block Names and Properties with pCOS 395

Note that these coordinates are provided in the default coordinate system (with the ori-
gin in the bottom left corner, possibly modified by the page’s CropBox), while the Block
Plugin displays the coordinates according to Acrobat’s user interface coordinate system
with an origin in the upper left corner of the page. The values queried with the pCOS
pseudo object rect (all lowercase) take into account any relevant CropBox/MediaBox and
Rotate entries and normalize the order of the coordinates. In contrast, the values que-
ried with the native PDF key Rect cannot be directly used as new coordinates if a Crop-
Box is present.

Note that the topdown option is not taken into account when querying Block coordi-
nates.

Querying custom properties. Custom properties can be queried as in the following ex-
ample, where the property zipcode is queried from a Block named b1 on page pagenum:

zip = p.pcos_get_string(doc, "pages[" + pagenum + "]/blocks/b1/Custom/zipcode");

If you don’t know which custom properties are actually present in a Block, you can de-
termine the names at runtime. In order to find the name of the first custom property in
a Block named b1 use the following:

propname = p.pcos_get_string(doc, "pages[" + pagenum + "]/blocks/b1/Custom[0].key");

Use increasing indexes instead of 0 in order to determine the names of all custom prop-
erties. Use the length prefix to determine the number of custom properties.

Non-existing Block properties and default values. Use the type prefix to determine
whether a Block or property is actually present. If the type for a path is 0 or null the re-
spective object is not present in the PDF document. Note that for predefined properties
this means that the default value of the property will be used.

Name space for custom properties. In order to avoid confusion when PDF documents
from different sources are exchanged, it is recommended to use an Internet domain
name as a company-specific prefix in all custom property names, followed by a colon ’:’
and the actual property name. For example, ACME corporation would use the following
property names:

acme.com:digits
acme.com:refnumber

Since standard and custom properties are stored differently in the Block, standard PPS
property names (as defined in Section 13.7, »Block Properties«, page 382) will never con-
flict with custom property names.

396 Chapter 13: PPS and the PDFlib Block Plugin

13.9 Creating and Importing Blocks programmatically

13.9.1 Creating PDFlib Blocks with POCA
PDFlib Blocks can be created programmatically with the POCA interface which is includ-
ed in PPS. Using POCA the required PDF data structures for Block can be prepared and
then supplied to the blocks option of PDF_begin/end_page_ext(). When creating the Block
definitions the requirements in Section 13.10, »PDFlib Block Specification«, page 398,
must be obeyed. The Block properties must be created according to the data types listed
in Section 13.7, »Block Properties«, page 382.

Cookbook A code sample for creating PDFlib Blocks with PPS can be found in the category blocks of the
PDFlib Cookbook.

The PDFlib Block specification contains an unfortunate redundancy in that the name of
a Block is recorded twice: once in the main Blocks dictionary of a page, and again in the
Name entry within a particular Block dictionary. These two names must be identical in
order to avoid problems when filling the Block with PPS or previewing the Block with
the Block Plugin. PDF_begin/end_page_ext() will therefore throw an exception if the dic-
tionary provided with the blocks option contains a block definition which violates the
»same block name« rule. The corresponding pairs are highlighted in blue in the code
sample below.

The following code fragment demonstrates the use of POCA functions for creating
the Block definition shown in Section , »Block dictionary keys«, page 399:

/* Create the Block dictionary */
blockdict = p.poca_new("containertype=dict usage=blocks");

/* ---
* Create a Text Block
* ---
*/
textblock = p.poca_new("containertype=dict usage=blocks type=name key=Type value=Block");

container1 = p.poca_new("containertype=array usage=blocks " +
"type=integer values={70 640 300 700}");

p.poca_insert(textblock, "type=array key=Rect value=" + container1);
p.poca_insert(textblock, "type=name key=Name value=job_title");
p.poca_insert(textblock, "type=name key=Subtype value=Text");
p.poca_insert(textblock, "type=name key=fitmethod value=auto");
p.poca_insert(textblock, "type=string key=fontname value=Helvetica");
p.poca_insert(textblock, "type=float key=fontsize value=12");

/* Hook up the Block in the page's Block dictionary */
p.poca_insert(blockdict, "type=dict key=job_title direct=false value=" + textblock);

/* ---
* Create an Image Block
* ---
*/
imageblock = p.poca_new("containertype=dict usage=blocks " +

"type=name key=Type value=Block");

container2 = p.poca_new("containertype=array usage=blocks " +

https://www.pdflib.com/pdflib-cookbook/blocks/

13.9 Creating and Importing Blocks programmatically 397

"type=integer values={70 440 300 600}");

p.poca_insert(imageblock, "type=array key=Rect value=" + container2);
p.poca_insert(imageblock, "type=name key=Name value=logo");
p.poca_insert(imageblock, "type=name key=Subtype value=Image");
p.poca_insert(imageblock, "type=name key=fitmethod value=auto");

/* Hook up the Block in the page's Block dictionary */
p.poca_insert(blockdict, "type=dict key=logo direct=false value=" + imageblock);

/* ---
* Create a PDF Block
* ---
*/

pdfblock = p.poca_new("containertype=dict usage=blocks " +
"type=name key=Type value=Block");

container3 = p.poca_new("containertype=array usage=blocks " +
"type=integer values={70 240 300 400}");

p.poca_insert(pdfblock, "type=array key=Rect value=" + container3);
p.poca_insert(pdfblock, "type=name key=Name value=pdflogo");
p.poca_insert(pdfblock, "type=name key=Subtype value=PDF");
p.poca_insert(pdfblock, "type=name key=fitmethod value=meet");

/* Hook up the Block in the page's Block dictionary */
p.poca_insert(blockdict, "type=dict key=pdflogo direct=false " + "value=" + pdfblock);

/* ---
* Hook up the Block dictionary in the current page
* ---
*/

p.end_page_ext("blocks=" + blockdict);

/* Clean up */
p.poca_delete(blockdict, "recursive");

13.9.2 Importing PDFlib Blocks
You can copy one ore more PDFlib Blocks from the input document to the current out-
put page with PDF_process_pdi() and action=copyallblocks or action=copyblock as follows:

if (p.process_pdi(p, doc, 0, "action=copyallblocks block={pagenumber=1}") != 1)
{

/* Error */
}

This way you can implement multi-level Block filling workflows. Keep in mind that
Block names must be unique on each page, i.e. you cannot import multiple Blocks with
the same name to the same page. Use the outputblockname suboption to rename Blocks
upon copying.

398 Chapter 13: PPS and the PDFlib Block Plugin

13.10 PDFlib Block Specification
The Block syntax conforms to the PDF Reference which specifies an extension mecha-
nism that allows applications to store private data attached to the data structures com-
prising a PDF page. A description of the PDFlib Block syntax is provided here. Users who
create Blocks with the Block Plugin or PDFlib don’t need this information.

PDF object structure for PDFlib Blocks. The page dictionary contains a PieceInfo entry
which has another dictionary as value. The page dictionary should also contain the key
LastModified which contains a time stamp for the creation or last modification of the
Block structures. This dictionary contains the key PDFlib with an application data dictio-
nary as value. The application data dictionary contains two standard keys listed in Table
13.14.

A Block list is a dictionary containing general information about Block processing, plus
a list of all Blocks on the page. Table 13.15 lists the keys in a Block list dictionary.

Data types for Block properties. Properties support the same data types as option lists
except handles and specialized lists such as action lists. Table 13.16 details how these
types are mapped to PDF data types.

Table 13.14 Entries in a PDFlib application data dictionary

key value

LastModified (Data string; required) The date and time when the Blocks on the page were created or most recently
modified. This entry will be created by PDFlib when creating Blocks with the POCA interface.

Private (Dictionary; required) A Block list (see Table 13.15)

Table 13.15 Entries in a Block list dictionary

key value

Blocks (Dictionary; required) Each key is a name object containing the name of a Block; the corresponding value
is the Block dictionary for this Block (see Table 13.17). The value of the Name key in the Block dictionary
must be identical to the Block’s name in this dictionary.

BlockProducer1

1. Exactly one of the keys BlockProducer, PluginVersion and pdfmark must be present.

(String) Name of the software used to create the Blocks programmatically. This entry will be created by
PDFlib when creating Blocks with the POCA interface.

PluginVersion1 (String) A string containing a version identification of the Block plugin used to create the Blocks.

pdfmark1 (Boolean) Must be true if the Block list has been generated by use of pdfmarks.

Version (Number; required) The version number of the Block specification to which the file complies. This docu-
ment describes version 10 of the Block specification.

Table 13.16 Data types for Block properties

Data type PDF type and remarks

boolean (Boolean)

string (String)

13.10 PDFlib Block Specification 399

Block dictionary keys. Block dictionaries may contain the keys in Table 13.17.

keyword
(name)

(Name) It is an error to provide keywords outside the list of keywords supported by a particular property.

float, integer (Number) While option lists support point and comma as decimal separators, PDF numbers require point.

percentage (Array with two elements) The first element in the array is the number, the second element is a string con-
taining a percent character.

list (Array)

color (Array with two or three elements) The first element in the array specifies a color space, and the second el-
ement specifies a color value. To specify the absence of color the respective property must be omitted.
The following entries are supported for the first element in the array:
/DeviceGray

The second element is a single gray value.
/DeviceRGB

The second element is an array of three RGB values.
/DeviceCMYK

The second element is an array of four CMYK values.
[/Separation/spotname]

The first element is an array containing the keyword Separation and a spot color name. The
second element is a tint value.
The optional third element in the array specifies an alternate color for the spot color, which is
itself a color array in one of the DeviceGray, DeviceRGB, DeviceCMYK, or Lab color spaces. If
the alternate color is missing, the spot color name must either refer to a color which is known
internally to PPS, or which has been defined by the application at runtime.

[/Lab] The first element is an array containing the keyword Lab. The second element is an array of
three Lab values.

unichar (Text string) Unicode string in utf16be format, starting with the BOM U+FEFF

Table 13.17 Entries in a Block dictionary

property group values

administrative
properties

(Some keys are required) Administrative properties according to Table 13.4

rectangle properties (Some keys are required) Rectangle properties according to Table 13.5

appearance
properties

(Some keys are required) Appearance properties for all Block types according to Table 13.6 and
text appearance properties according to Table 13.7 for Textline and Textflow Blocks

text preparation
properties

(Optional) Text preparation properties for Textline and Textflow Blocks according to Table 13.8

text formatting
properties

(Optional) Text formatting properties for Textline and Textflow Blocks according to Table 13.9

object fitting
properties

(Optional) Object fitting properties for Textline, Image, PDF, and Graphics Blocks according to Ta-
ble 13.10, and fitting properties for Textflow Blocks according to Table 13.11

Table 13.16 Data types for Block properties

Data type PDF type and remarks

400 Chapter 13: PPS and the PDFlib Block Plugin

properties for
default contents

(Optional) Properties for default contents according to Table 13.12

Custom (Dictionary; optional) A dictionary containing key/value pairs for custom properties according to
Table 13.13.

Table 13.17 Entries in a Block dictionary

property group values

A Revision History 401

A Revision History
Date Changes

March 29, 2021 > Minor changes for PDFlib 9.3.1

July 14, 2020 > Updates for PDFlib 9.3.0

February 01, 2019 > Updates for PDFlib 9.2.0

February 01, 2018 > Updates for PDFlib 9.1.2

July 24, 2017 > Updates for PDFlib 9.1.1

December 15, 2016 > Updates for PDFlib 9.1.0

July 27, 2016 > Updates for PDFlib 9.0.7

November 23, 2015 > Updates for PDFlib 9.0.6

May 18, 2015 > Updates for PDFlib 9.0.5

December 16, 2014 > Updates for PDFlib 9.0.4

May 14, 2014 > Updates for PDFlib 9.0.3

December 17, 2013 > Updates for PDFlib 9.0.2

July 24, 2013 > Updates for PDFlib 9.0.1

March 12, 2013 > Updates for PDFlib 9.0.0

June 09, 2011 > Updates for PDFlib 8 VT Edition (internally 8.1.0)

December 09, 2010 > Various updates and corrections for PDFlib 8.0.2

September 22, 2010 > Various updates and corrections for PDFlib 8.0.1p7

April 13, 2010 > Various updates and corrections for PDFlib 8.0.1

December 07, 2009 > Updates for PDFlib 8.0.0

April 20, 2010 > Minor corrections for PDFlib 7.0.5

March 13, 2009 > Various updates and corrections for PDFlib 7.0.4

February 13, 2008 > Various updates and corrections for PDFlib 7.0.3

August 08, 2007 > Various updates and corrections for PDFlib 7.0.2

February 19, 2007 > Various updates and corrections for PDFlib 7.0.1

October 03, 2006 > Updates and restructuring for PDFlib 7.0.0

February 15, 2007 > Various updates and corrections for PDFlib 6.0.4

February 21, 2006 > Various updates and corrections for PDFlib 6.0.3; added Ruby section

August 09, 2005 > Various updates and corrections for PDFlib 6.0.2

November 17, 2004 > Minor updates and corrections for PDFlib 6.0.1
> introduced new format for language-specific function prototypes in chapter 8
> added hypertext examples in chapter 3

June 18, 2004 > Major changes for PDFlib 6

January 21, 2004 > Minor additions and corrections for PDFlib 5.0.3

402 A Revision History

September 15, 2003 > Minor additions and corrections for PDFlib 5.0.2; added block specification

May 26, 2003 > Minor updates and corrections for PDFlib 5.0.1

March 26, 2003 > Major changes and rewrite for PDFlib 5.0.0

June 14, 2002 > Minor changes for PDFlib 4.0.3 and extensions for the .NET binding

January 26, 2002 > Minor changes for PDFlib 4.0.2 and extensions for the IBM eServer edition

May 17, 2001 > Minor changes for PDFlib 4.0.1

April 1, 2001 > Documents PDI and other features of PDFlib 4.0.0

February 5, 2001 > Documents the template and CMYK features in PDFlib 3.5.0

December 22, 2000 > ColdFusion documentation and additions for PDFlib 3.03; separate COM edition of the manual

August 8, 2000 > Delphi documentation and minor additions for PDFlib 3.02

July 1, 2000 > Additions and clarifications for PDFlib 3.01

Feb. 20, 2000 > Changes for PDFlib 3.0

Aug. 2, 1999 > Minor changes and additions for PDFlib 2.01

June 29, 1999 > Separate sections for the individual language bindings
> Extensions for PDFlib 2.0

Feb. 1, 1999 > Minor changes for PDFlib 1.0 (not publicly released)

Aug. 10, 1998 > Extensions for PDFlib 0.7 (only for a single customer)

July 8, 1998 > First attempt at describing PDFlib scripting support in PDFlib 0.6

Feb. 25, 1998 > Slightly expanded the manual to cover PDFlib 0.5

Sept. 22, 1997 > First public release of PDFlib 0.4 and this manual

Date Changes

Index 403

Index

A
Acrobat Plugin for creating Blocks 355
Adobe Font Metrics (AFM) 124
advanced linebreaking 246
AES encryption algorithm 70
AFM (Adobe Font Metrics) 124
alpha channel 191

from separate image 192
internal 191

ArtBox 66
ascender 160
asciifile option 62
attachment password 70
auto: see hypertextformat
autosubsetting option 150

B
backslash substitution 118
Basic Multilingual Plane 105
Big Five 117
bindings 29
BleedBox 66
blend modes 95, 98
blending color space 96
Block nesting 380
Blocks 355

create with POCA 396
plugin 355
properties 358

BMP 105, 189
bookmarks with structure 306
Byte Order Mark (BOM) 106, 111
bytes: see hypertextformat
byteserving 284

C
C binding 29
C++ binding 32
capheight 160
categories of resources 56
CCITT 189
CCSID 113, 114
CEF fonts 197
change the color of objects 98
character metrics 160
character references 118, 119
characters and glyphs 105
Chinese 116, 117, 177
chroma key masking 193

CIE L*a*b* color space 83
CJK (Chinese, Japanese, Korean)

configuration 116
custom fonts 177
Windows code pages 117

classic .NET Binding 37
clip 66
clone page boxes 218
CMaps 116
CMYK color 77
color blends 92
color profiles 211
color spaces 77
colorize images 194
colorize objects 98
commercial license 13
content strings 110
coordinate system 63

metric 63
top-down 64

core fonts 142
CropBox 66
current point 67
currentx and currenty options 160
custom element types 293
custom encoding 114

D
decode array for image colors 195
decode image option 195
decolorize objects 98
default color spaces 78, 81
default coordinate system 63
defaultgray/rgb/cmyk color space 81
descender 160
DeviceN colors 88
document part hierarchy 340, 343
Document Part Metadata (DPM) 340, 344
downsampling 185
dpi calculations 185

E
EBCDIC 62
ebcdicutf8: see hypertextformat
editable Watermark 229
embedding fonts 149
encapsulated XObjects for PDF/VT 346
encapsulation hints for PDF/VT 341
encoding

404 Index

custom 114
fetching from the system 113

encryption 70
file attachments 72

error handling 51
errorpolicy option 210
escape sequences 118
EUDC (end-user defined characters) 123, 179
evaluation version 11
exceptions 51
EXIF JPEG images 187

F
features of PDFlib 23, 26
file attachments, encrypted 72
file search 56
fill 66
font name alias 140
fonts

AFM files 124
CEF 197
embedding 149
legal aspects of embedding 149
metrics 160
OpenType 123
PDF core set 142
PFA files 124
PFB files 124
PFM files 124
PostScript Type 1 124
resource configuration 55
selecting symbolic glyph 137
SING 125
style names for Windows 145
subsetting 150
TrueType 123
TrueType Collection 123
Type 3 (user-defined) fonts 125
WOFF 124

form fields: converting to PDFlib Blocks 369
Form XObjects 68

G
gaiji characters 125
GBK 117
get_buffer() 60
GIF 188
glyph 105

availability in font 154
glyph id (GID) addressing 127
replacement 131
selecting from symbol font 137

glyphlets 125
gradients 92
graphics 197
grid.pdf 64

H
HKS colors 86
horizontal writing mode 177
host encoding 113
host fonts 144
HSL color representation, hue, saturation, color,

luminosity 95
HTML character references 118
hypertext strings 110
hypertextformat option 110

I
IBM System i 62
IBM Z 62
ICC color profiles 211
iccprofilegray/rgb/cmyk options 81
Ideographic Variation Sequences (IVS) 181
image data, re-using 185
image file formats 186
image scaling 185
image transparency 191
inch 63
in-core PDF generation 60
inline image 126
inline images 186
invert color of objects 98
invisible text 385
ISO 10646 (Unicode) 133
ISO 14289-1 (PDF/UA-1) 348
ISO 15930 (PDF/X) 331
ISO 16612-2 (PDF/VT) 340
ISO 19005 (PDF/A) 319
ISO 32000 (PDF 1.7) 318

J
Japanese 116, 117, 177
Java binding 34
JBIG2 188
JFIF 187
Johab 117
JPEG 187

images in EXIF format 187
JPEG 2000 187

K
kerning 161
Korean 116, 117, 177

L
Lab color space 83
language bindings: see bindings
layers and PDI 211
leading 160
line spacing 160
linearized PDF 284

Index 405

logging 53
logical reading order 298
luminosity mask 99

M
masked 193
master password 70
MediaBox 66
memory, generating PDF documents in 60
metric coordinates 63
metrics 160
millimeters 63
multi-page image files 186

N
name strings 110
NChannel color spaces 89
n-colorant ICC profiles 332
nested Blocks 380
nesting exceptions 30
.NET binding 36
.NET Core binding 36
noaccessible 74
noannots 74
noassemble 74
nocopy 74
noforms 74
nohiresprint 74
nomodify 74
noprint 74

O
Objective-C binding 39
OBJR structure element for interactive elements

304, 306
OpenType Collection 124, 177
OpenType fonts 123
optimized PDF 284
orphan lines 243
OTC (OpenType Collection) 177
outline text 385
output intent 333

for PDF/A 322
for PDF/X 334, 335, 336

overline option 162
overprint control 102
owner password 70

P
page 186
page descriptions 63
page formats 65
page size limitations in Acrobat 66
page-at-a-time download 284
Pantone colors 84
passwords 70, 71

path 66
path objects 67
patterns (tiling) 94
PDF import library (PDI) 208
PDF_EXIT_TRY() 30
PDF_get_buffer() 60
PDF/A 319
PDF/UA 348
PDF/VT 340
PDF/X 331
PDFlib Blocks 355
PDFlib features 23, 26
PDFlib Personalization Server (PPS) 355
pdflib.upr 59
PDFLIBRESOURCEFILE environment variable 59
PDI (PDF Import) 208
pdiusebox 211
Perl binding 41
permissions 71, 73
permissions password 70
PFA (Printer Font ASCII) 124
PFB (Printer Font Binary) 124
PFM (Printer Font Metrics) 124
Photoshop CMYK images 190
PHP binding 43
plainmetadata 74
plugin for creating Blocks 355
PNG 186
POCA (PDF Object Creation API)

for creating Blocks 396
for Document Part Metadata (DPM) 344

PostScript Type 1 fonts 124
PPS (PDFlib Personalization Server) 355
print stream order 298
Printer Font Metrics (PFM) 124
Private Use Area (PUA) 105, 135
Python binding 45

R
raw image data 189
RC4 encryption algorithm 70
reading order 298
record level for PDF/VT 340
rendering intents 101
resource category 56
resourcefile option 59
RGB color 77
role map for custom element types 293
rotating objects 64
RPG binding 46
Ruby binding 48

S
scalable vector graphics 197
scaling images 185
scope hints for PDF/VT 345
script-specific linebreaking 246

406 Index

SearchPath option 56
shadings 92
Shift-JIS 117
SING fonts 125
soft mask 99
spot color (separation color space) 84
sRGB color space 80
standard element types 288
standard output conditions for PDF/X 333
standardized variation sequences 181
stencil mask 191, 194
strikeout option 162
stroke 66
strongly structured documents 350
structured bookmarks 306
style names for Windows 145
subpath 66
subscript 161
subsetminsize option 150
subsetting 150
superscript 161
SVG 197

color 203
symbol font, selecting glyphs 137
system encoding support 113

T
templates 68
temporary disk space requirements 284
text metrics 160
text position 160
text variations 160
textformat option 110
textrendering option 162
textx and texty options 160
TIFF 188
tiling patterns 94
top-down coordinates 64
transparency

detect in imported PDF pages 346
in images 191
in PDF/VT 346

TrimBox 66
TrueType Collection 177
TrueType fonts 123
TTC (TrueType Collection) 123, 177

Type 1 fonts 124
Type 3 (user-defined) fonts 125

U
UHC 117
underline option 162
Unicode variation selectors 181
unique identification of XObjects for PDF/VT 341
units 63
UPR (Unix PostScript Resource) 55
usehypertextencoding option 110
user password 70
user space 63
usercoordinates option 63
user-defined (Type 3) fonts 125
UTF formats 106
utf16/utf16be/utf16le: see hypertextformat
utf16le: see hypertextformat
utf8: see hypertextformat

V
variation selectors and variation sequences 181
vector graphics 197
vertical writing mode 177

W
watermark (editable) 229
weakly structured documents 351
web-optimized PDF 284
widow lines 243
WOFF fonts 124
writing modes 177

X
xCLR ICC rofiles 332
xheight 160
XMP metadata 283
XMP metadata as plaintext 72
XObjects 68

Z
ZUGFeRD standard for electronic invoices 320

ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com
phone +49 • 89 • 452 33 84-0

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

	Contents
	0 Applying the PDFlib License Key
	1 Introduction
	1.1 Roadmap to Documentation and Samples
	1.2 PDFlib Programming
	1.3 What’s new in PDFlib/PDFlib+PDI/PPS 9.0?
	1.4 What’s new in PDFlib/PDFlib+PDI/PPS 9.1?
	1.5 What’s new in PDFlib/PDFlib+PDI/PPS 9.2?
	1.6 What’s new in PDFlib/PDFlib+PDI/PPS 9.3?
	1.7 Features in PDFlib
	1.8 Additional Features in PDFlib+PDI
	1.9 Additional Features in PPS
	1.10 Availability of Features in different Products

	2 PDFlib Language Bindings
	2.1 C Binding
	2.2 C++ Binding
	2.3 Java Binding
	2.4 .NET Binding
	2.4.1 .NET Binding Variants
	2.4.2 .NET Core Binding
	2.4.3 Classic .NET Binding
	2.4.4 Using the .NET Binding in Applications

	2.5 Objective-C Binding
	2.6 Perl Binding
	2.7 PHP Binding
	2.8 Python Binding
	2.9 RPG Binding
	2.10 Ruby Binding

	3 Creating PDF Documents
	3.1 General PDFlib Programming Aspects
	3.1.1 Exception Handling
	3.1.2 Logging
	3.1.3 The PDFlib Virtual File System (PVF)
	3.1.4 Resource Configuration and File Search
	3.1.5 Generating PDF Documents in Memory
	3.1.6 Maximum Size of PDF Documents and other Limits
	3.1.7 Multi-threaded Programming
	3.1.8 Using PDFlib on EBCDIC-based Platforms

	3.2 Page Descriptions
	3.2.1 Coordinate Systems
	3.2.2 Page Size
	3.2.3 Direct Paths and Path Objects
	3.2.4 Templates (Form XObjects)

	3.3 PDF Password Security
	3.3.1 Password Security in PDF
	3.3.2 Password-Protecting PDF Documents with PDFlib

	4 Color Spaces
	4.1 Device Color Spaces
	4.2 Color Management with ICC Profiles
	4.3 Device-Independent CIE L*a*b* Color
	4.4 Pantone, HKS, and custom Spot Colors
	4.5 DeviceN Colors
	4.6 Shadings and Shading Patterns
	4.7 Tiling Patterns
	4.8 Transparency Blend Modes
	4.9 Changing the Color of Objects
	4.9.1 Changing the Color with Blend Modes
	4.9.2 Changing the Color with Soft Masks

	4.10 Rendering Intents
	4.11 Overprint Control

	5 Unicode and Legacy Encodings
	5.1 Important Unicode Concepts
	5.2 Unicode-capable Language Bindings
	5.2.1 Language Bindings with native Unicode Strings
	5.2.2 Language Bindings with UTF-8 Support

	5.3 Non-Unicode-capable Language Bindings
	5.4 Single-Byte (8-Bit) Encodings
	5.5 Chinese, Japanese, and Korean CMaps
	5.6 Addressing Characters
	5.6.1 Escape Sequences
	5.6.2 Character References

	6 Font Handling
	6.1 Font Formats
	6.1.1 TrueType Fonts
	6.1.2 OpenType Fonts
	6.1.3 WOFF Fonts
	6.1.4 PostScript Type 1 Fonts
	6.1.5 SING Fonts (Glyphlets)
	6.1.6 Type 3 Fonts

	6.2 Unicode Characters and Glyphs
	6.2.1 Glyph IDs
	6.2.2 Unicode Mappings for Glyphs
	6.2.3 Unicode Control Characters

	6.3 The Text Processing Pipeline
	6.3.1 Normalizing Input Strings to Unicode
	6.3.2 Converting Unicode Values to Glyph IDs
	6.3.3 Transforming Glyph IDs

	6.4 Loading Fonts
	6.4.1 Selecting an Encoding for Text Fonts
	6.4.2 Selecting an Encoding for symbolic Fonts
	6.4.3 Example: Selecting a Glyph from the Wingdings Symbol Font
	6.4.4 Searching for Fonts
	6.4.5 Host Fonts on Windows and macOS
	6.4.6 Fallback Fonts

	6.5 Font Embedding and Subsetting
	6.5.1 Font Embedding
	6.5.2 Font Subsetting

	6.6 Querying Font Information
	6.6.1 Font-independent Encoding, Unicode, and Glyph Name Queries
	6.6.2 Font-specific Encoding, Unicode, and Glyph Name Queries
	6.6.3 Querying Codepage Coverage and Fallback Fonts

	7 Text Output
	7.1 Text Output Methods
	7.2 Font Metrics and Text Variations
	7.2.1 Font and Glyph Metrics
	7.2.2 Kerning
	7.2.3 Text Variations

	7.3 OpenType Layout Features
	7.3.1 Supported OpenType Layout Features
	7.3.2 OpenType Layout Features with Textlines and Textflows

	7.4 Complex Script Output
	7.4.1 Complex Scripts
	7.4.2 Script and Language
	7.4.3 Complex Script Shaping
	7.4.4 Bidirectional Formatting
	7.4.5 Arabic Text Formatting

	7.5 Chinese, Japanese, and Korean Text Output
	7.5.1 Using TrueType and OpenType CJK Fonts
	7.5.2 Horizontal and Vertical Writing Mode
	7.5.3 EUDC and SING Fonts for Gaiji Characters
	7.5.4 OpenType Layout Features for advanced CJK Text Output
	7.5.5 Unicode Variation Selectors and Variation Sequences
	7.5.6 Standard CJK Fonts

	8 Importing Images, SVG Graphics and PDF Pages
	8.1 Raster Images
	8.1.1 Basic Image Handling
	8.1.2 Supported Image File Formats
	8.1.3 Clipping Paths
	8.1.4 Image Transparency
	8.1.5 Colorize Images with Spot or DeviceN Color
	8.1.6 Modifying Color Values with a Decode Array

	8.2 SVG Graphics
	8.2.1 Supported SVG Flavors
	8.2.2 SVG Processing Considerations
	8.2.3 Visible Size of SVG Graphics
	8.2.4 Font Selection
	8.2.5 Dealing with missing Fonts and missing Glyphs
	8.2.6 SVG Color Extension
	8.2.7 SVG Contents beyond Vector Graphics and Text
	8.2.8 Unsupported SVG Features

	8.3 Importing PDF Pages with PDI
	8.3.1 PDI Features and Applications
	8.3.2 Using PDFlib+PDI
	8.3.3 Document and Page-related Checks
	8.3.4 Specific Aspects of imported PDF Documents

	8.4 Placing Images, Graphics, and imported PDF Pages
	8.4.1 Simple Object Placement
	8.4.2 Placing an Object at a Point or Line or in a Box
	8.4.3 Orientating an Object
	8.4.4 Rotating an Object
	8.4.5 Adjusting the Page Size
	8.4.6 Querying Information about placed Images and PDF Pages

	9 Text and Table Formatting
	9.1 Placing and Fitting Textlines
	9.1.1 Simple Textline Placement
	9.1.2 Positioning Text in a Box
	9.1.3 Fitting Text into a Box
	9.1.4 Aligning Text at a Character
	9.1.5 Placing a Stamp
	9.1.6 Using Leaders
	9.1.7 Text on a Path
	9.1.8 Shadowed Text
	9.1.9 Watermarks which can be edited in Acrobat

	9.2 Multi-Line Textflows
	9.2.1 Placing Textflows in the Fitbox
	9.2.2 Paragraph Formatting Options
	9.2.3 Inline Option Lists and Macros
	9.2.4 Tab Stops
	9.2.5 Numbered Lists and Paragraph Spacing
	9.2.6 Control Characters and Character Mapping
	9.2.7 Hyphenation
	9.2.8 Widow and Orphan Lines
	9.2.9 Controlling the standard Linebreak Algorithm
	9.2.10 Advanced script-specific Line Breaking
	9.2.11 Wrapping Text around Paths and Images

	9.3 Table Formatting
	9.3.1 Placing a Simple Table
	9.3.2 Contents of a Table Cell
	9.3.3 Table and Column Widths
	9.3.4 Mixed Table Contents
	9.3.5 Table Instances
	9.3.6 Table Formatting Algorithm

	9.4 Matchboxes
	9.4.1 Decorating a Textline
	9.4.2 Using Matchboxes in a Textflow
	9.4.3 Matchboxes and Images

	10 Interactive Features
	10.1 Links, Bookmarks, and Annotations
	10.2 Form Fields and JavaScript
	10.3 Geospatial PDF
	10.3.1 Using georeferenced PDF in Acrobat
	10.3.2 Geographic and projected Coordinate Systems
	10.3.3 Coordinate System Examples
	10.3.4 Georeferenced PDF Restrictions in Acrobat

	11 Document Interchange
	11.1 XMP Metadata
	11.2 Web-Optimized (Linearized) PDF
	11.3 Tagged PDF Basics
	11.3.1 The Logical Structure Tree (Structure Hierarchy)
	11.3.2 Standard and custom Element Types
	11.3.3 Artifacts
	11.3.4 Text Handling
	11.3.5 Alternate Description, Replacement Text and Abbreviation Expansion
	11.3.6 Print Stream Order and Logical Reading Order
	11.3.7 Tagged PDF Problems in Adobe Acrobat

	11.4 Advanced Tagged PDF Topics
	11.4.1 Automatic Table Tagging
	11.4.2 Tagging Interactive Elements
	11.4.3 Lists
	11.4.4 Creating Contents out of Order
	11.4.5 Importing Tagged PDF Pages with PDI

	12 PDF Versions and Standards
	12.1 Acrobat and PDF Versions
	12.2 The PDF Standard ISO 32 000
	12.3 PDF/A for Archiving
	12.3.1 The PDF/A Standards
	12.3.2 General Requirements
	12.3.3 Color and Image Requirements
	12.3.4 Requirements for Interactive Features
	12.3.5 Additional PDF/A Requirements for Level U Conformance
	12.3.6 Additional PDF/A Requirements for Level A Conformance
	12.3.7 Importing PDF/A Documents with PDI
	12.3.8 XMP Metadata for PDF/A

	12.4 PDF/X for Print Production
	12.4.1 The PDF/X Family of Standards
	12.4.2 General Requirements
	12.4.3 Output Intent and Color Requirements
	12.4.4 Image and Transparency Requirements
	12.4.5 Requirements for interactive Features
	12.4.6 Importing PDF/X Documents with PDI

	12.5 PDF/VT for Variable and Transactional Printing
	12.5.1 The PDF/VT Standard
	12.5.2 PDF/VT Concepts
	12.5.3 Summary of Rules for generating PDF/VT-1 and PDF/VT-2
	12.5.4 Document Part Hierarchy and Document Part Metadata (DPM)
	12.5.5 Scope Hints for recurring Graphical Content
	12.5.6 Encapsulated XObjects
	12.5.7 Importing PDF/X and PDF/VT Documents with PDI

	12.6 PDF/UA for Universal Accessibility
	12.6.1 The PDF/UA-1 Standard
	12.6.2 Tagging Requirements
	12.6.3 Additional Requirements for specific Content Types
	12.6.4 Importing PDF/UA Documents with PDI

	13 PPS and the PDFlib Block Plugin
	13.1 Installing the PDFlib Block Plugin
	13.2 Overview of the Block Concept
	13.2.1 Separation of Document Design and Program Code
	13.2.2 Block Properties
	13.2.3 Why not use PDF Form Fields?

	13.3 Editing Blocks with the Block Plugin
	13.3.1 Creating Blocks
	13.3.2 Editing Block Properties
	13.3.3 Copying Blocks between Pages and Documents
	13.3.4 Customizing the Block Plugin User Interface with XML

	13.4 Converting PDF Form Fields to PDFlib Blocks
	13.5 Previewing Blocks in Acrobat
	13.6 Filling Blocks with PPS
	13.7 Block Properties
	13.7.1 Administrative Properties
	13.7.2 Rectangle Properties
	13.7.3 Appearance Properties
	13.7.4 Text Preparation Properties
	13.7.5 Text Formatting Properties
	13.7.6 Object Fitting Properties
	13.7.7 Properties for default Contents
	13.7.8 Custom Properties

	13.8 Querying Block Names and Properties with pCOS
	13.9 Creating and Importing Blocks programmatically
	13.9.1 Creating PDFlib Blocks with POCA
	13.9.2 Importing PDFlib Blocks

	13.10 PDFlib Block Specification

	A Revision History
	Index

