75
sql TEST

tSQLt Framework

tSQLt is the open source database unit testing
framework used in SQL Test. tSQLt is compatible
with SQL Server 2005 (service pack 2 required)
and above on all editions.

tSQLt allows you to implement unit tests in T-SQL
as stored procedures. The framework itself is

a collection of objects that instal into a schema
named tSQLt. The following tSQLt features

make it easier to create and manage unit tests.

Key Points

Tests are automatically run within transactions
— this keeps tests independent and removes

the need for clean-up code, as all changes are
automatically rolled back.

Tests can be grouped together within a schema
— allowing you to organize your tests and use
common setup methods.

Results can be output as text or JUnit XML
— making it easier to integrate with a continuous
integration tool.

Mocking features to fake tables and views, and
create stored procedure spies — allowing you to
isolate the code which you are testing.

tSQLt QUICK REFERENCE GUIDE

Assertions

AssertEquals
Compares two values for equality.

tSQLt.AssertEquals [@Expected =] expected value
, [@Actual =] actual value
[, [@Message =] 'message’]

AssertEqualsString
Compares two string values for equality.

tSQLt.AssertEqualsString [@Expected =] expected value
, [@Actual =] actual value
[, [@Message =] ‘message’]

AssertEqualsTable
Compares the contents of two tables for equality.

tSQLt.AssertEqualsTable [@Expected =] ‘'expected table name'
, [@Actual =] 'actual table name'
[, [@FailMsg =] 'message’]

AssertObjectExists

Checks to see if an object with the specified name
exists in the database.

tSQLt.AssertObjectExists [@O0bjectName =] ‘object name'
[, [@Message =] ‘message’]

AssertResultSetsHaveSameMetaData

Compares the meta data (column names and
properties) of results for two commands.

tSQLt.AssertResultSetsHaveSameMetaData
[@expectedCommand =] 'expected command'

Fail
Simply fails a test case with the specified failure
message.

tSQLt.Fail [[@Message0 =] message part]

redgate

Isolating Dependencies

FakeTable

Replaces a table with a fake table, without data and
constraints.

tSQLt.FakeTable [@TableName =] 'table name'
, [[@SchemaName =] 'schema name']
, [[@Identity =] 'preserve identity']
, [[@ComputedCqumns =] ‘preserve computed columns’]
, [[@Defaults =] 'preserve default constraints']

ApplyConstraint

Adds back constraints to a faked table so they can
be tested independently.

tSQLt.ApplyConstraint [@TableName =] 'table name'
, [@ConstraintName =] 'constraint name'
, [@SchemaName =] 'schema name'

SpyProcedure
Replaces stored procedure functionality with logging.

tSQLt.SpyProcedure [@ProcedureName =] ‘procedure name'
[, [@CommandToExecute =] ‘command']

AdventureWorks Example Test

CREATE PROCEDURE [MyNewTestClass].[test update employee]
AS

BEGIN

EXEC tSQLt.FakeTable 'HumanResources.Employee’;

INSERT INTO HumanResources.Employee (EmployeelD, Gender)
VALUES (0, 'M);

EXEC HumanResources.uspUpdateEmployeePersonallnfo
@EmployeelD = 0,
@NationallDNumber = NULL,
@BirthDate = NULL,
@MaritalStatus = NULL,
@Gender = 'F;

DECLARE @ActualGender CHAR(1);
SET @ActualGender = (SELECT Gender FROM HumanResources.Employee);

EXEC tSQLt.AssertEquals @Expected = 'F', @Actual = @ActualGender;
END;

