

⚫ Sida 1

PhGantt

 www.plexityHide.com info@plexityHide.com

⚫ Page 2

Introduction ___ 3

Treeview __ 3
Special features __ 5

Date scale ___ 6
Special features __ 6

Gantt area __ 7
Special features __ 8

Conceptual model of dataEnteties in the phGantt ___ 9

Model of DataEntity functionality ___ 10

Load data with ADO into the phGantt ___ 11

Save data with ADO from the phGantt ___ 13

References: __ 16

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 3

Introduction

This document is a hands on description of many of the current features of the phGantt component. The document is
written for an intermediate or advanced visual basic programmer. The phGantt component is under constant
development, do not hesitate to submit your thoughts about functionality to info@plexityhide.com.

Figure 1

Treeview

The treeview is a vital part of the phGantt component. The treeview let the programmer present stuff in a hierarchical
manner, and that is often useful. Every row in the treeview constitutes a Gantt row, and consequently the Gantt rows will
be visible or invisible according to the expanded state of the tree node.

Let us populate the tree:

Private Sub CmdTreeNodes_Click()

Dim newactivity As IphDataEntity_Tree

 Set newactivity = phGantX1.AddRootDataEntityTree

 newactivity.CanEdit = True

 newactivity.Text = "FirstTry"

 newactivity.ImageIndex = 0

 Set newactivity = phGantX1.AddRootDataEntityTree

http://www.plexityhide.com/
mailto:info@plexityHide.com
mailto:info@plexityhide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 4

 newactivity.CanEdit = True

 newactivity.Text = "SecondTry"

 newactivity.ImageIndex = 0

 newactivity.FontBold = True

 Set newactivity = phGantX1.AddRootDataEntityTree

 newactivity.CanEdit = True

 newactivity.Text = "ThirdTry"

 newactivity.ImageIndex = 1

 newactivity.FontItalic = True

 newactivity.FontName = "Wide Latin"

 Set newactivity = phGantX1.AddDataEntityTree(newactivity)

 newactivity.CanEdit = True

 newactivity.Text = "Subnode to thirdnode"

 newactivity.ImageIndex = 1

End Sub

Figure 2

You populate the tree by adding a DataEntity. DataEntity is a common object in plexityhide components; they hold the
most basic information about what will be shown on the screen such as:

property Selected

property CanEdit

property OwningDataList

property UserReference

property Visible

property UserIntegerReference

The DataEntity we use for the tree is of a special subclass with extra properties added typical for a tree node. Such as:

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 5

property Text

property ImageIndex

property SelectedIndex

property Expanded

property FontName

property FontBold

property FontItalic

property FontStrikeOut

property FontUnderline

You never instansiate the dataentities yourself, they are handed to you by the methods of the component. In the sample
code above, we use two different methods because root nodes are created differently than the sub nodes. There are no
other ways to create treenodes than the ones shown in the sample code above. Except from the creating methods there
are no logical differences between a sub node and a root node, and there is no limit to the depth of sub nodes.

Special features

One special feature seen in the treeview which are not seen in many other components making use of the treeview is
the multi select feature.

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 6

Date scale

The date scale component is of course crucial to the phGantt component, the scale should enable the user to zoom in or
out and scroll back and fourth in time. The date scale is limited for practical reasons to a time span from year 1898 to
year 4000, and the zooming mechanism shows time down to seconds and up to centuries.

1. These are buttons used to traverse in time, back and forth.

2. The scale presents the current span that is used in the indicator (5), the green mark in the indicator symbolizes the
currently visible time window of the whole of the indicator.

3. The scale handles to kinds of presentation text, one small span text and one long span text. This is the small span
text, in the sample the scale decided to use days as the small span, and consequently short names of days are
presented.

4. This is the long span presentation, in the sample, it is weeks, and the weeks are presented as start of week to end
of week dates.

Special features

All text that are used are taken from the national settings of the computer, in the sample above we use Swedish. First
day of week is different in different countries, so the date scaler lets you specify which day that is first for you. The date
and time presentations are properties of the scale and can be adjusted to your liking. The indicator functionality can be
switched off.

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 7

Gantt area

The Gantt area is divided into rows. One row corresponds to node in the treeview. The Gantt area is used to present
things that has a representation in time, the time is taken from the current settings of the date scaler. Every Gantt row
can have multiple layers, and the drawing order of these layers can be set. All time objects in the Gantt area are
manipulated directly, the user can either move the whole object in time or resizing it by pulling the start or stop areas.

Let us populate a Gantt row:

Private Sub CmdTimeItems_Click()

Dim activity As IphDataEntity_Tree

Dim time As IphDataEntity_GantTime

 If Not (phGantX1.CurrentDataEntityTree Is Nothing) Then

 Set activity = phGantX1.CurrentDataEntityTree

 Set time = phGantX1.AddGantTime(activity, 0)

 time.Start = Now - 3

 time.Stop = Now - 2

 time.Color = ColorConstants.vbBlue

 time.Style = tsNormal

 Set time = phGantX1.AddGantTime(activity, 1)

 time.Start = Now - 1

 time.Stop = Now

 time.Color = ColorConstants.vbGreen

 time.Style = tsNormal

 time.BottomInset = 5

 Set time = phGantX1.AddGantTime(activity, 2)

 time.Start = Now + 1

 time.Stop = Now + 2

 time.Color = ColorConstants.vbMagenta

 time.Style = tsNormal

 time.TopInset = 5

 Set time = phGantX1.AddGantTime(activity, 0)

 time.Start = Now + 3

 time.Stop = Now + 4

 time.Style = tsImage

 time.FixedSize = 16

 time.ImageIndex = 1

 Set time = phGantX1.AddGantTime(activity, 0)

 time.Start = Now + 5

 time.Stop = Now + 6

 time.Style = tsRomb

 time.FixedSize = 16

 time.Color = ColorConstants.vbBlack

 Set time = phGantX1.AddGantTime(activity, 0)

 time.Start = Now + 8

 time.Stop = Now + 9

 time.Style = tsSpan

 time.Color = ColorConstants.vbBlack

 End If

The sample code adds time items to the currently active tree node. Many different styles of time drawing are available,
and the use of color and inset from both the bottom and top makes the possibilities limitless. The use of fixed size allows

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 8

for time items that should not be stretched when the scale is zoomed. Items with fixed size are not resizable but still
movable. There also is a drawing style that enables custom drawing.

Special features

The use of drawing layers enables you to design your interface to show many different types of times on a single row
and still control the appearance and drawing order. On every user interaction with a time item, an event is fired where
the developer can react to the users new input. Whenever the user moves the mouse over the time items, an event is
fired allowing the developer to show hints or more information about an item. Key navigation and multi select are also
features of the Gantt area

The boolean property MoveInTimeWhenMoveRow lets you decide if a change of row also will be a change in time, or if
the change of row operation will be time indifferent. The property MoveOver12Then24 is used if you want to make a
distinction between move operations that are small (i.e. smaller than 12 hours) that should be interpreted as a change of
start and stop within the same day, and large move operations that should be interpreted as a change of day but keep
start and stop time the same on that new day.

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 9

Conceptual model of dataEnteties in the phGantt

The DataEntity has two properties that are left up to you as a developer to make use of. They are UserReference and
UserIntegerReference. You can assign values to them to help you identify what a particular dataentity symbolizes for
you.

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 10

Model of DataEntity functionality

The dataEntities are managed by a datalist, all DataEntity objects are owned by exactly on DataList. There is also
functionality to build collecetions of DataLists, and even collections of collections of DataLists.

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 11

Load data with ADO into the phGantt

We need an Access database for this sample:

The database has three tables.

The Activity-table is data that we will display in the treeview. It has three properties ID, Name and OwningActivity. ID is
what is called the primary key; Name is the attribute we want to communicate in each treenode. And finally
OwningActivity is a foreign key; we use this to point out any owning activity’s primary key. If there is no owning activity
we will put a null key here, the sample uses –1 as the null key.

The IDValue table is just as a persistent global variable to hold the last unique ID we used for new rows for our objects. It
only has on field, LastID. LastID will be adjusted by our sample every time we want a new unique ID.

The WorkTime table has four fields. First the primary key ID. Then a foreign key Activity that points out the primary key
off the activity row that this particular work item belongs to. Then we have attributes for start and stop; these are
timestamp in the database and will hold the start and stop of a particular time item in the Gantt component.

Dim adoIDValueRS As Recordset

 Dim db As Connection

Private Sub Form_Load()

 Set db = New Connection

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 12

 db.CursorLocation = adUseClient

 db.Open "PROVIDER=Microsoft.Jet.OLEDB.3.51;Data Source=.\GanttDemoData.mdb;"

 Set adoIDValueRS = New Recordset

 adoIDValueRS.Open "select lastid from idvalue", db, adOpenStatic, adLockOptimistic

 phGantX1.LoadAndAddIconToList ".\IconForTree.ico"

 phGantX1.LoadAndAddIconToList ".\IconForTree2.ico"

Dim activity As IphDataEntity_Tree

 LoadTreeItemsOwnedBy activity, -1

End Sub

In the sample code we create a new database connection and hold in a global variable called dB. We open the
database. We also create a recordset that reads from the idvalue table and hold it for later use. We also make the Gantt
aware of the icons that we intend to use in the tree. Then we call a sub named LoadTreeItemsOwnedBy and this sub is
responsible for loading treenodes on one level , in this case the root level.

Private Sub LoadTreeItemsOwnedBy(activity As IphDataEntity_Tree, ownerid As Integer)

Dim newactivity As IphDataEntity_Tree

Dim aRS As Recordset

Dim selectstat As String

 selectstat = "select id,name,owningactivity from activity where owningactivity="

 selectstat = selectstat + Str(ownerid)

 Set aRS = New Recordset

 aRS.Open selectstat, db, adOpenStatic, adLockReadOnly

 While Not aRS.EOF

 If activity Is Nothing Then

 Set newactivity = phGantX1.AddRootDataEntityTree

 Else

 Set newactivity = phGantX1.AddDataEntityTree(activity)

 End If

 InitActivity newactivity, aRS

 LoadTreeItemsOwnedBy newactivity, newactivity.UserIntegerReference

 aRS.MoveNext

 Wend

End Sub

The sub above opens the activity table and reads all rows that has a owningactivity matching the supplied ownerid, for
root nodes this will be –1. We iterate over the RecordSet until it is empty. For each row, we do three things. First, we
check if we have a supplied activity that should own the one read, if not then it is a root activity being read. We then
create a DataEntity to symbolize the new activity and hand it to a sub called InitActivity that will move values from the
current row of the record set to the DataEntity. Last, we do a recursive call to the same sub that we are in to fetch and
instansiate the subnodes of the newly created activity.

Private Sub InitActivity(activity As IphDataEntity_Tree, aRS As Recordset)

 activity.UserIntegerReference = aRS.Fields.Item("id").Value

 activity.Text = aRS.Fields.Item("Name").Value

 activity.CanEdit = True

 LoadTimeItemsOwnedBy activity

End Sub

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 13

In the Sub above, we initialize the activity by taking values from the current row of the recordset and putting it to the
DataEntity item. Note that we also take the primary key from the record set and put it in one of the user controlled fields
of the DataEntity, we need this later when it is time to update the database with changes made to the DataEntity.

At the very end, we call the Sub LoadTimeItemsOwnedBy that will load all the work time items for the activity,

Private Sub LoadTimeItemsOwnedBy(activity As IphDataEntity_Tree)

Dim newtimeItem As IphDataEntity_GantTime

Dim aRS As Recordset

Dim selectstat As String

 selectstat = "select id,activity,start,stop from worktime where activity="

 selectstat = selectstat + Str(activity.UserIntegerReference)

 Set aRS = New Recordset

 aRS.Open selectstat, db, adOpenStatic, adLockReadOnly

 While Not aRS.EOF

 Set newtimeItem = phGantX1.AddGantTime(activity, 0)

 InitTimeItem newtimeItem, aRS

 aRS.MoveNext

 Wend

End Sub

The Sub above is almost analogous to the one loading in the activities. We send a SQL statement that gives us all time
items owned by a particular activity. We then iterate over the rows and add a Gantt time for each row. Then we call a
new sub; InitItem. InitItem will take the values from the current row of the supplied recordset and put them into the new
time item.

Private Sub InitTimeItem(newtimeItem As IphDataEntity_GantTime, aRS As Recordset)

 newtimeItem.CanEdit = True

 newtimeItem.Start = aRS.Fields.Item("start").Value

 newtimeItem.Stop = aRS.Fields.Item("stop").Value

 newtimeItem.UserIntegerReference = aRS.Fields.Item("id").Value

 newtimeItem.Color = ColorConstants.vbBlue

End Sub

The sub above moves values from the recordset to the time item. Note that the primary key also is taken from the
recordset and put into the userIntegerReference property, it will be needed when we save data back to the db.

Ok, our work here is done. We have populated the Gantt with data from a database. However, what if it was empty from
the start, then we wont get any output... I guess we need to save stuff in there too...

Save data with ADO from the phGantt

We want to save data that now resides in the phGantt component. Fine, then we must iterate over it, lets start with the
root tree nodes.

Private Sub cmdSave_Click()

Dim activity As IphDataEntity_Tree

 Set activity = Nothing

 SaveActivity phGantX1.RootDataEntitiesTree, activity

End Sub

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 14

We call a sub called SaveActivity that apparently does all the work. It looks like this:

Public Sub SaveActivity(aphDataList As IphDataList, aOwner As IphDataEntity_Tree)

Dim activity As IphDataEntity_Tree

Set aRS = New Recordset

Dim upsertstat As String

 For i = 0 To aphDataList.Count - 1

 Set activity = aphDataList.Items(i)

 owningactivity = -1

 If Not aOwner Is Nothing Then

 owningactivity = aOwner.UserIntegerReference

 End If

 If activity.UserIntegerReference = 0 Then

 id = GetNewID

 upsertstat = "insert into activity (id,name,owningactivity)"

 upsertstat = upsertstat + " values(" + Str(id) + ",'"

 upsertstat = upsertstat + activity.Text + "'," + Str(owningactivity) + ")"

 activity.UserIntegerReference = id

 Else

 upsertstat = "update activity set name='"

 upsertstat = upsertstat + activity.Text + "' where id="

 upsertstat = upsertstat + Str(activity.UserIntegerReference)

 End If

 Set aRS = New Recordset

 aRS.Open upsertstat, db, adOpenStatic

 SaveTimeItems activity ' Save corresponding time items

 SaveActivity activity.SubDataList, activity ' traverse owned nodes

 Next

End Sub

The sub above receives a list of dataentities, which it iterates. For each DataEntity, it does four things. The first thing is to
decide if the DataEntity is a subnode or not, if it is a sub node we need to know because we want to put the foreign key
to the owner in the database. The second thing we do is to check if the UserIntegerReference is zero or not. If it is zero
we take this as a sign that this particular item is newly created in this session and is not represented in the database yet.
If this is the case we must use an insert statement instead of an update statement. We also need to get a new unique
identity to put in the primary key field. The primary key is fetched by the sub GetNewID, described further down this
document.

The third thing we do is to execute the compiled SQL statement. Moreover, the fourth thing is to save the corresponding
time items. And the fifth thing is to call our self in a recursive loop to do the same thing for our sub nodes.

Public Function GetNewID()

 If adoIDValueRS.RecordCount = 0 Then

 adoIDValueRS.Close

 adoIDValueRS.Open "insert into IDValue (lastid) values (1)", db

 GetNewID = 1

 Else

 adoIDValueRS.Close

 adoIDValueRS.Open "update IDValue set lastid=lastid +1 ", db

 adoIDValueRS.Open "select lastid from IDValue", db

 GetNewID = adoIDValueRS.Fields.Item("LastID").Value

 End If

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 15

End Function

The sub above makes sure that we always get a unique id for our newly created items. This is important if we are in a
multi user environment. There are many ways to retrieve unique keys, many databases has built in support for this
operation.

We also called the sub SaveTimeItems earlier, so let us look on that:

Public Sub SaveTimeItems(activity As IphDataEntity_Tree)

Set aRS = New Recordset

Dim upsertstat As String

Dim starttime, stoptime As String

Dim gantRow As IGantRow

Dim ganttime As IphDataEntity_GantTime

 Set gantRow = phGantX1.RowList.FindRowFromTreeNode(activity)

 For i = 0 To gantRow.DataLists.DataList(0).Count - 1

 Set ganttime = gantRow.DataLists.DataList(0).Items(i)

 starttime = "'" + Str(ganttime.Start) + "'"

 stoptime = "'" + Str(ganttime.Stop) + "'"

 activityid = activity.UserIntegerReference

 If ganttime.UserIntegerReference = 0 Then

 id = GetNewID

 upsertstat = "insert into worktime (id,activity,start,stop) values("

 upsertstat = upsertstat + Str(id) + "," + Str(activityid) + ","

 upsertstat = upsertstat + starttime + ","

 upsertstat = upsertstat + stoptime + ")"

 ganttime.UserIntegerReference = id

 Else

 upsertstat = "update worktime set activity=" + Str(activityid)

 upsertstat = upsertstat + ",start=" + starttime + ",stop=" + stoptime

 upsertstat = upsertstat + " where id=" + Str(ganttime.UserIntegerReference)

 End If

 Set aRS = New Recordset

aRS.Open upsertstat, db, adOpenStatic

 Next

End Sub

As you can see this sub is almost the same as the one saving the activities, and there is really nothing to add.

When you run the sample code you will notice that all the formatting of treenodes and color and drawing styles of time
items are lost when we save and reload. This would be a good exercise to extend the database tables to allow them to
hold this formatting information and both save it and load it.

http://www.plexityhide.com/
mailto:info@plexityHide.com

 www.plexityHide.com info@plexityHide.com

⚫ Page 16

References

Tidomat is working on products using plexityHide components.

Swedish television broadcasting cooperation has built program planning and project planning systems using phGantt
and phSchema.

The Swedish parliament builds a workflow system for their production of documents. PlexityHide components are used
to visualize planning and current state of documents.

Boldsoft are framework builders, one of a kind. PlexityHide support this framework, both phGantt and phSchema can be
delivered Bold-Aware.

Openinfo is the software-consulting firm of Stockholm that first started the development of the plexityHide time
components.

Buy plexityHide components at ComponentSource.

http://www.plexityhide.com/
mailto:info@plexityHide.com

