
 1

Virtualload in the phGant

Background and introduction

Virtual load allows the phGant to handle unloaded rows. Before virtual load was

supported all rows in the phGant was instantiated and loaded prior to the first draw

operation. To instantiate rows is resource consuming, and users that needed to use the

phGant as a “window” to very large datasets suffered from this memory and time

consumption.

Virtual load basically allows the developer to tell the phGant about the complete

amount off rows in very large or gigantic datasets without being punished in extreme

use of memory or time. The Virtual load functionality loads and unloads phGantRows

as they are needed. The need for a particular row is based on that it is on screen or that

it has state that the programmer do not want to persist in order to recreate at a later

time (typically selections). A row can also be needed if it is part of a tree hierarchy

and one of its child nodes are needed.

Add unloaded and Purge

All concerned lists in the phGant (except the RowList, RowList is managed by the

grid, and only for loaded rows) have been given the ability to accept unloaded rows

and to purge unused rows. The key methods are:

AddUnloaded(x) – Tells the list to add unloaded rows to the list. These rows are

never loaded unless they are needed.

Purge() - Tells the list that it should scan for unused rows and try to unload them

(this is done automatically for the grid).

Load on demand

All concerned lists in the phGant (except the RowList) have been given a load on

demand behaviour. This means that if you were to ask for an item that is not loaded

yet, using the Items property, it will be loaded in order to give you the result. In order

to avoid unwanted loading of items new properties has been added:

IsLoaded(x) – Answers the question if a given index is loaded or not.

LoadedCount() - Tells you how many items that are currently loaded.

Loaded[x] – Gives you one of the loaded items, will never trigger load on demand.

Developer interaction

The virtual load functionality has been added to the phGant and phGrid and as such it

needs developer interaction when loading and unloading rows. We also need for the

developer to say if it is ok to purge a row or if we should keep it for some reason.

Also when an operation that requires the complete amount of rows, like sorting, is

performed we need to give the developer a choice of solving this outside the control.

The key events are:

 2

PhGant.OnVirtualLoad_Grid – The control is in need of an unloaded row, you

should fill it with the correct data.

PhGant.OnVirtualUnLoad_Grid – The control has detected that this row is not

needed, you should answer if it is OK to unload, and possibly save any state changes

back to the dataset.

PhGant.OnColumnSort_Grid – The grid header has been clicked, you can choose

what the reaction should be. The default response is to load all rows and resort them.

Limitations

The virtual load is implemented as a loaded window in an unloaded list. This means

that the loaded items are always in contact with each other. If the first item is loaded

and not allowed to unload, and the last item is required, then all items in between will

be loaded automatically. The developer should be aware of this implementation in

order to avoid forcing the phGant to load to many rows.

If the users make use of the multi select function, and marks the first row and tries to

select all rows by using shift and ctrl-end, an internal safe-catch will limit the

selection to the last row and 500 hundred rows above. If this safe-catch did not exist,

all rows would be needed in order to mark them as selected.

Examples and reference

void __fastcall TGanttView::phGant1VirtualLoad_Grid(

 TBabGridCell *theCaller, TAxisContentItem *theAxisItem,

 bool theRowNotColumn)

{

 if (theRowNotColumn) //Only for rows, in this example we do not show virtual cols

 {

 int fixed = theAxisItem->AxisContentList->FixedItems;

 int i = theAxisItem->ListIndex() - fixed;

 VirtuelTestData *p = virtuelTestDatas[i];

 // Init the cells in the grid

 phGant1->Grid->SetText(phGant1->Grid->Cell[1][i+fixed], IntToStr(p->id));

 phGant1->Grid->SetText(phGant1->Grid->Cell[2][i+fixed], IntToStr(p->date));

 // Add a time item to the gantRow

 TphDataEntity_GantTime *timeitem = phGant1->GridNode_AddGantTime(

 phGant1->Grid->AxisContentItemToGridTreeNode(theAxisItem),0);

 timeitem->Start = (double) p->date;

 timeitem->Stop=(double) (p->date+5);

 timeitem->Style =gtsPipe ;

 timeitem->Color = clYellow;

 }

}

void __fastcall TGanttView::phGant1VirtualUnLoad_Grid(

 TBabGridCell *theCaller, TAxisContentItem *theAxisItem,

 bool theRowNotColumn, bool UnloadPerform, bool &CanUnload)

{

 if (theRowNotColumn) // Only for rows

 {

 CanUnload=true; // Important answer, if we say FALSE the row will not unload

 if (UnloadPerform)

 {

 // Save any state-changes if it is not already done

 3

 }

 }

 else

 {

 CanUnload=false; //Since we do not want virtual columns we never unload them

 }

}

void __fastcall TGanttView::phGant1ColumnSort_Grid(TphGrid *aGrid,

 TphGrid_Column *aColumn, bool aUpNotDown, bool &GoOnInternalSort)

{

 GoOnInternalSort=false; // Prevent default sorting (load and compare all rows)

 aGrid->MainGrid->AxisContentListY->UnloadAll(); // On next Paint, all visible data

vill be reloaded, Great if we have re-shuffled our dataset

 /* Resort all content here

 switch (aColumn->Index) {

 case 0: ListView1->CustomSort(CustomSortCompareId, sortDirections[Column-

>Index]); break;

 case 1: ListView1->CustomSort(CustomSortCompareSize, sortDirections[Column-

>Index]); break;

 }*/

}

 TAxisContentList=class // Used by grid to hold x and y axis

 public

 constructor create(theBabGridCell:TBabGridCell);

 destructor Destroy;override;

 function getGridCell:TBabGridCell;

 procedure Drop(i:integer);

 procedure Clear;

 procedure ClearKeepFixedItems;

 procedure ClearVisibles;

 function InsertNew(i: integer; theValue: TObject):TAxisContentItem;

 function AddNew(theValue: TObject):TAxisContentItem;

 function IsLoaded(x: Integer):Boolean;

 procedure AddUnloaded(x: Integer);

 procedure UnloadAll;

 procedure Purge;

 procedure Move(curIndex,newIndex:integer);

 function Count:Integer;

 function VisibleCount:Integer;

 function LoadedCount:Integer;

 property Items[i:integer]:TAxisContentItem

 property Visibles[i:integer]:TaxisContentItem

 property Loaded[i:integer]:TaxisContentItem

 property HiddenRowCount:integer read GetHiddenRowCount;

 property FixedItems:Integer read fFixedItems write fFixedItems;

 property LoadOperationInFront:Boolean read fLoadOperationInFront;

 end;

 TphDataList=class(TphExposable) // Used by Tree and time items lists

 public

 destructor Destroy;override;

 function FindDataEntity(theFindFunc:TFindFunc):TphDataEntity;

 procedure Sort(theDescending:Boolean);

 procedure ClearSelections;

 function Add:TphDataEntity;

 function Insert(theIndex:Integer):TphDataEntity;

 procedure AddUnloaded(x:Integer);virtual;

 function IsLoaded(x: Integer): Boolean;

 procedure UnloadAll;

 4

 procedure Purge;

 procedure Clear;

 function Count:Integer;

 function LoadedCount:Integer;

 procedure Delete(theIndex:integer);

 procedure Remove(theDataEntity:TphDataEntity);

 function IndexOf(theDataEntity:TphDataEntity):integer;

 function VisibleCount:integer;

 property Items[index: integer]: TphDataEntity;

 property Loaded[index: integer]: TphDataEntity;

 property ListController:TphListController;

 end;

