
tSQLt QUICK REFERENCE GUIDE

Key Points

Tests are automatically run within transactions
– this keeps tests independent and removes
the need for clean-up code, as all changes are
automatically rolled back.

Tests can be grouped together within a schema
– allowing you to organize your tests and use
common setup methods.

Results can be output as text or JUnit XML
– making it easier to integrate with a continuous
integration tool.

Mocking features to fake tables and views, and
create stored procedure spies – allowing you to
isolate the code which you are testing.

tSQLt Framework

tSQLt is the open source database unit testing
framework used in SQL Test. tSQLt is compatible
with SQL Server 2005 (service pack 2 required)
and above on all editions.

tSQLt allows you to implement unit tests in T-SQL
as stored procedures. The framework itself is
a collection of objects that instal into a schema
named tSQLt. The following tSQLt features
make it easier to create and manage unit tests.

Assertions

AssertEquals
Compares two values for equality.
tSQLt.AssertEquals [@Expected =] expected value

 , [@Actual =] actual value

 [, [@Message =] 'message']

AssertEqualsString
Compares two string values for equality.
tSQLt.AssertEqualsString [@Expected =] expected value

 , [@Actual =] actual value

 [, [@Message =] 'message']

AssertEqualsTable
Compares the contents of two tables for equality.
tSQLt.AssertEqualsTable [@Expected =] 'expected table name'

 , [@Actual =] 'actual table name'

 [, [@FailMsg =] 'message']

AssertObjectExists
Checks to see if an object with the specified name
exists in the database.
tSQLt.AssertObjectExists [@ObjectName =] 'object name'

 [, [@Message =] 'message']

AssertResultSetsHaveSameMetaData
Compares the meta data (column names and
properties) of results for two commands.
tSQLt.AssertResultSetsHaveSameMetaData

[@expectedCommand =] 'expected command'

Fail
Simply fails a test case with the specified failure
message.
tSQLt.Fail [[@Message0 =] message part]

Isolating Dependencies

AdventureWorks Example Test

FakeTable
Replaces a table with a fake table, without data and
constraints.
tSQLt.FakeTable [@TableName =] 'table name'

 , [[@SchemaName =] 'schema name']

 , [[@Identity =] 'preserve identity']

 , [[@ComputedColumns =] 'preserve computed columns']

 , [[@Defaults =] 'preserve default constraints']

ApplyConstraint
Adds back constraints to a faked table so they can
be tested independently.
tSQLt.ApplyConstraint [@TableName =] 'table name'

 , [@ConstraintName =] 'constraint name'

 , [@SchemaName =] 'schema name'

SpyProcedure
Replaces stored procedure functionality with logging.
tSQLt.SpyProcedure [@ProcedureName =] 'procedure name'

 [, [@CommandToExecute =] 'command']

CREATE PROCEDURE [MyNewTestClass].[test update employee]
AS
BEGIN
EXEC tSQLt.FakeTable 'HumanResources.Employee';
INSERT INTO HumanResources.Employee (EmployeeID, Gender)
VALUES (0, 'M');

EXEC HumanResources.uspUpdateEmployeePersonalInfo
 @EmployeeID = 0,
 @NationalIDNumber = NULL,
 @BirthDate = NULL,
 @MaritalStatus = NULL,
 @Gender = 'F';

DECLARE @ActualGender CHAR(1);
SET @ActualGender = (SELECT Gender FROM HumanResources.Employee);

EXEC tSQLt.AssertEquals @Expected = 'F', @Actual = @ActualGender;
END;

