
PowerShell Studio - Help Manual

© 2023 by SAPIEN Technologies Inc., all rights reserved

1

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Contents

1. Welcome to PowerShell Studio

 6

2. Introduction

 7

About PowerShell Studio .. 7

How to Buy PowerShell Studio ... 7

3. Getting Started

 9

Installing PowerShell Studio ... 9

Staying Up-to-date ... 15

Getting Help ... 15

4. Basic Orientation

 18

User Interface ... 18

The Start Page ... 19

The Ribbon ... 20

Quick Access Toolbar .. 24

Panels and Docking .. 24

Status Bar .. 29

Customizing Your Workspace ... 31

Selecting a Style .. 31

Customizing the Quick Access Toolbar .. 31

Panels and Layouts ... 32
Introduction to Panels .. 32

Working with Panels ... 35

Layouts .. 44

5. Script Editor

 48

Editing Aids .. 48

Line Numbering and Visual Features .. 48

Code Folding ... 49

Reference Highlighting ... 52

Syntax Checking .. 53

Navigation and Bookmarks ... 54

Navigation Bar .. 56

Clipboard Integration .. 61

Find and Replace Options ... 62

Find and Replace .. 62

Find in Files ... 64

Find All References ... 68

2

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Contents

PrimalSense™ ... 70

Converting Cmdlets and Aliases ... 77

Snippets .. 80

Script Signing .. 83

File Encoding .. 85

Context Menu Options .. 85

Functions and Parameters .. 87

Function Builder ... 87
Function (Cmdlet) Name ... 90

Synopsis and Description .. 90

Cmdlet Binding ... 90

Output Type ... 91

Parameter Sets ... 92

Default Parameter Set ... 93

Parameters ... 93

Parameter Set Filter .. 97

Parameter Editor ... 99

Special Considerations .. 104

Create Functions from Selection ... 105

Editing Functions .. 106

Importing Functions ... 108

Parameter Builder .. 110

Comment-Based Help .. 112

Comment-Based Help Templates .. 116
About the Comment-Based Help Template ... 116

Comment-Based Help Template Variables ... 117

Creating a Comment-Based Help Template ... 118

Selecting an Existing Comment-Based Help Template .. 119

Multi-line or Single-line Comments .. 120

File Type Templates ... 121

Using Predefined File Templates ... 121

Creating New File Templates ... 124

Template Variables .. 128

Rename Refactoring .. 130

Verifying Your Script .. 135

6. Running and Debugging Scripts

 137

Run and Debug Ribbon Controls .. 137

Running Scripts .. 143

Debugging Scripts .. 144

Working with Breakpoints ... 144

3

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Contents

Working with Tracepoints .. 146

Passing Parameters .. 149

Debug Panels .. 150

Running and Debugging Remotely ... 150

7. GUI Designer

 154

Forms Designer Introduction .. 154

Creating a New Form ... 158

Working with Form Controls .. 161

Preview GUI ... 167

Adding Events .. 168

Form Templates ... 173

Using Predefined Form Templates .. 173

Creating New Form or Grid Templates ... 176

Working with Grid Templates .. 180

Exporting Form Scripts .. 183

Initializing GUI Controls .. 184

Control Helper Functions .. 186

Property Sets .. 190

Control Sets .. 195

8. Panels

 206

Call Stack Panel .. 208

Console Panel .. 208

Debug Console ... 210

File Browser ... 211

Find Results Panel ... 213

Function Explorer Panel .. 215

Help Panel .. 217

Object Browser .. 218

Output Panel ... 226

Performance Panel .. 228

Project Panel .. 230

Project Files and Folders .. 234

Properties Panel .. 245

Snippets Panel ... 250

Toolbox Panel .. 255

4

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Contents

Tools Output Panel ... 259

Variables Panel .. 261

Watch Panel ... 264

9. Projects

 267

Project Templates .. 267

Available Project Templates .. 267

Creating a Project ... 270

Collection Project ... 273

Module Project ... 276

New Module from Functions ... 277

Project Properties .. 281

Managing Project Files .. 283

Project File Properties ... 285

Adding Script Parameters to Projects ... 286

Running a Project .. 287

Exporting a Project .. 288

Form Return Variables .. 289

Projects and Source Control ... 292

10. Packaging Scripts

 294

Creating a Script Package .. 294

Setting up the Script Packager .. 295

11. Source Control Integration

 305

Universal Version Control ... 305

Microsoft Source Code Control Integration ... 308

12. ScriptMerge

 315

Running ScriptMerge ... 315

Comparing Files ... 315

Comparing Folders ... 318

Comparing Groups ... 320

Context Menu Options .. 321

Navigating Between Differences ... 322

Reconciling Differences ... 323

Signing Scripts .. 323

5

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Contents

ScriptMerge Settings .. 324

13. Snippet Editor

 329

14. Options and Settings

 335

Accessing the Options ... 335

General ... 335

Backup .. 339

Console ... 341

Debugger .. 344

Designer ... 346

Editor .. 350

Assemblies .. 359

Formatting .. 360

PrimalSense™ .. 369

Panels ... 371

PowerShell ... 374

Source Control ... 375

15. Remote Script Execution Engine

 379

16. Reference

 385

SAPIEN Updates ... 385

Keyboard Shortcuts ... 388

Appendices ... 398

Appendix A: Manual Version ... 399

Appendix B: Icon License Attribution .. 399

6

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Welcome to PowerShell Studio

1 Welcome to PowerShell Studio

Windows PowerShell scripting and tool-making has never been easier!

 Welcome to PowerShell Studio, the premier scripting and tool-making environment

for Windows PowerShell. This single tool will meet all your scripting needs. In addi-

tion to creating graphical tools using Windows PowerShell with the GUI designer,

you can also create Windows PowerShell script modules in minutes and easily con-

vert your existing functions to a distributable module.

PowerShell Studio features a robust editor and a script packager with advanced option and platform

selections to help you deliver solutions targeted at specific environments.

About this documentation

This help is designed to show you how to use PowerShell Studio—you can do a quick overview to

get started, work through the topics in detail, and refer back to this guide for additional information

when needed.

Getting started - new users

· Download and install PowerShell Studio.

· Get a quick overview of the user interface and see how to customize your workspace .

· Learn how to use PowerShell Studio's powerful script editor , run and debug scripts , and cre-

ate GUI forms .

· Visit the support forum to get help from SAPIEN staff and other experienced PowerShell Studio

users.

18 31

48 137

154

https://www.sapien.com/software/powershell_studio
https://www.sapien.com/forums/viewforum.php?f=12

7

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Introduction

2 Introduction

This section provides an overview of the PowerShell Studio features, shows you how to purchase directly

online or through a reseller, and lets you know how to get answers to your questions.

2.1 About PowerShell Studio

PowerShell Studio is the premier Windows PowerShell integrated scripting and tool-making environ-

ment.

Key Features

· Fully-featured PowerShell Editor.

· Visually create PowerShell GUI tools.

· Convert scripts into executables (.exe) files.

· Create MSI installers.

· Create modules, advanced functions, and windows services.

· For a complete list of current features, visit the PowerShell Studio product page.

What's New

We are always updating and improving PowerShell Studio. You can learn about the latest product

updates on our blog and in the release build log.

· Check out the latest PowerShell Studio tips and product feature demonstrations on the SAPIEN

blog.

· View a brief synopsis of what was changed, added, or fixed in the most recent PowerShell Studio

build in the product version history.

· Submit feedback and suggestions.

2.2 How to Buy PowerShell Studio

You can buy PowerShell Studio online with all major credit cards. As soon as your transaction completes,

you will be able to download and install the program.

For answers to your pre-order questions, check out the SAPIEN Frequently Asked Questions or post in

the Trial Software / Pre-sales Technical Questions forum.

9

https://www.sapien.com/software/powershell_studio
https://www.sapien.com/blog/topics/software-news/powershell-studio/
https://www.sapien.com/blog/topics/software-news/powershell-studio/
https://www.sapien.com/software/version_history/PowerShell_Studio_2023
https://www.sapien.com/requests/product_requests/1
https://www.sapien.com/support/faqs
https://www.sapien.com/forums/viewforum.php?f=8

8

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Introduction

Order link and PowerShell Studio product page

Online orders:

https://www.sapien.com/store/powershell-studio

Worldwide authorized resellers:

https://www.sapien.com/company/resellers

PowerShell Studio product page:

https://www.sapien.com/software/powershell_studio

https://www.sapien.com/store/powershell-studio
https://www.sapien.com/company/resellers
https://www.sapien.com/software/powershell_studio

9

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Getting Started

3 Getting Started

This section shows you how to download and install PowerShell Studio, how to keep the application up-

dated with the latest builds, and how to find additional help.

3.1 Installing PowerShell Studio

This section shows you how to install and activate PowerShell Studio, and it also covers how to remove

your activation if you need to use it on a different computer.

Downloading PowerShell Studio

All SAPIEN Technologies software products are downloadable only. Download registered products

from your SAPIEN Account Registered Products page.

Select the 64-bit version of PowerShell Studio to download. The installer software will save to your

default download folder (e.g., SPS23Setup_5.8.216_012323_x64.exe).

 Starting with the PowerShell Studio 2020 product release, 32-bit versions are no longer available.

Current owners of a license that includes a 32-bit product will have access to that from their SAPIEN

Account Registered Products page.

Want to try before you buy? You can download a trial version here.

Installing PowerShell Studio

Follow these instructions to install PowerShell Studio.

How to install PowerShell Studio

1. In your default download folder, double-click on the downloaded program (e.g.,

SPS23Setup_5.8.216_012323_x64.exe).

2. Reply Yes to the "Do you want to allow this app to make changes to your device?" prompt.

The installation wizard will first check several items, such as available disk space and the presence

of previous builds. If the environment is adequate, the installer will display the legal agreement

which you must accept to proceed:

a. Read the terms of the license agreement.

b. Accept the terms of the license agreement. You should never accept license terms unless you

have read them, and you understand them.

c. Once you have accepted the terms, click Install.

 The software will install in the default location as shown, unless you change the path.

https://www.sapien.com/store/index.php?route=account/login
https://www.sapien.com/store/index.php?route=account/login
https://www.sapien.com/store/index.php?route=account/login
https://www.sapien.com/software/powershell_studio

10

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Getting Started

3. The installation may take several minutes.

11

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Getting Started

5. When PowerShell Studio successfully completes the installation, click Finish.

12

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Getting Started

Silent Installation

Use this command if you need to install silently: SPSxxSetup_x.x.xxx_xxxxxx_x64.exe /exenoui /qn

(e.g., SPS23Setup_5.8.216_012323_x64.exe /exenoui /qn)

Troubleshooting Installation

If you encounter any problems installing PowerShell Studio please report them in the Installation Is-

sues support forum.

Use these Installer Log parameters to output to a log file: Installer.exe /exenoui /qn /L*v .\SPS_In-

stall.log

https://www.sapien.com/forums/viewforum.php?f=29
https://www.sapien.com/forums/viewforum.php?f=29

13

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Getting Started

Firewall Considerations

PowerShell Studio can be configured to install a small service to support the Remote Script Execu-

tion Engine (RSEE). This will result in a firewall warning as the service attempts to open the port it

listens on. For information on configuring RSEE see Remote Script Execution Engine .

PowerShell Studio occasionally attempts to access a text file located on the sapien.com web site. This

text file contains the version number of the current version of PowerShell Studio—your firewall soft-

ware may warn you when PowerShell Studio attempts to read this file for the first time. PowerShell

Studio does not transmit any personally-identifiable information when making this check—its sole

purpose is to notify you when updates are available.

PowerShell Studio also accesses the web to activate the product (after initial installation), and to dis-

play web pages when you click on web links within the application.

Activating and Deactivating PowerShell Studio

Software activations are outlined in our End-User License Agreement. The number of activations al-

lowed will differ depending on your type of license. For Perpetual Licenses, each licensed user is al-

lowed to have a maximum of two devices activated and operating at any given time for personal

use. For Subscriptions*, each licensed user is allowed to have the software activated on a total of 20

devices with a maximum of two devices operating simultaneously at any given time for personal

use.

Product Activation

Registration is required to activate and operate the product, and also to obtain any customer service

or technical support benefits. Registration only takes a few moments to complete and provides you

with access to special offers including preferred pricing on renewals. You will need an active internet

connection to complete product registration.

An active internet connection may not be required if you have a legitimate reason for needing offline

access. To request offline activation please fill out this request. All requests are considered on a case-

by-case basis. Please note: Activation keys belonging to Subscriptions* are not eligible for Offline

Activation.

* Information about software activations for Subscriptions only applies to SAPIEN Technologies

products with a Subscription purchase offer.

To activate PowerShell Studio

The first time you launch a SAPIEN product, the Welcome screen is displayed.

379

https://www.sapien.com/company/eula
https://info.sapien.com/index.php/quickguides/sapien-software-subscriptions#UsingSubscription
https://info.sapien.com/index.php/quickguides/offline-license-file-replaces-offline-license-key
https://info.sapien.com/index.php/quickguides/offline-license-file-replaces-offline-license-key
https://www.sapien.com/account/requestkey
https://info.sapien.com/index.php/quickguides/sapien-software-subscriptions#UsingSubscription

14

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Getting Started

The steps to activate the product vary depending on whether or not you already have a SAPIEN ac-

count.

 Follow the steps in the Quick Guide to SAPIEN Software Activation to activate the software.

If you are unable to activate the product, contact sales@sapien.com.

Product Deactivation

Removing a software activation, also known as "deactivating", allows you to free up an activation for

use on another device.

You may deactivate your devices to free up your activations at your leisure, but there are certain cir-

cumstances where proper deactivation is crucial to prevent the loss of your allotted activations .

 Uninstalling the software from your device does not deactivate the activation key.

To deactivate your activation key

In the top-right of PowerShell Studio above the ribbon, click the Activation Information button.

The Activation Information window will open.

 Follow the steps in the SAPIEN Software Activation / Deactivation FAQ to deactivate your activa-

tion key.

13

https://info.sapien.com/index.php/quickguides/quick-guide-to-sapien-software-activation
mailto:sales@sapien.com?Subject=Activation%20Support
https://info.sapien.com/index.php/quickguides/sapien-software-activation-deactivation-faq

15

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Getting Started

3.2 Staying Up-to-date

We are continually updating PowerShell Studio, both to remove bugs and to add and improve product

features. We recommend always staying current with the most recent version to ensure that you are tak-

ing advantage of the latest features, functionality, and product stability.

 The details for every PowerShell Studio release are available in the version history.

Check for Updates

By default, PowerShell Studio will automatically check for software updates. You can also manually

check for updates.

To check for updates

· On the Help ribbon > in the Updates section, click Check For Updates to open the SAPIEN Up-

dates tool and see if there is a new PowerShell Studio build available:

3.3 Getting Help

This help manual has been designed to provide all the information you will need for using PowerShell

Studio. In addition to the information in this guide, you can also ask questions in the online support for-

ums .

 View PowerShell Studio product feature demonstrations and release details on our blog.

Accessing the help manual

· To view the help manual online

· In PowerShell Studio, on the Help ribbon > in the Product Support section, click Product

Manual.

 The SAPIEN Information Center provides direct access to all of the SAPIEN product manuals.

385

16

https://www.sapien.com/software/version_history/PowerShell_Studio_2023
https://www.sapien.com/blog/topics/software-news/powershell-studio/
https://info.sapien.com/manuals/

16

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Getting Started

User forums and support

SAPIEN Technologies provides a variety of ways to get help with PowerShell Studio, including com-

munity support forums for your scripting questions.

Support Options

Every registered PowerShell Studio perpetual or subscription license with active maintenance in-

cludes basic support in our PowerShell Studio product support forum.

 If your PowerShell Studio maintenance has expired, you must renew in order to obtain support.

Premium Support

SAPIEN also offers Premium Support, an elevated support option, at an additional cost. Premium

Support gives you access to our direct technical ticketing system and guarantees a response within

24 hours, as well as personalized attention until the issue is resolved.

Support Forums

SAPIEN provides product support forums where our development team answers user questions.

Our support technicians monitor the forums daily, but response times are not guaranteed.

PowerShell Studio Forums

The Send Feedback menu on the top-right of the ribbon header provides direct links to support op-

tions:

The following PowerShell Studio support options are available on the Send Feedback menu:

· Report a Problem...

Opens the PowerShell Studio forum where you can report a problem with the software or ask a

product-specific question.

 You will need to provide your PowerShell Studio and OS version information to obtain sup-

port.

· Provide a Suggestion...

Opens the Feature Request page on the SAPIEN site where you can make a product feature re-

quest or suggestion.

17

https://www.sapien.com/forums/viewforum.php?f=12
https://www.sapien.com/store/renewals
https://www.sapien.com/support/premiumsupport
https://www.sapien.com/support/premiumsupport
https://www.sapien.com/support/premiumsupport
https://www.sapien.com/forums/viewforum.php?f=12
https://www.sapien.com/forums/viewforum.php?f=9

17

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Getting Started

Scripting Forums

The following scripting and programming support option is available on the Send Feedback menu:

· Scripting Question...

Opens the Scripting Answers forums where you can access community support for answers to

your scripting questions.

Product Version Information

To report a problem in the PowerShell Studio forum, you will need to provide your SAPIEN

product and OS version information.

· Copy Product Information

Copies the product version information to your clipboard.

How to copy version information

To report a problem in the PowerShell Studio forum, you will need to include the product version

and build, and also your OS version and build—and indicate 32 or 64-bit for each.

To copy the required version information

1. On the Send Feedback menu > select Copy Product Information.

2. Paste the version information into your PowerShell Studio forum post.

 You can also copy the version information by clicking the About button in the top-right of the

PowerShell Studio workspace, and then clicking Copy Version Info:

https://www.sapien.com/forums/viewforum.php?f=6
https://www.sapien.com/forums/viewforum.php?f=12
https://www.sapien.com/forums/viewforum.php?f=12
https://www.sapien.com/forums/viewforum.php?f=12

18

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

4 Basic Orientation

The PowerShell Studio window has many useful features and can be easily customized for various tasks.

This section explains basic navigation by introducing you to the user interface and showing you how to

customize your workspace.

4.1 User Interface

This section provides a basic introduction to some of the main PowerShell Studio user interface ele-

ments.

PowerShell Studio Program Window

The image below shows the major features of the customizable PowerShell Studio window:

19

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

4.1.1 The Start Page

When you start PowerShell Studio, the Start Page opens in the center of the window:

Start Page Links

· SAPIEN's Product Support Web Site

· SAPIEN's Scripting Answers Web Forum

· SAPIEN's Web Site

· SAPIEN's Twitter Feed

· SAPIEN's Facebook Page

· Recently Opened Files

· Recently Opened Projects

· SAPIEN's Blog News Feed

20

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

How to disable the Start Page

· Click the Do not show this page on startup link at the bottom-left of the Start Page.

How to enable the Start Page

· Go to File > Options > General > Settings and check Show start page on startup:

4.1.2 The Ribbon

PowerShell Studio displays a ribbon bar at the top of the application window. This topic covers the dif-

ferent ribbon tabs and also the ribbon header buttons located on the right above the ribbon.

Ribbon Tabs

The tabs on the ribbon bar are:

· File

The File tab contains functions related to opening and closing files and projects, and printing:

20 23

21

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

· Home

The Home tab contains the functions used most often while scripting and is the default tab in

PowerShell Studio:

22

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

· Designer

The Designer tab contains functions related to forms manipulation and creation:

· Deploy

The Deploy tab contains tools to create packaged executables, MSI installers and deployment pro-

cedures:

· Tools

The Tools tab contains links to external programs, syntax checking, script signing, compare files

and more:

· Source Control

On the Source Control tab you can access restore points, VersionRecall, and other third party

source control commands such as Git:

· Help

The Help tab contains links to product updates, the manual, and online links to the SAPIEN web-

site and support forums:

23

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

· View

The View tab lets you quickly toggle panels open and closed, split the Editor window, change lay-

outs, and more:

Ribbon Header Buttons

There are also four ribbon header buttons on the right above the ribbon bar:

From left to right:

· Minimize the Ribbon (Ctrl+F1) - Only show tab names on the ribbon.

· Skins - Select color themed skins .

· Activation Information - Display and edit your current activation information.

· About - Display product information.

Color Themed Skins

The main color theme used by PowerShell Studio can be changed from the Skins button on the top-

right of the window. There are a variety of color themes to choose from:

23

24

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

4.1.3 Quick Access Toolbar

The Quick Access Toolbar on the top-left of the program window provides direct access to frequently

used functions.

Quick Access Toolbar - Buttons

From left to right:

· New (Ctrl+N) - Create a new document.

· Save (Ctrl+S) - Save the current document.

· Open (Ctrl+O) - Open an existing document.

· Execution Policy - Opens the Script Security Center where you can change PowerShell's exe-

cution policy.

· Undo (Ctrl+Z) - Undo the previous modification.

· Redo (Ctrl+Y) - Redo the last undone modification.

· Customize - Customize the Quick Access Toolbar.

Click the drop-down arrow to:

o Toggle each button to Display or Not Display on the toolbar.

o Show the Quick Access Toolbar below the ribbon.

 Add your own frequently used functions to the Quick Access Toolbar.

4.1.4 Panels and Docking

Some PowerShell Studio features have dedicated dockable window panels. You can open, close, dock,

and undock the panels, and save your panel arrangements in a layout. This topic introduces the Power-

Shell Studio panels by showing you how to access the panels, providing a description for each panel,

and giving a brief overview on adjusting the panels.

25

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

Accessing Panels

Some panels appear as a tab in a group of panels. If you move panels around or close a panel and

cannot see it, there a number of ways to locate a panel.

To access a panel from the ribbon

· On the ribbon, click View > in the Panels group, check or uncheck a panel:

To access a panel using a keyboard shortcut

· Execute the associated chorded keyboard shortcut: Press Ctrl+Alt+P, release, then press the cor-

responding character key of the chord.

The panels and their shortcuts are listed in the table below, and are also displayed in the ribbon

tooltip for each panel:

Available Panels

Panels available in PowerShell Studio:

Panel Keyboard Shortcut Description

 Call Stack Ctrl + Alt + P, K Displays the function or procedure calls

that are currently on the stack. Used in

debugging.

26

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

 Console Ctrl + Alt + P, C Hosts PowerShell and other embedded

consoles in a separate process.

 Debug Console Ctrl + Alt + P, D A customizable command line console

(PowerShell, PSCore, Bash, etc.) that al-

lows you to interact with a debug session

when at a breakpoint.

 File Browser Ctrl + Alt + P, I Provides direct access to folders and files

on your hard drive.

 Find Results Ctrl + Alt + P, R Displays Find in Files and Find All Refer-

ences search results.

 Function Explorer Ctrl + Alt + P, F Lists all functions, events, workflows, and

configurations referenced in the current

file. When working in a project, functions

defined in other project files are also dis-

played.

 Help Ctrl + Alt + P, H Displays Windows PowerShell command

line help and WMI Help (F1).

 Object Browser Ctrl + Alt + P, B Displays Windows PowerShell modules

and commands, .NET Framework types,

WMI objects, and database objects.

 Output Ctrl + Alt + P, O Displays all script ouptut including gen-

eral application messages, build informa-

tion, errors, debug, verbose, and trace-

point output.

 Performance Ctrl + Alt + P, M Displays the CPU and memory usage of

your PowerShell scripts.

 Project Ctrl + Alt + P, J Central location for managing projects,

including the project's files and folders.

 Properties Ctrl + Alt + P, P View and edit the control properties

when working in the GUI Designer. Edit

27

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

project settings and project file settings

when working in a project.

 Snippets Ctrl + Alt + P, S View and manage preset and user-

defined snippets (reusable text and code).

 Toolbox Ctrl + Alt + P, T Displays Windows Forms controls and

control sets that are available in the GUI

Designer.

 Tools Output Ctrl + Alt + P, L Displays output from external tools.

When debugging, displays breakpoint

notifications and post mortem messages.

 Variables Ctrl + Alt + P, V Lists all variables and values in the current

scope during a breakpoint when debug-

ging.

 Watch Ctrl + Alt + P, W Displays the values of variables and ex-

pressions that you define when debug-

ging.

To quickly access a panel, execute the associated chorded keyboard shortcut. Simply press

Ctrl+Alt+P, release, then press the corresponding character key of the chord.

For details about the content of each panel, see Panels.

Working with Panels

Panels can be adjusted by using the buttons at the top-right of the panel:

From left to right

· Maximize / Restore - This option is visible when there is more than one panel in a location.

You can Maximize the panel to full-size in the location, or Restore the panel so that all panels in the

location are visible.

· Auto Hide / Dock - Auto Hide will vertically collapse, or "Hide" the panel in the location. Dock

will open the panel to a fixed position in the location.

28

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

· Close - Remove the panel from the location.

You can left-click on the title bar of a panel and drag it to another location. The docking indicator will

appear as soon as you begin to drag the panel:

You can drop the panel onto a docking hint to have it snap to the desired location, or leave the

panel floating in the window. As shown by the blue highlighting in the example below, the Snippets

panel will be docked below the Object Browser:

29

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

4.1.5 Status Bar

The status bar at the bottom of the PowerShell Studio window displays information about the current

configuration of PowerShell Studio.

The left side of the status bar contains the following:

· Font Size Slider

The Font Size Slider is used to increase or decrease the font size used in the PowerShell Studio ed-

itor window.

· Layouts

The Layouts menu is used to define and choose different layouts for the scripting environment.

· Auto Layout

30

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

The Auto Layout button is used to enable or disable context sensitive layout changes.

To learn more about the layout options, see Layouts .

Indicators

The right-side of the status bar includes the following status indicators:

· Running Script

Appears when a script is running.

· Refreshing Local Cache

Appears when the local cache is refreshing.

· PowerShell Detected

Appears if PowerShell is detected.

· READ

Read-only status of current file.

· OVR

Overwrite.

· CAP

Caps Lock.

· NUM

Num Lock.

· File Encoding

You can change the encoding of a file by selecting an option from the file encoding menu on the

status bar: ASCII, UTF-8-BOM, UTF-8, UTF-16 BE, UTF-16 LE.

· Line Terminator

You can change the line terminator by selecting an option from the line termination menu on the

status bar: Windows (CRLF), Unix (LF).

· Line

The line position of the caret in the current file.

· Col

The column position of the caret in the current line.

· Char

The character position of the caret in the current line.

When a script is running or the local cache is refreshing, the relevant icon appears on the status bar.

 To cancel a running process or task, click the appropriate icon and select Stop.

44

31

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

4.2 Customizing Your Workspace

The PowerShell Studio workspace can be easily customized to suit your personal preference.

4.2.1 Selecting a Style

A style is a visual layout, skin, or theme.

To change the style for PowerShell Studio

· In the upper right corner, click Skins and then select a style:

 The default style is Visual Studio 2013 Light.

4.2.2 Customizing the Quick Access Toolbar

The Quick Access Toolbar at the top-left of the PowerShell Studio program window provides access to

your most frequently used tools.

To add buttons to the Quick Access Toolbar

· Navigate to the desired function, then right-click and select Add to Quick Access Toolbar.

For example, to add a Keyboard Shortcuts button to the Quick Access Toolbar:

o On the Help ribbon, right-click Keyboard Shortcuts > select Add to Quick Access Toolbar.

32

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

To reset the Quick Access Toolbar

· The Quick Access Toolbar can be reset on the Panels tab of the Options dialog (File > Options >

Panels or Home > Options > Panels):

4.2.3 Panels and Layouts

Some PowerShell Studio tools are displayed in dockable window panels. This section explains how to

work with panels, and how to save your panel arrangements in a layout.

4.2.3.1 Introduction to Panels

You will work with panels in the customizable PowerShell Studio window:

33

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

You can open, close, dock, and undock panels, and also save your panel arrangements in a layout

.

Accessing Panels

If you move panels around or close a panel and cannot see it, you can access the panel from the rib-

bon (View > Panels) or by executing the associated chorded keyboard: Press Ctrl+Alt+P, release,

then press the corresponding character key of the chord.

The panels and their chorded keyboard shortcuts are listed in the table below, and also in the Key-

board Shortcuts topic.

Available Panels

Panels available in PowerShell Studio:

Panel Keyboard Shortcut Description

 Call Stack Ctrl + Alt + P, K Displays the function or procedure calls

44

398

34

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

that are currently on the stack. Used in

debugging.

 Console Ctrl + Alt + P, C Hosts PowerShell and other embedded

consoles in a separate process.

 Debug Console Ctrl + Alt + P, D A customizable command line console

(PowerShell, PSCore, Bash, etc.) that al-

lows you to interact with a debug session

when at a breakpoint.

 File Browser Ctrl + Alt + P, I Provides direct access to folders and files

on your hard drive.

 Find Results Ctrl + Alt + P, R Displays Find in Files and Find All Refer-

ences search results.

 Function Explorer Ctrl + Alt + P, F Lists all functions, events, workflows, and

configurations referenced in the current

file. When working in a project, functions

defined in other project files are also dis-

played.

 Help Ctrl + Alt + P, H Displays Windows PowerShell command

line help and WMI Help (F1).

 Object Browser Ctrl + Alt + P, B Displays Windows PowerShell modules

and commands, .NET Framework types,

WMI objects, and database objects.

 Output Ctrl + Alt + P, O Displays all script ouptut including gen-

eral application messages, build informa-

tion, errors, debug, verbose, and trace-

point output.

 Performance Ctrl + Alt + P, M Displays the CPU and memory usage of

your PowerShell scripts.

 Project Ctrl + Alt + P, J Central location for managing projects,

including the project's files and folders.

35

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

 Properties Ctrl + Alt + P, P View and edit the control properties

when working in the GUI Designer. Edit

project settings and project file settings

when working in a project.

 Snippets Ctrl + Alt + P, S View and manage preset and user-

defined snippets (reusable text and code).

 Toolbox Ctrl + Alt + P, T Displays Windows Forms controls and

control sets that are available in the GUI

Designer.

 Tools Output Ctrl + Alt + P, L Displays output from external tools.

When debugging, displays breakpoint

notifications and post mortem messages.

 Variables Ctrl + Alt + P, V Lists all variables and values in the current

scope during a breakpoint when debug-

ging.

 Watch Ctrl + Alt + P, W Displays the values of variables and ex-

pressions that you define when debug-

ging.

To quickly access a panel, execute the associated chorded keyboard shortcut. Simply press

Ctrl+Alt+P, release, then press the corresponding character key of the chord.

For details about the content of each panel, see Panels.

4.2.3.2 Working with Panels

This section shows how to work with panels by providing an overview of the most common tool panel

tasks.

Opening a Panel

To open or re-open a panel

· On the ribbon, click View > in the Panels group, check or uncheck a panel.

-OR-

· Execute the chorded keyboard shortcut for the panel you want to access: Press Ctrl+Alt+P, re-

lease, then press the corresponding character key of the chord.

398

36

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

Panel Buttons

Once a panel is displayed it can be adjusted by using the buttons at the top-right of the panel:

From left to right

· Maximize / Restore - This option is visible when there is more than one panel in a location.

You can Maximize the panel to full-size in the location, or Restore the panel so that all panels in the

location are visible.

· Auto Hide / Dock - Auto Hide will vertically collapse, or "Hide" the panel in the location. Dock

will open the panel to a fixed position in the location.

· Close - Remove the panel from the location.

Closing a Panel

To close a panel

· In the top-right of the panel, click Close:

Showing a Hidden Panel

To show a hidden panel

Hidden panels are open, but are not docked or floating. They open when you click them, stay open

while you use them, and hide when you click away.

To show a hidden panel, at the edge of the window (left, right, or bottom) click the panel tab that

you want to show:

37

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

The panel will open and stay open until you click away.

 You can see the tabs of hidden panels at the left, right, and bottom edges of the window.

 To keep a hidden panel open, dock it.

Docking a Hidden Panel

To dock a hidden panel

This action causes an open, hidden panel to "dock" in a fixed position.

· In the top-right of the panel, click the pin (to "pin" or "dock" the panel):

-OR-

· Right-click the panel title bar and select Dock.

Hiding a Panel

To hide a panel

This action keeps a panel open, and causes it to "hide" when you click away from the panel.

· In the top-right of the panel, click the pin (to "unpin" or "auto hide"):

-OR-

38

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

· Right-click the panel title bar and select Auto Hide.

Floating a Panel

To float a panel

This action releases a panel from a docked position.

1. Right-click the panel title bar (or panel tab if the panel is grouped), and select Float.

2. Avoiding the docking indicator, drag and release the panel in the desired location.

-OR-

1. Drag the panel title bar (or panel tab if the panel is grouped). If the title bar contains a group of

panels, dragging the title bar will drag the entire group.

2. Avoiding the docking indicator, release the panel in the desired location.

Re-docking a Panel

To re-dock a panel

This action returns a floating panel to its most recently docked position.

· Right-click the panel title bar and select Dock.

Moving a Panel

To move a panel

You can left-click on the title bar of a panel and drag it to another location. The docking indicator will

appear as soon as you begin to drag the panel:

You can drop the panel onto a docking hint to have it snap to the desired location, or leave the

39

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

panel floating in the window. As shown by the blue highlighting in the example below, the Snippets

panel will be docked below the Object Browser:

Another example of how to move a panel:

1. Drag the panel title bar toward the desired location. If the title bar contains a group of panels,

dragging the title bar will move the entire group.

 To separate a panel from a group, right-click the panel tab and click Float.

The docking indicator appears. The locations on the docking indicator represent locations in the

PowerShell Studio layout:

40

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

For example, the center position corresponds to the center of the layout, the center-left position

indicates the center-left position of the layout, and the left position indicates the left side of the

layout.

2. Drag the panel to a location on the docking indicator, and then drop it.

As you move the panel toward a position on the docking indicator, the corresponding part of

the layout displays a blue overlay where the panel will dock:

41

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

When you drop the panel, it occupies the blue space:

42

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

 If you are having trouble dragging a tab or panel, dock it and try again.

Converting a Panel to a Tab

To convert a panel to a tab

You can convert a panel to a tab of the PowerShell Studio Script Editor or Designer window.

· Drag the panel and drop it on the tab bar:

43

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

-OR-

· Right-click the panel title bar (or panel tab if the panel is grouped), and then click Dock as Tabbed

Document.

Saving a Layout

To save a new layout

A layout defines the position and visibility of the various PowerShell Studio panels.

To save your own custom layout:

1. Arrange the panels to your preferred layout.

2. From the Layouts menu on the status bar, click Layouts > Save Layout.

44

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

4.2.3.3 Layouts

A layout defines the position and visibility of the various PowerShell Studio panels. PowerShell Studio

will automatically choose a layout based on what you are doing (via context sensitive Auto Layout). You

can also choose from preset layouts, save your own custom layouts, and configure layout options.

Preset Layouts

There are preset layouts available that configure PowerShell Studio for specific activities. To switch to

a preset layout, click Layouts on the bottom-left of the status bar and select a layout from the list:

· Default Layout

The Default Layout is the same as the Editor layout.

· Console Layout

The Console Layout emphasizes the script editor and console panel.

· Debug Layout

The Debug Layout emphasizes the script editor, watch and output panels.

· Designer Layout

The Designer Layout emphasizes the code editor, toolbox and properties windows. This is ideal for

developing PowerShell forms applications.

· Editor Layout

45

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

The Editor Layout emphasizes the code editor, project browser, object browser, output window,

function explorer and snippet panels. This is a good general purpose panel layout.

· Editor Only Layout

The Editor Only Layout hides everything except the editor window.

Auto Layout

On the bottom-left of the status bar, to the right of the Layouts menu, is the Auto Layout option

which is used to enable or disable automatic context sensitive layout changes.

To toggle Auto Layout on or off

Click the Auto Layout button:

Custom Layouts

You can save your own customized layout and access it from the Layouts menu on the status bar.

To save a customized layout

Configure the panels in PowerShell Studio to your preferred layout and then click Layouts > Save

Layout:

PowerShell Studio will display the Save Layout dialog. Type a File Name for your new layout, then

click Save:

46

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

Each layout pertains to a .layout file, which contains the state information of the panels in PowerShell

Studio.

Layout files are saved in the following location: %Users%\<user>\AppData\Roam-

ing\SAPIEN\PowerShell Studio <year>\Layouts

The new layout will appear in the list of available layouts:

 To maintain the current layout, disable Auto Layout on the status bar:

Layout Options

Layout options can be configured on the Panels tab of the Options dialog (File > Options > Panels

or Home > Options > Panels):

47

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Basic Orientation

 Selecting (Current) for any Auto Layout option will keep the layout that you are currently using.

For example, if the Editor Layout is set to (Current), when you open the script editor a layout change

will not be triggered.

48

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5 Script Editor

PowerShell Studio is much more than just a script editor—it is a complete environment which includes

dozens of built-in tools and functions to make scripting more efficient. At the heart of PowerShell Stu-

dio is the industries most powerful and flexible code editor. While it's easy to start using PowerShell Stu-

dio's editor without any training, some of its features can be easily overlooked. In this section you will

learn about the script editor features, including tips for using PowerShell Studio more efficiently.

5.1 Editing Aids

PowerShell Studio includes many features that make script editing easier.

5.1.1 Line Numbering and Visual Features

PowerShell Studio uses line numbering and visual cues, such as coloring, to make your script editing

easier.

Line Numbering and Color Status

Line numbers are displayed on the left edge of the editor panel:

The colored bar to the right of the line numbers indicates the edit status of your code:

· Green

Lines marked with green have been edited and saved since you opened the file.

· Yellow

Lines marked with yellow have been edited but not yet saved.

· No Color

Lines without a color have not been edited in this session.

49

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Pair Highlighting

PowerShell Studio also highlights pairs of braces, brackets, and parentheses in grey: { }, [], and ().

For example, when you click on a bracket its partner will be highlighted:

5.1.2 Code Folding

Code folding is a feature that allows you to collapse or expand sections of your code (regions). Col-

lapsing sections of code in a long script makes it easier to focus on the section you're working on.

PowerShell Studio automatically creates regions, and you can also create your own.

Automatic Regions

PowerShell Studio automatically creates foldable regions from declared functions, multi-line com-

ment blocks, and script blocks:

When collapsed, PowerShell Studio properly displays line numbering, accounting for the lines con-

tained within the collapsed (or folded) region. This ensures that line number-based error messages

and other information remain accurate:

50

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Named Regions

A named region is a region that remains persistent even when the file is opened and closed.

To create a named region

Highlight a block of code, then select Home > Edit > Regions > Create Region (Ctrl+R):

A region is created with the default name 'RegionName', which is highlighted and ready for you to

edit:

51

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Named regions are convenient because the name remains visible when folded—indicating what the

region contains:

You can also create a named region manually by specifying the #region and #endregion keywords

on comment lines within your script.

Manipulating Regions

The options for working with outlines and regions are located in Home > Edit > Regions:

52

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

· Create Region (Ctrl+R)

Creates a persistent folding region.

· Toggle Outline (Ctrl+Shift+M)

Collapses or expands the current outline or region.

· Collapse All (Ctrl+Minus Sign)

Collapses all the expanded outlines and regions.

· Expand All (Ctrl+Plus Sign)

Expands all the collapsed outlines and regions.

· Include (Comments, Functions, Regions, Script Blocks, Strings)

Select which regions collapse and expand when you use the collapse / expand commands.

 When you load a script file, the editor will collapse all of the nodes selected under 'Include'. This

option is set by default under Home > Options > Editor > Collapse regions on load.

5.1.3 Reference Highlighting

PowerShell Studio's reference highlighting feature makes it easy to highlight references in your code

simply by double-clicking on a variable, identifier, member, function, or any other object.

Reference highlighting recognizes the different ways variables and parameters are referenced:

53

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 You can also use the Ctrl+W(ord) keyboard shortcut to select the current word and highlight the

references.

5.1.4 Syntax Checking

PowerShell Studio constantly analyzes the code you type. Syntax errors are indicated by a red exclama-

tion point (!) in the margin to the left of the line with the error in the code editor.

 Hover over the exclamation point to display a tool tip with information about the error:

You can also manually invoke the syntax checker from the Home tab > Edit section > Analysis menu

> Check Syntax:

54

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5.2 Navigation and Bookmarks

The Navigation section of the Home tab provides options for navigating and bookmarking , en-

abling you to quickly move between different locations in your scripts:

Navigating

· Previous

o Previous Function (Ctrl+Shift+F12)

Go to the previous function declaration.

o Previous Change (Ctrl+Shift+Up)

Go to the previous position where you made an edit (i.e., where you typed or deleted some-

thing.)

o Previous Occurrence (Ctrl+Shift+Alt+Up)

Go to the previous occurrence of the selected item.

· Next

54 55

55

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

o Next Function (Shift+F12)

Go to the next function declaration.

o Next Change (Ctrl+Shift+Down)

Go to the next position where you made an edit (i.e., where you typed or deleted something.)

o Next Occurrence (Ctrl+Shift+Alt+Down)

Go to the next occurrence of the selected item.

· Go To Line (Ctrl+G)

Go to a specific line number.

· Last Edit (Ctrl+E)

Go to the last position where there was a modification.

· Navigate Backward (Ctrl+Shift+Minus Sign)

Navigate backward to the previous location.

· Navigate Forward (Ctrl+Shift+Plus Sign)

Navigate forward to the previous location.

Bookmarking

Use bookmarks in your files to mark locations and navigate between them:

To toggle a bookmark on or off

Position the caret on the line where you want to add or remove a bookmark, or on a line that is

already bookmarked, then select Bookmark > Toggle Bookmark (Ctrl+F2).

56

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Bookmarks are displayed to the left of the line numbers in the script editor window, as shown below:

 To remove all bookmarks in the active document, select Bookmark > Clear All Bookmarks

(Ctrl+Shift+F2).

To move between bookmarks

On the Home tab > click Previous Bookmark (Shift+F2) or Next Bookmark (F2) to quickly jump

between bookmarks:

5.2.1 Navigation Bar

Above the editor is a navigation bar which allows you to jump between functions, workflows, events,

and more:

57

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Navigation Bar - Options

The navigation bar contains three drop-downs.

From left to right:

· Global Scope

Jump to class or enumerator declarations.

· Function

Jump to a specific function, event, workflow, class, or configuration.

· Navigation

Jump to the caret position, last edited position, current debug position, breakpoints, tracepoints,

bookmarks, syntax errors, or comments (#MARK; #TODO).

Global Scope

The Global Scope drop-down lets you jump to class or enumerator declarations contained within the

file:

58

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Function

Use the Function drop-down to jump to a specific function, event, workflow, class, or configuration:

The Function drop-down reflects the context of the caret position as you navigate within the script.

For example, when the caret is within the scope of a class, the Function drop-down reflects the class'

member declaration:

59

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Navigation

The Navigation drop-down allows you to jump to specific positions that include the caret position,

the last edited position, current debug position, breakpoints, tracepoints, bookmarks, syntax errors,

and more:

The Navigation drop-drown provides a preview of the line contents in order to help direct you to the

correct position:

TODO / DONE Task Comments

PowerShell Studio automatically includes TODO comments when you create event handlers for GUI

applications. These comments are reminders that you need to place your custom script in the event

script block:

60

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

To mark a TODO comment as complete, right-click on the associated line in the script and select

Mark task as DONE:

 DONE comments will appear in the Navigation menu with a green check mark as you complete

the tasks.

MARK Comments

Comments starting with #MARK: will display in the Navigation menu:

 Use MARK comments to designate navigation points within your script

61

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5.3 Clipboard Integration

PowerShell Studio provides the following Copy, Cut, and Paste clipboard functionality:

· Copy (Ctrl+C)

Copy the selection and put it on the clipboard.

· Copy Encoded

Copy the selection and put it on the clipboard as Base64 encoded text.

· Copy HTML (Ctrl+Shift+C)

Copy the selection and put it on the clipboard as formatted HTML, for pasting into web applica-

tions.

· Cut (Ctrl+X)

Cut the selection and put it on the clipboard.

· Paste (Ctrl+V)

Paste the contents of the clipboard.

Use the Copy Encoded option from the Copy pull-down to Base64 encode the selected text and

copy it to the clipboard:

 Copy HTML is en easy way to include code in a blog post. Simply select the code in PowerShell

Studio and click Home > Copy HTML on the ribbon (or right-click the selected code in the editor

and select Copy HTML), and then paste the HTML for the code in the Text view of the blog post. The

result is perfectly copied code, including color and formatting.

62

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5.4 Find and Replace Options

PowerShell Studio includes extensive, powerful search and replace features, allowing you to revise a file's

contents quickly and easily.

5.4.1 Find and Replace

This topic explains how to search, and also how to find and replace.

How to use Find/Replace

Basic searching is easily accomplished from Home > in the Edit section, Find Replace (Ctrl+F):

63

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

The Find/Replace dialog allows you to specify parameters for your search:

 The Find/Replace dialog will stay open while you edit a script.

The Find/Replace dialog options:

· Find what

Enter the text you are searching for. Use the drop-down list in the right of the field to access

search term history.

· Replace with

The replacement text (optional).

· Match case

Makes the search case sensitive.

· Match whole word

Only finds occurrences of the search text that appear as whole words.

· Search up

Searches upwards from the cursor position.

· Use

Enables special processing of the search text. There are two options available:

o Regular expressions

Uses the full power of regular expressions in your search strings.

o Wildcard matching

Uses ? to represent a single character, or * to represent multiple characters.

· Search hidden text

Includes folded code regions in the search.

· Search in selection

Confines the search to a highlighted section of code.

· Find Next

Find the next occurrence of your search string.

64

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

· Replace

Replace the search string occurrence with the replacement text.

· Replace All

Replace each occurrence of the search string with the replacement text.

· Mark All

Places a bookmark at each location where your search string occurs.

 Use F2 and Shift+F2 to move back and forth between bookmarks.

· Close

Close the Find/Replace dialog.

 Replace always operates on the entire script regardless of whether any code is highlighted or

not, unless the 'Search in selection' option is checked.

Regular Expression Searching

Checking the Use checkbox in the Find/Replace dialog enables a drop-down list where you can se-

lect Regular expressions or Wildcards.

 Selecting Regular expressions enables a button to the right of the Find what: field that displays

a quick list of common regular expressions that you can use to quickly add components to your

search text:

5.4.2 Find in Files

Find in Files allows you to search multiple files for specific text without having to open each file individu-

ally.

65

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

How to use Find in Files

You can access the Find in Files tool from the Home tab > Edit section > Find Replace menu > Find

in Files... (Ctrl+Shift+F):

Enter your search criteria in the Find in Files dialog, and then click Find in Files:

The Find in Files dialog options:

· Find what

Enter the text you are searching for. Use the drop-down list in the right of the field to access

search term history.

o Match case

Make the search case sensitive.

o Match whole word

Find occurrences of the search text that appear as whole words.

· Find In

Designate the search folder by selecting from the drop-down list options. To select a different

folder, use the More Options button (...) to the right of the Find In field.

66

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

o Current Document

Search in the current document only.

o All Open Documents

Search in all of the open documents.

o Current Project

Search in all of the project files.

· Search in subfolders

Checked to search the subfolders recursively. If unchecked, the root directory will be searched.

· File Types

Specify the file types to be searched. By default, all PowerShell Studio file types are included.

· Use

Enables special processing of the search text. There are two options available:

o Regular expressions

Uses the full power of regular expressions in your search strings.

o Wildcard matching

Uses ? to represent a single character, or * to represent multiple characters.

Checking the Use checkbox in the Find in Files dialog enables a drop-down list where you can se-

lect Regular expressions or Wildcards.

67

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Selecting Regular expressions enables a button to the right of the Find what: field that displays a

quick list of common regular expressions that you can use to quickly add components to your

search text:

After you select the search options, click the Find in Files button to start the search.

Search Results

The search results will appear in the Find Results panel as the search progresses:

Double-clicking on a search result will open the file at the line specified in the result. Viewed results

are indicated by a green check mark on the left column:

The check mark indicator helps you keep track of all the locations you visited.

213

68

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

To manually mark a result as visited or unvisited, right-click on a result and select Mark as Visited or

Mark as Unvisited:

5.4.3 Find All References

Find All References builds upon PowerShell Studio's reference highlighting feature. In addition to

highlighting all references of the object in the Editor, the references are also displayed in the Find Res-

ults panel.

How to use Find All References

Click on the object, command, property, or method that you want to search for, and then on the rib-

bon select the Home tab > Edit section > Find Replace menu > Find All References (Ctrl+Alt+F):

-OR-

Right-click on the object / command in the editor and select Find All References (Ctrl+Alt+F):

52

213

69

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

The references are highlighted in the editor and are also listed in the Find Results panel:

As previously mentioned (Find in Files > Search Results), the Find Results panel allows you to

view specific search results and track visited locations.

67

70

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 If you are working with a project, references located in the other project files will also display in

the Find Results panel.

5.5 PrimalSense™

PrimalSense™ is SAPIEN's brand-name for our powerful, flexible, contextually aware code-hinting and

code-completion feature. PrimalSense is similar in functionality to Microsoft IntelliSense, which is found

in Microsoft's Visual Studio products.

PrimalSense Features

PrimalSense works automatically in most cases and provides the following features:

· Syntax Coloring

PrimalSense automatically colors your code syntax to help make literals, statements, comments,

and other elements stand out more clearly. By default, PrimalSense doesn't begin working until

you've typed a few characters from a recognized keyword, variable name, or other element.

 To trigger immediate PrimalSense help, press Ctrl+Space, or type the first couple of letters of

what you are looking for and then press Ctrl+Space. PrimalSense will display a list of intrinsic

keywords, defined functions, cmdlets, variables, etc.

· Case Correction

When appropriate, PrimalSense automatically corrects the case of intrinsic statements, cmdlet

names, variable names, and other elements.

· Variables

PrimalSense automatically attempts to complete variable names, function names, and the names

of other elements to save you from having to type the full names:

71

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

This also includes a number of standard PowerShell variables including:

o $env - to access the environment variables on your computer:

o The scoping operators $Global, $Private and $Script:

· Code Completion

Code completion speeds the development process by predicting the rest of the construct as you

are typing. The code editor will offer you choices as you type, thus reducing the amount you need

to type and also minimizing the number of syntax errors in your scripts.

· Cmdlet Help

If you hover over any cmdlet or alias in the code editor PowerShell Studio will display a tool tip

containing basic information about the cmdlet. Typing a space after the cmdlet or alias name will

load the appropriate help file into the help panel.

72

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

· Contextually Aware

PrimalSense provides assistance while you are scripting, and also makes it easy to pick up right

where you left off. Simply position the caret at the desired location and press Ctrl+Space to trig-

ger PrimalSense. PrimalSense will list the appropriate items depending on the context:

PrimalSense for parameter attributes:

73

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Property and Method Completion

Type Sense

When working with objects, PrimalSense displays pop-up lists containing available members, such

as methods and properties. In many cases PrimalSense can provide "deep" assistance, helping you

work with sub-objects and their members as well.

PrimalSense also displays a tool tip showing more information about a property or method such as:

· Description.

· Parameter details.

· Link to view in the object browser.

· Link to view the online MSDN documentation.

74

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Method Completion

As you type the name of a method, PrimalSense will show you a list of all of the methods that start

with the letters you have typed. If it has identified the correct method, press < Tab > to automatic-

ally enter the rest of the name:

Assemblies

When you work with .NET assemblies in your scripts PowerShell Studio can parse them in order to

offer better PrimalSense help. This also ensures that PowerShell uses the underlining types, such as

the form controls.

Use either of these options to load assemblies into PowerShell Studio:

· On the Home tab > in the Edit section, click the Assemblies button:

In the Assemblies dialog, use the green + button to load an assembly into the editor, or the red -

button to remove an assembly:

75

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 PowerShell Studio does not list the base .NET assemblies such as mscorlib, system, sys-

tem.data, etc. As a result, the assembly list will most likely be empty but PowerShell Studio will

continue to provide PrimalSense for these assemblies without explicitly listing them. This way, only

the external assemblies that you specify will be listed. Note that GUI psf files created with Power-

Shell Studio 2017 or earlier will still retain the old assemblies list.

-OR-

· Right-click on a class in the Object Browser:

76

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Choose one of the following options:

o Insert

Loads the containing assembly and adds the name of the class into the code editor.

o Assembly Included

Loads or unloads the assembly.

In this example the 'System.DirectoryServices' assembly has been added to PowerShell Studio and

PrimalSense is able to offer help about the 'DirectoryEntry' class:

If the assembly is not added to PowerShell Studio, PrimalSense cannot provide any help. In the

screenshot below, PrimalSense cannot offer any help because the 'System.DirectoryServices' as-

sembly has not been loaded.

77

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 If an assembly has been removed from a machine, PowerShell Studio will not be able to load it

the next time it starts. The Assemblies dialog indicates this by displaying a yellow triangle with an ex-

clamation (!) point to the left of the assemblies that could not be loaded:

5.6 Converting Cmdlets and Aliases

PowerShell Studio provides options for converting PowerShell aliases into full cmdlet names, and for

converting full cmdlet names into aliases.

To convert a PowerShell alias into the full cmdlet name

Type a known PowerShell alias in the editor and then press <Tab>. The alias will be expanded into

the full cmdlet name.

For example, if you type the alias ps into the editor:

Pressing the < Tab > key after the ps alias expands it into its full cmdlet name, Get-Process:

78

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

In a similar fashion, PrimalSense will expand parameter aliases into full names. If you type the alias -

cn into the editor:

Pressing the < Tab > key after the parameter alias Cn expands it into its full parameter name Com-

puterName:

You can enable or disable alias expansion in Home > Options > Editor / PrimalSense > Enable

alias tab expansion:

79

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

To convert a full cmdlet name into alias

Right-click on the cmdlet name in the code editor and choose Convert to Alias. If a cmdlet has

more than one alias, PowerShell Studio will list them:

80

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

PowerShell Studio provides two keyboard shortcuts for working with aliases:

· Ctrl+Shift+A

Convert all of the aliases in the current code file to their full cmdlet names.

· Ctrl+B

Toggle the alias on the current line between full name and alias.

 Aliases are great for minimizing the amount you need to type in the shell. When you are writing

scripts however, it is best to expand all of the aliases. This makes it easier for less experienced col-

leagues to understand your scripts, and greatly facilitates debugging.

5.7 Snippets

PowerShell Studio provides a collection of snippets to help you complete common coding tasks quickly.

You can also use the Snippet Editor to create and edit snippets.

About Snippets

Snippets are small pieces of reusable code that can be quickly inserted into your scripts, thus saving

you time and reducing errors. This piece, or "snippet" of code, can vary from a full-fledged function

to a simple single line statement. Snippets come in a variety of languages such VBScript, PowerShell,

C#, etc.

PrimalScript and PowerShell Studio come with extensive libraries of reusable code snippets. You can

also save any text or code block as a snippet to automate code development. Snippets can include

329

81

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

placeholders; PrimalScript and PowerShell Studio will prompt you to supply values for these when

you use the snippet.

Snippets Panel

Use the Snippets panel to access and manage snippets:

To access the Snippets panel:

· On the Home ribbon, in the Windows section, select Snippets from the Panels drop-down menu.

-OR-

· Chorded keyboard shortcut: Press Ctrl+Alt+P, release, then press S

Inserting Snippets

PowerShell Studio provides many options for inserting snippets into your code. The snippet will be

inserted at the current caret position:

· Type the first few letters of the snippet name in the code editor and PrimalSense will display a list

of options. Arrow up or down to select the desired snippet, and then press <Tab> to insert it into

your file:

82

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

· Right-click (Ctrl+K) in the code editor and PowerShell Studio will display a snippet selector. Navig-

ate through the snippet folders using the Up / Down Arrow keys and the <Enter> key to select a

snippet:

· Follow any of these options to add a snippet to a script from the Snippets panel :

o Right-click on a snippet and select Insert.

o Double-click a snippet.

o Click the snippet and then press <Enter>.

o Drag a snippet and drop it in the code editor.

Custom Snippet Folder

You can add a custom directory to the Snippets panel, such as a network share or a local directory,

via Home > Options > Panels. Specify the folder path in the Custom Directory field:

250

83

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 New snippets that you create will automatically be stored in the 'User' folder and are stored in:

%Users%\<user>\AppData\Roaming\SAPIEN\User Snippets\PowerShell

5.8 Script Signing

Script signing is the process of adding a digital signature to scripts.

How to Sign a Script or Remove a Signature

You can sign a script or remove a signature from the Home > Edit > Sign Script menu:

84

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

-OR-

Right-click on the tab containing the file name at the top of the script editor:

· Sign Script

Sign a script.

· Remove Signature

Remove an existing signature.

Script Signing Options

PowerShell Studio can automate script signing so that scripts are signed when saved or exported.

Script signing options can be configured in Home > Options > PowerShell > Windows Power-

Shell Security:

85

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

To enable automatic script signing

· Select the Automatically sign .ps1 scripts when saving checkbox at the bottom of the dialog.

To designate a preferred code signing certificate

· Enter the certificate name in the Certificate in local store field.

 PowerShell Studio also supports PFX format certificates.

5.9 File Encoding

You can change the encoding of an open file by selecting an option from the file encoding menu on the

status bar:

· UTF-8-BOM

· UTF-8

· UTF-16 BE

· UTF-16 LE

 UTF-8-BOM supports international characters and is the default for new files.

 You can set the default file encoding in File > Options > General.

5.10 Context Menu Options

Many of the functions available on the ribbon bar can also be accessed by right-clicking in the code ed-

itor.

https://en.wikipedia.org/wiki/Byte_order_mark#UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/Endianness#Big-endian
https://en.wikipedia.org/wiki/UTF-16
https://en.wikipedia.org/wiki/Endianness#Little-endian

86

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Script Editor - Context Menu Options

 The context menu options will vary depending on the file type, the location of the cursor in the

document, and also if any characters are highlighted. For example, right-clicking within a document

that is part of a Project will reveal project-related options, while right-clicking on a 'cmdlet' enables

the 'Convert to Alias' menu option.

87

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5.11 Functions and Parameters

PowerShell Studio provides tools that make it easy to quickly create functions, parameters, and para-

meter sets—the Function Builder and the Parameter Builder .

5.11.1 Function Builder

The Function Builder is a robust tool that simplifies the creation of complex functions. It is a time saver

and can also be a learning tool for those who may not be familiar with the intricacies of creating an ad-

vanced function. This section covers creating and editing functions, including parameters and parameter

sets.

To launch the Function Builder

Position the caret in the code editor where you want to insert a new function, and then use one of

these options:

· On the Home tab > in the Edit section, click the Functions drop-down > then select Insert New

Function (Ctrl+Shift+E):

-OR-

· In the code editor, right-click and select Insert New Function (Ctrl+Shift+E):

87 110

88

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

-OR-

· In the Functions panel click the Insert New Function button:

The Function Builder dialog will launch:

89

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 If you hover over or click over a question mark, a pop-up help message will explain the respect-

ive field:

We will explore each field of the Function Builder in the following topics:

· Function (Cmdlet) Name

· Synopsis and Description

· Cmdlet Binding

· Output Type

· Parameter Sets

· Default Parameter Set

· Parameters

· Parameter Set Filter

· Parameter Editor

· Special Considerations

90

90

90

91

92

93

93

97

99

104

90

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5.11.1.1 Function (Cmdlet) Name

The Function Builder provides fields for a Verb and a Noun.

The Verb field contains a combo-box with a list of approved verbs, and also provides the option to

enter an unapproved verb if necessary:

5.11.1.2 Synopsis and Description

Enter a quick synopsis and a longer description in the Synopsis and Description fields:

 The information provided here is used to generate the function's Comment-based Help.

5.11.1.3 Cmdlet Binding

Check the Enable Cmdlet Binding option if you want your function to behave like a cmdlet and take

advantage of PowerShell's built-in parameters such as Debug and Verbose, and/or process input from

the pipeline. Set the cmdlet binding attributes by using the properties grid:

91

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 The property grid displays a Help description when you click on an attribute.

The Cmdlet Binding option will add the [CmdlingBinding] attribute to your function:

5.11.1.4 Output Type

The Output Type combo-box allows you to specify the output type of the function by selecting from ex-

isting types or entering a type:

92

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

The appropriate attribute will be added to your code:

 PowerShell Studio also provides PrimalSense code completion for types and namespaces as you

enter content in the Output Type field.

5.11.1.5 Parameter Sets

The Function Builder allows you to define parameter sets, assign parameter sets to individual paramet-

ers, designate a default parameter set, and much more.

To define a parameter set

Type a name for the parameter set in the Name column. You can also specify an (optional) output

type for each parameter set:

93

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Defining a parameter set enables additional options within the Function Builder:

Before a Parameter Set is defined Options enabled after a Parameter Set is

defined

5.11.1.6 Default Parameter Set

Use the Default Parameter Set drop-down list to set the CmdletBinding attribute:

5.11.1.7 Parameters

The Parameters section of the Function Builder is used for adding or editing parameters, and you can

also filter the parameters displayed by using the Parameter Set Filter .

To add a parameter

· Name

97

94

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Enter the name of the parameter:

· Type

Specify the object type of the parameter:

· Parameter Set

Assign the parameter to a parameter set:

-OR-

Define a new parameter set:

95

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 Multiple parameter sets can be assigned to a single parameter by using a comma separator:

· Pos (Position)

Define the parameter's position attribute (optional):

 By default, the parameter's position is determined by the ordering of the parameters.

96

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

For parameters that are assigned to multiple parameter sets, you can define each position by us-

ing a comma separator:

 The position values should follow the same ordering as the parameter set assignments.

· M (Mandatory)

Define the parameter as mandatory (optional):

To edit a parameter

To edit advanced parameter settings, click the Details button (Ctrl+E):

 For more information about editing parameter details, see Parameter Editor .

To remove a parameter

To remove a parameter, click the red X button:

99

97

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5.11.1.8 Parameter Set Filter

Use the Parameter Set Filter to view parameters by their assigned Parameter Set:

· Show All (Default)

Show all of the parameters.

· None

Show only the parameters that are not assigned to a parameter set.

· < Parameter Set Name >

Show only the parameters assigned to < Parameter Set Name >.

To work with the parameters assigned to a specific parameter set

Select the filter for a specific parameter set:

98

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 The position (Pos) field now only shows the parameter's position within the selected parameter

set and no longer lists the other parameter set positions.

To move or swap parameter positions

When the view is filtered for a particular parameter set, use the Up and Down menu buttons to

move or swap the parameter positions:

 When the default (Show All) filter is selected:

· The Up and Down move buttons only change the order in which the parameters are declared in

the function.

· The Mandatory (M) check box refers to the parameter's first assigned parameter set.

99

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

When a parameter set is declared, the generated function will now include a switch statement to help

you differentiate between the parameter sets:

5.11.1.9 Parameter Editor

Use the Parameter editor dialog to create a new parameter or edit the details of an existing parameter,

such as adding validation and aliases.

To create a new parameter

Click the New Parameter button (Ctrl+N).

To edit a parameter

Click the Edit Parameter button (Ctrl+E) on the row of the parameter that you want to edit.

100

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Parameter dialog field descriptions:

· Parameter Name

The name of the parameter.

· Description

The description of the parameter that will appear in the Help comment.

· Type

Specify the object type of the parameter.

 Checking Switch Parameter will make the parameter a switch parameter (the same as typing

'switch' in the type field).

· Parameter Set

Designate the Parameter Set, or add a new Parameter Set:

101

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

· Attributes

Set the parameter's attributes, such as marking the parameter as Mandatory:

 A Help description is displayed when editing a parameter attribute.

· Alias

Provides an alternative name for the parameter (optional).

· Default Value

Specify a default value for the Parameter (e.g., $env:ComputerName).

· Validation

Use the Add drop-down to add validation attributes to the parameter:

102

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 Clicking a validation attribute will display a pop-up Help definition.

Once added, you can modify the validation attribute using the property grid:

103

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

To remove a validation attribute

Select the validation attribute and click Remove:

Once you have added all of the parameters and entered the information required, press the OK but-

ton in the Function Builder dialog to generate the code in your script:

104

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5.11.1.10 Special Considerations

It is important to be aware of the following considerations when using the Function Builder:

Renaming Functions

When you rename an existing function within the Function Builder, PowerShell Studio will open the

Preview dialog if there are any references outside of the function declaration, allowing you to select

which of the function references you wish to update in the script.

Comment-Based Help

A Comment-Based help block will be inserted in your script only if you enter information in the

Function Builder Synopsis or Description fields.

Comments in the Parameter Block

If the Function Builder encounters any comments in the function's parameter block, it will automatic-

ally assign the comment to the parameter's description—all parameter comments will be moved to

the comment-based help block.

112

105

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Name Validation

The Function Builder will prevent duplicate functions by checking if the function name already exists

in your script:

Undo Changes

You can undo changes in the Function Builder at any time by using the keyboard shortcut Ctrl+Z.

5.11.2 Create Functions from Selection

When inserting a new function you can select a section of script and the Function Builder will use the se-

lected text as the body of the function.

The Function Builder will pick potential parameters and display the following dialog where you can

select the variables you want to convert into parameters:

106

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5.11.3 Editing Functions

Use any of these options to edit an existing function:

· Position the caret on a function's declaration in the code editor, then on the Home tab > in the

Edit section, click the Functions menu > select Edit Function (Ctrl+Shift+Alt+E):

107

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

-OR-

· Right-click on a function's declaration in the code editor, and then select Edit Function

(Ctrl+Shift+Alt+E):

-OR-

· In the Functions panel, select a function and then click the Edit Function button, or right-click on a

function and select Edit:

108

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5.11.4 Importing Functions

PowerShell Studio allows you to import functions into your existing scripts or modules.

To import functions

· On the Home tab > in the Edit section, select the Functions menu > then select Import Func-

tions:

-OR-

· In the Functions panel, click the Import Functions button:

109

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

You will be prompted to select the files that contain the functions. You can select and remove files at

any time. All functions in the selected files will be listed in the Import Functions dialog:

Select the functions that you want to import, and then click the Import button to insert the checked

functions in the script:

110

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5.11.5 Parameter Builder

The Parameter Builder is a quick and easy way to insert a new parameter block, create a new parameter,

or edit existing script parameters.

 The Parameter Builder and the Function Builder share the same functionality, with the excep-

tion of the 'Name' portion of the builder.

To access the Parameter Builder

· From the Home tab > in the Edit section, select the Edit Parameters button (Ctrl+Shift+P):

-OR-

· Right-click in the editor and select Edit Script Parameters... (Ctrl+Shift+P):

87

111

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

You can use the Parameter Builder to specify parameters, parameter sets, validation, and help com-

ments:

When you are done editing the parameters, click OK and PowerShell Studio will produce a parameter

block for your script.

112

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5.12 Comment-Based Help

PowerShell Studio can automatically generate comment blocks for existing functions. This section ex-

plains how to generate comment-based help, and shows you how to use comment-based help tem-

plates.

Generating Comment-Based Help

Use any of these options to generate comment blocks for an existing function:

· Position the cursor on the function's declaration in the code editor, and then on the Home tab > in

the Edit section, select the Generate Comment-Based Help button:

-OR-

· In the Functions panel, right-click on a function and select Generate Comment-Based Help:

-OR-

113

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

· Right-click on the function's declaration in the code editor, and then select Generate Comment-

Based Help:

PowerShell Studio will insert a help comment tailored to the specific function:

114

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

The help structure is inserted into the script, and you will need to add the descriptive text and edit as

appropriate.

By default, the help comment is inserted before the function declaration (as shown above).

115

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 The help comment can be inserted inside the function declaration by selecting Home > Options

> Editor > Editor Settings > Insert comment-based help Inside Function:

Displaying Help Keyword Information

PowerShell Studio's PrimalSense can provide assistance when you are editing comment-based help.

116

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Within the comment help block, type a " . " (dot) to trigger the help keyword menu. Scroll up or

down in the menu to highlight a specific keyword and display the keyword information. Press <

Enter > to insert the highlighted keyword into the comment block:

5.12.1 Comment-Based Help Templates

PowerShell Studio features the ability to create templates for the Generate Comment-Based Help fea-

ture.

5.12.1.1 About the Comment-Based Help Template

The predefined comment-based help template contains the following:

The template file contains the typical comment-based help block with some token variables and a

single parameter section. When the user generates comment-based help for a function or file,

PowerShell Studio will read the template file. Depending on if the function already has comment-

based help, it will behave as follows:

112

117

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

If comment-based help is not present PowerShell Studio will insert all of the sections in

order, as defined by the template.

If comment-based help is present PowerShell Studio will check whether each section

within the template is present in the existing com-

ment and insert if necessary. In addition, the exist-

ing comment's sections will be reordered to match

that of the template's.

Parameter Section

The comment-based help template contains a single parameter section that defines each new para-

meter's text. Notice that there is no parameter name after .PARAMETER. When PowerShell Studio

generates the .PARAMETER section in the template, it will place all of the function's parameters se-

quentially within the comment block.

For example, all of the parameters shown in the template above will be inserted sequentially after the

.DESCRIPTION section and before the .EXAMPLE section.

Empty Sections

Empty sections will not be inserted. For example, if the .OUTPUTS section in the template above is

empty after replacing the variables (the function has no output), PowerShell Studio will not include it

in the generated comment.

5.12.1.2 Comment-Based Help Template Variables

When a comment block is inserted in a script, PowerShell Studio dynamically expands the following

template variables:

%NAME% Inserts the name of the function or file.

%TARGETTYPE% Inserts "function" if the comment is for a function.

Inserts "file" if the comment is for a file.

%HELPURL% Inserts the Help URL defined in the function's Cmdlet Binding attribute.

%PARAMETER% Inserts the parameter name (Only valid within the Parameter section).

%EXAMPLE% Inserts a generated example using the existing parameters.

%OUTPUTS% Inserts a list of outputs determined by the Output attribute.

118

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 For details about template variables and formatting, see File Type Templates > Template Vari-

ables .

 If you add a new parameter to an existing function, simply Generate Comment-Based Help

content again and PowerShell Studio will append any missing parameters to the comment block:

5.12.1.3 Creating a Comment-Based Help Template

To create a comment-based help template

1. Right-click on the comment-based help you wish to convert into a template and select the

Create Comment-Based Help Template option from the context menu:

2. In the Save Comment-Based Help Template dialog, enter a file name and then click Save:

128

119

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

The resulting template file will be saved as a ps1 file in the following folder:

%AppData%\Roaming\SAPIEN\PowerShell Studio\Templates\Comment Help\

3. Edit the comment file to include the necessary sections, variables, and text. If the original com-

ment-based help has one or more parameter sections, PowerShell Studio will automatically

format the .PARAMETER section for the template:

4. Save the file by clicking File > Save (Ctrl+S).

 You can generate a new template from an existing template by using the predefined template

as a starting point and following the same procedure described above. PowerShell Studio's pre-

defined templates are located in the following folder:

%ProgramData%\SAPIEN\PowerShell Studio <yyyy>\Templates\Comment Help

5.12.1.4 Selecting an Existing Comment-Based Help Template

PowerShell Studio allows you to define multiple templates, which allows you to insert predefined com-

ment-based help as needed.

120

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

To insert the contents of a comment help template into your script

Position the caret in the function declaration and then on the Home tab > in the Edit section, click

the Generate Comment-Based Help button:

If more than one template exists, PowerShell Studio will present you with the following selection dia-

log:

Highlight the desired template to be applied, and then click Select.

5.12.1.5 Multi-line or Single-line Comments

The comment-based help templates support either single-line comments or multi-line comments. 116

121

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

If you prefer to use single-line comments you can create a template using single-line comments and,

when applied, any existing multi-line comments will be converted to single-line. If you have a multi-

line comment template, it will convert the existing single-line comments to a multi-line comment.

 A template's formatting is not taken into account when generating comment-based help.

5.13 File Type Templates

PowerShell Studio provides templates for various file types, and also allows you to create new tem-

plates.

5.13.1 Using Predefined File Templates

This topic provides a list of the available predefined file templates and shows you how to create a script

using a predefined template.

122

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Predefined Templates

Template Type File Extension Description

PowerShell Script ps1 Creates a PowerShell script file.

PowerShell Form psf Creates an empty PowerShell form.

 For information on creating Form or Grid

templates, see GUI Designer > Form Tem-

plates .

Module Manifest psd1 Creates a PowerShell module manifest file.

Module Script psm1 Creates a PowerShell module script file.

PowerShell Service Script ps1 Creates a PowerShell service script. Used for

the service packaging engine.

PowerShell Class ps1 Creates a PowerShell script file with a class

declaration. When you use this template,

PowerShell Studio immediately allows you to

rename the class directly withing the editor.

If you add the class template as part of a pro-

ject, it will use the specified file name as the

default name of the class.

C# File C# File.cs Creates an empty C# file. You can use this

template as a quick way of writing C# code

for the Add-Type cmdlet.

Text File Text File.txt Creates an empty text file.

Using Predefined File Templates

To create a script from a predefined template

· On the Quick Access menu, select New (Ctrl+N):

173

123

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

-OR-

· On the File menu, select New (Ctrl+N):

 If you know what template you want to use, you can select it directly from the Quick Access

menu or the File > New menu.

Browse through the template categories in the New File dialog, then select a template and click

Open:

PowerShell Studio will open the template file in the script editor.

 To quickly locate a particular template, use the drop-down menu to filter the templates by User

defined or Preset, or enter a term to search by tag/keyword:

124

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

5.13.2 Creating New File Templates

If the predefined templates in PowerShell Studio do not meet your needs, you can create your own.

Creating New File Templates

To create a template

Create a new file or open an existing file or template.

Save the file, and then on the File menu > select Create Template:

125

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

The Create File Template dialog will open:

126

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Fill in the template properties and then click Save:

· Tags

PowerShell Studio will automatically set some default tags based on the file extension. You can

add additional comma-separated tags.

· Type

PowerShell Studio supports two types of templates:

o File (form)

This template is used for new files.

o Grid

This option is used when exporting a GUI from the Database Browser or the WMI Browser.

 To select a Grid template, the psf file must contain a DataGridView control.

· Creator

Your name. (The value for this field is taken from Home > Options > General > Username).

· Company

Your company details. (The value for this field is taken from Home > Options > General > Organ-

ization).

· Description

Description of the template purpose.

· Target Grid

This option is available if you are creating a grid template.

If you specified the %SNIPPET% variable in your script, the Create File Template dialog will include a

Snippet field where you can select the desired snippet to trigger when the template is loaded. The

selected snippet will be included with the template:

127

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Enter a name for the template in the Save As dialog, and then click Save:

 The file type must have the same extension as the file type you wish the template to be applied

to. For example, a file named UserTemplate.ps1 will only apply to .ps1 script files.

The new template will appear whenever you create a new file:

128

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Template Categories

Templates can be organized by categories (folders) to make it easier to browse your existing tem-

plates. When you save a template in the Save As dialog (shown above), the folder that you choose

to save the template to will determine the category.

The default location for user created templates is %AppData%\SAPIEN\PowerShell Studio\Tem-

plates\File Templates\PowerShell.

PowerShell templates are stored in a PowerShell folder [Template Directory]\File Tem-

plates\PowerShell\

PowerShell GUI forms (psf) are stored in a Forms folder [Template Directory]\File Tem-

plates\PowerShell\Forms

The default location can be changed in Home > Options > General > Directories > Template Dir-

ectory.

 You can create new categories by simply creating a new folder when saving your template.

5.13.3 Template Variables

PowerShell Studio supports template variables that automatically expand when a template is loaded.

129

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Template Variables

%AppName% PowerShell Studio name.

%AppVersion% PowerShell Studio version.

%UserName% The user name specified in the settings.

%Company% The user company name specified in the settings.

%Year% Current Year <yyyy>.

%Date% Current Date <m/dd/yyyy>.

%Time% Current Time <h:mm PM>.

%FileName% Inserts the file's name. This will be empty for new non-project files.

%FileTitle% Inserts the file name without the extension.

%ProjectName% Inserts the file's project name.

%GUID% Inserts a unique GUID.

%SNIPPET% Inserts the snippet that comes with the template script. This is

handled automatically when creating a template.

Templates only trigger the first %SNIPPET% variable—subsequent

uses of the variable will be ignored.

%SNIPPET:SHORTCUT% Inserts the snippet with the matching shortcut.

This snippet must be present in the Snippet Panel and is not in-

cluded with the template.

For example: %SNIPPET:MSGBOX% will insert the message box

snippet when the template is first loaded.

Template Variable Formatting

When using variables in your templates, it may be necessary to format the value for particular cir-

cumstances. For example, the template variables in PowerShell Manifest (psd1) are often contained

130

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

in quotes, therefore the value must be formatted/encoded to prevent it from breaking the existing

string.

To encode the value, use the following format:

%VARIABLE:FORMAT%

Where VARIABLE is the name of the variable and FORMAT is the name of the formatting type.

Format Name Description

PSSingle Format for a PowerShell single-quoted string.

PSDouble Format for a PowerShell double-quoted string.

C Format for a C/C++ string.

HTML Format for an HTML string.

Object Format for object names (class/variable/members).

For example, use the following to format USERNAME into a single-quote PowerShell string:

%USERNAME:PSSingle%

If you want the variable to be a name for an object, such as a class name, then use the Object

format:

%FILETITLE:Object%

 In some cases, variables may return an empty string and this may be undesirable, especially

when the variable is used for an object's name. The template format allows you to set defaults to

handle cases like these.

5.14 Rename Refactoring

Rename refactoring allows you to rename and update object references throughout the script for vari-

ables, controls, parameters, functions, events, class names, class member names, and more. Rename re-

factoring also provides a preview so you can quickly see where the object is used and selectively decide

if you want to proceed with any change.

How to Rename Objects

To initiate Rename Refactoring

· Highlight the object you wish to rename, then right-click and select Rename (Ctrl+Alt+J):

131

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

-OR-

· Highlight the object you wish to rename, then on the Home tab > in the Edit section, click the

Convert drop-down > select Rename:

The Rename dialog will open:

132

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Make your selections in the Rename dialog , and then select OK.

Rename dialog field descriptions

· New Name

Enter the new name for the selected object.

· Object Type

Displays the type of object that you are renaming. Different settings will be updated, depending

on the type of object being renamed:

Enum Updates the enumerator value declared in the script.

Event Updates the control event variable and references in the designer.

Function Updates the function declaration and function calls.

GUI Control Updates the GUI control variable and updates any event name and return

variables for projects.

Method Updates the class methods and the class method references.

Parameter Updates the parameter for the function and any calls using the para-

meter.

Property Updates the class property and the class property references.

Variable Updates variables within the document that aren't a parameter or GUI

control.

· Scope

132

133

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Select the scope for the objects that will be replaced. The list of available scopes will vary depend-

ing on the object type:

Current Scope Rename refactoring occurs within the scope of the current function or

event block.

Entire Document Rename refactoring will occur for all instances of the object within the en-

tire document.

Entire Project Rename refactoring will occur for all instances of the object within the

project files.

 GUI Controls, Events, Parameters, and Functions will always apply to the scope when Entire

Document or Entire Project are selected.

· Preview Reference Changes

Presents the Preview dialog with a list of all the changes that will occur. This option is selected by

default.

Click on any item listed in the Preview dialog to view the pending change in the script:

 When you select an item in the Preview dialog, notice that the all of the other references in the

script are also highlighted.

Uncheck an item if you do not want that particular instance to be modified. If you are renam-

ing a GUI control you will not be able to uncheck items.

To implement the selected changes, click Apply in the Preview dialog.

134

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

Rename Refactoring in Projects

Rename refactoring is useful when dealing with multiple files in a project because it will update all of

the project files, with the exception of excluded files (e.g., project files that have their Build property

set to < -ExcludeProperty >):

In PowerShell Studio, return variables are updated when a GUI control is renamed. In addition, when

you rename a project file in PowerShell Studio, all the reference functions and return variables are

updated to reflect the new file name.

135

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 If you include ps1 files as content and dot source the file within a project, calls to functions

defined in the dot sourced file can be updated using rename refactoring.

5.15 Verifying Your Script

PowerShell Studio provides a feature called Verify Script that checks if all of the cmdlets and modules re-

quired by your script are available on a target machine. This feature is especially useful for validating if

your script will run on a specific remote machine.

To run Verify Script

Select a machine from the Home tab > Platform section, Machine drop-down:

 If you choose to select a remote machine you will need to import the remote machine's cache

before selecting the remote machine (Home tab > Platform section > Import Remote Cache but-

ton).

Verify the script from the Home tab > Edit section > Analysis drop-down > Verify Script:

PowerShell Studio will evaluate the script and provide the results in the Tools Output panel , listing

any modules or cmdlets that are not on the target machine:

259

136

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Script Editor

 PowerShell Studio's editor also offers a visual cue when a cmdlet is unknown:

137

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

6 Running and Debugging Scripts

This section covers some of the primary options available when running and debugging scripts in

PowerShell Studio.

6.1 Run and Debug Ribbon Controls

Common controls related to running and debugging scripts are located on the Home tab of the ribbon.

This section covers the options available in the Platform , Run , and Debug sections of the

Home ribbon.

Platform - Ribbon Options

The following options are available on the Home ribbon > Platform section:

Home tab > Platform section

· Machine

Select the machine to run the script on. If you import a remote cache, the remote machine name

will be displayed in the drop-down list. 'Local Machine' is the default.

· Powershell Version / Platform

Select the desired version of PowerShell, and 64 Bit or 32 Bit.

· Enable / Disable Elevation

Toggles script execution and debugging in elevated mode.

· STA Mode

Runs the script in Single Threaded Apartment (STA) mode.

· Rebuild Local Cache

Rebuilds the local cache of PowerShell cmdlets and modules.

137 140 142

138

138

139

139

138

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

· Reload Cache

Reloads the PowerShell cache.

· Cache Editor

Add / remove modules that are included in the local cache profile.

· Import Remote Cache

Imports the Installed Module Set (IMS) exported on another computer.

· Edit Remote Connection

Edit the Remote Cache's Connection Settings.

· Remote Console

Open a remote shell to the selected machine (requires Windows Remoting).

Powershell Version and Platform

PowerShell comes in both 64-bit and 32-bit platforms. When you execute a script from PowerShell

Studio, you can choose the required platform from the Home tab > Platform section.

You can also select the version of PowerShell to run the script under:

 You can also designate how and where a script will run using meta comments .

Elevation

PowerShell Studio runs your scripts with the privileges of the current user. It is considered a security

best practice to avoid logging on as an 'administrator' level account whenever possible. Sometimes

your scripts will need to do things that require greater privileges—PowerShell Studio facilitates this

by allowing you to run scripts in elevated mode.

You can toggle between the elevated or non-elevated mode for script execution from the Home tab

> Platform section > Enable/Disable Elevation button:

140

143

139

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

Elevated Not Elevated

STA Mode

STA (Single Threaded Apartment) mode allows you to start your script in single threaded mode. This

is essential when your script uses forms to interact with the Windows GUI. Some GUI controls require

STA mode in order for them to function correctly. STA mode is activate by default.

You can toggle the STA Mode between active and inactive from the Home tab > Platform section >

STA Mode button:

STA Mode - Active STA Mode - Inactive

Cache Commands

There are two cache related commands:

· Rebuild Local Cache

This command rebuilds the cache, including any new modules installed:

If you modified the cache with Cache Editor, PowerShell Studio will now prompt you before re-

building the cache:

140

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

o To override the manual changes, select Yes.

o To cancel, Select No.

 This safety check will help prevent accidentally undoing any manual changes made to the

cache.

· Reload Cache

This command will reload the cache without making any changes:

 Use this command to reload the cache after making changes with the Cache Editor.

Run - Ribbon Options

The following script execution options are available on the Home ribbon > Run section:

Home tab > Run section

· Run

141

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

o Run (Ctrl+F5)

Executes the current document or project. The results are displayed in the Output panel.

o Run in Console (Ctrl+F8)

Executes the script or project in a console session. The results are displayed in the Console panel.

o Run Selection (Shift+F8)

Executes the highlighted text or the line that it is on. The results are displayed in the Output

panel.

o Run Selection in Console (F8)

Executes the highlighted text in a console session. The results are displayed in the Console panel.

· Remote

o Run Remotely (F6)

Uses PowerShell Remoting to execute the script or project on another machine. The results are

displayed in the Output panel.

o Run Remotely RSEE (Shift+F6)

Uses the SAPIEN Remote Script Execution Engine to execute the file on another machine.

o Debug Remotely (Ctrl+F6)

Debugs the current script or project on a remote system.The results are displayed in the Output

panel and the Debug Console.

· Monitor

Enables performance monitoring when running scripts and displays the output in the Performance

panel .228

142

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

· Custom Tool

User defined menu of commands and tools.

Debug - Ribbon Options

The following debug options are available on the Home tab > Debug section:

Home tab > Debug section

· Debug

o Debug (F5)

Debugs the current script or project. The results are displayed in the Output and Tools Output

panels.

o Debug with Multiple Files (Ctrl+M)

Debugs the current script or project plus additional files and their breakpoints.

o Debug Remotely (Ctrl+F6)

Debugs the current script or project on a remote system. The results are displayed in the Output

panel and the Debug console.

· Stop (Shift+F5)

Stops the running script.

· Step Into (F11)

Step into the current function call.

· Step Over (F10)

Single step.

· Step Out (Shift+F11)

Steps out of the current function.

· Run To Cursor (Ctrl+F10)

Runs the script to the line containing the cursor.

143

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

· Break

Breaks into the debugger.

· Breakpoints

See Working with Breakpoints .

· Tracepoints

See Working with Tracepoints .

6.2 Running Scripts

Many of the controls used when running scripts are located in the Platform and Run sections of

the Home ribbon. These controls are also contextually available when you right-click in a script.

Using Meta Comments

PowerShell Studio allows meta comments to be used to change how and where your scripts are run.

You can run scripts in 32 or 64-bit mode, elevated or not elevated, remote or local, and so on. These

meta comments override your current platform settings. Many options can be changed or set via

meta comments such as:

· # %ForceShell%=PowerShell 64 bit

Will invoke the PowerShell 64-bit shell and execute the script there.

· # %ForcePlatform%=64

Will execute your script in 64-bit mode.

· # %ForceElevation%=yes

Will force elevation of your script.

· # %ForceHost%=REMOTE1

Will run the script on a remote machine named 'REMOTE1'.

Meta comments can be combined. For example, the following will cause the script to be run in 64-

bit mode and elevated:

You can also specify optional credentials. For instance, the following meta comments will force the

script to run on the remote machine 'REMOTE1' and will prompt for user name and password:

144

146

137 140

85

144

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

%ForceHost%=REMOTE1,Prompt

The following meta comments will force the script to run on 'REMOTE1', but will only prompt for the

password for the user named 'User1':

%ForceHost%=REMOTE1,User1,Prompt

Available Meta Comments

· %DebugParameters%

· %ForceElevation%=true | false

· %ForceHost%=Hostname[,User[,password]]

· %ForceParameterPrompt%=true | false

· %ForcePlatform%=32 | 64

· %ForceShell%=Name

· %ForceSTA%=true | false

· %Reference%

 The %Reference% meta comment only affects PrimalSense—it will load the specified assembly

and provide PrimalSense for the .NET types contained within.

 PrimalSense will offer suggestions when you type # in the code editor:

6.3 Debugging Scripts

This section provides an overview of tasks performed during debugging.

6.3.1 Working with Breakpoints

Breakpoints instruct the debugger to stop on a specified line of code, allowing you time to review what

the script is doing at that point.

145

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

Breakpoints - Menu Options

The Breakpoints drop-down menu on the Home ribbon provides the following options:

· Toggle Breakpoint (F9)

Toggles the breakpoint on the current line.

· Enable / Disable Breakpoint (Shift+F9)

Enables or disables the breakpoint on the current line.

· Delete All Breakpoints (Ctrl+Shift+F9)

Deletes all breakpoints in the active document.

· Disable All Breakpoints

Disables all breakpoints in the active document.

· Set Variable Breakpoint...

Sets an advanced breakpoint when a variable is modified or accessed.

· Set Function Breakpoint...

Sets and advanced breakpoint when a specific function or command is called.

· Edit Breakpoints...

Opens a dialog to view and remove breakpoints.

To set a breakpoint

· Left-click in the grey margin to the left of a line number.

-OR-

· Place your cursor on a line and select any of these options:

o Press F9.

o Right-click to access the context menu > select Breakpoints > select Toggle Breakpoint.

146

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

o On the Home ribbon > in the Debug section > click the Breakpoints drop-down menu > select

Toggle Breakpoint.

Active breakpoints are displayed as solid red circles in the margin of the code editor window, and

disabled breakpoints are displayed as red rings:

To disable or delete a breakpoint

· Left-click in the grey margin to the left of a line number containing a breakpoint.

-OR-

· Place your cursor on a line containing a breakpoint and select any of these options:

o Press F9 (Shift+F9).

o Right-click to access the context menu > select Breakpoints > select Toggle Breakpoint or En-

able / Disable Breakpoint.

o On the Home ribbon > in the Debug section > click the Breakpoints drop-down menu > select

Toggle Breakpoint or Enable / Disable Breakpoint.

 Use the F9 or left-click toggle functions mentioned above to cycle through the Enable, Disable,

and Delete breakpoint options.

6.3.2 Working with Tracepoints

Tracepoints cause PowerShell Studio to write a message to the Output panel when a particular line of

code is executed.

Tracepoints - Menu Options

The Tracepoints drop-down menu on the Home ribbon provides the following options:

226

147

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

· Toggle Tracepoint (Ctrl+F9)

Toggles the tracepoint on the current line.

· Delete All Tracepoints (Ctrl+Shift+Alt+F9)

Removes all tracepoints in the active document.

To set a tracepoint

· Place your cursor on a line and select any of these options:

o Press Ctrl+F9.

o Right-click to access the context menu > select Tracepoints > select Toggle Tracepoint.

o On the Home ribbon > in the Debug section > click the Tracepoints drop-down menu > select

Toggle Tracepoint.

Tracepoints appear as solid blue circles in the code editor margin:

When the code is executed, the tracepoint output is displayed in the Output panel:

148

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

To delete a tracepoint

· Place your cursor on a line containing a tracepoint and select any of these options:

o Press Ctrl+F9.

o Right-click to access the context menu > select Tracepoints > select Toggle Tracepoint.

o On the Home ribbon > in the Debug section > click the Tracepoints drop-down menu > select

Toggle Tracepoint.

149

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

6.3.3 Passing Parameters

If your script begins with a Param block, PowerShell Studio will display a dialog box to allow you to se-

lect or enter values for script parameters:

To select or enter values in the Parameters dialog

· Select previously stored parameter values from the Parameter Sets and History drop-down:

-OR-

· Enter a new set of parameter values in the second text box with a space between each value:

Click OK to pass the selected values to the script.

 The Clear History button allows you to remove all of the previously stored parameter values.

150

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

6.3.4 Debug Panels

During a debugging session, PowerShell Studio displays a collection of panels to help you resolve prob-

lems in your code.

Panels used during debugging

Call Stack Displays the function or procedure calls that are currently on the stack.

Debug Console Customizable command line console (PowerShell, PSCore, Bash, etc.) that

allows you to interact with a debug session when at a breakpoint.

Output Displays all script output including general application messages, build

information, errors, debug, verbose, and tracepoint output.

Tools Output Displays output from external tools. When debugging, displays break-

point notifications and post mortem messages.

Variables Lists all variables and values in the current scope during a breakpoint

when debugging.

Watch Displays the values of variables and expressions that you define when

debugging.

6.4 Running and Debugging Remotely

PowerShell Studio provides a number of options for running scripts or packages on remote machines,

and also allows you to debug remotely.

Running Scripts Remotely

PowerShell Studio supports two different mechanisms for executing scripts or packages on a remote

machine:

· PowerShell Remoting

· RSEE (Remote Scripting Execution Engine) Remoting

Using PowerShell Remoting

PowerShell Remoting must be configured on the target machine for remote script execution.

For more information, view a simple guide to installing and configuring PowerShell Remoting.

208

210

226

259

261

264

150

152

https://technet.microsoft.com/en-us/magazine/ff700227.aspx

151

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

To execute a file using PowerShell Remoting

· On the Home tab > in the Run section, click the Remote drop-down, then select Run Remotely

(F6).

The Remote Credentials dialog will open:

· Either enter the name of the remote computer, or press the browse button to launch the

Select a Computer window:

152

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

· After selecting a computer, enter the Username and Password credentials and then select OK. The

script will be executed on the selected machine and the results will be displayed in the Output

panel.

 When you run a script remotely it cannot interact with the desktop, therefore you cannot include

any code that prompts the user for input (such as Read-Host, Get-Credential, or any forms).

Using RSEE Remoting

SAPIEN Technologie's RSEE service must be installed and running on the target machine to use

RSEE remoting. The installation files (both 32 and 64-bit) can be found in:

%Program Files%\SAPIEN Technologies, Inc\PowerShell Studio <year>\Redistributables

To execute a file using RSEE Remoting

· On the Home tab > in the Run section, click the Remote drop-down, then select Run Remotely

RSEE (Shift+F6).

The Remote RSEE dialog will open:

· Either enter the name of the remote computer, or press the browse button to launch the

Select a Computer window:

379

153

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Running and Debugging Scripts

· Choose a remote computer, then click Select. The script will be executed on the selected machine

and the results will display in the Output panel.

Remote Debugging

PowerShell Studio allows you to debug scripts as they run on another machine using SAPIEN Tech-

nologie's Remote Scripting Execution Engine (RSEE). RSEE must be installed on any machine that will

host remote scripts. The installation files (both 32 and 64-bit) can be found in:

%Program Files%\SAPIEN Technologies, Inc\PowerShell Studio <year>\Redistributables

154

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

7 GUI Designer

PowerShell Studio fully supports the creation of GUI scripts based on Windows Forms technology. A

number of predefined forms are included to get you started, or you can start with a blank form and

build everything from scratch.

7.1 Forms Designer Introduction

The main editor screen for GUI scripts is the Forms Designer. This topic introduces you to the Designer

ribbon, and also the panels associated with the Designer.

Designer Ribbon

The Designer tab consolidates common tasks performed when designing and editing GUI forms:

 The tasks available on the Designer ribbon correlate to what is selected in the form. For example,

selecting one form control will activate all of the tasks in the Position section, and selecting more

than one form control will active all of the tasks in the Alignment, Size, and Spacing sections.

The controls available on the Designer ribbon are covered in the relevant topics throughout the GUI

Designer section.

Designer Panels

The Toolbox and Properties panels are used when working in the Forms Designer:

154

255 245

155

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Toolbox Panel

The Toolbox panel provides lists of controls and control sets that can be used when designing a

PowerShell form.

· Controls are built in .NET controls.

· Control sets are custom controls built out of standard controls and custom scripts.

255

156

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Controls Control Sets

Select Tool

The Select tab is on the top of the Toolbox panel, to the right of the Control Sets tab. Use the Select

tool to select a control, which selects the control in the Designer and displays the control properties:

157

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

 Use Shift+Click or Ctrl+Click to select multiple controls. When multiple controls are selected, the

Properties panel displays only the properties that the selected controls have in common.

Properties Panel

The Properties panel allows you to view and edit the properties of the currently selected control.

Each property has an associated editor to help guide you in choosing the correct value:

 When you edit form controls in the Properties panel the changes are immediately reflected in the

Designer.

245

158

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

 Pressing F1 when a control property is selected will open the related MSDN Help topic in a

browser window:

The Properties panel also displays the events that a control can respond to, and allows you to con-

nect an event to code:

7.2 Creating a New Form

When creating a new form, you can start with an empty form or choose from a predefined template .

To design a new form

Select File > New > New Form:

173

159

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Select a form in the New File dialog, and then click Open:

160

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

The form will open in the Designer window of the main editor:

161

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

7.3 Working with Form Controls

This section shows you how to add a control or control set to a form, and how to work with form con-

trols.

162

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Adding Form Controls

To add a control or control set to a form

· Double-click the control or control set.

· Drag and drop the control or control set onto the form.

· Right-click on the control or control set and select Insert.

These images show a button control being dragged and dropped onto an empty form:

163

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Manipulating Controls

The Edit section of the Designer ribbon contains a number of useful commands for working with

controls.

From left to right:

· Edit - Select or remove controls:

o Select All - Selects all controls on a form (see Working with Multiple Controls below).

o Delete - Delete(s) the selected controls.

· Alignment - Align controls to a particular edge:

o Align Lefts - Align left edges.

o Align Bottoms - Align bottom edges.

o Align Rights - Align right edges.

o Align Tops - Align top edges.

o Align Middles - Align middles.

o Align Centers - Align centers.

164

164

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

· Size - Resize a control to its content:

o Size to Control - Size to control.

o Size to Control Width - Size to control width.

o Size to Control Height - Size to control height.

· Spacing - Equalize spacing between controls:

o Equalize Horizontal Space - Makes the horizontal distances between the selected controls

equal.

o Equalize Vertical Space - Makes the vertical distances between the selected controls equal.

· Position - Location of the controls on a form:

o Center Horizontally - Center controls horizontally on a form.

o Center Vertically - Center controls vertically on a form.

o Bring to Front - Move controls in front of other controls.

o Send to Back - Move controls behind other controls.

o Tab Order - Set the order in which a user moves focus from one control to another by

pressing the Tab key.

Working with Multiple Controls

Working with multiple controls involves selecting more than one form control and applying the

same change to all selected controls.

There are a number of ways to select multiple controls at once:

· Click on the first control, and then Ctrl+Left-click or Shift+Left-click to select the other controls.

· Left-click and drag to "lasso" and select individual controls as a group.

· On the Designer ribbon in the Edit section, click Select All to select all of the controls on a

form.

Once selected, any changes you make in the Properties panel or the Add Events dialog will be ap-

plied to all of the controls.

 If you select more than one type of control, the Properties panel will only display the properties

and events that all of the controls share.

165

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Control Spacing

The Spacing section of the Designer ribbon has two options to make the distances between the se-

lected controls equal:

To make the horizontal distances between the selected controls equal

Select Equalize Horizontal Space :

To make the vertical distances between the selected controls equal

Select Equalize Vertical Space :

166

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Tab Order

Tab Order works to help you set the order in which you can tab through the form elements. This

means that when you press the Tab key in a form, each element will be highlighted in a certain order.

The Tab Order button on the Designer ribbon is a toggle—one click turns it on and another

turns it off. Clicking Tab Order will display the tab order of the form items on the top-left of each

element.

The tab order of the form elements is a zero-based array. Zero is the first tab, one is the second tab,

etc. To change the tab order, click anywhere on an element to incrementally cycle through the avail-

able tab orders. When the last available tab order is reached, the numbering starts back at zero.

In the image above the tab order is button1, button2, checkedlistbox1.

In the image below the tab order has been changed to button1, checkedlistbox1, button2.

Control Property Smart Tags

As mentioned in the Forms Designer Introduction topic , you can edit the properties of the cur-

rently selected control in the Properties panel. Some controls support another way of modifying

control properties called smart tags. These appear as a small icon on the top-right of a control when

it is selected in the forms designer.

157

167

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

This image shows the smart tag on a ComboBox control:

Clicking on the smart tag will display options specific to the control which provides an alternative,

task-oriented way of modifying control properties:

7.4 Preview GUI

The Preview GUI button allows you to preview the way a form will appear at run time without executing

any of your code. None of the controls will work when a form is in preview mode, but you can use the

minimize and maximize buttons and also resize the form to make sure it behaves as expected. When

you are finished previewing the form, close the form to go back to the Designer.

To use Preview GUI

1. Click Preview GUI on the Designer ribbon (Ctrl+Shift+F5):

2. The Save As dialog will display if you have not yet saved the file. Enter a name for the file and

click Save:

168

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

3. The form is displayed:

7.5 Adding Events

The Add Events dialog is used to connect a control event to your code.

To add an event

Right-click on the control and choose Add Events (Ctrl+E):

169

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

The Add Events dialog launches:

Select one or more event in the Add Events dialog, and then click the Create button:

 Perform a text search to filter the list of events and find the event you are looking for:

170

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

PowerShell Studio will add the required code in the script and indicate where you need to add your

own code:

171

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

 If the control has a default event, right-click and select Edit Default Event (<event>) to automat-

ically add the event code block to the script:

The default control event is added to the script, and the script editor will open with the caret at the

position where you can add your own code:

172

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Event handlers can also be connected to a form or control from the Properties panel. To do this, first

select the form or control in the Designer. Then, in the Properties panel, click the lightning bolt but-

ton to display the assigned events. The image below shows the events for a form. The Load event

has been connected to a handler called form1_Load:

To handle another event, simply double-click in the blank cell next to the event. PowerShell Studio

will create an event handler named $<object name>_<event name>.

For example, double-clicking in the blank cell to the right of the FormClosing event connects it to a

handler called form1_FormClosing:

The following code is added to the script:

173

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

 You can also type the name of the event handler rather than double-clicking in the blank cell.

PowerShell Studio will use the name you type to generate the event handler.

7.6 Form Templates

A form template is a predefined form containing controls and script code. Templates help you create

GUI scripts quickly by doing much of the layout and code writing for you. This section shows you how

to use a predefined template, including grid templates, and also how to create your own templates.

7.6.1 Using Predefined Form Templates

This topic shows you how to use a predefined template to create a form.

To create a GUI based script from a template

· From the Quick Access menu select New > New Form:

-OR-

· Select File > New > New Form:

174

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Select a template in the Forms section of the New File dialog, and then click Open:

 When you click on a template a small preview is displayed on the bottom-left. In the image be-

low, the Tab Control form template is selected and the preview is displayed.

175

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

PowerShell Studio will create the form and associated scripts, and the form will open in the Designer

window of the main editor.

 To search for a particular form, type the search criteria in the search field at the top of the dialog

and then press <Enter> to search:

176

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

7.6.2 Creating New Form or Grid Templates

If the predefined templates in PowerShell Studio do not meet your needs, you can create your own.

There are two distinct types of templates:

· Form templates

A form template can be based on any existing form. It is a general purpose template.

· Grid templates

Grid templates can only be created from an existing form that contains a DataGridView control.

These templates are designed to be used in conjunction with the Object Browser to rapidly create

forms that retrieve database records or WMI objects and display them in a grid.

To get started, create a new form and configure it as required including event handlers and any

other code.

Save your work and then from the File menu, choose Create Template:

180

177

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

You can also click the Create Form Template button in the Templates section on the Designer rib-

bon:

178

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

The Create File Template dialog will open:

Fill in the template properties:

· Tags

PowerShell Studio will prepopulate appropriate tags/keywords that describe the contents of the

template. You can add additional comma-separated tags.

· Type

PowerShell Studio supports two types of templates:

o File (form)

o Grid

If your form does not include a DataGridView control this option will not be available.

 You can create a form template with a DataGridView control by right-clicking an object in

the Database Browser or WMI Browser and selecting Generate Query Form....

· Creator

Your name. (The value for this field is taken from Home > Options > General > Username).

· Company

Your company details. (The value for this field is taken from Home > Options > General > Organ-

ization).

· Description

180

223 222

179

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

A description of the purpose of the template.

· Target Grid

This option is available if you are creating a grid template. In cases where a form has more than

one grid, it allows you to specify which grid auto generated code will use.

Enter a name for the template and then click Save:

 The default location for user created templates is %AppData%\SAPIEN\PowerShell Studio\Tem-

plates\File Templates\PowerShell\Forms. The default location can be changed in Home > Options

> General > Directories > Template Directory.

The new template will appear in the list of standard templates whenever you create a new form:

 Add Tags when you create the form template so that you can easily find it with a text search.

180

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

7.6.3 Working with Grid Templates

This topic explains how to work with grid templates.

If you right-click on a database table or WMI object in the Object Browser, the following menu ap-

pears:

The Generate Query Form… option will display a list of grid templates that include code to retrieve

objects and display them in a grid:

Placeholders are included in the template, allowing the code generator to reuse a template for differ-

ent kinds of objects. These placeholders get replaced with object specific code when the template is

used to create a grid form.

There are two placeholders:

· %ResultsFunction%

This placeholder is replaced by a function declaration that returns the results of a query.

· %ResultsFunctionCall%

This placeholder is replaced by a call to the results function.

181

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

If you open the form file 'Grid.psf' from the built in grid template (%ProgramData%

\SAPIEN\PowerShell Studio <year>\Templates\Grid Templates) and examine the code, you will

see the two 'results' placeholders:

PowerShell Studio will create the code for the placeholders when you generate a a grid template

against a WMI object.

For example, right-click the CIM_NetworkAdapter object in the WMI Browser and select Generate

Query Form:

Next select the Grid template, click Open, and PowerShell Studio will generated the grid form with

the following code:

182

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

These placeholders allow you to control exactly how a user can interact with data, while leaving

PowerShell Studio to write the data retrieval code.

When you create a grid template from an existing form, PowerShell Studio will indicate if you have

not included the 'results' placeholders in your code:

You can elect not to include them if you would rather provide a fixed data retrieval implementation.

183

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

7.7 Exporting Form Scripts

You can export a script directly from the Deploy tab on the ribbon, in the Export section:

There are two export options:

· Export to File - Exports the script to a ps1 file

· Export to Clipboard - Copies the script to the clipboard.

Exporting creates a single stand-alone script that encapsulates all of the content of a script or pack-

age. The exported code can be placed on the clipboard or stored in a file. In both cases, PowerShell

Studio adds assembly load statements to the front of the exported code to make sure that it runs in

the same environment.

The PowerShell Studio export process can also add metadata, called recovery data, to the script. This

metadata allows PowerShell Studio to recreate the original project that was used during the export.

The recovery data is stored in multi-line comment blocks in the exported script.

Recovery data embedding is enabled by default (Home > Options > Designer > Embed recovery

data in exported scripts):

184

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

For information on the recovery options, see Options and Settings > Designer > Designer Settings .

 When an exported script is opened in PowerShell Studio and recovery data is present, Power-

Shell Studio will offer you the option of using the recovery data to recreate the project that was used

to create the script. Alternatively, you can open the script in the code editor.

7.8 Initializing GUI Controls

The Form control's Load event is a convenient place to initialize GUI controls because it is called right be-

fore the form is displayed:

346

185

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

 Do not try to initialize a control outside an event block within the script:

· The control might not exist when this line is executed by PowerShell.

· If the control does exist, your changes will most likely get overwritten by the designer generated

script.

Alternatives to the Load Event

It is possible to use other events to trigger initialization, such as the VisibleChanged event in Power-

Shell Studio's Chart - Disk Space control set. This event is triggered using the Visible property—

when the control is displayed (i.e., loaded), or when the control is hidden.

In the example above, the control set initializes when the control becomes visible by checking its Vis-

ible property.

If your initialization script is running slow, it can prevent the GUI from displaying in a timely manner

or cause it to hang. In instances such as this, you might want to delay your initialization or simply

run the query in a separate job, then initialize and enable the controls after the job has completed

the query.

186

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

 You cannot access GUI controls directly from a Job. You must return the results first and then

initialize the controls on the main thread / script.

7.9 Control Helper Functions

This topic explains control 'helper functions' and their rules, and also shows you how to add custom

helper functions.

About Control Helper Functions

Some controls are relatively complicated to work with directly from PowerShell, and may require

custom .Net code to be able to access all of their features. For those controls, PowerShell Studio

automatically creates helper functions that add useful .Net based methods into the form.

For example, when you add a ListView control to a form, PowerShell Studio adds two helper func-

tions:

1. Update-ListViewColumnSort

This function enables sorting on any of the ListView's columns.

2. Add_ListViewItem

This function provides an easy way to add items to a ListView

To demonstrate this, create a new empty form in PowerShell Studio and look at the script that has

been created:

Now add a ListView control to the form and examine the code again. In the image below the helper

functions have been folded to reduce the size of the image:

187

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

A region called 'Control Helper Functions' has been added to the form and two functions have been

defined.

Adding Custom Helper Functions

As you build larger and more complex scripts, you will find it useful to build up a collection of helper

functions. Each control that has helper functions will have a folder named after the control. Each of

these directories contains one or more PowerShell scripts that will be merged into existing code

when the control is added to a form.

This is the default set of helper functions delivered with PowerShell Studio:

 The default location for control functions is %ProgramData%\SAPIEN\PowerShell Studio

<year>\Templates\Control Functions.

In the example below we will add a helper function to textbox controls that converts the text in a

textbox to uppercase.

188

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

First we create a folder called System.Windows.Forms.TextBox in the default folder location shown

above. The folder name must match the control type's full name:

Next we would create one or more scripts, one for each helper function.

In this example, we will create the script shown below:

189

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

The script file is saved as the helper function name ToUpper-TextBox in the System.Win-

dows.Forms.Textbox folder:

 The name of the function must be the same as the name of the script file, and there should be

only one file per script.

Now when we add a textbox to a form in PowerShell Studio, our helper function will be included

along with the standard code as shown below:

190

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Helper Function Rules

· The folder must be named after the control type's full name.

· The file name must match the function name.

· Each file should only contain a single function.

 Failure to follow these rules can result in the insertion of multiple copies of the same function.

7.10 Property Sets

A property set is a collection of property settings that can be applied together to one or more controls.

Property sets enable you to quickly create a consistent look and feel to your forms by applying a group

of properties to existing controls, such as anchoring, font, and coloring. A property set can be generic,

or specific to a particular type of control. This topic shows you how to apply and create property sets.

Applying Property Sets

To apply a property set

Select one or more controls on a form and then click Apply Property Set on the Designer ribbon:

191

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Or you can right-click on a control and select Apply Property Set (Ctrl+L).

The Select Property Set dialog will appear:

In this example we are applying a property set to a button control. PowerShell Studio provides six

general styles and two that are specific to buttons.

Selecting the Show property sets for same type only check box will filter the list to show styles that

apply directly to the selected control type:

192

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Select a property set and then click Select to apply it.

 If you modify a property set after you have applied it to controls, you must reapply it to those

controls. Your changes will not be automatically applied.

Creating Property Sets

You can create your own property sets that encapsulate local branding requirements or other stand-

ard settings.

To create a property set

Configure all of the control properties that you want to capture, then select a control and click

Create Property Set on the Designer ribbon:

Or you can right-click on a control and select Create Property Set (Ctrl+Shift+L).

193

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

The Create Property Set dialog allows you to configure the new property set:

Configure the options in the Create Property Set dialog and then click Create:

· Limit to:

a. Any Type

The property set can be used with any type of control.

b. Matching Type

The property set can only be used with controls that are the same type as the source control.

· Creator Name

Your name. (The value for this field is taken from Home > Options > General >Username).

· Company

Your company details. (The value for this field is taken from Home > Options > General > Organ-

ization).

· Description

Provide a description of the property set. This field is mandatory.

· Select Properties

Select the properties that should be captured by the property set.

Enter a name for the property set and click Save:

194

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

 The default location for custom property sets is %AppData%\SAPIEN\PowerShell Studio

<year>\Templates\Property Sets.

The next time you apply a property set, the new property set will appear in the property set list:

195

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

 There is currently no way to alter a property set—they must be recreated and reapplied to the

control.

7.11 Control Sets

In the same way that property sets allow you to group together property settings for reuse, control

sets address common PowerShell scripting scenarios by combining multiple controls and script code

into new custom controls that can be added to forms just like standard controls. This topic shows you

how to insert and create control sets.

Inserting Control Sets

Control sets are located in the Control Sets tab of the Toolbox panel:

190

196

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

To add a control set to a form

Use any of these options to add a control set to a form:

· Double-click the control set.

· Drag and drop the control set onto the form.

· Right-click on the control set and select Insert.

In some cases, a control set will need to add code to certain event handlers before it can work.

PowerShell Studio will display the following dialog if this is required:

197

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

You can select from the following options:

· Append (Default / Recommended)

Leaves the event assignment as is, but also assigns the control set's event block via the script edit-

or—this allows the control to assign more than one script block to the event.

· Leave

Leaves the event assignment as is.

· Replace

Replaces the existing assignment in the designer with the control set's new event block.

Event Dialog

There are three options in the Control Sets' Replace Event dialog: Append, Leave, or Replace.

When you select Append, the form's event is assigned below the new event script block:

198

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

 This allows you to use multiple control sets that share the same events without them interfering

with one another.

In the code shown below, the form Load event handler ($form1_Load) has been customized to write

information to the debug pipeline:

We can see from the form properties that this handler has been connected to the form's Load event:

If we now add the 'Fade in Effect' control set and choose Replace, the following changes occur:

1. New code is added, without affecting any existing code:

199

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

2. The form's Load event is now connected to the new code:

200

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

 Now the Write-Debug statement is not executed because the original load event will not be

called.

If we had selected Leave instead of Replace in the example above, the control set code would have

been added without connecting the form's Load event to the new event handler, thus leaving it to us

to connect things as we want.

 A simple code addition will allow us to call the original event, or a new event. For example,

adding the following line will execute the code stored in the variable $form1_fadeInLoad:

&$form1_fadeInLoad

201

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Creating Control Sets

Creating your own control sets is another way to build reusable components for your scripting tasks.

To create a control set, add controls to a form, configure their properties, and write all of the code

required to make your new control set function correctly. Then select all of the controls that are to be

included in the control set and click Create Control Set on the Designer ribbon:

Or you can right-click on the Designer and select Create Control Set (Ctrl+T).

The Create Control Set dialog allows you to configure the new control set:

Configure the options in the Create Control Set dialog (General tab) and then select Next:

· Control Icon

202

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Choose the icon to associate with the control when it is displayed in the Toolbox panel .

· Creator Name

Your name. (The value for this field is taken from Home > Options > General > Username).

· Company

Your company details. (The value for this field is taken from Home > Options > General > Organ-

ization).

· Control Set Description

Provide a description for the control set. This field is mandatory.

· Control Insertion

If you have included any non-visual controls you can use the Control Insertion section to define

what happens when your custom control is added to a form. You have three choices as described

below.

a. Always

If you add your new custom control to a form that already has a control called timer1, Power-

Shell Studio will rename the new timer and modify the code in your custom control to use the

new name.

b. Use Existing Type

If the destination form already has a control of the same type (Timer in the example) then

PowerShell Studio will not add a new control but rather modify the code to refer to the existing

control.

c. Use Existing Type (Match Name)

If the destination form already has a control of the same type (Timer in the example) and the

name matches the name in your custom control, PowerShell Studio will behave as in b (i.e., use

the existing control).

If the names do not match, then PowerShell Studio will add everything in your custom control

to the form (i.e., it will behave as in a).

On the Functions tab you can choose to include any functions from your code in the template.

PowerShell Studio will automatically include functions that are bound to events in the control:

255

203

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Click Next to go to the Events tab where you can mark an event as shared.

When you check the Shared checkbox next to an event, it will tell PowerShell Studio to share the

event over multiple instances of the control set. It does this by first checking if the event already ex-

ists:

· If the event does not exist, then it will insert the event.

· If the event does exist, it will simply use the existing script block whenever a control triggers the

event.

The TextBox-Watermark control set in PowerShell Studio serves as a good example for event shar-

ing. The script blocks to display the watermark are identical for all instances of the control set, and

therefore it doesn't make sense to create a new instance of the same event block every time the con-

trol set is inserted.

204

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

Click Finish, enter a file name and click Save:

205

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

GUI Designer

 The default location for custom control sets is %AppData%\SAPIEN\PowerShell Studio

<year>\Templates\Control Sets.

The control set is added to the Control Sets tab in the Toolbox panel .

If you include an entire form in a control set, PowerShell Studio will add the Container tab to the

Create Control Set dialog:

The Container tab helps you to specify which form property values and event handlers should be in-

cluded in the control set.

 The next time you need to use your new control set, simply drag it from the Toolbox panel

onto a form.

255

255

206

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

8 Panels

PowerShell Studio has dockable window panels that are used by dedicated features or to display out-

put. This section provides an overview of the available panels and their content.

Accessing Panels

Some panels appear as a tab in a group of panels. If you move panels around or close a panel and

cannot see it, you can access the panel from the ribbon (View > Panels) or by executing the associ-

ated chorded keyboard shortcut: Press Ctrl+Alt+P, release, then press the corresponding character

key of the chord.

The panels and their chorded keyboard shortcuts are listed in the table below, and also in the Key-

board Shortcuts topic.

PowerShell Studio Panels

Panels available in PowerShell Studio:

Panel Keyboard Shortcut Description

 Call Stack Ctrl + Alt + P, K Displays the function or procedure calls

that are currently on the stack. Used in

debugging.

 Console Ctrl + Alt + P, C Hosts PowerShell and other embedded

consoles in a separate process.

 Debug Console Ctrl + Alt + P, D A customizable command line console

(PowerShell, PSCore, Bash, etc.) that al-

lows you to interact with a debug session

when at a breakpoint.

 File Browser Ctrl + Alt + P, I Provides direct access to folders and files

on your hard drive.

 Find Results Ctrl + Alt + P, R Displays Find in Files and Find All Refer-

ences search results.

 Function Explorer Ctrl + Alt + P, F Lists all functions, events, workflows, and

configurations referenced in the current

file. When working in a project, functions

398

207

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

defined in other project files are also dis-

played.

 Help Ctrl + Alt + P, H Displays Windows PowerShell command

line help and WMI Help (F1).

 Object Browser Ctrl + Alt + P, B Displays Windows PowerShell modules

and commands, .NET Framework types,

WMI objects, and database objects.

 Output Ctrl + Alt + P, O Displays all script ouptut including gen-

eral application messages, build informa-

tion, errors, debug, verbose, and trace-

point output.

 Performance Ctrl + Alt + P, M Displays the CPU and memory usage of

your PowerShell scripts.

 Project Ctrl + Alt + P, J Central location for managing projects,

including the project's files and folders.

 Properties Ctrl + Alt + P, P View and edit the control properties

when working in the GUI Designer. Edit

project settings and project file settings

when working in a project.

 Snippets Ctrl + Alt + P, S View and manage preset and user-

defined snippets (reusable text and code).

 Toolbox Ctrl + Alt + P, T Displays Windows Forms controls and

control sets that are available in the GUI

Designer.

 Tools Output Ctrl + Alt + P, L Displays output from external tools.

When debugging, displays breakpoint

notifications and post mortem messages.

 Variables Ctrl + Alt + P, V Lists all variables and values in the current

scope during a breakpoint when debug-

ging.

208

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

 Watch Ctrl + Alt + P, W Displays the values of variables and ex-

pressions that you define when debug-

ging.

To quickly access a panel, execute the associated chorded keyboard shortcut. Simply press

Ctrl+Alt+P, release, then press the corresponding character key of the chord.

8.1 Call Stack Panel

The Call Stack panel is used during debugging to display the function or procedure calls that are cur-

rently on the stack.

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press K.

Call Stack Panel Overview

The Call Stack panel displays the execution path through your script to the current breakpoint when

debugging. Each line, except the first, represents a point where your script called a function. The first

line is the location of the current breakpoint. Double-clicking on a line in this window will take you to

that distinct line in the code editor:

8.2 Console Panel

The Console panel hosts PowerShell and other embedded consoles in a separate process.

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press C.

Console Panel Overview

You can interact with your script in the Console panel, which has three component parts:

209

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

· Platform Selector

Select from the list to activate a preconfigured console.

· Output Window

The Console output window displays the results of any command you send to the shell.

· Command Input

Type commands here and press < Enter > to send them to the shell. By default this option is dis-

abled. To enable Command Input go to the Home tab > Options dialog > Console tab and select

Enable enhanced console input line.

Console Panel - Context Menu Options

Right-click in the Console window to display the following options:

· Copy

Copy text highlighted in the Console window to the clipboard.

· Paste

Copy the contents of the clipboard into the console.

· Restart Shell

Restart the shell. This will erase all work done in the current shell.

· Cancel Execution

210

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Cancel the script / command that is executing in the console.

8.3 Debug Console

The Debug Console is a customizable command line console (PowerShell, PSCore, Bash, etc.) that allows

you to interact with a debug session when at a breakpoint.

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press D.

Debug Console Overview

With the Debug Console, you can interact with the RunSpace while at a breakpoint. The console al-

lows you to run commands or alter values in order to make debugging scripts easier. You can also

simply experiment with what-if scenarios.

 Arrow up and down to scroll through the history of commands in the active session.

Debug Console - Context Menu Options

Right-click in the Debug Console window to display the following options:

· Copy (Ctrl+C)

Copy highlighted text to the clipboard.

· Find (Ctrl+F)

Search the text in the Debug Console panel.

· Select All (Ctrl+A)

211

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Select all of the text in the Debug Console panel.

· Clear (Ctrl+E)

Clear the Debug Console panel.

8.4 File Browser

The File Browser provides direct access to folders and files on your hard drive.

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press I.

File Browser Overview

Access the files and folders on your hard drive directly from the File Browser:

File Browser - Buttons and Search

There are six buttons, a search box, and a location field at the top of the File Browser:

From left to right:

· Select Folder

Select a different folder in your environment as the current folder.

· Reload

212

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Reload the current folder.

· Collapse All

Collapse all expanded nodes in the folder.

· Previous Folder

Select a previously used folder as the current folder.

· New Folder

Create a new empty folder in the current directory.

· New File

Create a new file.

· Search

Scans the current directory and displays all of the matching results.

· Location

Displays the current directory.

 Hover over the location field to see the full directory path:

File Browser - Context Menu Options

Right-click on a folder or file to display the following options:

· Open Folder

Opens the corresponding folder for the highlighted file or folder.

· Add

o New File

Launches the Add File dialog to add a new file to the current directory.

o New Folder

Adds a new folder to the current directory.

213

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

· Rename

Highlights the file or folder name for editing.

· Delete

Deletes the highlighted file or folder.

Using the File Browser

There are a number of ways to open a file from the File Browser, and you can also dot source a file

from the File Browser.

To open a file

· Double-click a file in the File Browser to open it in PowerShell Studio.

-OR-

· Drag a file from the File Browser and release it in the PowerShell Studio workspace.

To dot source a file

· Hold Shift and drag a file from the File Browser into your open script to dot source the file:

8.5 Find Results Panel

The Find Results panel displays Find in Files and Find All References search results.

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press R.

Find Results Panel Overview

The Find Results panel automatically displays results generated from queries performed using the Find

in Files dialog and the Script Editor's Find All References option.

The results displayed include the associated file path, file name, and line number (#):

64 68

64 68

214

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Double-click on a search result to view the referenced line in the script. Viewed results are distin-

guished by a green check mark on the left column:

The check mark indicator helps you keep track of all the locations you visited.

To manually mark a result as visited or unvisited, right-click on a result and select Mark as Visited or

Mark as Unvisited:

 If you are working with a project, references located in the other project files will also display in

the Find Results panel.

215

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

8.6 Function Explorer Panel

The Function Explorer lists all functions, events, workflows, and configurations referenced in the current

file. When working in a project, functions defined in other project files are also displayed.

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press F.

Functions Panel Overview

The Functions panel displays all of the functions, events, and workflows in the current context.

When you are working on a single script, the functions and workflows within that script are dis-

played. When working in a project, all available functions in the project are displayed:

Single Script Project File

Functions Panel - Buttons and Search

There are three buttons and a search box at the top of the Function Explorer panel:

From left to right:

· Insert Function

216

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Opens the Function Builder where you can create a function.

· Edit Function

Opens the highlighted function in the Function Builder.

· Import Functions

Launches the Import Functions dialog along with an Explorer window for locating the file contain-

ing the functions to import.

· Search

Search for a function, workflow, or event by typing the first few letters in the search box. As you

type, PrimalSense™ will give you a list of possible completions.

Hover over a function to display the function name and details:

Functions Panel - Context Menu Options

Right-click on a function to display the following options:

· Go to Declaration

Positions the caret in the relevent file at the source code for the selected function.

· Find All References

Find all references to this function in the script or project. Results are displayed in the Find Res-

ults panel .

· Insert

Inserts a function call at the current caret position.

· Generate Comment-Based Help

Generates and inserts templated comment-based help for the selected function.

· Edit

68

213

217

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Edit the function in the Function Builder.

· Copy

Copies the function definition to the clipboard.

· Rename

Renames the function and updates the references in the script or project.

8.7 Help Panel

The Help panel displays Windows PowerShell command line help and WMI Help (F1).

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press H.

Help Panel - Buttons and Search

There are three buttons on the top-left of the Help panel:

From left to right:

· Go Back (Alt+Left)

Navigates backwards through the help files that have been loaded since PowerShell Studio was

started.

· Go Forward (Alt+Right)

Navigates forwards through the help files that have been loaded since PowerShell Studio was star-

ted.

· Find (Ctrl+F)

Searches the text in the Help panel.

Help Panel - Context Menu Options

Right-click in the Help panel to display the following options:

218

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

· Copy (Ctrl+C)

Copies the highlighted text to the clipboard.

· Find (Ctrl+F)

Searches the text in the Help panel.

· Select All (Ctrl+A)

Selects all of the text in the Help panel.

8.8 Object Browser

The Object Browser displays Windows PowerShell modules and commands, .NET Framework types,

WMI objects, and database objects.

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press B.

Object Browser Overview

The Object Browser is one of the most useful features of PowerShell Studio and contains the follow-

ing browsers:

219

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

PowerShell Browser For exploring PowerShell objects including cmdlets, aliases, modules,

functions, and About Help topics.

.NET Object Browser For exploring .NET types.

WMI Browser For exploring the WMI database on your computer.

Database Browser For exploring databases.

Each browser provides the same basic functionality—the ability to explore a collection of objects.

Each browser also provides custom capabilities to help you integrate objects into your code.

PowerShell Browser

The PowerShell browser displays PowerShell cmdlets, aliases, modules, and About Help topics:

219

221

222

223

220

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Search for a PowerShell cmdlet, alias, module, or About Help topic by typing the first few letters in

the search box. As you type, PrimalSense™ will give you a list of possible completions:

PowerShell Object - Context Menu Options

Right-click on a PowerShell object to display options available for the object:

· Insert

Inserts the selected command into a script file. If you insert a command from a module, then

PowerShell Studio will also add the appropriate Import-Module command into your code.

· Add To Project

221

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Inserts an import statement in the primary file of the project (Startup.pss or Module.psm1).

· Copy

Copies the object name to the clipboard.

· Refresh Help

Refresh Help will rebuild the cache help for the selected module. If no help is found, it will trigger

this command automatically.

· Show Help

Displays PowerShell help about the object in the Help panel.

· Online Help

Displays help from the Microsoft web site in a browser window.

.NET Object Browser

This browser displays the .NET assemblies available on your computer. Each assembly can be

opened to reveal the namespaces and types contained within. Individual types can be opened to re-

veal their contents (properties, methods etc.):

Search for .NET assemblies by typing the first few letters in the search box, then press < Enter > to

see the first result. Continue pressing < Enter > to cycle through the search results:

222

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

.NET Object - Context Menu Options

Right-click on a node to display the following options:

· Insert

Inserts the name of the current node into your script.

· MSDN Help

Accesses the MSDN help website for the selected type, method, property etc.

· Select Member Type

Selects the current item's type, such as a Property's or Method's return type, in the .NET Object

Browser.

· Copy

Copies the current node name onto the clipboard.

· Assembly Included

Indicates whether the assembly is loaded into the current document. You can check or uncheck the

assembly in order to add or remove the assembly.

WMI Browser

The WMI browser displays namespaces and objects from the WMI database on your computer. As

you click on nodes in this panel, PowerShell Studio will display information and code examples

about the node in the Help panel:

223

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Look for namespaces or WMI objects by typing in the search box, then press < Enter > to see the

first result. Continue pressing < Enter > to cycle through the search results:

WMI Object - Context Menu Options

Right-click on a WMI object to display the following options:

· Insert

Inserts a Get-WMIObject command into a script to retrieve all instances of the selected WMI ob-

ject.

· MSDN Help

Displays MSDN help for the selected WMI object.

· Copy

Copies the object name into the clipboard.

· Generate Query Form...

Generates a form template that displays all instances of the selected WMI object in a grid.

Database Browser

The database browser allows you to explore databases and generate code to read and display data:

173

224

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

 The same database browser is shared with PrimalScript. Any connections created in PrimalScript

will display in PowerShell Studio, and vice versa.

How to create a database connection

The first step in using the database browser is to create a database connection.

Click on the create connection button () to launch the connection dialog:

225

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

The code generators provide a default connection string that you will need to edit to reflect your en-

vironment. Once your database connection is configured, press Save to add a new node to the

database browser. Click on the node to enumerate the contents of the database, which allows you to

tunnel into the tables, views, stored procedures, etc.

Search for a database, table, or field by typing in the search box, then press < Enter > to see the first

result. Continue pressing < Enter > to cycle through the search results:

 The search function includes both active and cached database connections.

Database Connection - Context Menu Options

Right-click on a database connection to display the following options:

· New Database Connection

Creates a new database connection.

· Insert

Inserts the name into the Editor.

· Copy Connection String

Copies the database connection string to the clipboard.

· Edit

Edits the database connection.

· Rename

Renames the database connection.

· Refresh

Refreshes the Database Browser window.

· Delete

Deletes the database connection.

226

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Database Objects - Context Menu Options

Right-click on a database object to display the following options:

· Insert

Generates a PowerShell function that uses ADO.Net to retrieve all records from the database and

output the records to the PowerShell pipeline.

· Refresh

Refreshes the Database Browser window.

· Copy

Copies the name of the database object onto the clipboard.

· Generate Query Form...

Creates a PowerShell form based on available templates, and ADO.Net code, to retrieve database

records into a .Net DataSet object and display the results in a grid.

· Generate Query PowerShell Script...

Creates a PowerShell script that uses ADO.Net to retrieve all records from the database and output

the records to the PowerShell pipeline.

 Dragging and dropping a database object to the Script Editor will insert a function, whereas

dragging and dropping a database object to the Designer will insert a grid with a function call.

8.9 Output Panel

The Output panel displays all script output including general application messages, build information,

errors, debug, verbose, and tracepoint output.

227

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press O.

Output Panel Overview

The Output panel displays messages written to the debug stream (e.g., from the Write-Debug cmd-

let), records messages created by tracepoints in your code, and displays verbose output:

 If the output contains the line number, you can double-click on an error message to go to that

distinct line in the code editor.

Output Panel - Context Menu Options

Right-click in the Output panel to display the following options:

· Copy (Ctrl+C)

Copy highlighted text to the clipboard.

· Copy HTML (Ctrl+Shift+C)

Copied highlight code, including color coding and formatting.

· Find (Ctrl+F)

Search the text in the output panel.

· Select All (Ctrl+A)

Select all of the text in the output panel.

228

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

· Clear (Ctrl+E)

Clear the output panel.

8.10 Performance Panel

The Performance panel displays the CPU and memory usage of your PowerShell scripts..

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press M.

Performance Panel Overview

The Performance panel displays the CPU and memory usage of your scripts when you have per-

formance monitoring enabled.

 The performance monitor does not record the statistics during degugging because the results

would be skewed due to line breaking and variable querying.

How to enable performance monitoring

To enable performance monitoring when running scripts, click the Home tab on the ribbon bar, then

in the Run section select the Monitor checkbox:

When performance monitoring is enabled, the CPU and memory usage of your scripts are displayed

graphically in real-time during script execution:

229

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

How to view specific performance data

Scroll your pointer across the graph and hover over a data point to see the CPU and memory usage

details:

The Performance panel will display the last three results of a script so that you can compare the per-

formance differences of each run through:

How to clear the performance data

To clear the data from the Performance panel, right-click anywhere in the panel and select Clear:

How to size the Performance panel

The graph in the docked Performance panel scales automatically as the script runs, but some details

may not be visible if the docked window is sized at a small height. To see the performance data de-

230

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

tails in a broader view, depending on the current Performance panel location either right-click on the

Performance panel title bar and select Dock as Tabbed Document, or Float; or drag the Perform-

ance panel tab away from the tabbed group and release to float the panel.

For information on docking and undocking panels, see Working with Panels .

 When the script ends the peak values that occurred during script execution are displayed in the

Output panel:

8.11 Project Panel

The Project panel is a Central location for managing projects, including the project's files and folders.

35

231

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press J.

Project Panel - Buttons and Search

There are four buttons and a search box at the top of the Project panel:

From left to right:

· New File launches the Add File dialog where you can select a file template and add a new file

to the project.

· Add Existing File launches the file browser so that you can select a file to add to the project.

· New Folder allows you to add a new folder directly to the project.

· Open Project Folder launches File Explorer focused in the currently highlight folder.

· Search in a project by typing the first few letters in the search box. As you type, PrimalSense™

will filter and display the files and folders containing your search criteria.

Module Buttons

Three additional buttons are available at the top-right of the Project panel when you have a module

project open:

From left to right:

· Open Module Folder

Opens the exported module directory.

· Clear Module Folder

Deletes the contents of the exported module directory.

· Build Module

Builds and exports the module to the user's Windows PowerShell Modules directory: C:

\Users\<user>\Documents\WindowsPowerShell\Modules

232

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

 The module manifest is automatically updated when you build the module project.

Project Panel - Context Menu Options

The context menus in the Project panel provide useful options for building and working with pro-

jects.

 The context menu options available in the Project panel will vary depending on whether the item

selected is a project, folder, or file, and the menu options will further vary by file type. If you select

multiple files the context menu options will vary depending on the files selected.

Project - Menu Options

Right-click on a project name to access the following options:

· Rename

Renames the project.

· Add

o Existing File...

Launches the file browser to select a file to add to the project.

o New File...

Launches the Add File dialog to add a new file to the project.

o New Folder...

Adds a new folder to the project.

o Add Git Ignore File

Creates a .gitingnore file to filter out any temporary project files (for Git source control).

· Open Project Folder...

Opens the project directory in File Explorer.

· Run Project

Runs the project.

· Run Project in Console

Runs the project in the console window.

· Close Project

233

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Closes the project.

Project Folder - Menu Options

Right-click on a folder to access the following options:

· Open

Launches File Explorer focused in the currently highlight folder.

· Rename

Renames the folder and updates the references in the project.

· Add

o Existing File...

Launches the file browser to select a file to add to the project.

o New File...

Launches the Add File dialog to add a new file to the project.

o New Folder...

Adds a new folder under the highlighted location.

o Add Git Ignore File

Creates a .gitingnore file to filter out any temporary project files (for Git source control).

· Remove

Removes the folder from the Project panel.

· Delete

Deletes the folder from the project directory and removes the folder from the Project panel.

Project File - Menu Options

Right-click on a file to access context sensitive options based on the file type:

234

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

· Open

Opens the file in the Editor or Designer.

· Rename

Renames the file and updates the references in the project.

· Debug Script File

Debugs the script.

· Run Script File

Runs the script.

· Run Script in Console

Runs the script in the console window.

· Preview Form

Displays the form the way it will appear at run time without executing any code.

· Remove

Removes the file from the Project panel.

· Delete

Deletes the file from the project directory and removes the file from the Project panel.

· Open with PowerShell HelpWriter

Opens the help file in PowerShell HelpWriter.

· Open with PrimalXML

Opens the XML file in PrimalXML.

8.11.1 Project Files and Folders

Using folders within projects makes it easier to organize projects with large amounts of files. This topic

shows you how to add , rename , move , and delete project files and folders.235 241 242 242

235

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

 Hover over a file to see the file path:

Adding Files and Folders

How to add an existing file

Click the Add Existing File button, select a file to add to the project, then click Open:

236

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Select Yes if you want to create a copy of the file in the project directory:

You can also drag and drop files and folders into the Project from a file directory. Simply click and

drag the desired file or folder, and then drop it in the project:

237

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Select Yes if you want to create a copy of the file in the Project directory:

 Dragging and dropping a folder into the Project panel will automatically create a copy of the

folder in the project directory.

How to add a new file

Click the New File button to launch the Add File dialog where you can select a file template:

238

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

The file templates are grouped into categories in the upper-left of the dialog. The PowerShell cat-

egory lists all PowerShell script files, and the Forms sub-category contains the form templates:

The Files category at the top lists all of the templates:

239

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Use the search field to search the template titles and their tags:

 Select Files to search all available templates regardless of category.

 The small text located next to the template names are tags/keywords that describe the contents

of the particular template:

240

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

The tags associated with the Full Grid Search template shown above indicate that this template is a

PowerShell script that has a GUI with a Grid and has Search capabilities.

 Tags can also be used to filter out file templates by language.

Once you have selected a file template, enter a File Name, and then click Add to add the new file to

the project:

How to add a folder

Click the New Folder button to add a new folder:

Or, you can add a new folder by right-clicking and selecting Add > New Folder:

The new folder will be created under the location highlighted when the folder was added:

241

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

 Dragging and dropping a folder into the Project panel will automatically create a copy of the

folder in the project directory.

Renaming Files and Folders

 To rename files you must use the Project panel instead of File Explorer, otherwise the project's

references will point to incorrect paths.

You can rename files and folders by clicking twice on the file or folder name in the project panel, or

by right-clicking and selecting Rename:

Alternately, you can rename a folder in the Properties panel by highlighting the name and typing a

new name:

242

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

For more information on Properties, see Properties Panel .

Moving Files and Folders

 To move files you must use the Project panel instead of File Explorer, otherwise the project's ref-

erences will point to incorrect paths.

You can move files and folders within the Project panel by clicking the icon next to the name and

dragging > dropping:

Deleting Files and Folders

How to delete a file

Right-click and select Delete or press the < Delete > key:

245

243

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Select Yes to delete the file:

 The file is deleted, regardless of location:

· If the file was copied into the Project, then the file will be deleted from the project directory.

· If the file was not copied into the Project, then the file will be deleted from the source location.

How to remove a folder from the Project panel

Highlight the folder and press the < Delete > key (or right-click and select Remove):

244

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

The folder is removed from the Project panel:

The folder remains in the project directory:

How to remove a folder from the Project panel and delete it from the project directory

Right-click the folder and select Delete, then click Yes to confirm:

245

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

The folder will be deleted from the project directory and from the Project panel.

8.12 Properties Panel

The Properties panel allows you to view and edit the control properties when working in the GUI

Designer, and edit project settings and project file settings when working in a project. This topic

provides an overview of the Properties panel and shows you how to work with events .

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press P.

Properties Panel Overview

The Properties panel allows you to view and edit the properties of any object selected in the Forms

Designer or the Project panel .

248

154 230

246

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

GUI Designer Properties Project File Properties

 When you edit form controls in the Properties panel the changes are immediately reflected in the

Designer.

There are a number of controls at the top of the Properties panel:

· Object Picker Dropdown

Allows you to switch between controls on a form:

247

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

· Properties - Sort Order Buttons

The pair of buttons on the left allow you to switch between viewing properties grouped into func-

tional categories or listed alphabetically:

· Properties and Events View Buttons

The pair of buttons in the middle allow you to switch between looking at the properties an object

supports or the events it can trigger:

 Pressing F1 when a control property is selected will open the related MSDN Help topic in a

browser window:

248

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Working with Events

Event handlers can be created using the Properties panel.

How to create an event handler

First select a control in the designer and access the Properties panel. Click on the lightning-bolt but-

ton to display the events that belong to the control.

 If multiple controls or project files are selected, only common properties and events are dis-

played. If you assign a value to a property, it is applied to all selected objects. If you assign an event

to a control, the event will be assigned to all of the controls.

The following screenshot shows the events for a form. The Load event has been connected to a

handler called Mainform_Load:

249

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

To handle another event, simply double click in the blank cell next to the event:

PowerShell Studio will create an event handler named $<object name>_<event name> and insert it in

the script at the caret position. For example, double-clicking in the blank cell next to FormClosing

results in the following code being generated:

250

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

 If you want to specify the name of the event handler you can type its name rather than double-

clicking in the blank cell. PowerShell Studio will use the name you type to generate the event handler.

8.13 Snippets Panel

The Snippets panel allows you to view and manage preset and user-defined snippets (reusable text and

code). This topic provides information about the Snippets panel, and shows you how to manage snip-

pets and work with snippet folders .

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press S.

Snippets Panel Overview

PowerShell Studio provides an extensive collection of snippets to help you complete common cod-

ing tasks quickly. Each snippet contains a block of code that can be easily added to a script.

Hover over a name in the Snippets panel to see the snippet Description and Shortcut:

252 253

251

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Snippets Panel - Buttons and Search

There are three buttons and a search box at the top of the Snippets panel:

From left to right:

· Refresh

Causes PowerShell Studio to rescan the snippets folder and refresh the Snippets panel.

· Open

Opens the currently selected snippets folder in File Explorer.

252

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

· New

Launches the Snippet Editor to create your own snippet. It is also possible to edit and delete an ex-

isting snippet by right-clicking and choosing edit or delete respectively.

· Search

Search for a snippet by typing the first few letters of a snippet in the search box. As you type,

PrimalSense™ will give you a list of possible completions.

Managing Snippets

Right-click on a snippet to display the following options:

· Insert

Use any of these options to add a snippet to a script. The snippet will be inserted at the current

caret position in the code Editor:

o Right-click on a snippet and select Insert

-OR-

o Double-click a snippet

-OR-

Click the snippet and then press < Enter >

-OR-

o Drag a snippet and drop it in the code Editor.

· Edit

Opens the snippet in the Snippet Editor .

· Delete

Deletes the snippet.

 You can drag-and-drop snippets within the Snippets panel.

329

253

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Snippet Folders

There are four snippet folders available in the following priority order: Project , User , Cus-

tom , Preset .

· Project

A 'Project' snippet folder will appear in the Snippets panel whenever you open a project:

You can copy snippets to and from the project by dragging the snippet within the Snippets panel:

 A snippet can also be added to a project by creating or copying the snippet to the project's

file directory, and PowerShell Studio will automatically display it in the Snippets panel when you

open the project. It is not necessary to add the snippet to the project using the Project panel .

· User

New snippets that you create will automatically be stored in the 'User' folder unless you change

the folder path: %Users%\<user>\AppData\Roaming\SAPIEN\User Snippets\PowerShell:

253 253

254 254

230

254

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

 To modify an existing snippet, copy it into the 'User' folder.

· Custom

You can add a custom directory to the Snippets panel, such as a shared network snippet reposit-

ory, via Home > Options > Panels. Specify the folder path in the Custom Directory field:

This folder is named ’Custom’ in the Snippets panel, regardless of the folder path selected:

 After designating the custom directory folder path, you must refresh the Snippets panel to

view the 'Custom' folder.

· Preset

The 'Preset' folder contains the snippets included with PowerShell Studio, and they are loaded

from the following folder: %ProgramData%\SAPIEN\PowerShell Studio <year>\Snippets.

255

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Snippet Folders - Context Menu Options

Right-click on a snippet folder to access the following options:

· Expand / Collapse

Expand or Collapse the subfolders.

· Open

Open the folder in File Explorer.

· Create Snippet

Create a snippet.

· Rename

Rename the folder.

· Delete

Delete the snippet folder and all of its contents.

· Create Folder

Add a subfolder.

8.14 Toolbox Panel

The Toolbox panel displays Windows Forms controls and control sets that can be used when designing

a PowerShell form in the GUI Designer .

· Controls are built in .NET controls.

· Control sets are custom controls built out of standard controls and custom scripts.

154

256

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press T.

Toolbox Panel - Buttons and Search

There are three buttons and a search box at the top of the Toolbox panel:

From left to right:

· Controls

Displays a list of controls that can be added to a form.

· Control Sets

Displays a list of control sets that can be added to a form.

· Select

Displays the controls and control sets added to the current form that is open in the Forms

Designer.

· Search

Search for a control or control set by typing the first few letters in the search box. As you type,

PrimalSense™ will give you a list of possible completions.

Controls and Control Sets

 You must have a form open in the GUI Designer to activate the Controls and Control Sets op-

tions.

257

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Controls Control Sets

Control - Context Menu Options

Right-click on a control to display the following options:

· Insert

Adds the control to the current form.

· View in Object Browser

Focuses the object browser on the .NET control type.

258

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

· MSDN Help

Launches MSDN Help for this control in a web browser.

· View Spotlight Article

Launches tutorial content for this control on the SAPIEN web site.

Control Set - Context Menu Options

Right-click on a control set to display the following option:

· Insert

Adds the control to the current form.

 There are three ways to add a control or control set to a form:

· Drag and drop the control or control set on the form.

· Double-click the control or control set.

· Right-click on the control or control set, then select Insert.

Select Tool

The Select tab is on the top of the Toolbox panel, to the right of the Control Sets tab. Use the Select

tool to select a control, which selects the control in the Designer and displays the control properties:

 Use Shift+Click or Ctrl+Click to select multiple controls. When multiple controls are selected, the

Properties panel displays only the properties that the selected controls have in common.

Select Tool - Context Menu Options

Right-click on a control in the Select list to display the following options:

259

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

· Add Events...

Opens the Add Events dialog to select events to add to the control.

· Go to Event

Displays the events that are wired to the control. When clicked, it will go to the event in the Editor.

· Delete

Deletes the control from the form.

· Rename

Opens the Rename object dialog.

· View in Object Browser

Focuses the object browser on the .NET control type.

· MSDN Help

Launches MSDN Help for this control in a web browser.

· View Spotlight Article

Launches tutorial content for this control on the SAPIEN web site.

· Bring to Front

Sends the control to the top/front of the form.

· Send to Back

Sends the control to the bottom/back of the form.

 Use the Bring to Front context menu option to send the control to the top of the form without

having to find the control in the Designer.

8.15 Tools Output Panel

The Tools Output panel displays output from external tools. When debugging, the Tools Output panel

displays breakpoint notifications and post mortem messages.

260

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press L.

Tools Output Panel Overview

The Tools Output panel displays output from any tool, such as the Universal Version Control system,

Custom Menu, or the PSScriptAnalyzer Module:

When debugging, breakpoint notification and the post mortem state of the variables are displayed:

Tools Output Panel - Context Menu Options

Right-click in the Tools Output panel to display the following options:

· Copy (Ctrl+C)

Copy highlighted text to the clipboard.

· Copy HTML (Ctrl+Shift+C)

Copied highlight code, including color coding and formatting.

261

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

· Find (Ctrl+F)

Search the text in the output panel.

· Select All (Ctrl+A)

Select all of the text in the output panel.

· Clear (Ctrl+E)

Clear the output panel.

8.16 Variables Panel

The Variables panel lists all variables and values in the current scope during a breakpoint when debug-

ging.

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press V.

Variables Panel Overview

The Variables panel shows the current values of all PowerShell variables during a debugging session

at a breakpoint:

Variables Panel - Context Menu Options

Right-click in the Variables panel to display the following options:

262

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

· Add To Watch

Add the variable to the Watch panel .

· Query in Debug Console

Display the variable details in the Debug Console panel during a debugging breakpoint.

· Clear Session Variables

Clear the Variables panel.

· Copy (Ctrl+C)

Copy the selected variable to the clipboard.

Variables - Filter and Search

How to filter and search for variables

Use the drop-down menu to show All variables, User variables, or PowerShell variables:

· Show all variables

Displays all the variables in the current debug session.

· User variables only

Displays user defined variables only.

· PowerShell variables only

Displays the PowerShell built-in variables.

How to filter variables by name

Type the variable into the Search box:

264

263

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Variables - Object Properties

In addition to displaying the values of all variables, the Variables panel also lets you examine the

properties of objects.

How to expand the object properties

Double-click a variable name or click on the arrow (>) next to a variable name:

How to expand the array values for a variable during a debugging breakpoint

Click the arrow (>) on the left-side of the variable row, or double-click anywhere on the variable row:

264

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

8.17 Watch Panel

The Watch panel displays the values of variables and expressions that you define when debugging.

Keyboard Shortcut

Press Ctrl + Alt + P, release, then press W.

Watch Panel Overview

The Watch panel allows you to choose the variables you want to monitor during debugging:

265

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Watch Panel - Context Menu Options

Right-click in the Watch panel to display the following options:

· Copy (Ctrl+C)

Copy the selected item to the clipboard.

· Select All (Ctrl+A)

Select all fields and values in the Watch panel.

· Query in Debug Console

Display the watched item details in the Debug Console during a debugging breakpoint.

· Remove Watch Item (Delete)

Clear the item from the Watch panel.

· Remove All

Clear all items from the Watch panel.

Using the Watch Panel

How to add a new variable to the Watch panel

· Type its name in the next free slot in the Expression column.

-OR-

· Highlight the variable in your code, then right-click and select Add to Watch.

-OR-

· Highlight the variable in your code, then click to drag and drop the variable in the Watch panel.

You can also monitor the values of object properties or calculated expressions:

210

266

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Panels

Evaluating Expressions

The debugger can evaluate complex expressions to help you see what results your script is generat-

ing. To evaluate an expression while a script is paused, highlight the expression in the code window:

Drag the expression to the Watch panel. The expression is immediately evaluated and the result is

displayed. The expression will be re-evaluated each time a line of script is executed allowing you to

continually view the expression's result.

Any number of expressions can be added to the list. To remove an expression, select it in the list and

press Delete.

267

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

9 Projects

PowerShell Studio projects facilitate the grouping of related files and settings. For example, a PowerShell

utility might consist of several different Forms and Scripts. PowerShell Studio allows you to keep these

files together as a project, and then use the built-in packager to create an executable file which includes

everything in the package. Using a project instead of a single file script makes it easier to manage addi-

tional content, and allows you to organize your script into individual script files to make your code more

manageable.

Other valuable uses for projects include management of the development workflow. With PowerShell

Studio you can develop the project in a "sandbox" on your local machine, and then deploy the com-

pleted, tested, and debugged files as a single unit to a "live" production environment.

9.1 Project Templates

PowerShell Studio contains predefined templates for various project types.

9.1.1 Available Project Templates

This topic explains the project template options.

Project Templates

Collection Project

A collection project template allows you to group and deploy independent script files in an organ-

ized manner. The group of files typically consist of, but are not limited to, ps1 script files. A collec-

tion project is useful when you have various ps1 scripts that dot source each other.

All files within the project are considered 'content'. There is no project entry point (Startup.pss - pro-

ject startup script) because the project consists of individual files.

Learn more about creating a Collection project .

Empty Project

The empty project template creates an empty project for a script application.

273

268

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

The empty project template creates a basic project with an entry point. The empty project contains a

single file called Startup.pss that runs when your project is executed. Startup.pss contains a Main

function which serves as the entry point to the project / script, and is a good place do any preparat-

ory work before calling other scripts in the project.

Form Project

The form project template is used to create a GUI script with additional scripts and files.

A form project contains three files:

· Globals.ps1

A script file containing functions and variables that will be available throughout your project.

Anything you define in this script will become global to the project.

· MainForm.psf

An empty form in which you build the GUI for your script.

· Startup.pss

The script that runs when your project is executed. Startup.pss contains a Main function which

serves as the entry point to the project / script.

269

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

Module Project

A module project is used for creating a PowerShell script module. The module project template is

useful for creating packaged, reusable utilities that can be installed anywhere they are required.

A module project contains three files:

· <ProjectName>.psd1 *

The manifest file for your module.

· <ProjectName>.psm1 *

The PowerShell script code for your module.

· Test-Module.ps1

The PowerShell script code for testing your module.

* The file names are the same as the project name.

Learn more about creating a Module project .

Multi-Form Project

A multi-form project is the same as a form project with the addition of another form called

ChildForm.psf.

276

270

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

Windows Service Project

A Windows Service project template allows you to create a Windows PowerShell service project, and

is used for the service packaging engine.

9.1.2 Creating a Project

This topic shows you how to create a new project using the New Project template.

How to create a new project

To create a project

Select the File tab > New >New Project (Ctrl+Shift+N):

271

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

 You can go directly to some project templates from the File > New menu, such as New Form

Project or New Module Project.

Select a template in the New Project dialog:

272

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

After selecting a template, complete the following information:

· Project Name

A name for your project.

· Location

The folder to store your project files in.

The default location for project files is: %Users%\<user>/Documents\SAPIEN\PowerShell Stu-

dio\Projects>

This path can be changed in Home > Options > General > Directories > Default Project Direct-

ory:

273

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

· Create project folder

Select this option to store your project files in a new sub-folder in the 'Projects' folder. Uncheck

this option if you want to store your project file in an existing folder.

 Checking Create Project Folder will ensure that your project files are stored in their own sub

directory in the 'Projects' folder, rather than mixing them together with files from other projects.

· Include Git ignore file for temporary project files

When checked, PowerShell Studio will create a .gitignore file for Git source control that filters any

temporary project files.

Next, click Create to create the project. PowerShell Studio will create all of the files specified in the

template and display them in the Project panel .

9.1.3 Collection Project

The collection project allows you to group and deploy independent script files in an organized manner.

About Collection Projects

If you have various ps1 scripts that dot source each other, a Collection project will allow you to:

· Manage multiple files.

· Leverage PrimalSense support for dot sourced files.

· Apply rename refactoring to all of your files.

When a Collection project is created there is no Startup.pss file; there is no entry point in the project

because the project conains individual files. All files within the project are considered 'content'.

You can run each file individually by right-clicking on a file in the Project panel, or from the ribbon

(Home tab > Run menu > Run options):

230

274

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

Collection Project Deployment

Deployment is handled on a project basis. You can deploy all the project files to a single destination

or create an install that includes all of the project files.

The collection project's Deployment properties are used to control the Packager, MSI, and Deploy-

ment behavior of the project as a whole, or as individual project files.

 A collection project's packaging is restricted because the files are all individual.

To access the project's Deployment properties

Click on the collection project name in the Project panel :230

275

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

The project properties will display in the Properties panel :

Collection Project Deployment Properties

· Deploy As

Determines the deployment behavior of the Project as a whole. There are two Deploy As options:

245

276

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

File The project will handle each file individually from a deployment perspective. Each

project file will maintain its own independent settings.

When to use:

Use this setting when you are using the Collection Project to group individual files

that don't necessary interact with each other. With this setting, you can package

and deploy (publish) each script independently.

Project The project will deploy all of the files as a whole. You must define a primary file for

the purposes of the Packager and MSI builder.

When to use:

Use this setting when you have a group of files that interact and have a start/entry

point script (i.e., a primary script that dot sources various secondary scripts). The

primary script will get converted into an executable, and you can create an installer

that includes the primary packaged script and all of the supporting files/scripts.

The project files are also deployed (published) as a whole.

· Primary File

Designates the primary file for the project (Deploy As = Project). The primary file will be the file

that is packaged into an executable, and all other files will be considered external content.

9.1.4 Module Project

A script module is a library of PowerShell functions delivered together for some common purpose.

Script modules are a good way to create packaged, reusable utilities that can be installed anywhere they

are required.

The module project template includes everything that you need to get started:

The psm1 file is where you define the functions that implement your module. A psm1 file is just a

regular PowerShell script with a different extension. You add functions to the file in the same way

that you would create a regular ps1 script file.

277

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

The psd1 file is a module manifest file. It is used to provide extra metadata about a module including

such things as:

· Module version number.

· Author.

· Description.

· Prerequisites for executing the module: required PowerShell version, required CLR version, other

modules and assemblies that must be present.

· Export restrictions: lists of functions, variables, aliases and cmdlets to export.

 Using a module manifest file allows you to cleanly separate your code from instructions and

metadata about your code.

 You can add multiple psd1 and psm1 files to a module project as long as they are located in a

sub-directory and not in the root of the project folder.

The Test-Module.ps1 script lets you test the functions and other features of your module.

To use the Test-Module.ps1 test script

· Import the module (be sure to import the correct version).

· Write commands that test the module features (you can include Pester tests).

To run the Test-Module.ps1 test script

· From any script in the project, on the Home tab click Run, or click Run > Run in Console.

-OR-

· Right-click on the Test-Module.ps1 tab, then select Run Script or Run Script in Console.

-OR-

· In the Project panel , right-click on the Test-Module.ps1 script, then select Run Script File or

Run Script in Console.

9.1.5 New Module from Functions

The New Module From Functions option allows you to import functions from various ps1 scripts and

merge them into a new script module.

How to create a New Module From Functions

Select the File tab > New > New Module From Functions:

230

278

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

If a file is not already open, you will be prompted to select a file.

The Convert Functions into Module dialog allows you to select files and functions for the new mod-

ule:

279

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

Convert Functions into Module - Dialog Options

· Module Name

Enter the name you wish to give your new module.

· Location

Specify the folder where the module will be saved. The default is PowerShell Studio's project dir-

ectory.

· Create Module Folder

This option creates a folder using the module's name and places all the generated files within that

folder. This folder will be created in the folder specified by the Location field.

· Create external XML help file

This option will create an external XML help file for the module suing the imported functions.

· Include Git ignore file for temporary project files

When checked, PowerShell Studio will create a .gitignore file for Git source control that filters any

temporary project files.

· Source Files

Contains the list of files from which the selected functions will be extracted.

o Add File

280

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

Use the Add File button to add ps1 scripts to the Source Files, in order to extract their functions.

o Remove File

Use the Remove File button to remove unnecessary files from the Source Files list. This can help

de-clutter the functions list.

· Functions

The functions section contains a node for each file and a list of functions that are declared in each

file. Select the functions to import into the new module:

 You can check and un-check all the functions in the file by checking/un-checking the file's

node.

If a function references another function, it will have a Referenced Functions folder icon containing

a list of all the referenced functions:

 When you check a function in the list that has references, it will automatically check all the ref-

erenced functions.

After you have selected the functions and configured the options in the Convert Functions into

Module dialog, click Create Module to generate the new module.

 In some instances you may have a duplicate function that is defined in multiple files. PowerShell

Studio will compare these functions, and if they are identical it will only insert the function once. If

the functions are different, PowerShell Studio will automatically rename the duplicate. A warning will

be displayed in the Output panel when this occurs:

281

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

The New Module From Functions project contains four files:

· <ModuleName>.psd1

The manifest file for your module.

· <ModuleName>.psm1

A PowerShell script containing all of the imported functions.

· <ModuleName>.psm1-Help.xml

The PowerShell XML Help file for the module, generated using the imported functions.

· Test-Module.ps1

The PowerShell script code for testing your module.

9.2 Project Properties

Project properties are shown in the Properties panel.

How to view project properties

Click on the project name in the Project panel :230

282

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

The project properties will display in the Properties panel :

Project Level Properties

· Project

o Project Name

Allows you to change the project name.

o Project Path

The location where the project is stored. This is not an editable property.

· Synchronization

o File Filter

The file filter used to synchronize the project files.

o Synchronized

Synchronize projects and files when the project is loaded.

This option allows you to trigger project file synchronization when the application regains focus

(activated). In order for this feature to work, you must select Sync files when the application is

activated in Options > General > Project Settings:

245

283

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

You also need to have a project open with file synchronization enabled (Synchronized = True):

 Project sync on activate ensures that the application can detect changes when you are mak-

ing modifications to the project's folder structure outside of PowerShell Studio.

9.3 Managing Project Files

Project files and folders are managed in the Project panel.

The top of the Project panel has buttons for common project tasks, as well as a search box:

To access the project level options

Right-click on the project name:

230

284

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

To access context sensitive options

Right-click on a project file or folder:

Project file options

Project folder options

285

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

9.4 Project File Properties

A project's file properties are shown in the Properties panel.

How to access the project file properties

Click on the project name in the Project panel :

The file properties will display in the Properties panel :

Project File Properties

· Build

This property determines what PowerShell Studio does with a file when you deploy / export a pro-

ject. Three options are supported:

o Include

The file is included in the build. The Reference Function properties are used to help integrate the

file contents into the shell.

230

245

286

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

o Exclude

The file will not be included in the build.

o Content

The file will be included in the build but any code contained in the file will not be integrated into

the shell. This is a useful option when you want to include data files in your project.

· Build Order

Sets the order in which the file is built / merged by the project.

· File Path

The location where the file is stored. This is not an editable property.

· Name

The name of the file can be edited here.

· Reference Function

The name of the function that invokes the project file.

· Shared

If enabled, the functions and variables declared in the ps1 file can be referenced by other project

files, and you will not be able to invoke the file by its reference function.

· Export Function (Module projects only)

Exports the functions defined in the file. Requires the project's Auto Export Functions property to

be True.

Invoking Project Files

The Reference Function property described above references the function that allows simple invoca-

tion of a project file. If you add a script file called Utilities.ps1 to a project and you examine its prop-

erties, you will see that PowerShell Studio has generated a Reference Function called Invoke-Utilit-

ies_ps1. You can use this name elsewhere in your project scripts to run the code in Utilities.ps1.

For Form projects, PowerShell Studio uses this method to load the first form in a project from the

project startup script (Startup.pss):

9.5 Adding Script Parameters to Projects

Adding a Param block to the Startup.pss file allows you to provide startup parameters to your project

when it runs.

The runtime behavior depends on how the project is started:

287

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

· If you start your project from the console, then you provide parameter values on the command

line, separated by spaces.

· If you are starting a Forms project, then PowerShell Studio will prompt you for the parameter val-

ues.

· If you package a project into an EXE file, then you must always provide startup parameters on the

command line.

You can also add Param blocks to forms and scripts in your project, as long as their Shared property

is not set to true. Simply add a Param block to the beginning of the file and provide parameter val-

ues when you invoke the file.

For example, if we wanted to pass the current user's name to each form in our script, we could add a

Param block to each form:

Then supply an appropriate value when we call the form:

9.6 Running a Project

Options to run a project are available on the Home ribbon , and also in the Project panel .

To run a project

· Click the Home tab > Run menu > Run (Ctrl+F5):

140 230

288

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

-OR-

· Right-click on the project name in the Project panel and choose one of the Run options:

 The execution options available will depend on the project type.

 You can also run each file individually by right-clicking on a file in the Project panel .

9.7 Exporting a Project

Exporting a project converts the project into a single script file that contains all of your code, plus the

auto-generated code produced by PowerShell Studio. You can export a project to a file, or to the clip-

board.

The export options are located on the Deploy tab > Export section:

230

289

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

Project Export - Options

· Export to File

Exports the project to a ps1 file.

· Export to Clipboard

Copies the project to the clipboard.

9.8 Form Return Variables

In order to simplify working with forms in a project, PowerShell Studio will create special variables that

allow you to refer directly to a property of controls on a child form. These variables are accessible from

the script that invokes the form's reference function (see Invoking Project Files).

To demonstrate this, create a new Multi-Form project (File > New > New Form Project > Multi-

Form Project):

The Multi-Form project template includes a button on the main form called 'Call Child Form'.

Click on the main form Script tab to view the code. Notice that the CallChildForm button click hand-

ler includes the Show-ChildForm_psf reference function to call the child form:

286

290

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

Next, add a textbox to the child form (Child Form Designer tab > Toolbox panel > Textbox con-

trol):

 For information about Windows Forms controls, see Panels > Toolbox Panel .

PowerShell Studio will make the text property of the textbox in the child form directly accessible in

the main form through a variable called $ChildForm_textbox1. The screenshot below shows Power-

Shell Studio's Intellisense suggestion when you type '$chi' in the main form:

255

291

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

This example illustrates that you can access a child form variable in the the main form code.

These form return variables make it easy to gather the results from data entry forms.

The controls that support this mechanism are summarized below, along with the type of data that

they return:

292

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

Control Return Type Property and Data Type

Checkbox Checked (Boolean)

CheckedListBox Selected item (string)

ComboBox Selected item (string)

DataGridView SelectedCells (DataGridViewCellCollection)

DateTimePicker Selected date (DateTime)

ListBox Collection of selected items(string)

ListView Collection of selected items(string)

MonthCalendar Selected date (DateTime)

NumericUpDown Selected value (Decimal)

RadioButton Checked (Boolean)

RichTextBox Text (string)

Textbox Text (string)

Tracker Value (int)

Treeview Selected Node (string)

9.9 Projects and Source Control

Projects can be managed as a unit through PowerShell Studio's source control integration.

Before managing a project through source control, source control integration must first be con-

figured . 305

293

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Projects

To work with source control

In the Project panel , right-click on the project name:

· Add to source control

Adds the project to source control.

· Check in

Checks in one or more project files which have changed or not yet been checked in.

 Individual files within the project can be checked in or out independently, but checking files in to-

gether as a project helps to simplify file and source control management.

230

294

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Packaging Scripts

10 Packaging Scripts

PowerShell Studio contains the Script Packager™, which can package single or multiple scripts, support-

ing files, and COM components into a single, standalone executable file (.exe).

10.1 Creating a Script Package

This topic shows you how to create a script package.

 If this is your first package, begin by setting up the Script Packager .

To create a package

· Click Deploy on the ribbon, then in the Packager section click Build or Build & Run:

o Build (Ctrl+F7) - Creates an executable file from the active document

o Build & Run - Creates an executable file from the active document and executes it.

PowerShell Studio checks the syntax of the designated files and packages them into an executable

file (.exe).

If your build is successful, information about the new executable file is displayed in the Tools Output

panel:

295

295

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Packaging Scripts

10.2 Setting up the Script Packager

The Script Packager contains everything you need to customize your executable files and create a pack-

age.

To open Packager Settings and configure a script package

1. Click Deploy on the ribbon, then click Settings in the Packager section to open the Script Pack-

ager interface:

2. Select the desired settings in the Script Packager interface (see details below):

· Script Engine

· Output Settings

· Restrictions

· Version Information

· Build Commands

Script Engine

Target Platform

The Script Packager provides four options for building executables:

· Microsoft Windows 32 Bit will generate a 32 bit excecutable.

· Microsoft Windows 64 Bit will generate a 64 bit executable.

· Microsoft Windows 32 and 64 Bit will generate a 32 bit and a 64 bit executable.

· Microsoft Windows Native will create a starter executable which will launch the correct version de-

pending on the current platform.

Select the desired platform from the options in the Target drop-down list:

295

296

302

303

303

296

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Packaging Scripts

Script Engines

Each script engine option provides a preview of what the selection will do:

 Each package contains only one engine type. To include more than one script type in an execut-

able file, create an MSI file.

STA Mode

Use STA Mode (Powershell

engines only)

STA (Single Threaded Apartment) Mode allows you to start your

script in single threaded mode. This is essential when your script

uses forms to interact with the Windows GUI. Some GUI con-

trols require STA mode in order for them to function correctly.

Output Settings

Output Settings Options

File name Filename of the executable.

Folder Folder for the executable.

It is recommended that you leave the common folder default

297

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Packaging Scripts

name of "bin" for consistency. Learn more .

Icon file (optional) A custom icon (.ico) for the executable.

Generate .config file Generates a .config file.

If you select Windows Native, .config files will be generated for

all three of the .exe files.

Resolve and include external

scripts

The code of external scripts will get injected into the packaged

script when building the executable.

Enable this option to resolve dot sourced files while packaging.

Learn more .

Hash file type Options for the Hash file type: None, MD5, SHA1, SHA256.

Manifest creation Options for the manifest file, including a custom manifest.

(This is an executable manifest, not a Windows PowerShell mod-

ule manifest.)

Custom manifest Opens a file to the specified line.

Alternate credentials Uses the credentials of the specified user to run the scripts in the

executable file. Learn more .

Run mode Current user: Runs scripts with the permissions of the user who

runs the executable file.

Impersonate user: Switches to the security context of the spe-

cified user, but uses the environment (e.g. network profiles,

mapped drives, environment variables) of the current user.

RunAs user: Runs scripts with the permissions of the specified

user in the specified user's environment.

Learn more about the Run Mode options .

Signing Specify the code signing certificate to sign your executable. If

you specify a PFX file that requires a password, include it here.

298

300

300

301

298

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Packaging Scripts

The Timestamp URL creates a timestamp for the signature used

to sign the file, allowing the signature to remain valid even after

the certificate expires.

Engine Settings

The packaged executable files are generated in a platform specific folder under a common folder. It

is recommended that you leave the common folder default name of "bin" for consistency:

The build target you select will determine the platform specific folder that the packaged file(s) are

generated in:

· 32 bit files will be in bin\x86

· 64 bit files will be in bin\x64

· 32 bit and 64 bit files will be in their respective folders (bin\x86 and bin\x64)

299

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Packaging Scripts

· Windows Native executables will be in bin\Any platform

Choosing the Windows Native option will generate three .exe files:

o <app>x86.exe and <app>x64.exe are your actual packaged script.

o <app>.exe is a starter application that will execute the right package for the current platform.

You must install or deploy all three files together for your application to work. The starter application

will receive the same icon, digital signature, and manifest as the packaged files, so a shortcut to

<app>.exe will create the same experience.

300

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Packaging Scripts

 If you select both Windows Native and Generate .config file, then .config files will be generated

for all three of the .exe files.

External Scripts

Select Resolve and include external scripts to deploy dot sourced files with the executable. If this

option is enabled, the code of the external scripts will get injected into the packaged script when

building the executable.

· Files specified with or without single and double quotes are supported. Files that do not exist will

issue a warning. If you have a dot source statement inside a comment block, the file will be inser-

ted into the comment block.

· Using a line comment will prevent a file from being resolved.

· If you need to resolve only some but not all external files, you can use a different case for the file

extension:

o ./include/lib.ps1 will be resolved by the packager.

o ./include/lib.PS1 will not be resolved.

In other words, the statement is case sensitive; the actual filename's case is not relevant.

Alternate Credentials

By default, the scripts in a package run in the security context of the user who runs the package. You

can specify alternate credentials (a username and password) that will be used to run the scripts.

301

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Packaging Scripts

The alternate credentials you supply must be available (either as local or domain accounts) on any

computer where the packaged executable will run. Also, the credentials must generally have local ad-

ministrator privileges on the computer where the package will run.

Alternate Credentials options:

· Username

Username of the specified user that will run the scripts in the package.

 To specify a domain, use username@domainname format, not domain\user format. Do not

specify a domain or computer name for local accounts.

· Password

Password of the specified user that will run the scripts in the package.

· Run Mode

Select the user profile that will run the scripts in the package.

o Current user

Runs scripts with the security context of the current user, in the current user's environment.

o Impersonate user

Runs scripts with the security context of the specified user, in the current user's environment.

o RunAs user

Runs scripts with the security context of the specified user, in the specified user's environment

Elevate Regular User to Full Administrator

This section explains how to package a script as an executable, with the objective of allowing a regu-

lar user to accomplish a task that requires full administrator privileges.

Some background:

Since Windows Vista, the Administrator security token is split—you cannot simply logon as Admin

and do anything you need to do. An Admin must elevate in order to accomplish certain tasks (e.g.,

when accessing or modifying certain system areas). This has ramifications for packaging executables

—you cannot successfully use a run mode of RunAs or Impersonation, and also elevate at the same

time.

When selecting RunAs or Impersonation:

· The specified credentials are stored inside the packaged executable, encrypted.

· When the packaged executable is launched, it uses certain API calls to create a new security token

(Impersonation) or run itself with the specified credentials (RunAs). The executable needs to load

and execute in order for this to happen.

302

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Packaging Scripts

When selecting a manifest for elevation:

· The manifest is embedded in the executable—unencrypted—because Windows needs to read this

information.

· Windows will load and evaluate this manifest before any code is executed. If you run this from a

regular user, you will be prompted for Admin credentials and also to verify elevation. The creden-

tials stored inside the package have no effect at this point because they would only be applied

after the fact.

Essentially, due to the way Windows evaluates manifests, elevation happens before RunAs / Imper-

sonation—but it needs to be the other way around to avoid prompts and to not give regular users

Admin privileges. The Script Packager accomplishes this via a two-step process:

1. Starter.exe—a simple script packaged as an executable that includes; the Admin credentials, a run

mode of either RunAs or Impersonation, and instructions to launch your script.

2. Your script—packaged as an executable, with a manifest for elevation.

Using this process, Starter.exe will launch and use the specified Admin credentials, and then your

script will run with elevation.

 Depending on your local settings, you may get a prompt to allow your script to modify your

system, but it will not prompt you for actual credentials.

Restrictions

Use the Restrictions to limit the environment in which the package runs.

303

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Packaging Scripts

 When restricted to a specific version, the executables display the expected and encountered ver-

sions in the error message.

Version Information

Use the Version Information settings to specify characteristics of the current version of the execut-

able file.

 The version number must be in #.#.#.# format.

Build Commands

Use the Build Commands to define custom commands to run before or after packaging.

 The commands will be executed in the sequence defined; one after the other, rather than in paral-

lel.

304

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Packaging Scripts

Use the four buttons at the top-right of each section to manage the pre- and post-packaging com-

mands:

From left to right:

· Add File - Browses for a file / exe.

· Remove - Removes the command.

· Move Up - Moves the command up in the order.

· Move Down - Moves the command down in the order.

305

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Source Control Integration

11 Source Control Integration

PowerShell Studio provides a number of source control options, including a Universal Version Control

system that integrates with command-line tools such as Git , or integrating with a Microsoft Source

Code Control Integration (MS SCCI) software provider.

11.1 Universal Version Control

The Universal Version Control system allows configuration of any source control provider with com-

mand-line tools. The current support scope includes the Git source control system. Support will be ex-

panded to include other providers.

Using Git

To enable Git support

Go to File > Options > Source Control. In the System drop-down list, select Git:

305

308

306

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Source Control Integration

 To disable the Universal Version Control feature, select <Disabled> from the System drop-

down.

Git Commands

Once enabled, the preconfigured Git commands will appear in the Source Control tab on the rib-

bon:

307

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Source Control Integration

· Init

Initialize a Git repository in the current folder.

· Clone

Create a clone of a remote repository.

· Add

Add a file to a repository.

· Add All

Add a file or all files in the folder to a repository.

· Commit

Commit a change to a repository.

· Commit All

Commit all changes to a repository.

· Status

Get the status of the current file.

· Status All

Get the status of the current file or all files in the folder.

· Diff

Show the difference for the current file.

· Reset

Rewinds history (files + commits) back to the previous commits.

· Checkout

Switch branches or restore working tree files.

· Branch

Create a new branch.

· Merge

Merge the specified branch.

· Push

Upload the local repository content to a remote repository.

· Pull

Fetch and download content from a local repository.

· Tag

Create a tag for the current repository.

· Shell

Launch a Git command shell.

· GUI

Launch the Git GUI tool.

308

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Source Control Integration

You will be prompted if a value is required to execute the command. For example, when you select

the Git Commit command, a commit message is required:

 Output from Git will be displayed in the Tools Output panel:

11.2 Microsoft Source Code Control Integration

Your source control software must either be VersionRecall from SAPIEN Technologies, or your source

control provider must provide an SSAPI-compatible client, such as Microsoft Visual Source Safe.

Configuring Source Control Integration

 Before configuring PowerShell Studio for source control, you must install your source control

software's client.

To configure source control integration

Go to File > Options > Source Control:

1. Make sure that the Universal Version Control feature is <Disabled>.

2. Select Enable MS SCCI API source control.

https://www.sapien.com/store/versionrecall

309

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Source Control Integration

PowerShell Studio will automatically detect the presence of the source control client and automatic-

ally display it in the Providers list box. If your source control client does not appear, then shutdown

and restart PowerShell Studio.

 Your source control provider must be displayed in the Provider list; if it is not, then source con-

trol is not properly installed and will not be available to PowerShell Studio.

After enabling source control you can configure the options however you like, including prompting

before checking files out, automatic check-in, and directing output messages:

310

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Source Control Integration

Source control settings are configured in Options and Settings > Source Control .

Using Source Control

 PowerShell Studio does not provide source control capability—it simply integrates with the fea-

tures of your compatible source control software. Some features described here may not be avail-

able in your software, or may work somewhat differently.

Before a file can be managed through source control, it must first be added.

To add a file to source control

· With the file open, on the Source Control tab > select Add To...:

-OR-

· Right-click the file name tab and select Add To Source Control:

377

311

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Source Control Integration

 You must first save unsaved scripts before they can be added. If you do not, PowerShell Studio

will prompt you to save the file first.

312

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Source Control Integration

 Your source control software governs the add process and may prompt you for login creden-

tials, a location for the script, or other information.

Once added, scripts can be checked in or out using the buttons on the Source Control ribbon:

Source control functions are also available on the file context menu:

313

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Source Control Integration

314

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Source Control Integration

Source Control Commands

Some of these source control options may not be available, or may work differently, depending on

your source control provider:

· Launch

Launches the source control software.

· Add To...

Add the current document to a source control database.

· Check In

Checks in the changes of the current document into the source control database.

· Check Out

Checks out the current document for editing from the source control database.

· Undo Check Out

Restores the file to the last checked in version.

· Get Latest

Get the latest version of the document from the source control database.

· View History

View the past versions of the current document.

· Properties

View the source control properties of the current document.

· Compare

Compares the active document to a previous version.

· Refresh

Refresh the source control status.

315

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

12 ScriptMerge

ScriptMerge is a stand-alone application shipped with PowerShell Studio that compares files and folders

and applies differences to either of the two compared items.

12.1 Running ScriptMerge

ScriptMerge can be started from the Windows Start Menu, or from within the PrimalScript and Power-

Shell Studio applications.

To start ScriptMerge from the Windows Start Menu

· In the Windows Start Menu, select SAPIEN Technologies, Inc. > ScriptMerge:

To start ScriptMerge from PrimalScript

1. In PrimalScript click the View tab > then in the Panels section, check the Tools box.

2. In the Tools Browser click SAPIEN Tools > then click the ScriptMerge icon.

To start ScriptMerge from PowerShell Studio

· In PowerShell Studio, open two files to compare > then click Home > in the Edit section, click the

Compare Files button:

12.2 Comparing Files

ScriptMerge compares files side-by-side and highlights the differences.

To compare files

Click File > Compare files:

1. In the Left File window, navigate to the folder.

2. Select a file in the Name window below.

3. In the Right File window, navigate to the folder.

4. Select the other file to compare in the Name window below.

316

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

5. Click Compare Files.

When the files are first opened, ScriptMerge displays the differences as gray, light yellow, and

dark yellow colored lines. The current difference—in this case the first difference—is highlighted

in varying shades of red:

· Light yellow indicates words that have changed.

· Dark yellow indicates a line that contains a change.

· Dark grey lines indicate a line that was deleted.

317

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

To see the highlighting in action, change a line and save it. The changes will be reflected in the

comparison.

 You can customize the comparison differences coloring in File > Settings > Merge Options >

Color Options.

To step through the differences

· In the Differences section, click Next and Previous to go back and forth through the differences:

The current difference is highlighted in different shades of red:

Click Highlight Diff to add extra emphasis to the changed elements for the current difference:

To merge the differences

· In the Merge section, select Right or Left:

318

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

12.3 Comparing Folders

ScriptMerge compares folders side-by-side and highlights the differences.

To compare folders

Click File > Compare folders:

1. In the Left Folder window, select a folder.

2. In the Right Folder window, select a folder.

3. Click Compare Folders.

ScriptMerge compares the files in each folder and their contents. The results show which folders

have files in both locations, or if the folders have files in only one location. If the folders have files

in both locations, ScriptMerge indicates if the files are different or identical.

Files that exist in both locations but are different are marked with a red whole page icon:

Files that are identical in both locations are marked with a blue whole page icon:

319

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

Files that are only in one folder are marked with a blue half-page icon. The icons reflect the folder

location: left half-page icons are in the Left Folder; right half-page icons are in the Right Folder:

To replace a file in one folder with the file in the other folder

· In the Merge section, select Right or Left.

-OR-

· Right-click the file and select Copy (Left to Right or Right to Left):

320

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

12.4 Comparing Groups

You can group pairs of files and then easily open the group to compare. This feature is useful for re-

peated comparison of the same files.

To create and open a group

1. Create a text file with the file pairs listed as follows:

File1|File2 separated by the pipe symbol (|).

Example: C:\Users\Me\Documents\SAPIEN\script1.ps1|C:\Users\Me\Docu-

ments\SAPIEN\script2.ps1

2. Save the file as <filename>.smgrp (smgrp = ScriptMerge Group):

3. Open the group file and ScriptMerge will open the contained pairs at the position of the first dif-

ference:

· Double-click the group file.

-OR-

· In ScriptMerge select File > Compare group, then navigate to the group file location:

321

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

12.5 Context Menu Options

The ScriptMerge context menu options will vary depending on if you are comparing files or folders.

To access the context menu options

· Right-click on the file comparison or folder comparison tab:

Compare Files - Context Menu Compare Folders - Context Menu

· Close

322

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

Closes the highlighted tab.

· Close All

Closes all of the tabs.

· Close All but current

Closes all tabs except for the highlighted tab.

· Open containing folders (file comparison only)

Opens two Windows Explorer instances with the compared files selected.

· Compare containing folders (file comparison only)

Compares the files in each underlying folder, and also the file contents.

· Open compared folders (folder comparison only)

Opens two Windows Explorer instances, one for each compared folder.

· New Horizontal Tab Group

Moves the selected tab to a separate horizontal tab group.

· New Vertical Tab Group

Moves the selected tab to a separate vertical tab group.

· Move to Previous Tab Group

Moves the selected tab back to the original tab group.

 Tab groups are especially useful when you have a folder comparison open and also a number

of files compared. Move the folder comparison to it's own tabbed group so that it remains visible

while you compare the files in the folders.

12.6 Navigating Between Differences

The Differences section of the ribbon provides buttons to help you move between differences in a file

or folder:

· Next (Ctrl+Down)

Moves forward to the next difference.

· Previous (Ctrl+Up)

Moves back to the previous difference.

· First (Ctrl+H)

Moves to the first difference.

323

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

· Last (Ctrl+E)

Moves to the last difference.

· Current (Ctrl+Enter)

Scrolls the code window to the current difference.

· Highlight Diff

Adds extra emphasis to the changed elements in code files.

12.7 Reconciling Differences

The Merge section of the ribbon provides buttons to help you copy from one file or folder to another:

· Right (Ctrl+Right)

Copies the current selection from the left to the right file or folder.

· Left (Ctrl+Left)

Copies the current selection from the right to the left file or folder.

· Right, Next Diff

Copies the current selection from the left to the right and advances to the next difference.

· Left, Next Diff

Copies the current selection from the right to the left and advances to the next difference.

· All Right

Copies all differences from the left to the right file or folder.

· All Left

Copies all differences from the right to the left file or folder.

12.8 Signing Scripts

ScriptMerge allows you to to handle digital signatures in your files.

You can re-sign scripts or remove signatures from the ribbon buttons:

324

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

· Sign Left

Sign the script file displayed on the left.

· Sign Right

Sign the script file displayed on the right.

· Sign Both

Sign both script files.

· Remove Left

Remove the signature from the script file displayed on the left.

· Remove Right

Remove the signature from the script file displayed on the right.

· Remove Both

Remove the signatures from both script files.

12.9 ScriptMerge Settings

You can adjust some ScriptMerge tool settings, such as keyboard shortcuts and Quick Access Toolbar

buttons. You can also change the highlight colors for comparisons, and toggle some compare options.

To access the ScriptMerge options

· Select File > Settings:

325

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

The following settings can be adjusted:

· General Options

o Sign script files when saving.

o Use last folders selected.

326

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

· Quick Access Toolbar

o Add, Remove, Reset toolbar buttons.

o Show Quick Access Toolbar below the Ribbon.

o Customize Keyboard Shortcuts.

327

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

· Merge Options

o Select comparison color options.

o Toggle compare options for Case, Whitespace, and Blank Lines.

328

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

ScriptMerge

329

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Snippet Editor

13 Snippet Editor

PowerShell Studio provides a collection of snippets to help you complete common coding tasks quickly.

You can use the Snippet Editor to easily edit and create snippets.

About Snippets

Snippets are small pieces of reusable code that can be quickly inserted into your scripts, thus saving

you time and reducing errors. This piece, or "snippet" of code, can vary from a full-fledged function

to a simple single line statement. Snippets come in a variety of languages such VBScript, PowerShell,

C#, etc.

PrimalScript and PowerShell Studio come with extensive libraries of reusable code snippets. You can

also save any text or code block as a snippet to automate code development. Snippets can include

placeholders; PrimalScript and PowerShell Studio will prompt you to supply values for these when

you use the snippet.

Snippets Panel

Use the Snippets panel to access and manage snippets:

To access the Snippets panel:

· On the Home ribbon, in the Windows section, select Snippets from the Panels drop-down menu.

-OR-

· Chorded keyboard shortcut: Press Ctrl+Alt+P, release, then press S

Snippet Editor

The Snippet Editor is a self-contained program within PrimalScript and PowerShell Studio that sup-

ports multiple programming languages. Using the Snippet Editor is a fast and easy way to edit exist-

ing snippets and to create your own.

The Snippet Editor will launch when you edit an existing snippet or create a new snippet:

329

330

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Snippet Editor

The Snippet Editor

Snippet Properties

The top section of the Snippet Editor allows you to enter the following snippet properties:

· Title

The name of the snippet.

· Shortcut

The text you need to type in the code editor to invoke the snippet.

· Description

A short description of the snippet explaining what it does.

· Author

The snippet author details.

· Help URL

A link to help information. This will be displayed in the code editor.

· Language

Set to ’powershell’ for snippets used in PowerShell Studio.

Set to the appropriate language for snippets used in PrimalScript.

· Type

331

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Snippet Editor

This setting defines how the snippet will be displayed in the code editor (inserted into the code, or

surrounding existing code). The options are:

o Expansion

Select this if your snippet is intended to be simply inserted into code.

o Surrounds With

Select this if your snippet can surround existing code.

o Both

Select this if your snippet can be used both ways.

The selection you choose for the Type property will dictate the menu options available when you

insert the snippet in the code editor:

· Insert Snippet…

Only displays snippets where the 'Type' property is defined as Expansion or Both.

· Surround With Snippet…

Only displays snippets where the 'Type' property is defined as Surrounds With or Both.

 If you choose a 'Type' value of Surrounds With or Both you must include the $selected$

placeholder variable* somewhere in your snippet code body, otherwise you may overwrite user

code when your snippet is used:

(* Refer to the Built-in Placeholder Variables section below for more information about the

placeholder variables provided with the Snippet Editor.)

333

332

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Snippet Editor

Snippet Windows

The tabs at the bottom of the Snippet Editor provide more configuration options for your snippets:

· References

This section tells PrimalScript or PowerShell Studio what dependencies your snippet has. The as-

semblies you list here will be loaded into PrimalScript or PowerShell Studio when you use the snip-

pet.

· Output

This section is not used for PowerShell snippets.

· Variable Details

Before you configure the variable details you must add a placeholder variable to a snippet:

1. Position your cursor in the snippet code editor where you want to insert a variable, then right-

click and select Add Variable:

2. Name the variable:

3. The variable will appear in the snippet as $<variable>$ (e.g., $condition$):

333

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Snippet Editor

4. Configure additional variable properties:

· ID

The variable name.

· Default

A default value if required.

· Function

Not used in PowerShell snippets.

· Type

Not used in PowerShell snippets.

· Kind

Not used in PowerShell snippets.

· Editable

Not used in PowerShell snippets.

· ToolTip

Provides some text explaining the purpose of the variable. This helps the snippet user under-

stand how to complete the snippet. PrimalScript or PowerShell Studio will display these tool-

tips as the user navigates between the placeholders in the code editor.

· Imports

This section is not used for PowerShell snippets.

Built-in Placeholder Variables

The Snippet Editor provides two built-in placeholder variables:

· $selected$

334

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Snippet Editor

Allows you to merge code from the code editor into your snippet when it is used. For example,

you could create a snippet called ExtractFunction containing this code:

Now you can highlight lines of code and use this snippet to refactor them into a reusable function.

· end

Specifies where the cursor should be placed when a snippet is inserted into the code editor.

335

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

14 Options and Settings

The Options dialog contains all of the main configuration settings for PowerShell Studio. This section

provides an overview of the available settings.

14.1 Accessing the Options

There are a number of ways to access the PowerShell Studio program options from the ribbon.

To access the PowerShell Studio configuration options

· On the View tab > in the Windows section, select Options:

 The Windows section of the ribbon might be compressed on smaller screens, such as tablets.

-OR-

· Select the File tab > select Options:

14.2 General

This topic covers the settings available in Options > General.

336

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

In this section

· Settings

o Saving Settings

· User Information

· Directories

· Project Settings

Settings

· Show start page on startup

Enables or disables the Start page .

· Restore open files on startup

Reopens the files that were open when PowerShell Studio was last shut down.

336

337

338

338

338

19

337

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

· Allow multiple instances

Allows for more than one copy of PowerShell Studio running at once.

· Enable deferred file loading

Loads files on demand. Deferred loading improves overall performance when loading large

groups of files while reducing memory consumption and load times.

· Update changed files automatically

Automatically reloads files that are modified externally. PowerShell Studio will still prompt if the file

has any unsaved changes.

· Enable remote file status check

PowerShell Studio will warn you if a file has been edited outside of its editor. Checking remote files

can cause PowerShell Studio to slow down. This option allows you disable remote file checking if

needed.

· Show exported files in Windows Explorer

After exporting files from PowerShell Studio, launch Windows Explorer focused on the export

folder.

· Show the document selector when navigating tabs

Controls the behavior of navigating between documents (Ctrl+Tab).

o Enabled

Cycle between documents using the Document Selector. The documents are displayed in activa-

tion order instead of tab order.

o Disabled

Cycle through the document tabs without opening the Document Selector.

· Default file type

Choose the default file type when a new document is created. Choose from PowerShell Script or

Form.

Saving Settings

There are three buttons at the bottom of the Settings section that control the saving and loading of

PowerShell Studio settings:

These settings can be used to back-up or load your settings, and they can also be shared with oth-

ers for standardization purposes.

· Save All Settings...

This button saves all application settings, and it is recommended that you regularly export the set-

tings. By default, the settings are saved to:

Documents\SAPIEN\PowerShell Studio\Files\PowerShellStudio.Settings.xml

· Save Editor Settings

338

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

This button saves only the editor settings. By default, the settings are saved to:

Documents\SAPIEN\PowerShell Studio\Files\PowerShellStudio.Editor.Settings.xml

· Load Settings...

This button loads settings that were previously saved.

 You will need to restart PowerShell Studio for the changes to take effect.

User Information

· Username

Enter the user name. This information will be used in your templates.

· Organization

Enter the organization name. This information will be used in your templates.

Directories

· Default Files Directory

Specifies the folders where scripts are saved.

· Default Project Directory

Specifies the folders where projects are saved.

· Template Directory

Specifies the folders where user templates are saved.

Project Settings

· Default action for copy import file to project

When importing an existing file into a project, PowerShell Studio can make a copy of the file and

add it to the project folder or create a link to the original file.

o Ask

339

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Ask to copy import file.

o Copy

Automatically copy import file.

o Never

Never copy import file.

· Sync files when the application is activated

Allows you to trigger project file synchronization when the application regains focus (activated).

You also need to have a project open with file synchronization enabled (Synchronized = True):

 Project sync on activate ensures that the application can detect changes when you are making

modifications to the project's folder structure outside of PowerShell Studio.

14.3 Backup

This topic covers the settings available in Options > Backup.

340

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

In this section

· Editor Backup

· Restore Points

· VersionRecall

Editor Backup

· Auto save every [] minutes

The frequency in minutes that files will be auto-saved.

· Enable file recovery

Activates the File Recovery system to recover modified files when the application is restarted after

an unexpected closure.

340

341

341

341

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

 Changes are not committed for recovered files until the user explicitly saves the modified doc-

ument.

Restore Points

· Create a restore point as soon as a file is modified

Create a restore point when you modify a file to allow you to easily undo all changes. The auto-

matic restore point is only created once, at the time of first edit (start of a session). When you cre-

ate a permanent restore point, it only stores one. This is meant as a quick recovery tool and not as

a versioning tool. So if you work on your script for a long time and you need to restore it to a

point using this method, then it will restore back to the beginning of your session. You will lose

everything you've done since.

 If you are about to do something in the script that you may want to rollback, on the Source

Control tab > in the Restore Points section, click Create.

· Remove restore points when the application closes

When you close PowerShell Studio, restore points will be removed.

VersionRecall

· Automatically submit to VersionRecall repository when a file is closed

VersionRecall is SAPIEN's version control system. This option allows you to save your script to Ver-

sionRecall when it closes.

 For information, visit the VersionRecall product page.

14.4 Console

This topic covers the settings available in Options > Console. These settings allow you to configure the

console style and manage embedded shells.

https://www.sapien.com/software/versionrecall

342

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

In this section

· Console Style

· Consoles

Console Style

· Font

Sets the Console font type.

· Size

Sets the Console font size.

· Bold

Sets the Console font as bold.

· Italic

342

343

343

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Sets the Console font as italic.

· Enable enhanced console input line

Creates a separate input box to type in, instead of typing directly into the console.

 To make your console style changes effective, click anywhere outside of the Options dialog or

the Console panel.

Consoles

On the first run, PowerShell Studio will attempt to detect Windows PowerShell and PowerShell Core

and automatically add them to the Console list.

There are three buttons at the top-right of the Consoles list:

From left to right:

· Add Shell

Navigate to the shell executable and then click Open to add a shell.

· Remove

344

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Remove the selected shell.

· Reset

Restore the default PowerShell consoles.

 You must restart PowerShell Studio to apply the changes.

 If you install a new version of PowerShell Core, you will need to reset your consoles to see the

new version in the console panel. If you don't want to reset any custom settings, then you will need

to manually update the path to the PowerShell Core executable by clicking the three dots (...) to the

right of the shell path.

14.5 Debugger

This topic covers the settings available in Options > Debugger.

345

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Remote Ports

These settings configure the network ports that PowerShell Studio uses to connect to a remote in-

stallation of the Remote Script Execution Engine (RSEE). You must use the same port numbers on

any computer that you want to support the remote execution. When deciding on which ports to use,

it is important to consult your network and security teams, as they will be able to advise you which

ports are safe to use and, if required, reconfigure any firewalls. Port numbers are specified in the re-

gistry on a machine that is running the RSEE service.

The key is HKEY_LOCAL_MACHINE\Software\Policies\SAPIEN. The Value name is InPort (for the in-

coming port) and OutPort (for the outgoing port). These values are most easily configured by

means of a Group Policy Object (GPO), and we provide a template (ADM file) that can be imported

into a GPO to configure RSEE.

379

346

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

14.6 Designer

This topic covers the settings available in Options > Designer.

In this section

· Designer Settings

· Control Settings

· Export

· Source Files

Designer Settings

· Layout Mode

346

347

347

348

347

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Governs how controls are aligned when added to the forms designer.

o SnapLines

Allows you to precisely align controls. As you move a control around on a form, snap lines will

appear that show how the control aligns with its neighbors.

o SnapToGrid

Aligns controls to a grid overlaid on the forms designer.

§ Show Grid

Show or hide the grid.

o Grid Size

Increase or decrease the grid size.

Control Settings

· Sync event names with control

Event handler names are generated using the pattern $<control name>_<event name>. This op-

tion ensures that when you rename a control its event handlers are also renamed.

· Sync controlnames with text

Event handler names are generated using the pattern $<control name>_<event name>. This op-

tion ensures that when you rename a control its event handlers are also renamed.

· Automatically insert default events

Many controls have a default event (click for a button, selected index changed for a ComboBox).

This option will ensure that the default event is always connected to an event handler when you

add a control to a form.

· Insert TODO comments in events

When enabled, PowerShell Studio will add a comment to each event handler reminding you to

provide your code body.

· Insert end of event comments

Adds a comment at the end of each event handler.

· Insert control helper functions

Uncheck this option to prevent PowerShell Studio from inserting control helper functions into the

script

Export

· Embed Recovery Data in Exported Scripts

Enabling this option allows PowerShell Studio to add extra metadata to an exported script that al-

lows it to recreate the original project or form (psf) that was used to create the export. The recov-

ery data is stored in multi-line comment blocks in the exported script.

· Enable PowerShell V2 assembly compatibility

This setting determines the .NET assembly version used:

348

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

o Enabled

2.0 .NET assembly references will be used when generating GUI scripts, and a warning will be

generated if any assembly does not support the .NET 2.0 Runtime.

o Disabled

4.0 .NET or later assemblies will be used, and a #requires -Version comment will be placed at the

top of the generated script.

Source Files

· Default action for source file loads

This setting controls how PowerShell Studio loads exported scripts.

There are three options:

o Load

Reloads the original files that were used to create the exported script.

o Ignore

Loads the exported script as is.

o Ask

Displays a dialog asking if the exported file should be loaded.

 If the file contains recovery data you will also get a second prompt asking if you wish to use

the recovery data to reconstruct the original files:

349

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

· Default action for source file search

This option controls how PowerShell Studio responds when it cannot find the original files for an

exported script.

There are three options:

o Search

Tries to locate the missing files.

o Never

Does not attempt to locate the missing files.

o Ask

Displays a dialog asking the user how to proceed.

350

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

14.7 Editor

These topics cover the settings available in Options > Editor. These settings allow you to customize the

appearance of the script editor , designate external assemblies , and also control code format-

ting and PrimalSense behavior.

These options customize the appearance of the code editor panel.

In this section

· Editor Settings

o Font and Color...

§ Syntax Coloring

· Auto-Insert

· Analysis

48 359

360 369

351

352

358

359

359

351

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Editor Settings

· Enable automatic syntax checking

Provides real-time syntax analysis as you type.

· Enable current line highlighting

Places a colored bar under the current line to provide a visual contrast.

· Use whitespaces instead of tabs

Inserts spaces rather than tabs into code when indenting.

· Show cmdlet help while typing

If you type a cmdlet it will appear in the Object Browser.

· Enable bracket highlighting

Highlights the opening and closing brackets when you click on either.

· Enable word wrap

Allows word wrap.

· Enable code folding

Allows script blocks, functions, comments, and regions to be collapsed to a single line in the code

editor.

 For more information, see Script Editor > Manipulating Regions .

· Enable track changes

Annotates the source code with yellow and green bars to indicate changes made in the current

editing session.

· Show line numbers

Displays line numbers in the left margin of the code editor.

· Show white spaces

Show white spaces that trail behind the back-tick at the end of a line.

· Collapse regions on load

Collapse the Include nodes when a script is loaded (configure Include nodes at Home > Edit > Re-

gions > Include).

· Enable automatice reference highlighting

Automatically highlight the references of the current selection or the object under the caret. Auto-

matically highlight the relevant object-based references when caret position is changed.

· Column

Specifies the column position where the column guide should be displayed. Show column guide

must be enabled.

· Show column guide

Displays a vertical line at a particular column.

· Tab size

51

352

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Specifies the tab size.

· Insert comment-based help

There are two options:

o Before Function

Inserts the comment right before the function declaration.

o Inside Function

Inserts the comment within the function declaration, before the parameter block.

 For more information, see Script Editor > Comment-Based Help .

Font and Color...

The Editor Font and Color Settings dialog allows you to customize the font and coloring of Power-

Shell Studio's editor, including syntax coloring for supported languages.

112

353

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

· Presets

Predefined font and color themes are available from the drop-down list at the top of the dialog.

354

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

There are six default preset options:

o (Saved Settings)

Restores the settings to the last saved state.

o Dark Theme

Changes the color scheme and font to a dark colored theme.

o Light Theme

Changes the color scheme and font to a light colored theme.

o PowerShell ISE Theme

Changes the color scheme and font to match the default settings of the Microsoft PowerShell

ISE.

o PowerShell Studio (Classic) Theme

Changes the color scheme to the default PowerShell Studio coloring and font.

o PrimalScript Theme

Changes the color scheme to the default PrimalScript coloring and font.

To select a preset

1. Select an option from the Presets drop-down; PowerShell Studio will update the font and color

settings to the predefined preset.

2. Click OK to apply the selected theme, and PowerShell Studio will use the new coloring.

· Save As Preset...

Saves your custom font and color settings as a preset.

To save a preset

1. Configure the font and color settings, and then click the Save As Preset… button:

2. In the Save Editor Style dialog, enter a name for the preset, and then click Save:

355

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

The custom preset will be displayed in the Presets drop-down list:

To import a preset

Copy the preset file (*.preset) to the following user specific folder:

C:\Users\<username>\AppData\Roaming\SAPIEN\PowerShell Studio\Editor Presets\

The imported preset will appear in the drop-down list the next time you edit the font and colors.

 Share your custom presets with colleagues by sending them your preset file (*.preset).

· Font

Sets the editor font. All bolded fonts are fixed-width fonts.

· Size

Sets the editor font size.

· Editor background

Sets the color for the editor background.

356

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

To define a custom color

1. Click the color picker drop-down and select the Custom tab.

2. Right-click on any empty color space:

The Color editor allows you to manually enter RGB values or use sliders to customize and select

the desired color:

357

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

· Modified line saved color

Sets the color for modified lines that have been saved.

· Modified line unsaved color

Sets the color for modified lines that have not been saved.

· Indicator margin background

Designates the background color of the indicator margin where the breakpoints, tracepoints, and

bookmarks are located.

358

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

· Current line indicator color

Sets the color for the current line indicator.

· Column guide color

Sets the color for the column guide.

Syntax Coloring

Designates theme coloring and style for supported languages and file types. This feature is very

helpful when working with a variety of file types; for example, when working with module projects.

· Language

Select the language or file type.

· Display items

Items available that can have their displayed color or style changed.

· Item foreground

Sets the color for the selected item foreground. The arrow to the right of the color selector drop-

down will reset the color to (Automatic).

· Item background

Sets the color for the selected item background.

 To set the background transparent for the selected item, click the Reset to Automatic arrow to

the right of the color selector drop-down:

· Bold

Sets the selected item to display as bold.

· Italic

359

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Sets the selected item to display as italicized.

· Underline

Sets the selected item to display as underlined.

· Restore Defaults

Resets the language colors back to the default color settings (light theme).

Auto-Insert

· Auto-insert closing parenthesis

Auto-completes parenthesis while you type.

· Auto-insert closing square brackets

Auto-completes square brackets while you type.

· Auto-insert closing curly braces

Auto-completes curly braces while you type.

· Auto-insert closing string quotes

Auto-completes string quotes while you type.

· Auto-insert import commands for used modules

When you type a cmdlet that is part of a module that isn't imported in the script, PowerShell Stu-

dio will automatically insert the Import-Module statement.

· Resolve functions when running a selection

Bypasses the requirement to include the function definition in the selection when using the Run

Selection command. In a Project context, PowerShell Studio will also automatically resolve func-

tions defined in other project files.

 This option only applies to Run Selection and not to Run Selection in Console.

Analysis

· Automatically analyze scripts on run

Trigger PSScriptAnalyzer every time you run / debug a PowerShell script or a Project. The analysis

is displayed in the Tools Output panel.

 Requires installation of the PSScriptAnalyzer module.

14.7.1 Assemblies

This topic covers the settings available in Options > Editor > Assemblies.

The Default Editor Assemblies page lists external assemblies that you explicitly designate to load

every time PowerShell Studio is started.

360

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

 PowerShell Studio provides PrimalSense support for base .NET assemblies such as mscorlib, sys-

tem.data, etc., and also ensures that the System.Windows.Form assembly is loaded (when running

GUI scripts)—without explicitly listing the assemblies in the Default Editor Assemblies page.

 GUI psf files created with older versions of PowerShell Studio (2017 and earlier) will retain the old

assemblies list.

14.7.2 Formatting

This topic covers the settings available in Options > Editor > Formatting.

PowerShell Studio's code formatting is customizable to fit your needs:

361

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Triggers

The first few options serve as triggers for auto-formatting. These options tell PowerShell Studio

when to format your script:

The following triggers can be enabled:

· Automatically format statement on new line

362

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Formats the line when you press <Enter>. You might not notice anything if the text is already

formatted.

· Automatically format completed block on }

Formats a code block when the closing curly bracket is typed.

· Automatically indent new lines

Automatically indents the appropriate tab depth when inserting a new line by pressing <Enter>.

· Automatically format statement on ;

Formats the statement when the semi-colon is typed.

· Automatically format on paste

Formats code when it is pasted into the script.

Formatting

The second set of options allows you to customize the formatting rules of PowerShell Studio:

 Most settings shown below will be altered in the preview pane when changed, allowing you to

see what effect they have on your script.

The following formatting rules can be configured:

· Place open brace on a new line

Places new open curly braces on a new line.

Enabled

363

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Disabled

· Place statement keyword on a new line

Places each statement key word on a new line, such as the if and the else in an if/else statement.

Enabled (Place open brace on a new line = Disabled)

Disabled (Place open brace on a new line = Disabled)

· Insert new line after Parameter attribute

Places each parameter attribute on its own line.

Enabled

364

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Disabled

· Align parameter arguments on line continue

When parameter arguments are continued to a new line using the back tick line continuation char-

acter, they are aligned on the same column.

Enabled

Disabled

· Align hashtable equal signs

Aligns hashtable equal signs on separate lines.

Enabled

365

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Disabled

 Only equalizes spacing for the first key value pair on any given line.

· Leave block on the same line

The script block stays on the same line.

Enabled (Place open brace on a new line = Disabled)

Disabled (Place open brace on a new line = Disabled)

· Insert new line after Parameter type

Inserts a new line after the type of the parameter.

Enabled

366

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Disabled

· Automatically expand aliases

Expands command and parameter aliases.

Enabled

Disabled

· Convert blog characters (curly quotes & dashes)

Replaces curly quotes (blog quotes) with straight quotes, and replaces extended dashes with en

dashes.

Enabled

Disabled

· Reserved Word Formatting

Formats reserved word (keyword) character casing.

o None

Leaves the reserved word casing as is.

o Upper

Uses all upper-case characters:

IF

IFELSE

WHILE

o Lower

367

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Uses all lower-case characters:

if

ifelse

while

o Camel

Uses all camel case characters:

If

IfElse

While

· Parameter line spacing (0 disabled)

Governs the line spacing between parameters. If set to a value greater than zero, the specified

number of new lines will be inserted after the parameter.

Enabled (spacing = 2)

Disabled (spacing = 0)

· Parameter block indent

The number of tab spaces a parameter block will be indented.

Enabled (indent = 1)

368

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Disabled (indent = 0)

· Attribute parameter indent

The number of tab spaces an attribute parameter will be indented. This setting is used when 'Align

attribute parameters' is disabled.

Enabled (indent = 1)

Disabled (indent = 0)

369

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

· Align attribute parameters

Vertically aligns a parameter's attributes declarations. When disabled, the 'Attribute parameter in-

dent' value is used to indent the subsequent lines of attributes.

Enabled

Disabled (Attribute parameter indent = 2)

14.7.3 PrimalSense™

This topic covers the settings available in Options > Editor > PrimalSense™.

These options allow you to configure the behavior of PrimalSense.

370

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

PrimalSense Settings

· Autocomplete on exact match only

Governs PrimalSense's selection and matching behavior.

o Enabled

Double-clicking or using the <Tab> key will auto-complete the item if the search expression is a

complete match (fully selected).

o Disabled

Using the <Space> key will trigger auto-completion of a partial match (partially selected).

· Show external tools in PrimalSense

Displays command line tools within PrimalSense's autocomplete list (the tools are cached).

· Show snippet shortcuts in PrimalSense

While typing, PrimalSense will list snippet shortcuts along with their command names.

· Show parameter set info after command

371

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

When typing a space after a command, a pop-up window is displayed allowing you to cycle

through the command's parameter sets.

· Show command aliases in PrimalSense

When typing a command, PrimalSense will suggest aliases.

· Show parameter aliases in PrimalSense

When you type or specify the parameter in a command, PrimalSense will suggest aliases.

· Enable custom PrimalSense

Allows customized PrimalSense derived from a static list or from a dynamically created list using a

PowerShell script.

· Enable word completion while typing

Fills in the missing characters on partially typed words (after typing three or more characters). The

drop-down list may provide one or multiple possible completions.

· Show .NET object descriptions

PrimalSense will display help text when you hover over an object.

· Enable snippet shortcut tab expansion

Pressing tab at the end of a snippet will expand it into the full name.

· Enable dot sourcing PrimalSense

When you dot source a file in PowerShell Studio, the file will be automatically loaded and parsed

to provide PrimalSense and coloring for functions contained in the file.

· Enable alias tab expansion

Pressing tab at the end of an alias will expand it into the full name.

· Sort parameters alphabetically

Disable this to display common command parameters at the end of the PrimalSense list.

· Query Session Assemblies

Loads the debug session's assemblies to provide syntax coloring and PrimalSense, when at a

breakpoint.

· Cmdlet PrimalSense

There are three options:

o Show and Color All Cmdlets

Enables PrimalSense to show all cmdlets whether they are loaded or not.

o Show Cmdlets (Active Modules Only)

PrimalSense will only show cmdlets that are part of the current project.

o Show All Cmdlets (PrimalSense Only)

PrimalSense will offer suggestions from all of the PowerShell modules on your system.

14.8 Panels

This topic covers the settings available in Options > Panels.

372

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

In this section

· Ribbon

· Panel Layout

· Auto Layout

· Database Browser

· Snippet Browser

Ribbon

· Reset Quick Access Toolbar

Resets the Quick Access Toolbar to its default state.

372

373

373

373

374

373

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Panel Layout

· Automatically show output panels when text is displayed

Display output panels when text is displayed.

 When a panel has new output, the panel's tab will highlight when it is docked or auto-hidden.

· Reload Previous State

Resets PowerShell Studio to the same state as the last time you opened it.

· Reset to Default State

Configures PowerShell Studio to its default panel layouts.

Auto Layout

· Enable Auto Layout

Allows PowerShell Studio to arrange and display panels based on the current context. For ex-

ample, when debugging, all of the debug related panels will be visible and all other panels will be

hidden.

· Editor Layout

Designates your preferred layout for editing code. Choosing (Current) will keep the layout you are

currently using.

· Designer Layout

Designates your preferred layout for designing forms. Choosing (Current) will keep the layout you

are currently using.

· Debugging Layout

Designates your preferred layout for debugging. Choosing (Current) will keep the layout you are

currently using.

Database Browser

· Show schemas

This setting configures how the Object Browser displays schema information from SQL server:

o Disabled

The Object Browser will ignore schema information and display database tables, stored proced-

ures, etc. in a simple flat list.

o Enabled

The Object Browser will display database objects in their respective schemas.

· Cache all fields

This setting will cache everything within the Database Browser for quick loading of recently

used information. Checking this option will increase the time for the Database Browser to cache

and load the database.

218

223

374

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Snippet Browser

· Custom Directory

Adds an extra folder to the Snippets panel .

 Provide a network path here to create a shared snippet repository.

14.9 PowerShell

This topic covers the settings available in Options > PowerShell.

250

375

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

PowerShell Settings

· Enable execution policy warning

PowerShell Studio will warn you if the current PowerShell execution policy is set to Restricted, and

will help you to change it if required.

· Update cache on module export

Updates the stored cache when exporting modules.

Windows PowerShell Security

· Change Execution Policy

Allows you to reconfigure the execution policy for both 32-bit and 64-bit shells from a simple GUI

interface.

· Certificate in local store

The name of the certificate that PowerShell Studio will use for code signing.

· Password

The password required to access the certificate stored in PFX format.

· Time Stamp URL

Used to add a timestamp to the signature block in a script. This provides an extra level of security,

enabling PowerShell to determine if the certificates used to sign a script were valid when the script

was signed.

· External Signing Tool

Provides the name of an alternative code signing tool.

o Automatically sign .ps1 script when saving

Ensures that all scripts are signed.

14.10 Source Control

This topic covers the settings available in Options > Source Control, which allow you to configure

source control systems and providers.

376

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Universal Version Control System

The Universal Version Control system allows configuration of any source control provider with com-

mand line tools.

· System

The source control system / provider.

o Disable

Disables the Universal Version Control feature.

o Git

Enables version control support using Git.

377

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

MS SCCI API Systems

· Enable MS SCCI API source control

Allows PowerShell Studio to use source control if it is available.

· Prompt for check In

This option works in conjunction with Automatic check in:

Prompt for Check In Automatic Check In Behavior

Checked Check In when a file is closed. User is prompted to

check in files.

Unchecked Check In when a file is closed. PowerShell Studio auto-

matically checks in files.

Any value Disable Automatic Check In. User must manually

check files in.

· Automatic check in

This controls Check In behavior and has the following two options:

o Disable Automatic Check In

Let's you decide when files should be checked in.

o Check In when a file is closed

Automates the check in process.

· Check out on edit

This controls Check Out behavior and has the following three options:

o Automatically Check Out

PowerShell Studio will check a file out as soon as you edit the file.

o Prompt For Check Out

PowerShell Studio will display a file chooser dialog in which you can choose the files you wish to

check out. The file you are currently attempting to edit will automatically be selected.

· Direct info output

This controls where output messages are directed, and has the following three options:

o Suppress info messages

Hides all messages.

o Write to output panel

Messages are displayed in the Output Panel.

o Display in message box

Messages are displayed in a pop-up dialog.

· Providers

378

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Options and Settings

Displays the list of available source control providers and allows the user to switch between them.

379

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Remote Script Execution Engine

15 Remote Script Execution Engine

The Remote Script Execution Engine™ (RSEE™) is an enterprise-level remote script execution environ-

ment.

RSEE Overview

RSEE consists of two components: The client, which is built into PrimalScript and PowerShell Studio,

and a remote service that must be deployed to each computer where you will remotely run scripts.

RSEE is capable of deploying a script from within PrimalScript and PowerShell Studio, out to remote

computers where the script is executed, and bringing the scripts' output and results back to Prim-

alScript or PowerShell Studio for your review.

RSEE is a complex tool and it interacts closely with Windows' security subsystems. RSEE is recom-

mended for use only by experienced Windows administrators who fully understand service deploy-

ment and management, cross-computer security and authentication and, in the case of domain en-

vironments, Group Policy objects and Active Directory administration. Apart from the guidelines in

this manual, SAPIEN Technologies cannot assist you with security issues caused by improper config-

uration nor can we assist with Active Directory, Group Policy, or local computer configuration tasks.

RSEE is designed only for Windows Script Host (WSH) scripts in VBS (VBScript) or JS (JScript) files. It

is not designed for other WSH scripts (including WSFs) nor is it designed for scripts written in other

languages (such as batch, KiXtart, and so forth).

RSEE Deployment

RSEE's service component is packaged in a Microsoft Windows Installer (MSI) file and is suitable

for deployment via Group Policy. You can also manually install it on individual machines. Keep in

mind that, once installed, the service needs to be started in order to be useful. This will occur auto-

matically after restarting the computer on which the service is installed (the service is set to start

automatically by default).

After deploying the service, there are a number of configuration steps that you must take in order to

properly configure RSEE in your environment.

Identity

RSEE installs, by default, to log in under the privileged LocalSystem account. This may be sufficient

for your purposes. However, when deploying scripts in PrimalScript and PowerShell Studio, be sure

not to specify any credentials in the Launch dialog box. Also be advised that the LocalSystem ac-

count may not be able to execute some scripts, depending on their security requirements.

We recommend that you configure the RSEE service to run under a user account that has adminis-

trative privileges on the local computer. In a workgroup environment this would be a local account,

and we recommend creating the same local account (with the same password) on all of your com-

380

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Remote Script Execution Engine

puters, for consistency. In a domain environment, we recommend creating a single domain account

which has local administrative rights on all computers in the domain, and using this account to run

the RSEE service. Whenever the RSEE service is running under a user account, you must specify that

account (and its password) when deploying scripts in PrimalScript.

When using RSEE, you have the option to specify the credentials under which the script should ex-

ecute. Generally speaking, you need to provide the same credentials that the RSEE service is using to

log on.

TCP Port

The RSEE service defaults to using TCP port 9987 for incoming connections, and TCP port 9988 for

outgoing connections. It is your responsibility to ensure that any local firewalls will permit incoming

traffic on this port. Keep in mind that the Windows Firewall (Windows XP SP 2 and later, and Win-

dows Server 2003 SP 1 and later) can be centrally configured via a domain Group Policy object.

To specify a different port

· You can specify a different port via the registry key HKEY_LOCAL_MACHINE\Soft-

ware\Policies\SAPIEN. The Value name is InPort (for the incoming port) and OutPort (for the out-

going port). Note that these values are most easily configured by means of a Group Policy object

(GPO), and we provide a template (ADM file) that can be imported into a GPO to configure RSEE.

The RSEE service and both PrimalScript and PowerShell Studio (as the RSEE client) utilize InPort and

OutPort. The service listens to InPort for incoming connections and uses OutPort to send script out-

put back to the client. The client reverses this: scripts are sent via InPort and results are received on

OutPort. The registry key above configures these ports for both clients and the service.

Domain Tips

While manually configuring a few computers in a workgroup is not a hardship, manually configuring

an entire domain of computers can be burdensome. An Active Directory domain environment

provides a number of capabilities for centralizing and automating this configuration, however. While

this section is not intended as a comprehensive tutorial in Active Directory (we recommend that you

consult an experienced Active Directory administrator or the appropriate documentation if you need

more assistance), the following tips should help you configure RSEE more easily:

· Create a domain account

Name this account something like "RSEEUser" and provide it with a strong password per your or-

ganization's password policies.

· Deploy the RSEE service

This can be done by means of a Group Policy object (GPO) linked to the appropriate levels in the

domain. The RSEE service defaults to running under the LocalSystem account and it defaults to

port 9987. The service's MSI is located in the RSEE folder under your PrimalScript Enterprise install-

381

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Remote Script Execution Engine

ation folder.

· Make the RSEE service account a local Administrator

You can do this in a Group Policy object (GPO). Browse to Computer Configuration > Security Set-

tings > Restricted Groups. Add a group ("Administrators") and then add your RSEE domain ac-

count (and any other appropriate accounts) to the group.

· Configure the RSEE service

You need to configure the RSEE service to log on with the user account (and password) you cre-

ated. This can either be done manually or using a script. The book Windows Administrator's Auto-

mation Toolkit, for example, contains a script that can set the logon account and password used

by services running on multiple computers. Utilities like Service Explorer (www.scriptlogic.com) can

perform the same task.

· Select the TCP port

We provide a Group Policy object (GPO) administrative template (ADM file) that you can import

into a GPO and use to centrally configure the TCP port used by the RSEE service. This ADM file is

located in the RSEE folder under your PrimalScript Enterprise installation folder.

Using RSEE

RSEE now supports Powershell. To deploy the current script (only VBS and JS files are currently sup-

ported) to one or more remote computers that have the RSEE service installed, click the RSEE button

on the Script toolbar, or select Run Script on Remote Computer from the Script menu.

RSEE performs a quick scan of your script to look for commands that might create a graphical user

element such as the VBScript MsgBox() function. If it finds any of these functions, it displays a warn-

ing message. Keep in mind that scripts will not normally be able to interact with the desktop envir-

onment on remote computers, meaning there would be no way for someone to respond to graph-

ical elements such as MsgBox() or InputBox(). As a result, these elements can cause the script to

"hang" and stop responding. RSEE does not perform an exhaustive check for graphical elements; it

is your responsibility to ensure they're not used in your scripts. RSEE will allow you to continue with

graphical elements because you may have configured the RSEE service to interact with the desktop

of the remote computer. It's your decision.

RSEE Launch dialog

The Launch dialog lists the computers where your script will be deployed. Note that the Launch dia-

log always preloads a default list of computer names at startup. Here's what you can do:

· Click Launch to run the script on the computers which have a checkmark next to their name.

· Set or clear the checkbox next to one or more computer names. You can leave names in the list

but clearing their checkbox will prevent RSEE from attempting to run the script on them.

· Click Close to close the Launch dialog. If you've changed the list of computer names, you'll be

prompted to save your changes.

382

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Remote Script Execution Engine

· Use Load List and Save List to load an alternate list of computer names (from a text file) or save

the current list to a text file. By default, PrimalScript will look for a text file called Default.clt in the

\SAPIEN\RSEE Lists folder under your Documents folder. You will need to create the file yourself if

you want a pre-loaded list when you launch RSEE.

· Use Select All and Unselect All to set or clear the checkbox next to all computer names currently in

the list.

· Select a computer name and click Remove to remove it from the list.

· Type a computer name (must be resolvable to an IP address by your computer) or IP address and

click + to add that computer to the list.

· Specify a username (user ID) and password. These will be used to run the script on the remote

computer, and should generally match the username that the remote RSEE service is using to log

in. Note: if the username you specify is a local account on the remote computer(s), then just type

the username. If the username is a domain account, specify the name in the format user@domain.

The older domain\user format is not supported.

When you click Launch, RSEE will execute the script on the remote computer(s). Any output pro-

duced by the script will be displayed in the Output pane within PrimalScript or PowerShell Studio.

Note that the message "Socket connection failed" indicates that RSEE was unable to connect to the

RSEE service on a specified computer (either because the computer is not connected to the network,

has a firewall blocking the RSEE service ports, or the RSEE service is not installed).

RSEE deploys scripts asynchronously. That is, RSEE sends the scripts out to the remote computers

you've selected and then displays whatever results come back. If your scripts produce no output

then you won't see any results in PrimalScript or PowerShell Studio.

It's possible for the RSEE service on a remote computer to run into a problem (particularly security-

related ones) that it can't report back; in these instances, it will seem to you (looking at PrimalScript

or PowerShell Studio) as if nothing has happened. Whenever possible, your scripts should incorpor-

ate error-checking and -trapping, and should produce appropriate output so that you get some res-

ults back if the script executes correctly.

Note that RSEE cannot be used to deploy a script for later execution. If you need to schedule a script

to execute on a remote computer at a particular time, use Windows' built-in Task Scheduler instead

of RSEE. You can even write a script utilizing the SCHTASKS.EXE command line tool that creates re-

mote scheduled tasks on multiple computers.

Also note that, if an Output pane is already open in PrimalScript or PowerShell Studio, RSEE will util-

ize it rather than creating a new one. You will need to manually select the tab to view any RSEE res-

ults or error messages.

RSEE Restrictions

In order to bring the output of remote scripts back to your computer, the remote RSEE service cap-

383

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Remote Script Execution Engine

tures the standard command-line output of your scripts. That means any script output must be cre-

ated using the WScript.Echo method. Do not use graphical user interface functions such as MsgBox()

or InputBox(). Because the RSEE service doesn't interact with the desktop, nobody will ever see these

functions' dialog boxes and the script will hang.

It is possible, if the RSEE service is running under the LocalSystem account, to configure Windows to

allow the service to interact with the desktop. You may wish to experiment with this configuration,

but it is not a recommended configuration because of the usual security restrictions on the LocalSys-

tem account.

Also avoid any object methods-such as WScript.Popup-that create graphical elements.

Any objects referenced by a script must be installed, registered, and available on the remote ma-

chine where RSEE executes the script.

At this time, RSEE can only be used to execute Windows Script Host scripts. RSEE explicitly launches

scripts under CScript.exe which must be available on the remote computers.

Most other restrictions in RSEE are actually Windows security restrictions. When the RSEE service

launches, it does so using the credentials you configure in Windows' service manager. When the

RSEE service receives a script, it creates a brand-new process using whatever credentials you enter

into the RSEE Launch dialog. The following figure illustrates this process and the three sets of cre-

dentials involved:

RSEE Credentials and Execution Process

Always bear in mind that your scripts execute under the security credentials you provide (Credentials

#2 in the diagram). This process does require your attention, as several things can go wrong if you're

not careful:

· If you specify credentials in the Launch dialog (#2 in the diagram) that the RSEE service account

(#3 in the diagram) doesn't have permission to use in a new process launch, then script execution

will fail.

Practically speaking, the credentials you provide in the Launch dialog (#2 in the diagram) need to be

the same as the credentials the RSEE service uses to log in (#3 in the diagram).

· If the RSEE service account (#3 in the diagram) doesn't have appropriate rights (including "Log on

as a service"), then the RSEE service will not be able to start.

· If your script tries to do something that the Launch credentials (#2 in the diagram) don't have per-

mission to do—such as log into a database or access a file share—then you'll receive an error.

Depending on the exact situation, this may or may not be communicated back to you in Prim-

384

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Remote Script Execution Engine

alScript or PowerShell Studio.

· If your script tries to perform an illegal operation—such as specifying alternate credentials in a

WMI connection (which is illegal because the script is executing locally on the remote machine, and

local connections to WMI aren't allowed to use alternate credentials)—you'll receive an error.

Again, depending on the exact circumstances, this error may or may not be fed back to you in

PrimalScript or PowerShell Studio.

These and other similar situations are not problems with RSEE; they are inherent conditions of the

Windows operating system and its security subsystems. Whenever you encounter an error with

RSEE, bear these conditions in mind and think about the possible security ramifications of what your

script is trying to do.

RSEE Notes

RSEE encrypts scripts during transmission to help keep them secure.

RSEE does not implement any sort of IP filtering capability (which might, for example, allow you to

ensure that only your computer can utilize RSEE on remote servers). Instead, we recommend using

Windows' own built-in IP filtering (available as part of Windows' IPSec features). Using this filtering,

you can ensure that only specified IP addresses are allowed to communicate on the TCP ports used

by the RSEE service, thus restricting who can contact that service and utilize RSEE.

385

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

16 Reference

This section provides an overview of the SAPIEN Updates tool, and lists the keyboard shortcuts available

in PowerShell Studio.

16.1 SAPIEN Updates

We are continually updating our software, both to remove bugs and to add and improve product fea-

tures. We recommend always staying current with the most recent versions to ensure that you are taking

advantage of the latest features, functionality, and product stability.

Every SAPIEN product has a built-in update tool—SAPIEN Updates—which will check for updates on all

current activations and unexpired trial versions of our products. Available product updates are indicated

in the SAPIEN Updates tool and also in the Notifications dialog (see below).

SAPIEN Notifications

SAPIEN products provide automatic notifications when there is a software update available, or when

your maintenance is about to expire. Notifications are indicated by a 'flag' icon in the top-right of

the program window:

How to view SAPIEN notifications

· Click the notification flag icon above the ribbon to open the Notifications dialog:

· If a product update is available, click the update notification to open the SAPIEN Updates tool.

 Click the X button to dismiss individual notifications or select Dismiss All. Dismissed notifica-

tions will not be shown again.

SAPIEN Updates - Tool Overview

The SAPIEN Updates tool indicates when an update is available for any SAPIEN program installed on

your computer.

385

386

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

 To minimize the impact on your system, the tool does not run during Windows startup or con-

tinuously in the system tray.

How to access the SAPIEN Updates tool

· On the Help or Tools ribbon > click Check Now or Check For Updates (Updates section).

-OR-

· Click the notification icon above the ribbon > then in the Notifications dialog, click the up-

date notification.

SAPIEN Updates Tool

SAPIEN Updates Tool

385

387

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

SAPIEN Updates - Options

Check for updates now Immediately checks to see if additional product

updates are available.

View Downloads folder Displays the Downloads folder in File Explorer.

View update history Displays the history of all downloaded and in-

stalled product updates.

Available Displays a selectable list of available product

updates.

 Select one or more products to Download

or Download and Install.

Download and Install Downloads and installs the updates for the

product(s) selected in the Available updates list.

Download only Downloads the updates for the product(s) selec-

ted in the Available updates list.

Close Closes the SAPIEN Updates tool.

Notes Displays a brief synopsis of what was changed,

added, or fixed for the products selected in the

Available window.

 The build history for all SAPIEN products is

available here.

Update On-Demand

You don't need to wait to be notified when an update is available; you can check for updates at any

time. This is particularly useful if you've heard about a new update and want to install it immediately,

or if you are ready to start a new project and want to complete all updates before you begin.

How to check for updates on-demand

· On the Help or Tools ribbon > select Check Now or Check For Updates to open the SAPIEN

Updates tool.

 These instructions may vary between SAPIEN products.

https://www.sapien.com/software/version_history

388

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

· In the SAPIEN Updates tool, select Check for updates now:

The latest product updates are displayed in the SAPIEN Updates Available window.

Security and Permissions

Installing updates to programs in a Program Files directory requires the permissions of a member of

the Administrators group on the computer. When you click Download and Install in the SAPIEN Up-

dates tool, or if you install after downloading, you will be prompted for administrator credentials.

The update tool requires a functioning internet connection and unimpeded access through your in-

ternet firewall. For some installations, you might need to create a firewall rule to allow access or

make some accommodations.

16.2 Keyboard Shortcuts

This section covers the keyboard shortcuts available in PowerShell Studio.

389

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

General Commands

Copy Ctrl + C

Paste Ctrl + V

Cut Ctrl + X

Select All Ctrl + A

Delete Del

Undo Ctrl + Z

Redo Ctrl + Y

New File Ctrl + N

New Project Ctrl + Shift + N

Open File Ctrl + O

Open Project Ctrl + Shift + O

Save Ctrl + S

Save All Ctrl + Shift + S

Print Ctrl + P

Help F1

Switch to Next Document Tab Ctrl + Tab

Switch to Prev Document Tab Ctrl + Shift + Tab

Minimize Ribbon Ctrl + F1

Access Ribbon Key Shortcuts Alt

Find in Files Ctrl + Shift + F

390

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

Document Commands

Build All F7

Build Package Ctrl + F7

Build MSI Shift + F7

Deploy Files Ctrl + Shift + F7

Preview Form Ctrl + Shift + F5

Debug F5

Run Ctrl + F5

Run Remote F6

Run Remote RSEE Shift + F6

Stop Script Shift + F5

Run in Console Ctrl + F8

Run Selection Shift + F8

Run Selection in Console F8

Format Script Ctrl + Shift + J

Navigation Commands

Navigate Backward Ctrl + Shift + Minus

Navigate Forward Ctrl + Shift + Plus

391

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

Debugging Commands

Debug Document F5

Debug with Multiple Files Ctrl + M

Debug Remote (RSEE) Ctrl + F6

Resume F5

Step Into F11

Step Over F10

Step Out Shift + F11

Run to Cursor Ctrl + F10

Toggle Breakpoint F9

Delete all Breakpoints Ctrl + Shift + F9

Toggle Breakpoint Enable / Disable Shift + F9

Toggle Tracepoint Ctrl + F9

Delete all Tracepoints Ctrl + Shift + Alt + F9

392

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

Designer Commands

Switch between Design and Editor Ctrl + D

Move Up Up Arrow

Move Left Left Arrow

Move Right Right Arrow

Move Down Down Arrow

Nudge Up Ctrl + Up Arrow

Nudge Left Ctrl + Left Arrow

Nudge Right Ctrl + Right Arrow

Nudge Down Ctrl + Down Arrow

Height Increase Shift + Up Arrow

Height Decrease Shift + Down Arrow

Width Increase Shift + Right Arrow

Width Decrease Shift + Left Arrow

Nudge Height Increase Ctrl + Shift + Up Arrow

Nudge Height Decrease Ctrl + Shift + Down Arrow

Nudge Width Increase Ctrl + Shift + Right Arrow

Nudge Width Decrease Ctrl + Shift + Left Arrow

Bring to Front Ctrl + B

Send to Back Ctrl + Shift + B

Cancel Escape

Reverse Cancel Shift + Escape

Add Default Action Event Enter

Add Event Ctrl + E

Apply Style Ctrl + L

Create Style Ctrl + Shift + L

Create Control Set Ctrl + T

393

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

Editor Commands

Go To Line Ctrl + G

Find / Replace Ctrl + F

Find / Replace Ctrl + H

Find Next F3

Find Previous Shift + F3

Find Selection Next Ctrl + F3

Find Selection Previous Ctrl + Shift + F3

Find All References Ctrl + Alt + F

Comment Line Ctrl + Q

Comment Multiline Ctrl + Shift + Alt + Q

Un-Comment Line Ctrl + Shift + Q

Go To Next Bookmark F2

Go To Previous Bookmark Shift + F2

Toggle Bookmark Ctrl + F2

Clear All Bookmarks Shift + Ctrl + F2

Toggle Collapsed Code Ctrl + Shift + M

Collapse All Code Nodes Ctrl + Minus

Expand All Code Nodes Ctrl + Plus

Create Region Ctrl + R

Copy as HTML Ctrl + Shift + C

Wrap the selected text in () (parentheses) Ctrl + Shift + 9

Wrap the selected text in [] (square brackets) Ctrl + [

Wrap the selected text in {} (curly braces) Ctrl + Shift + [

Wrap the selected text in '' (single quotes) Ctrl + '

Wrap the selected text in "" (double quotes) Ctrl + Shift + '

Wrap the selected text in $() (sub-expression) Ctrl + Shift + Alt + 9

Toggle string quotes Ctrl + Alt + '

394

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

Return Commands

Insert Line Break Enter

Insert Line Break Shift + Enter

Open Line Above Ctrl + Enter

Open Line Below Ctrl + Shift + Enter

Delete / Backspace Commands

Delete Del

Delete Line Ctrl + Shift + L

Delete To Next Word Ctrl + Del

Backspace Backspace

Backspace Shift + Backspace

Backspace To Previous Word Ctrl + Backspace

Clipboard / Undo Commands

Copy To Clipboard Ctrl + C

Copy To Clipboard Ctrl + Ins

Cut Line To Clipboard Ctrl + L

Cut To Clipboard Ctrl + X

Cut To Clipboard Shift + Del

Paste From Clipboard Ctrl + V

Paste From Clipboard Shift + Ins

Undo Ctrl + Z

Redo Ctrl + Y

Redo Ctrl + Shift + Z

Movement Commands

Move Down Down

Move Up Up

395

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

Move Left Left

Move Right Right

Move To Previous Word Ctrl + Left

Move To Next Word Ctrl + Right

Move To Line Start Home

Move To Line End End

Move To Document Start Ctrl + Home

Move To Document End Ctrl + End

Move Page Up Page Up

Move Page Down Page Down

Move To Visible Top Ctrl + Page Up

Move To Visible Bottom Ctrl + Page Down

Move To Matching Bracket Ctrl +]

Move To Next Modified Line Ctrl + Shift + Down

Move To Previous Modified Line Ctrl + Shift + Up

Go To Next Occurance Ctrl + Shift + Alt + Down

Go To Previous Occurance Ctrl + Shift + Alt + Up

Go To Last Edit Position Ctrl + E

Go To Function Declaration F12

Go To Next Function Shift + F12

Go To Prev Function Ctrl + Shift + F12

Scroll Commands

Scroll Down Ctrl + Down

Scroll Up Ctrl + Up

Indenting Commands

Indent Tab

Indent Alt + Right

Outdent Shift + Tab

396

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

Outdent Alt + Left

Selection Commands

Select Down Shift + Down

Select Up Shift + Up

Select Left Shift + Left

Select Right Shift + Right

Select To Previous Word Ctrl + Shift + Left

Select To Next Word Ctrl + Shift + Right

Select To Line Start Shift + Home

Select To Line End Shift + End

Select To Document Start Ctrl + Shift + Home

Select To Document End Ctrl + Shift + End

Select Page Up Shift + Page Up

Select Page Down Shift + Page Down

Select To Visible Top Ctrl + Shift + Page Up

Select To Visible Bottom Ctrl + Shift + Page Down

Select All Ctrl + A

Select Word Ctrl + W

Cut Word Ctrl + Shift + W

Select To Matching Bracket Ctrl + Shift +]

Select Block Down Shift + Alt + Down

Select Block Up Shift + Alt + Up

Select Block Left Shift + Alt + Left

Select Block Right Shift + Alt + Right

Select Block To Previous Word Ctrl + Shift + Alt + Left

Select Block To Next Word Ctrl + Shift + Alt + Right

PrimalSense™ Commands

PrimalSense™ Complete Word Ctrl + Space

397

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

PrimalSense™ Show Method Parameter Info Ctrl + Shift + Space

Trigger Custom PrimalSense™ Keyword Ctrl + Alt + P

Other Commands

Change Character Casing (to uppercase) Ctrl + Shift + U

Change Character Casing (to lowercase) Ctrl + U

Collapse Selection Escape

Toggle Overwrite Mode Insert

Transpose Characters Ctrl + T

Transpose Words Ctrl + Shift + T

Transpose Lines Ctrl + Shift + Alt + T

Expand All Alias to Cmdlets Ctrl + Shift + A

Toggle Alias Ctrl + B

Insert Snippet Ctrl + K

Surround With Snippet Ctrl + Shift + K

Expand Snippet Shortcut Ctrl + J

Insert New Function Ctrl + Shift + E

Edit Function Ctrl + Shift + Alt + E

Rename Object Ctrl + Alt + J

Edit Script Parameters Ctrl + Shift + P

Qualify cmdlet Names Ctrl + Shift + H

Unqualify cmdlet Names Ctrl + Alt + H

Splat Command Ctrl + Alt + S

398

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

Go-to-Panel Commands

Call Stack Ctrl + Alt + P, K

Console Ctrl + Alt + P, C

Debug Console Ctrl + Alt + P, D

File Browser Ctrl + Alt + P, I

Find Results Ctrl + Alt + P, R

Function Explorer Ctrl + Alt + P, F

Help Ctrl + Alt + P, H

Object Browser Ctrl + Alt + P, B

Output Ctrl + Alt + P, O

Performance Ctrl + Alt + P, M

Project Ctrl + Alt + P, J

Properties Ctrl + Alt + P, P

Snippets Ctrl + Alt + P, S

Toolbox Ctrl + Alt + P, T

Tools Output Ctrl + Alt + P, L

Variables Ctrl + Alt + P, V

Watch Ctrl + Alt + P, W

Editor / Document Ctrl + Alt + P, E

16.3 Appendices

Appendices for PowerShell Studio Help Manual

Appendix A: Manual and Product Version

Appendix B: Icon License Attribution

399

399

399

PowerShell Studio - Help Manual

 © 2023 by SAPIEN Technologies Inc., all rights reserved

Reference

16.3.1 Appendix A: Manual Version

Appendix A

Manual Version

This help manual is in the process of being updated. Some features and images in this manual version

may not reflect the current product functionality.

Blog articles

For the latest product tips and feature demonstrations, check out the PowerShell Studio articles on the

SAPIEN blog.

Release details

To view a brief description of what was changed, added, or fixed in the most recent PowerShell Studio

builds, view the product version history.

Need more help?

Please direct your product related questions to the PowerShell Studio support forum, and your scripting

questions to the appropriate Scripting Answers forum.

16.3.2 Appendix B: Icon License Attribution

Appendix B

Icon License Attribution

Some of the icons used in this manual were made by Freepik at www.flaticon.com and are licensed un-

der CC BY 3.0:

https://www.sapien.com/blog/tag/powershell-studio/
https://www.sapien.com/software/version_history/PowerShell_Studio_2023
https://www.sapien.com/forums/viewforum.php?f=12
https://www.sapien.com/forums/viewforum.php?f=6
https://www.flaticon.com/authors/freepik
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/

	Table of Contents
	1 Welcome to PowerShell Studio
	2 Introduction
	2.1 About PowerShell Studio
	2.2 How to Buy PowerShell Studio

	3 Getting Started
	3.1 Installing PowerShell Studio
	3.2 Staying Up-to-date
	3.3 Getting Help

	4 Basic Orientation
	4.1 User Interface
	4.1.1 The Start Page
	4.1.2 The Ribbon
	4.1.3 Quick Access Toolbar
	4.1.4 Panels and Docking
	4.1.5 Status Bar

	4.2 Customizing Your Workspace
	4.2.1 Selecting a Style
	4.2.2 Customizing the Quick Access Toolbar
	4.2.3 Panels and Layouts
	4.2.3.1 Introduction to Panels
	4.2.3.2 Working with Panels
	4.2.3.3 Layouts

	5 Script Editor
	5.1 Editing Aids
	5.1.1 Line Numbering and Visual Features
	5.1.2 Code Folding
	5.1.3 Reference Highlighting
	5.1.4 Syntax Checking

	5.2 Navigation and Bookmarks
	5.2.1 Navigation Bar

	5.3 Clipboard Integration
	5.4 Find and Replace Options
	5.4.1 Find and Replace
	5.4.2 Find in Files
	5.4.3 Find All References

	5.5 PrimalSense™
	5.6 Converting Cmdlets and Aliases
	5.7 Snippets
	5.8 Script Signing
	5.9 File Encoding
	5.10 Context Menu Options
	5.11 Functions and Parameters
	5.11.1 Function Builder
	5.11.1.1 Function (Cmdlet) Name
	5.11.1.2 Synopsis and Description
	5.11.1.3 Cmdlet Binding
	5.11.1.4 Output Type
	5.11.1.5 Parameter Sets
	5.11.1.6 Default Parameter Set
	5.11.1.7 Parameters
	5.11.1.8 Parameter Set Filter
	5.11.1.9 Parameter Editor
	5.11.1.10 Special Considerations

	5.11.2 Create Functions from Selection
	5.11.3 Editing Functions
	5.11.4 Importing Functions
	5.11.5 Parameter Builder

	5.12 Comment-Based Help
	5.12.1 Comment-Based Help Templates
	5.12.1.1 About the Comment-Based Help Template
	5.12.1.2 Comment-Based Help Template Variables
	5.12.1.3 Creating a Comment-Based Help Template
	5.12.1.4 Selecting an Existing Comment-Based Help Template
	5.12.1.5 Multi-line or Single-line Comments

	5.13 File Type Templates
	5.13.1 Using Predefined File Templates
	5.13.2 Creating New File Templates
	5.13.3 Template Variables

	5.14 Rename Refactoring
	5.15 Verifying Your Script

	6 Running and Debugging Scripts
	6.1 Run and Debug Ribbon Controls
	6.2 Running Scripts
	6.3 Debugging Scripts
	6.3.1 Working with Breakpoints
	6.3.2 Working with Tracepoints
	6.3.3 Passing Parameters
	6.3.4 Debug Panels

	6.4 Running and Debugging Remotely

	7 GUI Designer
	7.1 Forms Designer Introduction
	7.2 Creating a New Form
	7.3 Working with Form Controls
	7.4 Preview GUI
	7.5 Adding Events
	7.6 Form Templates
	7.6.1 Using Predefined Form Templates
	7.6.2 Creating New Form or Grid Templates
	7.6.3 Working with Grid Templates

	7.7 Exporting Form Scripts
	7.8 Initializing GUI Controls
	7.9 Control Helper Functions
	7.10 Property Sets
	7.11 Control Sets

	8 Panels
	8.1 Call Stack Panel
	8.2 Console Panel
	8.3 Debug Console
	8.4 File Browser
	8.5 Find Results Panel
	8.6 Function Explorer Panel
	8.7 Help Panel
	8.8 Object Browser
	8.9 Output Panel
	8.10 Performance Panel
	8.11 Project Panel
	8.11.1 Project Files and Folders

	8.12 Properties Panel
	8.13 Snippets Panel
	8.14 Toolbox Panel
	8.15 Tools Output Panel
	8.16 Variables Panel
	8.17 Watch Panel

	9 Projects
	9.1 Project Templates
	9.1.1 Available Project Templates
	9.1.2 Creating a Project
	9.1.3 Collection Project
	9.1.4 Module Project
	9.1.5 New Module from Functions

	9.2 Project Properties
	9.3 Managing Project Files
	9.4 Project File Properties
	9.5 Adding Script Parameters to Projects
	9.6 Running a Project
	9.7 Exporting a Project
	9.8 Form Return Variables
	9.9 Projects and Source Control

	10 Packaging Scripts
	10.1 Creating a Script Package
	10.2 Setting up the Script Packager

	11 Source Control Integration
	11.1 Universal Version Control
	11.2 Microsoft Source Code Control Integration

	12 ScriptMerge
	12.1 Running ScriptMerge
	12.2 Comparing Files
	12.3 Comparing Folders
	12.4 Comparing Groups
	12.5 Context Menu Options
	12.6 Navigating Between Differences
	12.7 Reconciling Differences
	12.8 Signing Scripts
	12.9 ScriptMerge Settings

	13 Snippet Editor
	14 Options and Settings
	14.1 Accessing the Options
	14.2 General
	14.3 Backup
	14.4 Console
	14.5 Debugger
	14.6 Designer
	14.7 Editor
	14.7.1 Assemblies
	14.7.2 Formatting
	14.7.3 PrimalSense™

	14.8 Panels
	14.9 PowerShell
	14.10 Source Control

	15 Remote Script Execution Engine
	16 Reference
	16.1 SAPIEN Updates
	16.2 Keyboard Shortcuts
	16.3 Appendices
	16.3.1 Appendix A: Manual Version
	16.3.2 Appendix B: Icon License Attribution

