
Welcome to SlickEdit 2020

Welcome to SlickEdit 2020

SlickEdit Inc.
PO BOX 1953
Clayton, NC 27528 USA

1.919.473.0070
1.800.934.EDIT (USA)
1.919.473.0080 fax

www.slickedit.com [http://www.slickedit.com]

Information in this documentation is subject to change without notice and does not represent a commitment on the part of SlickEdit
Inc. The software described in this documentation is protected by U.S. and international copyright laws and by other applicable laws,
and may be used or copied only in accordance with the terms of the license or nondisclosure agreement that accompanies the
software. It is against the law to copy the software on any medium except as specifically allowed in the license or nondisclosure
agreement. No part of this documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or information storage and retrieval systems, for any purpose other than the licensee's personal
use, without the express written permission of SlickEdit Inc.

Copyright 1988-2020 SlickEdit Inc.

SlickEdit, Visual SlickEdit, Clipboard Inheritance, DIFFzilla, SmartPaste, Context Tagging, Slick-C, and Code Quick | Think Slick are
registered trademarks of SlickEdit Inc. All other products or company names are used for identification purposes only and may be
trademarks of their respective owners. Protected by U.S. Patent 5,710,926.

SE-1301-061108

http://www.slickedit.com
http://www.slickedit.com

Introduction

This chapter describes how to install SlickEdit and provides information about new features,
documentation, supported languages, product support, and performance tuning.

1

Getting the Most Out of SlickEdit®
At SlickEdit, our belief is that it's the code that really matters. We are a company of power programmers
working to develop the tools that power programmers demand, tools that provide the best editing
capabilities to help you write your code the way you want.

We take great pride in delivering unparalleled power, speed, and flexibility to our customers. Our goal is
to remove the tedious tasks involved with programming, allowing you to focus on the reason you first got
into programming: the thrill of writing great code.

Learn About Our Cool Features
SlickEdit® contains the most powerful and comprehensive set of features available in any editor. Many
are unique to SlickEdit. To see a list of features we think are particularly cool, click Help → Cool
Features from the SlickEdit main menu. Each feature is described and you can watch a short demo of the
feature in action.

Write More Code, Faster
These strategies will help you write more code, faster than you ever have before:

• Use workspaces and projects to manage your code - By adding your files to a workspace and
project, you can quickly open your files without specifying a path with the Open or Files tool window.
The Projects tool window lets you organize files in folders based on file type or directory. (Pro only)
SlickEdit uses Context Tagging® to build a database of the symbols in your source files. All of the files
within a workspace are tagged, allowing for more accurate completion information and rapid navigation.
For more information, see Context Tagging Features.

• Keep your hands on the keyboard - Time is wasted each time you reach for the mouse. SlickEdit
contains 14 editor emulations with predefined key bindings that are ready for use in performing
common tasks. Define your own key bindings or invoke editor operations from the SlickEdit command
line. For more information, see Using the Mouse and Keyboard.

• Type as little as possible - SlickEdit contains many features that reduce the number of keystrokes you
type, including: completions, syntax expansion, aliases, macros, and code templates. For information
about these features, see the topics in the Editing Features chapter.

• (Pro only) Rapidly navigate code - Instantly jump from a symbol to its definition or declaration or view
a list of references. Preview definitions for the current symbol without having to open the file. Use
bookmarks to mark important locations in the code. SlickEdit includes powerful browsers and search
capabilities, allowing you to quickly find the code you want. See Navigation and Symbol Browsing for
more information.

Note

Learn About Our Cool Features

2

The Standard edition support navigating to global symbols using CTags. See Building CTags
Based Tag Files for more information.

• Access information quickly - SlickEdit uses visual indicators to provide you with information about
your code, including syntax highlighting and color coding. Special tool windows are also available for
viewing information about files, classes(Pro only), symbols(Pro only), definitions, and more. To learn
more, see Toolbars and Tool Windows, Symbol Browsing and the Editing Features chapter.

• Let SlickEdit do the formatting - Syntax indenting, SmartPaste®, and code beautifiers(Pro only) are
just a few of the automatic formatting features in SlickEdit. For more information, see the topics in the
Editing Features chapter.

• Time-saving utilities - SlickEdit provides many utilities for working with your code, such as DIFFzilla®,
3-Way Merge(Pro only), Spell Check, FTP, a RegEx Evaluator, math commands, and even a
calculator. See the topics in the Tools and Utilities chapter for more information.

• Integrate with other tools - SlickEdit integrates with other tools to make your world complete,
including source control systems, compilers, debuggers, profilers, and analyzers. See Tools and
Utilities for more information.

Quick Start
SlickEdit offers a Quick Start Configuration Wizard to help configure the most commonly changed
options. Use this to get up and running with SlickEdit as quickly as possible. It also helps you set up a
workspace and project, which is essential for getting the most out of SlickEdit.

The User Guide also includes the Quick Start guide. It describes how to set the options featured in the
Quick Start Configuration Wizard plus a few more common user preference settings. It also describes
how to quickly create a workspace and project, if you want to do that without using the wizard.

Register Your Product
Registering your product allows SlickEdit to provide you with automatic notification of free updates and
new releases, and enters your name into a weekly drawing for a SlickEdit gift pack. To register your
product from within SlickEdit®, from the main menu, click Help → Register Product, then follow the
steps indicated.

Get Maintenance & Support
(Not in Community edition)Subscribe to Maintenance and Support Service to receive the following
benefits:

• Unlimited technical support via telephone or e-mail for 12 months.

Quick Start

3

• Access to new releases, upgrades, and fixes at no additional charge.

• The ability to participate in SlickEdit® beta programs and receive a free copy of SlickEdit beta software
as a preview of the next release.

To check the status of your Maintenance and Support Service from within SlickEdit, click the menu item
Help → Check Maintenance. This will launch the SlickEdit Maintenance and Support Web page in a
browser, showing the status of your service.

To subscribe to Maintenance and Support Service or learn more, contact SlickEdit Sales
(sales@slickedit.com [mailto:sales@slickedit.com]).

New Features and
Enhancements

4

mailto:sales@slickedit.com
mailto:sales@slickedit.com

New Features and Enhancements
This section describes the new features and enhancements in SlickEdit®.

Language Support
• PowerShell Enhancements

• Support for Interactive shell using the Interactive tool window.

• Updated color coding to latest language specification.

• Improved smart indenting.

• Added support for SmartPaste(TM)

• Added support for Tab key reindenting

• Ada Enhancements

• Added Ada project support for gprbuild.

• New Jinja color coding support

• While Jinja is typically used in Yaml or HTML files, you can add Jinja embedded color coding support
to almost any language SlickEdit supports.

• New toggle_jinja_color_coding command enables/disables Jinja embedded color coding for the
language type of the currently edited file. Only supports color coded files.

• The color coding dialog has a new Jinja Settings button which allows you to enable Jinja embedded
color coding and modify some Jinja settings.

• New Laravel Blade color coding support

• While Blade templates are typically used in PHP files, you can add Blade embedded color coding
support to almost any language SlickEdit supports.

• New toggle_blade_color_coding command enables/disables Blade embedded color coding for the
language type of the currently edited file. Only supports color coded files.

• The Languages tab of the color coding dialog now has a new "Blade" check box which allows you to
enable Blade embedded color coding.

• Markdown Enhancements

• The Defs tool window now lists Markdown headings so you can quickley navigate to them.

• Added Markdown-GitHub color coding profile which more closely color codes like GitHub's Markdown
support.

Language Support

5

• The default Color Coding profile for Markdown has been set to Markdown-GitHub but you can
change to Markdown if you prefer.

• Added support for strikeout color coding. Markdown-GitHub uses ~~strikeout~~ syntax.

• New Forth Language Support

• Color coding

• Simple tagging

• Configurable Live Error Support for All Languages

• Any linter or syntax checker that takes a source file and produces error messages can be configured
per Language.

• Uses the existing Error Parsing system to classify tool output into "error", "warning", and "info"
messages.

• Errors are updated in the background while editing.

• Java Enhancements

• Various enhancements to Java Context Tagging for Java 14.

• C# Enhancements

• Enable Modify Parameter List Quick Refactoring for C#.

Project Support
• Added support for drag dropping files into the Project tool window. If your workspace has multiple

projects, you will be prompted to choose a project to add the files to. Note that directories are handled
differently and currently can only support being added to the active project.

• Added option for disabling sorting (manual ordering) of workspace project files. Uncheck "Sort Projects"
from the Projects tool window workspace context menu. You can manually order the project files either
by editing your workspace .vpw files or by using the Workspace Properties dialog.

Sharing Your Configuration with Multiple Instances
• By default, SlickEdit now supports running multiple instances which share one configuration directory.

Be sure this feature is turned on by setting "Save configuration" to "Share config - Save configuration
immediately" (Tools>Options>Application Options>Exit). For example, if you start two instances of
SlickEdit, change your edit window color profile, then switch to the other instance, you will notice that
this configuration change is transferred. This sharing feature supports almost all configuration options
(emulation, key bindings, theme, recorded macros, fonts, etc.). See Limitations with sharing your
configuration with multiple instances for information on limitations.

Project Support

6

• Use Project<Organize All Workspace... to open a workspace in a new instances of SlickEdit.

• This makes it easy to launch two different instances of SlickEdit and open a different workspace in
each. Use an additional instance of SlickEdit for a quick edit or use SlickEdit as the git comment editor.
There's no need to maintain multiple configuration directories.

New Interactive Tool Window
• Runs one or more interactive shells.

• Shells are preconfigured for many languages: Clojure, CoffeeScript, C#, Groovy, Haskell, Lua, PHP,
Perl, PowerShell, Python, R, Ruby, and Scala.

• Configure your own custom interactive shell.

• Ctrl+Alt+Enter (or Ctrl+Command+Enter) Loads current line or selection into the associated interactive
shell.

New Terminal Tool Window
• Run one or more terminals in and edit window.

• Supports running build tools, grep tools (sgrep), and traversing the error messages with next-error and
prev-error commands. Use cursor-error command (Alt+1 by default) to select the terminal or build
window you want to process next-error and prev-error commands.

• Command completion is saved/restored across sessions.

• Activate the Terminal tool window with the active-terminal command.

• Bind the start-terminal-key command to a key to provide a quick way to start a terminal identified by
that key.

DIFFzilla
• New simplified setup dialog

• Icons added in margin to copy blocks of text back and forth

Version Control
• Enhanced Git support

• Improved git repository browser

New Interactive Tool Window

7

• Integrated push and pull dialogs

• Improved GUI Compare Workspace/Project/Directory with repository

Tagging
• Sub-word pattern matching for symbol completion and the Find Symbol tool window. This allows

symbol completion to find symbols which match on subwords, for example, the pattern "house" might
match symbols such as "HouseKeeping", "DogHouse", "GetHomeUserName", or "HotOmeletsUsing-
SummerEggs".

• New command line option "-autotag" to vsmktags for building compiler tag files for C/C++, Java, and
.NET

• The tagging database can now store documentation comments gathered from source code. This makes
displaying comments in the Preview tool window and with Function Argument help and List Members
faster.

• Improved performance building large tag files using background tagging, especially when writing to
slower devices.

• Gather performance statistics for parsing the current file for symbols and statements and use them to
fine-tune how aggressive tagging tool windows should be when updating the current context, as well as
to disable certain features which require statement tagging if you are working in a large file where
performance could become laggy.

• Find Symbol tool window now has a stop button allowing you to stop long-running searches.

• Find Symbol tool window now has separate columns for symbol name and the symbol's package/class
scope.

• Find Symbol tool window has new option to search symbols based on their full package/class name
and symbol name rather than just the symbol name.

Debugger
• Python debugger now uses PTVSD for backend

• Now supports conditions and counts for breakpoints

• Better handling for debugging with deep call stacks

• Toggle breakpoint command now supports multiple cursors

• Added options to display floating point numbers as scientific, floating point, or normal layout

Tagging

8

• Increased precision when displaying double precision (64-bit) floating point numbers in the debugger

• Added optoins to display strings with UTF-8 characters natively, or using character escapes

• Fixed bug handling string which contained escape sequence with GDB

Find and Replace
• Added "Find in Files threads" option for specifying number of threads used for multi-file searching.

• Increased default number of multi-file search threads from 3 to 8. This improves performance about
20% for a quad core i7 and about 100% for an i9 (assuming at least an SSD).

• The Find in Files filename output order is now listed in the same order as the file system. Previously
filename output order was somewhat random.

• The "Sort Find in Files search results by filename" option now supports threaded searching after files
are listed and sorted.

• Added encoding support to standalone sgrep. Defaults to AutoUnicode2.

• Added threaded searching to standalone sgrep. Defaults to 8 threads. Searching many times faster.

• Added color output support to standalone sgrep. Color is output by default when run in the SlickEdit
build or terminal window. Also outputs color by default on Unix and macOS when outputting to a
terminal when TERM set to "xterm-256-color".

• Added option for Preview All... on the Replace / Replace in Files tool window to display the modified
file(s) on the left instead of the right.

Appearance Enhancements
• Updated color toolbar icons

• Better support for macOS dark mode. For macOS, the default SlickEdit theme is "Automatic" theme
which chooses SlickEdit's Dark theme if macOS is in Dark mode. The default SlickEdit color profile is
"Automatic" which chooses the "Slate" color profile if macOS is in dark mode.

• When you right click on a tool window tab group / title bar to bring up the tool window menu, if you
select a tool window to open, it will dock with the tab group you clicked on.

• The tool window menu now shows check marks for which tool windows are active, and there is a new
option to toggle a tool window hidden when it is selected from the menu.

Files

Find and Replace

9

• New Rename File Support

• Changes name and/or path to file.

• Renames references to file in project files, file menu history, and backup history (copied).

• Rename added to Document tab context menu.

• Rename added to Project tool window file context menu. Allows you to rename/move a file in your
project. Supports third party workspaces such Visual Studio solution projects.

• Rename project added to Project tool window project context menu. Allows you to rename a project
file.

• Rename workspace added to Project tool window workspace context menu. Allows you to rename
the workspace.

• Rename added to Open tool window context menu.

• New rename commands, gui_rename and rename can be used to rename the currently edited file.
Supports renaming source files in third party workspaces such Visual Studio solution projects.

• New Rename Directory Support

• Changes name and/or path of directory.

• Renames references to original directory in workspace, project files, file menu history, project menu
history, All workspaces menu, and backup history (copied).

• Rename directory added to Open tool window context menu.

• New rename_directory command can be used to rename and/or move a directory.

• Third party workspaces such Visual Studio solution projects not yet supported.

• Added support for opening files in xz format and compressed tar files (.txz and .tar.xz)

• Added support for opening files in bz2 format and compressed tar files (.tbz2 and .tar.bz2)

• Recognized Zip extensions are now configurable (Tools>Options>File Options>Open>)

• Added auto reload support for files opened from zip, tar, gzip, and plugin containers.

Printing Enhancements
• Printing color coding now supports font styles such as bold, italic, underline, and strikeout. This is very

useful if you print a Markdown file.

Miscellaneous

Printing Enhancements

10

• Enhanced "draw" command to handle Unicode drawing characters if in a Unicode buffer.

• Number mouse-over information now supports floating point numbers and will format them as scientific,
hex, and plain floating point notation.

• Added ability to log messages shown on the SlickEdit message line for debugging purposes. To
enable, got to Macro > Set Macro Variable... > def_message_logging = 1.

• Improved organization of Tools > Options > Language > General options.

• Add Tools > Options > Language > Editing options page.

General
• Improved performance of build output. Slightly faster and much smoother on Windows. Way faster on

Unix and macOS.

• Added option to disable Ctrl+Click creating multiple cursors.

• Vim emulation: Added increment/decrement number to Ctrl+A and Ctrl+X for command and visual
mode.

• Vim emulation: Added support for appending to block/column selection with Shift+a in visual mode.

• Vim emulation: Tweaked fill column/block selection to work more like Vim and not fill when too far past
the end of a line by default.

• New edit style option added called "Show extra line after last newline" (off by default). When on and the
last line of the file has a newline, an extra line is displayed. When on, newly created files will start with a
single line that is not terminated with a newline. You may want to set def_select_all_line to 0 if you want
the select-all command to create a CHAR selection to more closely emulation other products which
display an extra line after the last newline.

• File completion on Unix (Linux) is now case insensitive by default. Those of you with mixed case
filenames that also use the command line will really like this.

• Unix/Qt open dialog improvements

• Ctrl+C - If File name: text field has focus and no text selected, copies the Look in: text to the
clipboard.

• Ctrl+C - If Look in: combo has focus, copies the Look in: text to the clipboard.

• Alt+P - Sets File name: text to the Look In: text

• Improved VIM regex emulation to more closely emulate handling of \r and \n in search or replace string.

General

11

Documentation
Documentation for SlickEdit® consists of:

• A fully integrated Help system, including context-sensitive Help, a searchable index, and categorized
lists of C and Slick-C® macro functions. See The Help System for more information.

• (Not in Community edition)The SlickEdit® User Guide, which provides the same information as the
Help system in PDF format for viewing and printing as a manual.

• (Not in Community edition)Emulation charts in PDF format for the following editors: BBEdit, Brief,
CodeWarrior™, CodeWright®, CUA (SlickEdit's default emulation for all platforms but macOS), Epsilon,
GNU Emacs, ISPF, SlickEdit (Text Mode edition), Vim, Visual C++® 6, Visual Studio® default, Xcode®,
and Eclipse.

• (Not in Community edition)Slick-C® reference material in PDF format, which includes the Slick-C Macro
Programming Guide and Slick-C Macro Conventions and Best Practices for End Users.

PDF documents are located in the docs directory on the root of the product CD. After SlickEdit is installed
on your computer, these documents are located in the docs subdirectory of [SlickEditInstallDir].

Documentation for SlickEdit is also available on the SlickEdit Web site at
www.slickedit.com/products/slickedit/product-documentation
[http://www.slickedit.com/products/slickedit/product-documentation] .

Documentation Updates/Feedback
In-product documentation is current as of the build date of the product. Revisions to the product
documentation are made regularly with the most current version being made available on the SlickEdit
Web site (www.slickedit.com [http://www.slickedit.com]).

We welcome your comments and suggestions regarding the documentation. Please send feedback to
docs@slickedit.com [mailto:docs@slickedit.com].

Other Resources
The following additional resources are available:

• The SlickEdit Community Forums - Learn more about SlickEdit products and interact with other
users at http://community.slickedit.com.

• The SlickEdit® book - After years of developing code with SlickEdit, expert John Hurst brings his
wealth of knowledge to readers in Professional SlickEdit (Indianapolis, Wiley Publishing, 2005, ISBN -
978-0470122150).

Documentation Updates/
Feedback

12

http://www.slickedit.com/products/slickedit/product-documentation
http://www.slickedit.com/products/slickedit/product-documentation
http://www.slickedit.com
http://www.slickedit.com
mailto:docs@slickedit.com
mailto:docs@slickedit.com
http://community.slickedit.com

Documentation Conventions
CUA is the default editor emulation mode for all platforms except macOS which defaults to macOS. CUA
emulation and macOS emulation are almost identical. Therefore, key bindings and shortcuts listed in the
documentation follow the CUA emulation. Key sequences and mouse clicks are described using the
actions performed on a typical Windows or Linux computer. For information on how to perform those
actions on other platforms see Platform-Specific Notes.

Platform-specific notes appear throughout the documentation and are included for Microsoft Windows,
UNIX® (which includes Linux®), and macOS®.

Menus and Dialogs

Instructions for navigating to items accessed from the main menu are written in the form: MainMenuItem
→ SubMenuItem.

For example, the text "click File → Open " indicates that you should first select File from the main menu,
then select Open from the submenu. Brackets are used to indicate that the menu item is a variable. Some
menu paths include tree nodes in dialogs. For example, Tools → Options → Editing is a quick way to
write "select Tools → Options from the main menu, then in the Options tree, expand the Languages
node, the category for the language you want and the language you're using, then select the Editing
node".

Instructions for using the product make up the bulk of our documentation, while listings of dialog boxes
and options can be found in the Menus, Dialogs, and Tool Windows chapter. Buttons on dialogs, such as
OK, Close, and Help, are not usually documented since the meaning is obvious.

Code Syntax Conventions

• Commands, switches, keywords, properties, operators, options, variables, and text to be typed by the
user are shown in bold type.

• User-input variables and placeholders are shown in bold italic type.

• File extensions and environment variables are written with an UPPERCASE font.

• SlickEdit® commands that contain two or more words are written with underscore separators: for
example, cursor_down. Note that in the user interface, however, these commands are displayed with
hyphen separators: for example, cursor-down. Both of these forms work in SlickEdit, so you can use
whichever style you prefer.

The Help System
The searchable Help system is installed with the product. In addition to information about the SlickEdit
application, it provides categorized lists of C and Slick-C® macro functions.

The Help system can be accessed in several ways:

The Help System

13

• To view a list of all topics in the Help system, from the main menu, click Help → Contents. This is
useful for browsing topics depending on your needs.

• To look up specific keyword(s) in the Index, click Help → Index. Use the Index to find specific
information, for example, "changing emulations" or "toolbars". You can also use the index to find
information about a specific option in SlickEdit by looking up the label, for example, "One file per
window". When you type in the Index, the list of terms is searched incrementally.

• To search the entire Help system for every instance of a word used, click Help → Search. This can be
particularly useful to discover information about API functions or more obscure topics. Use quotation
marks around the term if it contains spaces.

• To invoke the Help entry for toolbars, tool windows, menus, and dialog boxes, press F1.

Supported Languages and
Environments

14

Supported Languages and Environments
This section outlines the languages and file types supported by each SlickEdit® feature, including special
features for the Mac®, as well as supported emulations, project types, and version control systems.

Supported Languages and File Types
The table below indicates the languages and file types that support key SlickEdit® features. Features that
are not language-specific, such as DIFFzilla®, are not listed here.

Langua
ge Version

List
Members

Parameter
Information

Auto
List
Compatible
Parameters

Code
Navigation

Syntax
Expansion

Syntax
Indent SmartPaste®

Code
Beautifier

Selective
Display

Expand/
Collapse
Code
Blocks

ActionS
cript

2.0 Yes Yes Yes Yes Yes Yes Yes Yes Yes

Ada 95 Yes No Yes Yes Yes No Yes Yes Yes

Ant * Yes No Yes Yes Yes No Yes Yes Yes

ANTLR v2 No No Yes No No No No Yes No

AppleS
cript

* No No No No No No No No No

Assem
bly
Langua
ge

Window
s Nasm,
Unix as

No No Yes No No No No No No

AWK UNIX
System
V, nawk

No No Yes Yes Yes Yes No No No

Bourne
shell
scripts

bash No No Yes No No No No No No

C, C++ K&R C, Yes Yes Yes Yes Yes Yes Yes Yes Yes

Supported Languages and File
Types

15

Langua
ge Version

List
Members

Parameter
Information

Auto
List
Compatible
Parameters

Code
Navigation

Syntax
Expansion

Syntax
Indent SmartPaste®

Code
Beautifier

Selective
Display

Expand/
Collapse
Code
Blocks

ANSI-C,
C90 and
C99,
ISO
C++ 98

C# 1.0, 1.2,
2.0

Yes No Yes Yes Yes Yes Yes Yes Yes

C Shell BSD,
tcsh

No No Yes No No No No No No

CFScri
pt

* Yes No Yes Yes Yes No No Yes No

Ch * Yes Yes Yes Yes Yes No No Yes Yes

CICS 2.x Yes No Yes No No No No Yes No

Clojure * No No No No Yes No No No No

COBOL 74, 85,
2002

Yes No Yes Yes Yes No No Yes Yes

D 1.0 Yes Yes Yes Yes Yes Yes Yes Yes Yes

DB2 * No No Yes No No No No Yes Yes

Diff
Patch

Univers
al or
Context
diffs

No No No No No No No No No

DTD ISO
8879:19
86
SGML

Yes No Yes Yes No No No Yes No

Supported Languages and File
Types

16

Langua
ge Version

List
Members

Parameter
Information

Auto
List
Compatible
Parameters

Code
Navigation

Syntax
Expansion

Syntax
Indent SmartPaste®

Code
Beautifier

Selective
Display

Expand/
Collapse
Code
Blocks

Erlang * No No No Yes Yes No No No No

Google
Go

* Yes No Yes Yes Yes Yes No Yes Yes

Google
Protoco
l
Buffers

* Yes No Yes Yes Yes Yes No Yes Yes

Groovy * Yes No Yes Yes Yes Yes Yes Yes Yes

F# * No No Yes No No No No No No

Fortran Fortran
77,
Fortran
90

No No Yes Yes Yes No No Yes Yes

Haskell * No No Yes No No No No No No

High
Level
Assem
bler

* Yes No Yes No No No No Yes Yes

HTML,
CFML

HTML
4.0

Yes No Yes Yes Yes No Yes Yes Yes

IDL OMG
IDL

Yes No Yes Yes Yes Yes No Yes Yes

INI,
config
files

* No No No No No No No No No

InstallS
cript

* Yes No Yes Yes Yes Yes No Yes Yes

Supported Languages and File
Types

17

Langua
ge Version

List
Members

Parameter
Information

Auto
List
Compatible
Parameters

Code
Navigation

Syntax
Expansion

Syntax
Indent SmartPaste®

Code
Beautifier

Selective
Display

Expand/
Collapse
Code
Blocks

J# 2.0 Yes Yes Yes Yes Yes Yes No Yes Yes

Java 5.0 Yes Yes Yes Yes Yes Yes Yes Yes Yes

JavaSc
ript

ECMAS
cript
ECMA-
262
(1997)

Yes No Yes Yes Yes Yes Yes Yes Yes

JCL * No No Yes No No No No Yes No

JSP * Yes No Yes Yes Yes Yes Yes Yes No

Kotlin * Yes Yes Yes Yes Yes Yes No Yes Yes

Lex System
V and
BSD
Unix

No No Yes No No No No Yes No

Lua * Yes No Yes Yes Yes No No Yes No

M4 * No No No No No No No No No

Makefil
e

Unix
make,
nmake,
and
gmake

No No Yes No No No No No No

Matlab * No No Yes Yes No Yes Yes No Yes

Modula-
2

Wirth/
PIM

No No Yes No No No No Yes Yes

Objecti * Yes No Yes Yes Yes Yes No Yes Yes

Supported Languages and File
Types

18

Langua
ge Version

List
Members

Parameter
Information

Auto
List
Compatible
Parameters

Code
Navigation

Syntax
Expansion

Syntax
Indent SmartPaste®

Code
Beautifier

Selective
Display

Expand/
Collapse
Code
Blocks

ve C

Pascal ETH
and
Delphi

Yes No Yes Yes Yes Yes No Yes Yes

Perl Perl 5 Yes No Yes Yes Yes Yes No Yes Yes

PHP 5 Yes No Yes Yes Yes Yes No Yes Yes

PL/I ANSI
1976

Yes No Yes No No Yes No Yes No

PL/SQL * No No Yes Yes Yes No No Yes Yes

PowerN
P
Assem
bler

* No No Yes No No No No Yes No

Progres
s 4GL

* No No Yes No No No No No No

PV-
WAVE

* Yes No Yes Yes Yes Yes No Yes No

Python 2.0, 3.0 Yes No Yes Yes Yes Yes Yes Yes No

QML Yes No Yes No Yes Yes No Yes Yes

R * Yes No Yes Yes Yes Yes No Yes Yes

REXX ANSI
X3.274
1996,
Object
Rexx

No No Yes Yes Yes No No Yes No

Supported Languages and File
Types

19

Langua
ge Version

List
Members

Parameter
Information

Auto
List
Compatible
Parameters

Code
Navigation

Syntax
Expansion

Syntax
Indent SmartPaste®

Code
Beautifier

Selective
Display

Expand/
Collapse
Code
Blocks

Ruby 1.8 Yes No Yes Yes Yes Yes No Yes No

SAS * No No Yes Yes Yes No No Yes No

Scala * Yes Yes Yes Yes Yes Yes Yes Yes Yes

Slick-C * Yes Yes Yes Yes Yes Yes Yes Yes Yes

Swift 1.0, 1.1,
2.0

Yes No Yes Yes Yes Yes No Yes Yes

System
Verilog

IEEE
2009

Yes No Yes Yes Yes Yes Yes No No

Tcl 8 No No Yes Yes Yes Yes No Yes Yes

Transa
ct-SQL

* No No Yes Yes Yes No No Yes No

TypeSc
ript

* No No No Yes Yes Yes No Yes No

VBScri
pt

2.0 Yes No Yes Yes Yes No No Yes No

Vera * Yes No Yes Yes Yes Yes No Yes Yes

Verilog 2005 Yes No Yes Yes Yes No Yes Yes No

Visual
Basic

VBA,
QBasic,
VB 6.0

No No Yes Yes Yes No No Yes Yes

Visual
Basic
.NET™

9.0 Yes No Yes Yes Yes No No Yes Yes

Supported Languages and File
Types

20

Langua
ge Version

List
Members

Parameter
Information

Auto
List
Compatible
Parameters

Code
Navigation

Syntax
Expansion

Syntax
Indent SmartPaste®

Code
Beautifier

Selective
Display

Expand/
Collapse
Code
Blocks

VHDL IEEE
1076,
VHDL-
2006

Yes No Yes Yes Yes No No Yes No

Window
s batch
files

* No No Yes No No No No No No

Window
s
PowerS
hell

2.0 No No Yes No No No No Yes No

x86
Assem
bly

Nasm No No Yes No No No No Yes No

XML,
XSD

1.0, 1.1 Yes No Yes Yes Yes No Yes Yes Yes

Yacc System
V and
BSD
Unix

No No Yes No No No No Yes No

YAML * No No No No Yes No No No No

Versions for languages marked with "*" indicate that best efforts are made to keep the language up to
date but no specific version is supported.

Special Features for macOS

The following features are available for programmers using macOS:

• Xcode project support

Supported Languages and File
Types

21

• Objective-C language support

• Emulations for CodeWarrior, BBEdit, and Xcode

• macOS default line endings are the same as UNIX

See macOS Notes for information on macOS keyboard and mouse commands.

Embedded Languages

SlickEdit® recognizes languages embedded in HTML, COBOL, Perl scripts, and UNIX shell scripts. When
editing embedded languages, all language-sensitive features are supported, including Context Tagging®,
SmartPaste®, Syntax Expansion, Syntax Indenting, and Color Coding. In fact, Context Tagging picks up
embedded tags. For example, the Defs tool window displays function names if any exist. Embedded
language colors are user-defined.

Embedded Languages in HTML

SlickEdit® supports any embedded language in HTML. However, Web browsers usually only support
VBScript, JavaScript, and/or Java, while Web servers typically support VBScript, Java, or PHP. The
following screen is an example of VBScript, JavaScript, and Java embedded in HTML:

Supported Languages and File
Types

22

Embedded Languages in Perl and Other Scripting Languages

To allow SlickEdit® to recognize embedded source in a Perl script or UNIX shell, prefix the HERE
document terminator with the color coding profile name. The following Perl example shows HTML
embedded in a Perl script. Unknown languages are color-coded in string color.

Supported Editor Emulations
SlickEdit® provides keyboard emulations for the following editors:

• BBEdit

• Brief

• CodeWarrior

• CodeWright

• CUA (SlickEdit's default for all platforms but macOS)

• Epsilon

• GNU Emacs

• ISPF

• macOS (SlickEdit's default for macOS)

• SlickEdit (Text Mode edition)

• Vim

• Visual C++ 6

• Visual Studio default

• Xcode

• Eclipse

See Emulations for more information.

Supported Editor Emulations

23

Supported Project Types
SlickEdit® supports the creation of projects that use the Microsoft Visual C++ Toolkit and Microsoft .NET
Framework Software Development Kit. Many other project types are supported, including many for Java.
For a list of all supported types, see the list box on the Project → New dialog. For information about
working with projects, see Workspaces and Projects .

Supported Version Control Systems
SlickEdit® provides support for the version control systems listed below. To learn more about working
with version control in SlickEdit, see Version Control .

• CCC/Harvest

• ClearCase®

• ComponentSoftware RCS

• CVS

• Git

• Mercurial

• MKS Source Integrity®

• Perforce

• PVCS®

• RCS

• SCC

• StarTeam®

• Subversion

• TLIB

• Visual SourceSafe®

Supported Version Control
Systems

24

Installation

Installing SlickEdit®
Installation files are available on the SlickEdit website on your Registered Projects page. Visit
www.slickedit.com [http://www.slickedit.com], enter your user name and password, then click the Login
button to login. Once logged in, select My Account → Registered Products. The products you have
purchased are listed along with an icon to download the installer and an icon to download a license file.
Use the information below to install SlickEdit® on your Windows, Linux, UNIX, or macOS platform.

Note

When you start SlickEdit for the first time after an installation, several dialog boxes automatically
appear that require action. See Running SlickEdit for more information.

Windows

Complete the following steps to install SlickEdit® on a computer running Microsoft Windows.

1. Download the .msi file from your Registered Products page (see above).

2. Double-click the .msi to begin the installation.

Note

The Windows installer will not allow you to install more than one copy of SlickEdit® with the same
version number on the same machine. For example, you can have SlickEdit v14.0.0 and SlickEdit
v14.0.1 installed, but you cannot install two copies of SlickEdit v14.0.1.

Linux/UNIX

Complete the following steps to install SlickEdit® on a computer running Linux or UNIX:

1. Download the tar.gz file from your Registered Products page (see above).

2. Untar the file using a command like, "tar -xvfz installfile.tar.gz". If the tar command does
not support the z option, you will need to uncompress the file first.

3. Start the installation at the prompt: # ./vsinst. You will be prompted for the directory into which
SlickEdit will be installed.

Mac

Complete the following steps to install SlickEdit® on a computer running macOS:

Installing SlickEdit®

25

http://www.slickedit.com
http://www.slickedit.com

1. Download the .dmg file from your Registered Products page (see above).

2. Double-click slickedit.dmg. A disk image is mounted, with Finder™ displaying the contents.

3. Drag the SlickEdit icon into the Drag Here folder, which is a shortcut for the Applications folder. This
begins the installation.

The default installation path is /Applications.

Unattended Installation

Using command line switches and arguments, SlickEdit® can be installed in an unattended manner. This
is useful for network administrators to deploy SlickEdit on multiple client machines with standardized
settings. Instructions can be downloaded in PDF format from www.slickedit.com/unattended
[http://www.slickedit.com/unattended].

Licensing (Pro and Standard edition only)
SlickEdit uses its own licensing system to manage licenses for both Named User and Concurrent User
licenses. Named User licenses are stored on the local machine. Concurrent User licenses use a license
server to access a license.

License Manager

When SlickEdit is run, it checks for a license. If one can't be found, the SlickEdit License Manager wizard
is run. You can also manually run the SlickEdit License Manager by selecting Help → Licensing →
License Manager.

Licensing (Pro and Standard
edition only)

26

http://www.slickedit.com/unattended
http://www.slickedit.com/unattended

The SlickEdit License Manager provides the following options:

• Install a license file - Copies a downloaded license file to the location SlickEdit uses to store the file.

• Request a Trial License - To try out SlickEdit, click the option to obtain a Trial License. This will take
you to a Web page where you can register for a trial. A license key will be e-mailed to you. A trial can
be converted to a Full License by entering a Full License key at any time in the SlickEdit License
Manager, or by downloading a Full License file.

• Request a license for a purchased product - If you have already purchased a license for SlickEdit,
you can download a license file to this computer from the SlickEdit Web site.

• Use a license server (concurrent licenses) - Use this to configure concurrent licenses using a license
server.

• Purchase a license - To buy a Full License, visit the SlickEdit Web site at www.slickedit.com
[http://www.slickedit.com] or select this option, which will take you directly to the product page for
SlickEdit.

Concurrent User Licenses

Licensing (Pro and Standard
edition only)

27

http://www.slickedit.com
http://www.slickedit.com

Concurrent License users will find complete instructions for setting up a license server at
www.slickedit.com/selicense [http://www.slickedit.com/selicense].

When you run SlickEdit, if a license is not found, the SlickEdit License Manager wizard is run. Select Use
a license server (concurrent licenses) to configure access to a concurrent license server.

Note

SlickEdit 2011 (v16) will not work with the Flex license servers used in previous releases. A new
license server must be set up for this and subsequent versions.

You are prompted to enter the port address for the license server. Enter the port@hostname for the
server running the SlickEdit License Server. Your system administrator should be able to provide this
information for you.

The next screen should say, "Successful license checkout". If so, you are finished. If not, try the following:

• Make sure that your machine can access the server. Confirm this using the ping utility.

Licensing (Pro and Standard
edition only)

28

http://www.slickedit.com/selicense
http://www.slickedit.com/selicense

• Make sure that the specified port is allowed through all firewalls. The default port is 27100.

• Contact your IT or License Administrator before contacting SlickEdit support.

Borrowing a License

If you need to use SlickEdit during a period when you will not be able to access the License Server you
can borrow a license. To borrow a license, select Help → Licensing → Borrow License from the main
menu. You are prompted to enter the time this borrow will expire. By default, the maximum borrow period
is 30 days.

You can return a borrowed license prior to the expiration date. Select Help → Licensing → Return
License from the main menu. The port address of the license server you borrowed from is already filled
in. Change that only if that license server is no longer in use.

Licensing (Pro and Standard
edition only)

29

Named User Licenses

SlickEdit uses a license file to authenticate your license. A Full License file is not bound to a particular
machine and may be used on as many machines as allowed by the End User License Agreement. A Trial
License file is bound to a single machine.

In most cases, the location of the license file is managed by SlickEdit and depends on your platform.
However, if you are setting up a portable installation of SlickEdit, to run on a USB drive for example, you
should manually copy the license file to the win subdirectory of your SlickEdit installation on Windows or
the bin subdirectory on all other platforms.

Upgrading SlickEdit®
We recommend keeping up with SlickEdit releases and updates to get the latest features and bug fixes.
Major versions contain many new features and enhancements to SlickEdit. Minor versions are usually
released subsequently to a major version and contain additional enhancements. Hot fixes are published
frequently and contain a smaller set of changes to address a specific problem with the previous release.

Upgrading to a New Version

Checking for Updates

SlickEdit® automatically checks and notifies you when a new major or minor version is available. The
Update Manager displays an Update Notification that describes the update and how to apply it. For more
information see Notifications.

You can set the frequency of how often SlickEdit checks for these updates and change proxy settings
through the Update Manager Options dialog. To access these options, from the main menu, click Help →
Product Updates → Options (or click the Options button on the Update Manager dialog).

You can also check for updates manually. From the SlickEdit main menu, click Help → Product Updates
→ New Updates. Or, visit the Support Web site at www.slickedit.com/support

Upgrading SlickEdit®

30

http://www.slickedit.com/support

http://www.slickedit.com/support] and click Updates.

Migrating Settings

SlickEdit® creates a versioned subdirectory in your configuration directory corresponding to each version
of SlickEdit you have installed. SlickEdit migrates your settings to a new subdirectory corresponding to
the new version the first time the new version is run. However, as a precaution, we recommend that prior
to installing an update, exit SlickEdit and make a backup of your user configuration directory. For
information about the user config directory's location and the files it contains, see User Configuration
Directory.

Note

Custom forms that you have created are not migrated as part upgrading your configuration.

Keeping the Previous Version

You can continue to run a previous version of SlickEdit® by installing the new version into a new
directory. Because the config directories are versioned, each version of SlickEdit will locate the matching
settings.

Applying Hot Fixes

Hot fixes are small, localized changes to address a specific problem with the previous release. They can
consist of Slick-C® modules, configuration files, installation files, or DLL files. Hot fixes are distributed as
ZIP files and made available on the SlickEdit Support Web site at www.slickedit.com/support
[http://www.slickedit.com/support]. For convenience, a number of hot fixes may be aggregated into a
single ZIP file.

When a hot fix is loaded, the changes are stored in the user's configuration. No change is made to the
files in the original installation of SlickEdit. Therefore, a hot fix must be applied for each user. If a user has
multiple configuration, controlled by the -sc option when launching SlickEdit, then the hot fix must be
applied for each configuration.

There are two ways to load a hot fix:

• Manually, using the menu. This loads the hot fix into the current configuration.

• Automatically, by placing the hot fix in a directory specified by Admin.xml. This will load the hot fix for
any user who shares this install of SlickEdit. This method is particularly useful for multi-user systems or
enterprises with many workstations to update. Instead of copying the hot fix to multiple workstations,
you can configure each workstation to look in a single directory for hot fixes. You can then deploy a hot
fix to all users by copying the hot fix file to that directory.

Manually Installing Hot Fixes

Note

Upgrading SlickEdit®

31

http://www.slickedit.com/support
http://www.slickedit.com/support
http://www.slickedit.com/support

If a user manually loads a hot fix on a multi-user installation of SlickEdit, only that user will be
updated. To apply a fix to a multi-user installation, use the automatic method, described below.

To manually install a hot fix, complete the following steps:

1. Save the ZIP file to any location on your computer.

2. From the SlickEdit menu, click Help → Product Updates → Load Hot Fix (or use the command
load_hotfix). The Apply Hot Fix dialog appears.

3. Browse to and select the hot fix ZIP file, then click OK.

4. A confirmation prompt appears describing the hot fix. Click Yes. The installation starts.

Details about the installed fix will be sent to the Output tool window.

Automatically Installing Hot Fixes

Automatic installation of a hot fix will install this hot fix for any user who shares this installation of
SlickEdit. When SlickEdit is run, it checks the location specified in Admin.xml for any new hot fixes and
loads them. To configure automatic installation of hot fixes, complete the following steps:

• Edit the Admin.xml file located in the sysconfig/options subdirectory of your SlickEdit installation.
Find the node that looks like the following:

<AutoHotFix menuitem="1" prompt="1" directory="" />

• menuitem enables/disables the hot fix menu item under Help > Product Updates (Load Hot Fix). Set to
1 to make menu items visible (default). Set to 0 for them to disappear.

• Set the value for directory to the full path for the directory to check for new hot fixes. The Admin.xml
file contains an example showing where you should put the path.

• Change the value for prompt to "0" to suppress a prompt asking if the user would like to apply the hot
fix.

To apply a hot fix. Copy the hot fix file to the location Admin.xml file. It will be loaded by each user who
shares this installation the next time they launch SlickEdit. There is no need to remove hot fixes files after
they have been loaded. SlickEdit keeps track of which hot fixes have been loaded.

Hot fixes are handled differently depending on whether the prompt has been suppressed:

• When prompt="1" - an Update Notification will be displayed informing you that a hot fix is available. It
contains a link you can click to install the hot fix. The notification will be displayed periodically until the
hot fix is applied. See Notifications for more information.

• When prompt="0" - no Update Notification is displayed. The hot fix will be loaded automatically when
you quit SlickEdit.

Upgrading SlickEdit®

32

Listing Installed Hot Fixes

To see the list of hot fixes installed, from the SlickEdit® menu, clickHelp → Product Updates → List
Installed Fixes (or use the command list_hotfixes). A summary sheet appears with the location of the
hot fix ZIP file, its revision number, the date it was published, and its description.

Unloading Hot Fixes

To unload a hot fix, use the unload_hotfix command from the SlickEdit® command line. At the prompt,
select the hot fix to unload and click OK.

Caution

Unloading a hot fix will reload the original files distributed with the previously installed release of
SlickEdit. If other hot fixes include the same file or are dependent on the unloaded files, SlickEdit
may behave unpredictably. If more than one hot fix has been installed, you may need to reinstall
the other hot fixes after removing one of them.

Uninstalling SlickEdit®
To remove SlickEdit from your computer, use the information below specific to your platform.

Note

Uninstalling SlickEdit does not automatically remove the user configuration directory. See User
Configuration Directory for more information.

Windows

If your computer is running Windows, complete the following steps to uninstall SlickEdit®:

1. From the Windows Control Panel, open Add or Remove Programs.

2. Click Change or Remove Programs.

3. Select the SlickEdit installation that you want to remove.

4. Click Change/Remove or Remove. This will delete the installation directory as well as any registry
settings. You may be prompted to reboot for the changes to take effect.

Alternatively, double-click on the original .msi installation file, located on the product CD or in your
product installation download, and select Remove.

Linux/UNIX

To uninstall SlickEdit® on a computer running Linux or UNIX, simply delete the installation directory.

Uninstalling SlickEdit®

33

Mac

To uninstall SlickEdit® on a computer running macOS, open the Application folder, and drag the
SlickEdit icon to the Trash, then empty the Trash.

Startup and Exit

34

Startup and Exit

Running SlickEdit
You can launch SlickEdit in a variety of ways, depending on the operating system you are using:

• Desktop Icon - On Microsoft Windows and macOS operating systems, use the SlickEdit icon
displayed on your desktop. On Windows, you can customize the command used by the icon to set
Invocation Options.

• Start Menu - Some operating systems, including Microsoft Windows, provide a menu for launching
installed applications.

• Command Line - Use the operating system command line to invoke the vs binary. This is the primary
method for launching SlickEdit on Linux and UNIX. The command line accepts Invocation Options that
can be used to change the behavior of SlickEdit.

The vs executable is stored in the win subdirectory (Unix: bin Mac: MacOS)of your SlickEdit installation.

Tip

• You can make settings so that certain items such as files, clipboards, and Selective Display are
restored each time SlickEdit is started. See Restoring Settings on Startup for more information.

• You can also set a macro to be run upon startup. See the section "Hooking Exit and Other
Events" in the Slick-C® Macro Programming Guide for more information.

Running SlickEdit for the First Time

The first time SlickEdit is started after an installation, several dialog boxes may be automatically launched
that require action:

• If SlickEdit cannot locate a valid license for this version, the License Manager will run. It provides
options to install or download a license file. For more information, see License Manager

• The Quick Start Configuration Wizard will guide you through the steps of setting up the most common
options. It also allows you to view the release notes and other useful information. For more information,
see Quick Start Configuration Wizard.

Running Multiple Instances

You can run multiple instances of SlickEdit® at the same time. On Windows or macOS, right-click on the
SlickEdit icon displayed on the desktop. In the Target field, append the text +new to the end of the
existing text.

Running SlickEdit

35

When launching SlickEdit from the operating system command line, append +new to the invocation
command (for example, vs +new). See Sharing Your Configuration with Multiple Instances for more
information.

Invocation Options
SlickEdit can be invoked with a variety of options to control key editor behaviors. This allows you to
specify things like a file or multiple files to edit and a different location for your SlickEdit configuration. A
full list of invocation options is listed in the table, below.

The command line syntax for invoking SlickEdit is as follows:

vs {options} file1 {options} file2

The vs executable is stored in the win subdirectory on Windows and the bin directory on Linux/
UNIX/Mac.

Tip

On macOS, you can use the shell open command to invoke SlickEdit by giving the application
bundle name and passing arguments as follows.

open -a SlickEditPro2020 --args {options} file1 {options} file2

Invocation options can also be stored in the VSLICK environment variable. When SlickEdit is invoked, it
inserts the value of this variable before the options typed on the command line. See Environment
Variables for a list of variables you can use with SlickEdit.

The table below shows a list of available invocation options.

Invocation Option Description

-? or -h[elp] Display a summary of command line switches and
their usage.

file1 file2 Files to edit. File names may contain ant-like
wildcards (**, *, and ?). For example, "vs **/*.html"
will recursively open all HTML files under the
current directory.

filename.vpw Auto Restore from workspace file. If you specify
.vpj, SlickEdit Auto Restores the project. If you
specify .sln, SlickEdit Auto Restores from the
solution file.

Invocation Options

36

Invocation Option Description

Auto Restore from workspace file. If you specify
.vpj, SlickEdit Auto Restores the project. If you
specify .sln, SlickEdit Auto Restores from the
Visual C++ solution file.

-fn Do not restore from workspace, project, or solution
file. Files and edit command options follow (see
help on edit command in the index). For example, -
#E, -#command, and +T [buf_name] are edit
command options.

+ or -new Indicates whether a new instance of the editor
should be created or if the existing instance should
process the command line parameters. +new
creates a new instance. Opening the same
workspace in multiple instances is not supported.
Default is -new.

+ or -newi Same as +-new option except it always avoids
restoring your previous files or workspace.
Typically, this option isn't needed when sharing the
same configuration directory because +new is
converted to +newi if another instance is detected
using the same configuration directory. One reason
to use this option is simply to avoid restoring your
previous files or workspace for the first instance.
Default is -newi.

+ or -newr Same as +-new option except it always restores
your previous files or workspace if you auto-restore
options allow it. Default is -newr.

-sc config_path Specifies the configuration directory. This directory
will be used to find and save configuration files.
Sets the SLICKEDITCONFIG environment variable
to config_path.

-migrate If there is no matching version-specific configuration
directory, create a new, default configuration
instead of migrating settings from an earlier
version's configuration directory.

-sr restore_path Specifies the directory containing auto-restore files.
Sets the VSLICKRESTORE environment variable
to restore_path.

Invocation Options

37

Invocation Option Description

-snoconfig Do not write any files into the configuration
directory. This option is needed for utilities which
run the editor with the main window hidden which
we do not want to save any state information.

-snorestore Do not read vrestore.slk on editor invocation. This
option is used to simplify starting the editor when
you have a corrupt vrestore.slk, and is also used by
utility programs that launch the editor and do not
require any saved state, like vsmktags.

-q[uiet] Do not display the standard version message on
editor startup.

-mdihide Specifies that the main window should be hidden on
startup. This is normally used with the -p
macro_name option when running a utility macro
under the editor.

-si kmax_var_space max_Nofvars kmax_var_space specifies the amount of memory
in kilobytes allocated for storing the contents of
interpreter variables (default is 1000 kilobits).
max_Nofvars specifies the maximum number of
local, static, and global variables there may be
(default is 10000).

-st state_ksize (Pro only) Specifies the maximum amount of
swappable state file data in vslick.sta to be kept
in memory, in kilobytes. -1 specifies no limit. 0
specifies that the editor preload all state file data.
The default is 200 K.

-sm max_file_size Specifies the maximum amount of buffer text (in
megabytes) that may be edited at one time.
Additional memory will automatically be allocated to
allow for the editing of up to 2 GB of files. Choosing
this option will provide you with better performance.

+supty (Unix only) Enables Pseudo TTY support in the
Build window. This off by default because it typically
is not as stable as a standard pipe.

+sforcero (Experimental) Specifies that all existing files be
opened in read-only mode. This allows for an

Invocation Options

38

Invocation Option Description

instance of SlickEdit to be for browsing source code
only.

-sumotif -sucde -sukde -suwindows -sugtk (Unix only) Use Motif, CDE, KDE, Windows, or GTK
style widgets. The default is to use KDE style (Qt
Plastique style) widgets.

-graphicssystem native (Unix only) SlickEdit attempts to automatically
choose the correct Qt graphics system at start up. If
you notice unusually slow performance, try this
option. SlickEdit can get confused when ssh is used
to start an X Terminal session. This option is best
when running remotely through an X server.

-graphicssystem raster (Unix only) SlickEdit attempts to automatically
choose the correct Qt graphics system at start up.
This option is best when running locally on your
display and not through and X server.

-sprimarydisplay Specifies that the editor should open all windows in
the primary display.

-summ "[x_1 y_1] width_1 height_1 ,

[x_2 y_2] width_2 height_2 "

(UNIX only) Specifies multiple monitor
configuration. You must specify at least two
monitors. By default, SlickEdit tries to automatically
detect if you have two monitors. However, this only
works if your monitors have the same width, height,
and y values. In a left-to-right monitor configuration,
x and y are not necessary. The following two
examples are equivalent because the monitors are
in a left-to-right configuration:

• -summ "1024 768,1024 768"

• -summ "0 0 1024 768,1024 0 1024 768"

Specifying the -summ option in the previous
example would not be necessary because it would
be automatically detected correctly. However, the
following monitor configurations would not be
detected correctly:

• -summ "1600 1200,1024 768"

Invocation Options

39

Invocation Option Description

• -summ "0 0 1024 768,0 768 1024 768"

• -summ "1024 768,1024 768,1024 768"

The above examples represent the following
configurations: left-to-right, 2 monitors; top-
to-bottom, 2 monitors; left-to-right, 3 monitors.

Note that you can specify this option in the VSLICK
environment variable and set it in your
user.cfg.xml file so you don't need to specify
this for every invocation. For more information, see
Setting Environment Variables in user.cfg.xml.

-sul (Unix only) Disables the byte-range file locking that
SlickEdit normally performs. Enable this option
when receiving an "access denied" error with
remote files.

-x pcode_name Alternate state file (.sta) or pcode file (.ex).

-m menu_file Name of menu resource to use for the SlickEdit
menu bar.

-p cmdline Execute command with arguments given and exit.
No other options or file names can be specified
after this option since the rest of the command line
is assumed to be the program name and space-
delimited arguments for this option.

-r cmdline Execute command with arguments given and
remain resident. No other options or file names can
be specified after this option since the rest of the
command line is assumed to be the program name
and space-delimited arguments for this option.

-#command Execute command on active buffer. For example,
vs test.c -#bottom-of-buffer places the cursor at
the end of test.c. Use double quotes if the
command has spaces (vs test.c "-#goto-col 50").

+ or -L[C] Turn on/off load entire file switch. The optional C
suffix specifies counting the number of lines in the
file.

Invocation Options

40

Invocation Option Description

+ nnn Load binary file(s) that follow with a record width
nnn.

+T [buf_name] Start a default operating system format temporary
buffer with name buf_name.

+TU [buf_name] Start a UNIX format temporary buffer with name
buf_name.

+TM [buf_name] Start a Macintosh format temporary buffer with
name buf_name. Classic Mac line endings are a
single carriage return (ASCII 13).

+TD [buf_name] Start a DOS format temporary buffer with name
buf_name.

+ or -E Turn on/off expand tabs to spaces when loading
file. Default is off.

+ or -ssymlink (Windows only) Turn on/off resolving of symbolic
links for files and directories. This option can slow
down performance but is highly optimized. This
option can take a lot of memory for caching the
resolved filenames (needed for performance).
Symbolics are always resolved on non-Windows
platforms.

+ or -ssymlinkdirs (Windows only) Turn on/off resolving of symbolic
links for directories only. This option can slow down
performance but is highly optimized. Symbolics are
always resolved on non-Windows platforms.

Exiting the Program
To safely exit SlickEdit®, from the menu, click File → Exit (Alt+F4). You can also use the SlickEdit
command line to exit. Activate the command line by pressing the Escape key or by clicking on the
message line with the mouse, then typesafe_exit. If files have not been saved or closed upon exit, you
will be prompted with a dialog to save or discard any changes.

Tip

Exiting the Program

41

• You can make settings so that certain items such as files, clipboards, and Selective Display are
restored each time SlickEdit is started. See Restoring Settings on Startup for more information.

• You can also set a macro to be run upon exit. See the section "Hooking Exit and Other Events"
in the Slick-C® Macro Programming Guide for more information.

Exiting with Modified Buffers

If files have not been saved or closed upon exit, you will be prompted with a dialog to save or discard any
changes. The buffer names in the list box are buffers which have not been saved. See Exiting with
Modified Buffers Dialog for option descriptions. See also Saving Files.

Default Exit Options

To access default options for saving configuration changes, click Tools → Options → Application
Options → Exit. See Exit Options for descriptions of these options.

Product Support

42

Product Support
Product Support is provided to customers with a current Maintenance and Support agreement. Limited
support is also available to new customers and trial customers to help them get started. For more
information, please visit the SlickEdit Product Support web page at www.slickedit.com/support
[http://www.slickedit.com/support].

The Product Support Web site provides a list of frequently asked questions and answers as well as
information about upgrades and hot fixes. You can launch this site in a browser by clicking the menu item
Help → Contact Product Support or by going directly to www.slickedit.com/support
[http://www.slickedit.com/support]. You can also access the FAQ page directly by clicking the menu item
Help → Frequently Asked Questions.

SlickEdit has an active user community supported by forums, where users can posts questions and get
answers. Though created as a means for users to help other users, the SlickEdit team monitors the
forums and answers selected questions. Visit the forums at http://community.slickedit.com.

See Documentation for more help resources.

Contacting Product Support
To contact Product Support, use the menu item Help → Contact Product Support. This will
automatically gather your program information, such as the current version and serial number, which
helps us to better answer your questions. If SlickEdit won't run, you can report problems via the web at:
www.slickedit.com/support [http://www.slickedit.com/support].

For problem reports, please provide the following information:

• A description of the problem.

• The language you are working in (C/C++, Java, etc.).

• SlickEdit program information, which is automatically provided if you use Help → Contact Product
Support. If you initiate a report from the website, select Help → About SlickEdit, then select the
Program Information tab, click Copy To Clipboard, and paste the information into the problem report.

• A code snippet to help us reproduce it (if possible).

To speak to a member of our Product Support team, call the Support line at 1.919.473.0070. Telephone
support is only available during business hours for customers with a valid Maintenance and Support
Service Agreement.

Contacting Product Support

43

http://www.slickedit.com/support
http://www.slickedit.com/support
http://www.slickedit.com/support
http://www.slickedit.com/support
http://community.slickedit.com
http://www.slickedit.com/support
http://www.slickedit.com/support

Product Improvement Program
SlickEdit strives to meet the demands of its customers. Without knowing what features or languages our
customers are using, it is a challenge to determine which areas of the product need our attention most. To
close this information gap, we developed the Product Improvement Program. The program runs in the
background, logging events as they happen in your daily usage.

We gather a variety of data, including information about command invocation, toolbars and tool windows,
settings, project and workspace usage, error messages, and file types. We do not make any record of file,
project, or workspace names, directory structures, or source code.

Periodically, the compiled data is sent to SlickEdit. The first time the program tries to send data, you are
prompted.

The dialog contains a link to preview the data that was compiled before deciding to send it to SlickEdit.
You can also get more information by clicking the Product Improvement Program Info link, which takes
you to an informational page on SlickEdit's website.

Select the Yes radio button to send the data and continue your participation. If you do not wish to have
any data logged or sent to SlickEdit, select the No option. After making your selection, click OK. You can
also click the Ask me later button to postpone the data transmission. No data will be sent at that time,
and you will be prompted again later. You can also change your participation status at any time by going

Product Improvement Program

44

to Tools → Options → Application Options → Product Improvement Program. For more information
about these options, see Product Improvement Program Options.

After this first prompt, if you agree to participate in the program, all data transmissions are completely
silent. Transmission only occurs at start-up of the application or when the editor has been idle for a period
of time, thus causing the least possible disruption to your work.

All data is completely anonymous. We do construct a source ID to enable us to determine how many data
sources we have. This ID is a concatenation of machine name, user name, and serial number that is then
hashed. The hash result is used as the ID. Therefore, even with a unique ID for each user, we are unable
to associate an ID with any particular person or source.

Performance Tuning

45

Performance Tuning
SlickEdit was designed with speed in mind. Most operations perform nearly instantaneously. However,
the size and location of your codebase can affect SlickEdit performance along with various settings within
SlickEdit. This guide will help you to make sure that you get the best performance possible.

First Steps
In some cases, Symbol Coloring can cause delays while typing. If you are experiencing performance
problems while typing, please turn off that feature to see if the problem is fixed. For more information, see
Symbol Coloring.

Virus checkers also might be a cause for bad performance. Many do real-time checking each time a file is
read. When trying to diagnose the cause of a performance problem, please turn off any such checking.
Some virus checkers give you the option of exempting specific file types from these checks. If so, you can
achieve better performance by exempting SlickEdit workspace files (.vpw), project files (.vpj), and tag files
(.vtg). You may also wish to exempt your source files from these checks.

File Locations
Whenever possible, make sure that your source code files, workspace and project files, and configuration
files are stored locally. SlickEdit is subject to normal file latency. When files are stored remotely they take
longer to access.

Source Files

Storing your source files remotely will increase the amount of time it takes to open and save files.
Additionally, it will increase the amount of time it takes to tag your files. Tagging is the process of building
a symbol database, which is used for many advanced operations in SlickEdit. On a fast, reliable network
you may find that storing your source files remotely does little to harm performance. On a slow network,
these operations will likely take unacceptably long to complete.

Workspaces and Project Files

Even if you store your source files remotely, you should still either try to store your workspace and project
files locally or more importantly configure your workspace Tag Files Directory(Pro only) to a local drive
(see Workspace Properties Dialog). By default, tag files are stored in the same location as your
workspace file. Tag files are large and complex databases, that are used for operations like symbol
completions that happen while you type. Storing your tag files remotely often introduces unacceptable
latency into this access, slowing down SlickEdit's response time.

SlickEdit Configuration Files

Your SlickEdit Configuration files should also be stored locally. This is where SlickEdit stores a great deal
of information about your options and the state of SlickEdit. Having these files located remotely will
introduce latency at unpredictable times.

First Steps

46

By default, SlickEdit stores your config files in \\My Documents\My SlickEdit Config on Windows,
in $HOME/.slickedit on UNIX, and in $HOME/Library/Application Support/SlickEdit on
Mac. These are typically on a local drive. You can specify a different location for your config using the -sc
option when SlickEdit is launched:

vs -sc /dev/seconfig

If necessary, use this option to specify a new location for your config files that is on a local drive.

Memory and Caching (Pro only)
Along with making sure that your tag files are stored locally, you should make sure that SlickEdit has
enough memory to hold all of your tag files in memory. When it doesn't, it has to page sections of the
tagging database in and out of the cache.

To increase the size of your tag file cache, select Tools → Options → Editing → Context Tagging and
change the value for Tag file cache size (KB). Try to make it large enough (within reason) so that we can
get your entire workspace tag file and extension specific tag files into memory. To determine that size,
open Tools → Tag Files. This lists all of the tag files in SlickEdit. Not all of them are used at any one
time, though. You may also want to adjust the value for Tag file cache maximum (KB). This setting
controls the maximum amount of memory that can be dedicated to the tag file cache depending on the
amount of memory available on your machine at the time that SlickEdit starts. If you have a machine with
lots of memory available, setting this maximum to a large value is the simplest way to get good tag file
performance without having to worry about adding up the total sizes of your tag files as described below.

For a given workspace, you need to add the size of your workspace tag file, listed at the top of the tree, to
the size of the extension-specific tag files used in that workspace. If you are only using a single language,
then it will just be the one extension-specific tag file. If you are using a mixture of languages, you will need
to add the tag file for each language. If you have tagged multiple tool chains in a given language, like
GNU C/C++ and Microsoft Visual Studio, you need only factor in the one used by that workspace. The
Tag Files dialog will tell you the location of the tag files. Use the operating system to determine the size of
the files. Add them together, and use that value for the tag file cache size.

The tag file cache size is a global value that is used for all workspaces, so you should set this value for
your largest workspace. If that workspace is atypical or infrequently used, set it based on the tag file sizes
used by a more typical workspace.

It is possible that you could hit a threshold where increasing the cache size reduces performance. This is
likely to be the case if the tag file cache size exceeds the amount of free memory available on your
system. So, once you've set this value check your operating system and make sure it isn't being forced to
do a lot of paging. If it is, you should decrease the tag file cache size. Like most performance tuning, this
could be an iterative process until you find a value that provides the best speed for your codebase and
system.

On systems with large amounts of memory, it may also improve performance to dedicate an independent
tagging block cache to each tag file rather than having all the open tag files share the same cache. Using
this option reduces cache contention and thrashing. To change this option, select Tools → Options →
Editing → Context Tagging and change the value for Use independent database file caches.

Memory and Caching (Pro only)

47

Tuning Context Tagging (Pro only)
After you've checked the items above, the next optimizations to try are the various control settings for
Context Tagging. SlickEdit's Context Tagging system provides many of the advanced features that make
using SlickEdit so great. Context Tagging creates a database of all the symbols in your code and where
they are located. This is used to provide rapid navigation from a symbol to its definition or declaration, for
all kinds of completions, and for rapid symbol searches. All of that information is great, but it does you no
good if you have to wait too long to get it.

As mentioned above, Symbol Coloring can cause performance problems while it attempts to identify and
resolve symbols. If you are having a performance issue while typing, the first thing to do is to shut off
Symbol Coloring. For more information, see Symbol Coloring.

To configure Context Tagging, open Tools → Options → Editing → Context Tagging. This screen
contains a number of parameters you can use to control the performance of Context Tagging.

Background Tagging (Pro only)

If you are experiencing sporadic pauses in SlickEdit, the first thing to check is that Background tagging
of other files is off. It's generally fine to leave Background tagging of open files on. We recommend
that you turn that off only after you've applied all other tuning approaches. Likewise, you should leave Tag
file on save enabled. This ensures that the tag database is always current by tagging a file when it is
saved.

The context tagging engine is single threaded with SlickEdit, and background tagging has been known to
introduce random periods of unresponsiveness. Generally, you don't need to tag other files in the
background. Once you've tagged your workspace, you only need to tag files that are being changed, and
SlickEdit does this automatically if you leave the other two values on.

The exception to this is if you fetch updated files from a source code repository. Then, other developers
may have changed files or added new ones. SlickEdit won't know about those changes until you retag the
workspace. For normal size projects, SlickEdit can tag the workspace in a few minutes. On extremely
large projects, this can take over an hour. Your strategy for how and when to tag depends on the size of
your codebase.

For a normal codebase, you can open the Project tool window and right-click on the workspace entry, and
select Retag Workspace. You will have to wait while SlickEdit retags your workspace. Retagging is
generally faster since it only has to look at new or modified files.

For extremely large codebases, you may want to script this process. You could set up a nightly process
that fetches all new and updated files from source control, adds the new files to appropriate projects, and
then runs the tagging engine on them.

To configure Background Tagging, open Tools → Options → Editing → Background Tagging. This
screen contains a number of parameters you can use to control the performance of Background Tagging.

Context Tagging Maximums

These tuning options for Context Tagging set maximum values for specific tagging operations. You can

Tuning Context Tagging (Pro
only)

48

change these values when a specific operation is found to be too slow. For example, if you type in a
function call, like

foo();

After typing the open parenthesis, SlickEdit will look for a list of local variables that match the parameters
in foo. The value, Maximum candidates for list parameters determines the upper limit in that search.
By default it is set to 200. Once that number is reached, it will stop looking for matches. If you find that
SlickEdit is taking too long in this situation, you can decrease that number to, say, 100. You have to weigh
the tradeoff between completeness and responsiveness.

We won't go into each of the values in that list. When you select an item in the Options dialog, help is
provided that will guide your decision on whether to change that value.

Warning

You can easily degrade the performance of SlickEdit by changing the Context Tagging defaults.
You should compare your changes to the performance using a default configuration. To create a
default configuration, use the -sc options on the command line:

vs -sc config

This will launch SlickEdit putting the configuration in a "config" directory below your SlickEdit
install directory. Be sure to use a new location or delete that directory before launching SlickEdit
in this manner, or it will use the config that was already in place.

References

The Context Tagging options also contain a group for References. If you are experiencing performance
issues with reference lookup (when using Ctrl +/ or push-ref), then you may want to change some of the
values in this group. Turning on Build workspace tag file with references makes reference look-ups
faster, but it makes creating tag files take longer. For normal sized codebases the slow-down is negligible,
so we often turn this on.

If you have a large codebase, you may want to turn on Find references incrementally (faster). When
set to True, reference queries are faster because SlickEdit does not open each candidate file to eliminate
invalid references. So, you get your answer more quickly, but it may not be fully accurate.

Add as Wildcard
When you set up a project, you can use Add as wildcard checkbox on the Add Tree dialog (accessed
from the Project Properties dialog) to specify directories to search for new files. This capability is useful
when other team members are not using SlickEdit. In that case, other programmers will be adding files
without updating and checking in the project files.

Each time SlickEdit is launched, projects that were configured using Add as wildcard search the

Add as Wildcard

49

specified directories for new files. This is an exhaustive search and can take a long time, particularly on
large projects or if source directories are stored on network resources.

If you are experiencing delays when launching SlickEdit, you may want to redefine your projects, adding
your files in a one-time tree traversal, rather than as wildcards (dynamic tree traversal). When new files
are added, you will have to use Add Tree to find and add them to your projects. Which approach is better
for you depends on how frequently you need to manually new files and whether you see any performance
problems due to the size of codebase.

For more information on Add as wildcard see Add as wildcard.

Profiling
SlickEdit includes a profiler to measure the amount of time spent in different functions. This tool can be
very helpful to track down performance problems. To run the profiler, do the following:

• Start the profiler from the SlickEdit command line by typing the following: profile on. Then press Enter.

• Perform the operations to be measured. Try to include only the steps necessary to produce the
problem.

• Stop the profiler. From the command line, type the following: profile save "<filename>", where
<filename> is the name of the file to save to. For example, you could type: profile save "profile.txt".

You can then send the file into Product Support to be analyzed.

Profiling

50

Quick Start

SlickEdit is one of the most powerful programming editors available today, and one of the most flexible.
SlickEdit contains hundreds of options to let you work your way. Most people don't have time to read the
whole user guide. Take a few minutes to go through the Quick Start Configuration Wizard, and you'll be
up and running with SlickEdit in no time.

51

Quick Start Configuration Wizard
The Quick Start Configuration Wizard helps you to set up common options and shows you where these
options are usually accessed. Each set of options is accessible outside of the wizard, through the normal
SlickEdit Options dialogs, by selecting Tools → Options from the main menu. Several pages have
Customize links to their normal Options location.

The Quick Start Configuration Wizard has two methods of navigation. You can use the Previous and
Next buttons to visit the adjoining parts of the wizard. You can also jump directly to a section by clicking
on the section name in the tree on the left side of the wizard. You can run the wizard again later by
selecting Tools → Quick Start Configuration from the main menu.

The following items are configurable through the Quick Start Configuration Wizard:

• Emulation - select which other editor SlickEdit will emulate.

• Colors - set your color profile.

• Fonts - set your font for unicode and non-unicode languages.

• Coding - set common coding preferences, like indentation, brace styles, and the use of syntax
expansion.

• Associate File Types - determine which file types should automatically be loaded in SlickEdit.

• Workspaces & Projects Setup - allows you to quickly set up a new project and workspace.

• Context Tagging - build tag files for common compiler libraries to aid in code navigation.

• More Information - allows you to export your newly configured options, as well as see the Release
Notes and some Cool Features of SlickEdit.

Emulation
CUA is the default emulation for all platforms except macOS which defaults to macOS. These emulations
provide key bindings familiar to Microsoft Windows and macOS users. Emulations are provided for other
popular editors including Vim, GNU Emacs, Brief, and more. If you are already an experienced user of
one of these other tools, you will find that these emulations will help you get up and running quickly.
Otherwise, you may find that the CUA emulation or macOS is best.

You can change your emulations at any time by selecting Tools → Options from the main menu. Then
expand Tools → Options → Keyboard and Mouse → Emulation. For more information, see
Emulations.

Emulation

52

Colors
Many users are particular about the colors they use. On this form, you can select a color profile that will
be used to color all editor windows as well the theme colors used by other UI components (System or
Dark). You can also select your symbol coloring profile, which defines how different symbols are detected
and colored. Preview your selections in different languages using the preview window and the language
combo box.

To change your colors later, select Tools → Options → Appearance → Colors from the main menu. For
more information on setting your colors, see Colors, Color Coding, and Symbol Colors.

Colors

53

Fonts
Fonts and viewing of the minimap window are another matter of personal preference. The Quick Start
Configuration Wizard lets you choose different font styles for Unicode (HTML, XML, etc) editor windows
and Non-Unicode editor windows. The Show minimap checkbox determines whether the minimap
window is displayed for all languages. Use the preview windows to view your selections in the languages
of your choice.

To set fonts later, select Tools → Options → Appearance → Fonts. For more information on setting
fonts, see Fonts.

You can select whether the minimap window is displayed per Language as well just for the current buffer.
See Using the Minimap for more information on minimap settings.

Fonts

54

Coding
SlickEdit features many options to control your editing experience. On this form you can set three
important ones for all language modes. Normally these are set one language at a time. You can set the
following options:

• Indent settings - controls your indent amount and tab size, as well as whether you would like to indent
using tab or space characters.

• Brace style - controls the location of braces in C-style languages.

• Syntax Expansion - specifies whether or not you want SlickEdit to automatically expand block
structures like if or for for all languages. This option uses a tri-state checkbox. A check indicates that
Syntax Expansion will be turned on for all languages. Unchecked indicates that it will be turned off for
all languages. When it is grayed in, the individual language settings will be retained and no changes will
be made.

• Line Numbers - controls display of line numbers for all languages. This uses a tri-state checkbox. A
check indicates that Syntax Expansion will be turned on for all languages. Unchecked indicates that it
will be turned off for all languages. When it is grayed in, the individual language settings will be retained
and no changes will be made.

To see where these options are normally configured, click the Customize link next to each setting.

Coding

55

Associate File Types
This screen lets you select the file types that will be automatically opened in SlickEdit from Windows
Explorer. For more information see Associate File Types Options.

Workspaces and Projects Setup
By adding your files to a workspace and project, you can quickly open your files without specifying a path
with the Open or Files tool window. The Projects tool window lets you organize files in folders based on
file type or directory. (Pro only)To get the most out of SlickEdit symbol analysis features, your source
code files need to be tagged. This is done automatically for files that are part of a project. This lets you
use powerful features like SlickEdit's Symbol Navigation to quickly jump from a symbol to its definition or
declaration or see a list of references.

(Pro only)It is critical that you use the correct project type. Click Create New Project to create a new
project. You can perform this action later by selecting Project → New from the main menu.

Context Tagging (Pro only)
Context Tagging creates a database for all the symbols in your code. This allows SlickEdit to rapidly jump
from a symbol to its definition, its declaration, or show a list of references. Other features, such as

Associate File Types

56

completions, also use this information. To properly work with your code, SlickEdit will need to tag the
libraries associated with the compiler you are using.

You can choose to tag as many compiler libraries as you want. You can choose to build the tag files in the
background.

If you choose to skip this step now, SlickEdit will automatically tag your compiler libraries if you are using
Microsoft Visual Studio, GNU C/C++, or Java. For other compilers, you can tag them later by selecting
Tools → Tag Files and then clicking the Auto Tag button. For more information about Context Tagging,
see Context Tagging Features

More Information
The final step in the Quick Start Configuration Wizard, allows you to do three things:

More Information

57

• Export Options - this is useful to save your settings. You can do this to share your settings with others
or to restore your settings later.

• View Cool Features - this is a list of the key features that set SlickEdit apart from other editors. Look
through this list to learn how you can become more productive.

• View the Release Notes - this contains a list of known limitations and other useful information pertinent
to this release.

Additional Settings

58

Additional Settings
The Quick Start Configuration Wizard helps you set the most commonly changed settings in an editor.
This section lists some additional settings you may want to alter. SlickEdit contains a vast number of
settings to allow you to work your way. It can be very helpful to browse through the options hierarchy and
see what else is available.

Options are changed using the Options dialog, which is displayed when you select Tools → Options
from the main menu. Option settings are divided into two categories: General Options and Language-
Specific Options.

General Options
General options affect all languages.

• Clicking past the end of a line - To have the ability to place the cursor past the end of a line, select
Tools → Options → Editing → Cursor Movement, then set the option Click past end of line to On.

• Specifying cursor up/down behavior - By default, cursor_up and cursor_down commands go to
the same column of the next or previous line, unless that line is shorter than the current column, in
which case the cursor is placed at the end of the line. To have the cursor placed in virtual space at the
end of the line, click Tools → Options → Editing → Cursor Movement, then set the option Cursor
up/down places cursor in virtual space to On.

• Changing the line insert style - In code, a line of text is a meaningful unit of functionality. SlickEdit®
treats line selections differently than character selections. Line selections are pasted either above or
below the current line, saving you from tediously positioning the cursor at the beginning or end of a line
prior to pasting. To specify where line selections are pasted, click Tools → Options → Editing →
General, then set the Line insert style option to Before or After.

• Expanding/collapsing with a single click - Selective Display Plus and Minus bitmaps can be
expanded or collapsed with a single click rather than a double-click. To specify this option, select Tools
→ Options → Keyboard and Mouse → Advanced, then set the value of Selective Display, Expand/
collapse to Expand on single click.

Language-Specific Options
Language-specific options are configured for each language that you work with in SlickEdit. These
options are accessed from the Options dialog (Tools → Options → Languages → [Language
Category] → [Language]. All menu instructions below are relative to this path.

Tip

A quick way to access language-specific options for the current buffer is to use the Document →
[Language] → Options menu item (or the setupext command).

General Options

59

• (Pro only)Setting symbol navigation - For C and C++, by default, with each attempt to navigate to a
definition (Ctrl+Dot or Search → Go to Definition), you will be prompted for whether you wish to
navigate to the definition (proc) or the declaration (proto). To specify that Go to Definition preferably
navigates to one or the other, select the language-specific Context Tagging category, then select one
of the Prioritize navigation to symbol options. The push_alttag command (Ctrl+Alt+Dot, or Search
→ Go to Declaration) will prioritize navigation conversely.

• (Pro only)Showing the info for a symbol under the mouse - By default, as the mouse cursor floats
over a symbol, the information and comments for that symbol are displayed. To turn this behavior off,
select the language-specific Context Tagging® category, then clear the option Show info for symbol
under mouse.

• Configuring C/C++, SystemVerilog,or Verilog preprocessing - For C/C++, SystemVerilog, or
Verilog, your source code base will typically include preprocessor macros that you use in your code for
portability or convenience. For performance considerations, Context Tagging® does not do full
preprocessing, so preprocessing that interferes with normal language syntax can cause the parser to
miss certain symbols. To configure your preprocessing to avoid these omissions, see C/C++
Preprocessing.

Set Up a Workspace and Project

60

Set Up a Workspace and Project
The Quick Start Configuration Wizard contains a step to launch the New Project Wizard. This helps you
select the correct project type(Pro only) based on your programming language and compiler. This section
will help you set up a new project and workspace if you choose not to use the wizard.

A workspace defines a set of projects and retains the settings for an editing session. A project defines a
set of related files that build(Pro only) and execute(Pro only) as a unit. For each project you can specify
the set of files it contains, a working directory, a set of commands(Pro only) to build(Pro only) and
execute(Pro only) the project, compiler options(Pro only), and dependencies(Pro only) between other
projects. A tag file(Pro only) for each project's source files is automatically created and maintained,
enabling SlickEdit's advanced navigation(Pro only) and unique Context Tagging®(Pro only) lookup
features. By adding your files to a project, you can quickly open your files without specifying a path with
the Open or Files tool window.

For more detailed information than is provided here, see the following sections:

• Workspaces and Projects

• Building and Compiling

• Running and Debugging

Create a New Workspace
Typically, you create a new workspace by creating the first project for that workspace (see Create a New
Project. To create a new workspace without a project, complete the following steps:

1. From the main menu, select Project → New. This will display the New Project Wizard. Click Cancel to
close the wizard.

2. Select the Workspaces tab.

3. In the Workspace name text box, give a name to your workspace.

4. In the Location text box, type a path or use the Browse button to pick a location.

Create a New Project
To create a new project, complete the following steps:

1. From the main menu, click Project → New.

2. It is important that you select the correct project type. The New Project Wizard will help you choose the
correct project type based on your language and compiler. If you already know the correct project type
to use, you can click Cancel to close the wizard. Then select the type of project that you want to use
from the list box on the left side of the dialog.

Create a New Workspace

61

3. In the Project name text box, give the project a name.

4. In the Location text box, type a path or use the Browse button to pick a location. If the directory does
not exist, a prompt appears to create it when you click OK.

5. In the Executable name text box, type the name of the executable file or output file.

6. If the new project is for an existing workspace, select Add to current workspace. If this is the first
project in a new workspace, select Create new workspace.

7. (Pro only)Specify whether this project depends on another project in this workspace by checking the
Dependency of check box and selecting the depended on project from the drop-down list.

8. Click OK.

Add Files to the Project
To add files to your new project, complete the following steps:

1. From the main menu, click Project → Project Properties.

2. Select the Files tab.

3. To add individual files, click Add Files, and select the files that you want to add.

4. To add the source files in a directory, click Add Tree. Then select the directory and the file filter that
you want to use.

5. When you are finished adding files, click OK.

Add Files to the Project

62

Start Coding
After settings have been configured and a workspace and project are set up, you are ready to start
coding. See the Editing Features chapter to learn more about how SlickEdit® can help in your everyday
work.

Tutorials are available for C/C++ and Java that describe how to create, build, and run a sample Hello
World program. See Hello World Tutorial (C/C++) or Hello World Tutorial (Java).

If you're not ready to get to work just yet, you may want to configure even more options. For information,
see the User Preferences chapter.

Start Coding

63

64

User Interface

This chapter describes the SlickEdit user interface. Much of the power of SlickEdit comes from using the
keyboard to invoke operations. See Using the Mouse and Keyboard for more information.

65

Screen Layout

The SlickEdit Interface
SlickEdit® uses a Multiple Document Interface (MDI), which opens all documents for the application
within the application's main window, called the main window group or MDI frame. To open a file in a
different window, you can run another instance of SlickEdit. For more information see Running Multiple
Instances.

The screenshot, below, shows a representative SlickEdit session and identifies common items on the
screen:

Note

These pictures show some tool windows that are only available in the Pro edition of SlickEdit

SlickEdit contains the following screen elements:

• Title bar - The title bar shows the product name and the name and path of the file currently in focus.

• Main menu - The main menu is displayed under the title bar (File, Edit, Search, etc.).

The SlickEdit Interface

66

• Standard toolbar - Toolbars are groups of buttons (called toolbar controls) that allow you to perform
specific operations. The Standard toolbar is displayed and docked under the main menu by default.
Toolbars can be moved by clicking and dragging the grab bars (or title bar if floating). See Toolbars and
Tool Windows for more information.

• Editor pane - The editor pane is the viewing area within SlickEdit inside of which editor windows (files
or buffers that are being editing) are floating or docked.

• Editor windows - Editor windows are files or buffers that are open for editing and are docked or
floating inside of the editor pane. See Files, Buffers, and Editor Windows for more information.

• Document tabs - For each window you create (not buffer), you will see a document tab. Click on the
document tab to select the buffer you want to edit. Document tabs may be drag and dropped outside
the main window group to create a floating window group. Tool windows may be duplicated and docked
to floating window groups. Right-click on the Document tab to display a context menu. See Document
Tabs for more information on document tabs and the context menu.

Note

If you want to see a document tab per buffer (probably because you are using "Multiple files
share window"), try using the File Tabs tool window. See File Tabs for more information.

You may want to hide the Document tabs when you only have only one edit window. To do this,
set the Zoom (hide tabs) when one window to Always at Tools → Options → Editing →
Editor Windows.

• Tool windows - Tool windows are similar to toolbars except they may also contain settings and/or
allow the viewing of information, and they can be docked. You can auto-hide a tool window by clicking
on the Pin button in the top right corner. See Toolbars and Tool Windows for more information.

• Size bars - Size bars indicate the parts of SlickEdit that can be resized. When the pointer becomes a
double-headed arrow, click and drag to adjust the size in the direction indicated.

• Message line and SlickEdit command line - The message line appears at the bottom of the SlickEdit
application window. It displays a single line of information, providing feedback from various operations
in SlickEdit. The message line and the command line share the same screen space. As a result, when
clicking the message line or invoking an editor command that requires the command line, the message
line is hidden and the command line is displayed. See SlickEdit® Command Line for more information.

• Status line - The status line holds the following indicators:

• Line and column indicators - To the right of the message/command line are the line and column
indicators for the current cursor position. Click on these indicators to move the cursor position.

• Selection indicator - This displays the number of lines or characters in the current selection. This is
useful to measure the length of a word or string, or the number of lines in a function. Click on the
indicator or use the select_toggle command to create successively larger common selections. For
example, if you have a character selection, you can click on the indicator or use select_toggle to
extend the selection to include the entire word. See Selection Indicator for more information.

The SlickEdit Interface

67

• Permissions toggle - This area indicates the read/write permission setting of the file or buffer in
focus. The letters RW indicate that the current file or buffer is read-write. The letters RO indicate that
the file or buffer is read-only. Click on the letters to toggle between modes.

You can configure the editor to prevent modification of read-only files. To access this setting, click
Tools → Options → Editing → General, then set the option Protect read-only mode to True. Now
the editor will not let you modify a file that is in read-only mode. The save command will always
prompt for a different output file name if the file is in read-only mode.

• Macro recording indicator - When a macro is being recorded, the recording indicator REC is active
(not dimmed). Click on the indicator or use the record_macro_toggle command to toggle recording
on and off. See Recorded Macros for more information.

• Insert or Replace toggle - The Insert/Replace toggle is located to the right of the recording indicator.
The letters Ins indicate that the editor is in Insert mode (default). In Insert mode, typing a character
pushes characters at and after the cursor to the right. The letters Rep indicate that the editor is in
Replace mode. In Replace mode, typing a character replaces the character under the cursor. Click
on the letters to toggle between modes.

To start in Replace mode instead of the default Insert mode each time the editor is invoked, from the
main menu, click Tools → Options → Editing → General, then set the Start mode option.

• Current character indicator - When editing an SBCS/DBCS mode file or non-Unicode file, the
current character is displayed in hexadecimal format. If the current character is a double byte
character (DBCS), then two bytes and its Unicode equivalent are displayed in hexadecimal (95 74
U+4ED8). When editing a Unicode file, the current composite character is displayed in hexadecimal.
The indicator field is blank when the cursor is past the end of the line. See Encoding for more
information about Unicode.

• Alert Icons - Used to display information about operations within SlickEdit. It can contain icons for
things like Feature Notifications (see Notifications) and Background Tagging (see Creating Tag Files
for Compiler-Specific Libraries).

Editor Windows
SlickEdit uses a Multiple Document Interface (MDI) that allows you to manage several editor windows
within the application window. Windows can be arranged into multiple groups of document tabs, and tab
groups can be detached (floated) separately from the main application window.

• Multiple Tab Groups - Open documents can be arranged into multiple groups of tabbed document
areas. Tab groups are created by splitting windows or using the New Tab Group family of commands
on the document tab context menu. Tab groups can also be created via drag-and-drop operations.

Editor Windows

68

• Floating Tab Groups - Individual files can be dragged outside the main application window to create a
floating tab group. You can also float entire tab groups from the main MDI area using the Float All
command on the document tab context menu.

Document Selector Menu - The top-right corner of each tab group displays a drop-down arrow. Clicking
that arrow presents a listing of all the documents contained in that tab group. The listing can be filtered
by entering partial file names.

Editor Windows

69

• Drag and Drop Guides - When using the mouse to drag a document tab you will see an overlay window
that acts as a drag target, allowing you to easily specify where the document window should be placed.
A grey prediction rectangle is also shown as a preview of what the new placement will look like.

Editor Windows

70

Margin Icons

Each editor window contains a margin on the left, which is used to display icons and line numbers. The
size of this margin is set by selecting Tools → Options → Appearance → General and setting the value
for Window left margin.

The window left margin may display any of the following icons:

Editor Windows

71

Icon Purpose

Named bookmark (see Named Bookmarks).

Pushed bookmark (see Pushed Bookmarks).

(Pro only)Used to indicate an error on this line of
code. This can be set to show the location of an
error after doing a build or as part of Live Errors.

Along with a minus icon, used to expand/collapse
sections of code (see Selective Display).

(Pro only)Breakpoint, see Setting Breakpoints.

(Pro only)Disabled breakpoint.

(Pro only)Watchpoint (see Watches and
Watchpoints).

(Pro only)Disabled watchpoint.

(Pro only)Indicates an exception during debugging.

Tabular Lists
Several dialogs and tool windows in SlickEdit®, such as the Bookmarks Tool Window and the Key
Binding Options screen, present data in a tabular list.

To sort the data, click on a column header to sort in ascending order, or click again to sort in descending
order. An arrow in a column header indicates that the data is sorted by this column, and the direction of
the arrow indicates the ascending (up arrow) or descending (down arrow) sort order.

You can resize columns by clicking and dragging the column separators. If a file path column is not large

Tabular Lists

72

enough, the text is elided so that you can always see the file name. If a text column is not large enough,
the contents are abbreviated. You can always hover over a row with the mouse to see a tooltip that shows
the entire contents of each cell.

Toolbars and Tool Windows

73

Toolbars and Tool Windows
Toolbars are groups of buttons (called toolbar controls) that allow you to perform specific operations. Tool
windows are used to display and manipulate various kinds of information. Both toolbars and tool windows
can be docked. For documentation purposes, the terms "toolbars" and "tool windows" are sometimes
used interchangeably.

Displaying Toolbars and Tool Windows
By default, the Build, Output, Preview, References, and Search Results tool windows are docked into a
tab group on the bottom of the editor, while the Defs, Section_searchingmemberssearchingclassesClass,
Open, Projects Tool Window, and Symbols tool windows are docked into a tab group on the left side of
the editor. The Standard toolbar contains commonly appearing icons, docked at the top of the editor.

There are many more toolbars and tool windows that are not displayed by default. You can view and
toggle the display of these by clicking View → Toolbars or View → Tool Windows, then selecting the
item to display.

Note

Some tool windows that are used for debugging(Pro only) are only available when the editor is in
debug mode. See Debug Tool Windows for a list.

You can also control the display of tool windows using the activate-toolwindow and toggle-toolwindow
commands, replacing "toolwindow" with the name of the tool window to control, like toggle-preview.

• The activate commands make the tool window visible and switches the focus to it. If the tool window
was part of a docked group, it becomes the top item in that group. Otherwise it is brought up floating.

• The toggle commands are used to bring up a tool window and then close it. This command behaves
differently, depending on whether the tool window is part of a tab group:

• The tool window is not part of a tab group - if it is already open, then the toggle command closes
it; if it is not already open, then the toggle command opens it.

• The tool window is part of a tab group - if the tab group is visible, the toggle command hides it; if
the tab group is not visible, the toggle command makes it visible and brings the associated tool
window to the front. The toggle command cannot be used to bring a tool window to the front in a tab
group that is already visible; for that, use the associated activate command.

Docking and Grouping Toolbars and Tool Windows
Toolbars and tool windows have display and docking options, which are accessed by right-clicking on the
tool window's title bar on Windows or the tool window's background on UNIX/Mac:

Displaying Toolbars and Tool
Windows

74

• Dockable - Toolbars and tool windows can be docked, or locked into, any edge within the editor pane.
When this setting is on, you can click on the toolbar or tool window's title bar and drag and drop the
window into position. When multiple tool windows are docked to the same location, they are
automatically organized into tab groups.

• Float - This undocks (or floats) a Toolbar or tool window.

• Dock - This docks a floating Toolbar or tool window.

• Hide - Closes a Toolbar or tool window.

• Duplicate - If present, allows you to create another instance of a tool window. Most tool windows
support this option. This is very useful if you want to dock a tool window to a floating window group but
want the tool window to remain where it is.

• Floating - This is the default setting when a toolbar is first displayed. It allows you to click on the
toolbar's title bar and drag it around within the editor pane. When this option is selected, the toolbar
always appears on top of any open editor windows.

• Auto-hide - This setting is only available for tool windows when they are docked. When the tool
window is not being used, it "slides" out of view and is replaced with a tab showing the name of the tool
window. Click on the tab to "slide" the tool window back into view. Click the Pin button on the right of a
tool window's title bar to pin a tool window in place or unpin it to let it slide.

• Hide - This setting hides the toolbar or tool window. To view it again, from the main menu, click View →
Toolbars or View → Tool Windows.

Caution

If you undock a tool window that has been docked, the tool window may be destroyed and re-
created, so you may lose any data that has been entered.

Customizing Toolbars
Toolbars can be customized by using the Toolbar Options. To display these options, from the main menu,
click Tools → Options → Appearance → Toolbars. Or, right-click on any toolbar's background and
select Customize.

To add a button to a toolbar, drag the button from the Toolbar Customization dialog to the intended
toolbar (see Toolbar Customization dialog). To remove a button, drag it off the toolbar.

Changing Toolbar Button Command Properties

To change a toolbar button's command binding, on the actual toolbar, right-click on any control and select
Properties. This will display the Toolbar Control Properties Dialog. You can change the command, the
description, and the button image, as well as the command key binding and auto-enable properties.

The command may invoke an internal Slick-C command or external program. The following % options

Customizing Toolbars

75

allow you to use some information from the current editor window if there is one.

• %F - Replaced with the current editor filename. For example, notepad "%F". The double quotes are
often needed for filenames with spaces.

• %W - Replaced with the current word in current editor window.

• %L - Replaced with the current line number in current editor window.

Customizing Tool Windows
Tool Windows can be customized using the Tool Windows Options. To display these options, from the
main menu, click Tools → Options → Appearance → Tool Windows or right-click in the tool windows
title bar and select Customize.

Available Toolbars and Tool Windows
The display of toolbars and tool windows can be toggled on and off by clicking the items in the View →
Toolbars or View → Tool Windows menus.

Toolbars

The available Toolbars are described below. They are listed in the View → Toolbars menu.

Debug (Pro only)

Provides buttons for commonly used debugger commands including start, restart, step, toggle breakpoint,
and add watch. It is also very useful when you are not in debug mode. For more information about
debugging within SlickEdit®, see Debugging.

Edit

Contains operations to edit text, such as convert to uppercase, indent lines, etc. These are the same
options found under the main menu item Edit. For more information, see Basic Editing.

HTML

Used to insert tags and values into an HTML file, spell check from the cursor or on selected text, beautify
the document, open an FTP connection for transferring files, and more. For more information about these
operations, see the topics HTML, Spell Checking, and FTP.

Project Tools (Pro only)

Contains options for the current project to process compiler error messages, run the build and compile
commands, and check files in or out of version control. See Building and Compiling and Version Control
for more details on these operations.

Selective Display

Customizing Tool Windows

76

Allows you to collapse unwanted lines of code so you can better see the structure of your code. Buttons
allow you to outline a file with function headings, hide selected lines or lines inside code blocks, display
the Selective Display dialog box, and end selective display. See Selective Display for more information
about this feature.

Standard

Toggles display of the Standard toolbar, which contains buttons for commands common to most
applications, including Open File, Save, Cut, Copy, Paste, Undo, Redo, etc. By default, this toolbar is
docked along the top of the editor just under the main menu.

Current Context toolbar (Not in Community edition)

Docked in the top upper-right section of the editor by default, Current Context displays the logical location
of the cursor within your code. If it is within a class, it displays the class name. If it is within a function, it
displays the function name. If the function is within a class, it displays the class and the function name.
See Current Context Toolbar for more information.

Context Tagging® (Pro only)

Contains several buttons for manipulating tags and navigating. For information about these operations,
see the following topics: Building and Managing Tag Files, Find and Replace, Bookmarks, and
Navigation.

Tools

Contains shortcut buttons for commonly used tools and operations within SlickEdit®, such as
beautification, DIFFzilla®, merging, spell checking, and more. For more information about these
operations, see the following topics: Beautifying Code, Comparing and Merging, Files Tab, Using the
Calculator and Math Commands, Spell Checking, and Hex Mode Editing.

XML

Contains options to beautify and validate XML documents. See XML for more information about these
operations.

Tool Windows

The tool windows listed below are used for various operations. Some tool windows are only available
while debugging. They will only appear in the View → Tool Windows menu while you are debugging.
Those tool windows are listed separately, in Debug Tool Windows.

Backup History (Not in Community edition)

Creates a backup version of a file each time it is saved, creating a detailed version history for this file.
This is useful to track changes between check-ins. Use this tool window to compare previous versions to
the current version or restore a previous version of the file. For more information, see Backup History.

Bookmarks

Available Toolbars and Tool
Windows

77

Displays a list of bookmarks and provides operations to add, delete, and navigate to a selected
bookmark. This window can also be accessed by clicking Search → Bookmarks → Bookmarks Tool
Window. For more details, see Bookmarks.

Breakpoints (Pro only)

Lists breakpoints (and exception breakpoints for Java) and allows you to modify them. You must use this
tool window to set breakpoint properties. It can be used when you are not in debug mode. Right-click
within the tool window to display a context menu which allows you to jump to the location of a breakpoint
or modify breakpoints. The Breakpoints tool window can also be accessed from the Debug → Windows
menu. For more details on this topic, see Setting Breakpoints.

Build (Pro only)

Docked as a tab along the bottom of the editor by default, the Build tool window, sometimes called the
"concurrent process buffer," is a shell window that allows you to type operating system commands and
see the results. It displays output from a build, compile, or any other Build menu command which sends
output to the concurrent process buffer. Double-click on an error message to navigate to the error.

Right-click in the Build window to access build, search, and clipboard options. There are two options
settings that apply to the Build tool window:

• Auto exit process - To have the Build tool window automatically exited when the buffer is closed or
when exiting the editor, from the main menu, click Tools → Options → Editing → General, then set
the option Auto exit build window to True.

• CR w/o LF erases line in build window - It is possible that output sent to the Build window may
contain carriage return (CR) characters without subsequent line feed (LF) characters. This causes the
line to be erased in the Build window. To prevent SlickEdit from erasing lines in this situation, from the
main menu, click Tools → Options → Editing → General, then set the option CR w/o LF erases line
in build window to False.

For more details on this topic, see Building and Compiling.

Class (Pro only)

Docked as a tab on the left side of the editor by default, the Class tool window provides an outline view of
both the members of the current class as well as any visible inherited members. This tool window also
shows the inheritance hierarchy of the current class. This is useful for object-oriented programming
languages such as Java. In addition to the menu item, you can activate or toggle this window by using the
activate_tbclass or toggle_tbclass commands. See Class Tool Window for more information.

Clipboards

Allows you to preview and manage clipboards. Shows a list of recently used clipboards and lets you insert
a clipboard into the current buffer. The tool window contains a Preview area that lets you see the entire
contents of a clipboard with color coding. In addition to the View → Tool Windows → Clipboards menu
item, there are several other ways to display the tool window:

• Using the menu item Edit → List Clipboards (Ctrl+Shift+V or list_clipboards command)

Available Toolbars and Tool
Windows

78

• Using the activate_clipboards command

• Toggle the window with the toggle_clipboards command

See Clipboards for more information.

Code Annotations (Pro only)

Code Annotations allow you to store information about code--such as task notes, personal comments,
and review comments--without actually modifying the code. This tool window provides a detailed view of
annotations that you have created as well as operations for adding, modifying, and removing annotations.
You can also use the tool window to create your own annotation types. See Code Annotations for more
information.

Defs (Not in Community edition)

Docked as a tab on the left side of the editor by default, the Defs (Definitions) tool window contains the
defs browser, which provides an outline view of symbols in the current workspace. In addition to the menu
item, you can activate or toggle this window by using the activate_defs or toggle_defs commands. See
Defs Tool Window for more information.

Exceptions (Pro only)

Allows you to add, edit, disable, and delete breakpoints. For more information, see Setting Breakpoints.

Feature Notifications

Displays a list of notifications about features that have altered the contents of your file. For example, a
feature notification is displayed when Syntax Expansion expands an if or for statement. For more
information see Notifications.

File Tabs

Displays tabs for the open buffers in the editor. By default, these tabs are visible and the maximum
number that can be displayed is 255. Right-click on the file tabs to display a menu of save, close, and
window splitting options. For more information on managing the File Tabs, see File Tabs.

Files

Allows you to view open files, project files, and workspace files, sortable by file name or path. Contains a
filter to narrow the list of files incrementally, as well as shortcuts for basic file operations (Open, Save,
etc.). This tool window can also be displayed by clicking Document → List Open Files (Ctrl+Shift+B), or
by using the list_buffers command. For more information, see Document Dialogs and Tool Windows.

Find and Replace

Used to perform search and replace operations. This tool window can also be displayed by using the key
binding Ctrl+F or by clicking Search → Find. See Find and Replace and Search Dialogs and Tool
Windows for more information.

Available Toolbars and Tool
Windows

79

Find Symbol (Pro only)

Used to locate symbols which are declared or defined in your code. It allows you to search for symbols by
name using a regular expression, substring, or fast prefix match. See Symbol Browsing and Find Symbol
Tool Window for more information.

FTP Client (Not in Community edition)

Used to connect to FTP servers and transfer files. As with most FTP clients, local directories and files are
displayed in the left section of the tool window and the FTP server directories and files are on the right.
Right-click on files to display a menu of FTP operations. See Working with FTP for more information.

FTP (Not in Community edition)

Used to connect to FTP servers and open files. Right-click on files to display a menu of FTP operations.
See Working with FTP for more information.

Message List (Pro only)

Automatically displays output messages from processes running in SlickEdit®, such as build warnings
and errors. This tool window is docked into the bottom tab group of the editor by default. In addition to the
menu item, you can activate or toggle this window by using the activate_messages or the
toggle_messages command, respectively. See Message List for more information.

Open

Docked as a tab on the left side of the editor by default, the Open tool window can be used to browse
directories and open files on disk. Right-click in the Files list to display a menu of options. For more
information, see Open Tool Window. For more information about opening files, see Opening Files.

Output

Docked as a tab on the bottom of the editor by default, the Output tool window displays output from
various operations within the editor, such as errors.

Preview (Pro only)

Docked as a tab on the bottom of the editor by default, the Preview tool window provides a portal for
viewing information in other files without having to open them in the editor. It automatically shows this
information when you are working with certain features. In addition to the menu item, you can activate or
toggle this window by using the activate_preview or toggle_preview commands. See Preview Tool
Window for more information.

Projects

Contains the project browser, which allows you to browse the files in your open workspaces. It is docked
as a tab on the left side of the editor by default. See Workspaces and Projects for more information.

References (Pro only)

Available Toolbars and Tool
Windows

80

Docked as a tab on the bottom of the editor by default, the References tool window displays the list of
symbol references (uses) found the last time that you used the Go to Reference feature (Ctrl+/ or
push_ref command (see Symbol Navigation for more information). In addition to the menu item, you can
activate or toggle this window by using the activate_refs or toggle_refs commands. See References
Tool Window for more information.

Regex Evaluator

Provides the capability to interactively create and test regular expressions. You can also access this
window by clicking Tools → Regex Evaluator. See The Regex Evaluator for more details.

Search Results

Docked as a tab on the bottom of the editor by default, this window displays the results of multi-file
searches, or when the option List all occurrences is selected on the Search Dialogs and Tool Windows.
See Find and Replace for more information about searching and replacing.

Slick-C® Stack

Displays errors that occur within the editor. If errors occur during normal use, you can send this
information to Product Support as a reference (see Contacting Product Support). If an error occurs in one
of your macros, you can use this information to help debug it. Double-clicking on a line of code in this
window will open the file and go to the line in the file that contains the error.

Symbols (Pro only)

Docked as a tab on the left side of the editor by default, the Symbols tool window contains the symbol
browser, which lists the symbols from all of the tag files. In addition to the menu item, you can activate or
toggle this window by using the activate_symbols or toggle_symbols commands. See Symbols Tool
Window for more information.

Symbol Properties (Pro only)

Displays detailed information about the symbol at the cursor location. Note that you cannot use this
window to change the properties. See Symbol Properties Tool Window for more information.

Unit Testing (Pro only)

Provides an interface to run JUnit unit tests and view the results. See JUnit Testing for more details.

Terminal (Pro only)

Manages one or more terminals which are run in an editor window. Type a shell command and press
Enter to start an empty terminal window. To start a new terminal, right click on the Terminal tab and select
"New". You can use the sgrep program to search for a string in one or more files. Traverse the matches
found with the next-error command (Ctrl+Shift+Down).

Interactive (Pro only)

Manages one or more Interactive REPL shells which are run in an editor window. Shells are

Available Toolbars and Tool
Windows

81

preconfigured for many languages including Clojure, CoffeeScript, C#, Groovy, Haskell, Lua, PHP, Perl,
PowerShell, Python, R, Ruby, and Scala. See Interactive Tool Window for more details.

Debug Tool Windows (Pro only)

The tool windows listed below are used for debugging. In debugging mode, the View → Tool Windows
menu displays these items along with the other tool windows. See Debugging for more information about
working with these features.

Autos

Displays the contents of auto, local, and member variables used before and after the current execution
line. Right-click within the tool window to display a context menu which allows you to jump to the definition
of a variable or add a variable to the watches.

Breakpoints

This tool window is also available when not in debug mode. See Breakpoints tool window described
previously.

Call Stack

Displays the stack for the thread selected in the Thread combo box. Double-click on a method to navigate
to any stack execution point.

Loaded Classes

(Java only) Displays the currently loaded classes. Double-click on a class to display class properties.
Double-click on a member to go to the definition of the member. Right-click on a method and select Set
breakpoint to add a breakpoint to a method. Right-click on a member variable and select Add Watch to
add a watch on a static class member. Use the Show system classes check box to display classes
outside the scope of your workspace, like classes in the JFC.

Debug Sessions

Lists the open debugging sessions.

Exceptions

The Exceptions tool window is also available when not in debug mode. See Exceptions tool window
described previously.

Locals

Displays the locals variables for the method selected in the Stack combo box. You can modify the values
of variables by double-clicking in the Value column of simple types.

Members

Displays the value of static and non-static members for any method context. You can modify the contents

Available Toolbars and Tool
Windows

82

of a member variable by specifying a valid Java expression. Right-click within the tool window to display a
context menu which allows you to jump to the definition of a variable or add a variable to the watches.
You cannot add or remove entries from an array.

Memory

(GNU C/C++ only) Displays the contents of the specified memory address. Enter the memory location in a
hexadecimal, decimal, or any valid C expression. In addition, you may specify the number of bytes to
display.

Registers

(GNU C/C++ only) Displays the contents of hardware registers.

Threads

Allows you to view the threads currently running and choose a thread context, so you can view the stack
for a particular thread. It displays the thread, group, status, and state.

Watch

Contains watch tabs that are used to display the value variables or expressions you specify for the
context method. There are several ways to add a new watch variable or expression:

• Double-click on the <add> text in the Name column of the tool window.

• Right-click on a variable or selected expression and select Add Watch.

• Select a variable or expression, then from the main menu, click Debug → Add Watch.

To display a context menu which allows you to jump to the definition of a variable or delete a watch
expression, right-click within the Watch tool window.

Menus

83

Menus
The SlickEdit main menu, displayed at the top of the editor, provides a way to access most of the editing
features of SlickEdit. Context menus are available in the editor windows and tool windows with operations
specific to those windows. For listings of all the menus and associated dialogs and tool windows, see the
Menus, Dialogs, and Tool Windows chapter.

Menu items are mapped to commands, so all of the items that you can access through a menu have
command line counterparts. For example, to cut selected text, you could use the menu item Edit → Cut,
or you could use the cut command.

You can customize menus by adding items, deleting items, or changing the command that is executed.
See Creating and Editing Menus for more information.

Right-Click Context Menus
Click the right mouse button to access submenus or context-sensitive menus that list commonly used
editing functions. Context-sensitive menus are supported in edit windows, all toolbars, and in many dialog
boxes, including the DIFFzilla® Dialog, the Multi-File Diff Output Dialog, and the Context Tagging - Tag
Files Dialog.

Context Menu Settings

Language-specific settings are available for specifying which context menu to display in the editor
window, based on whether text is selected.

To access these options, from the main menu, click Tools → Options → Languages, expand your
language category and language, then select General. Choose from the following options in the Context
menus group box:

• Menu if no selection - This specifies that the context menu is displayed when right-clicking in an editor
window that does not have a selection.

• Menu if selection - This specifies that the context menu is displayed when right-clicking in an editor
window that does have a selection.

• Select first (affects all extensions) - When checked (default), a selection can be made with the right
mouse button instead of displaying the language-specific menu. When this is not checked, select menu
items by clicking and dragging the mouse.

Menu Hotkeys
A menu hotkey allows you to choose items from the main menu using the keyboard. This is done using
the Alt key and a letter in the menu item. This works independently from key bindings, which bind arbitrary
key sequences to commands. If a menu item has a key binding, it is shown to the right of the menu entry.
See Key and Mouse Bindings for more information about key bindings.

Right-Click Context Menus

84

SlickEdit provides two options for menu hotkeys:

• Alt Menu - When selected, pressing the Alt key switches focus to the menu bar and underlines the
hotkeys. Now, when you type a letter, it selects an the corresponding item on the menu.

• Alt Menu Hotkeys - For emulations other than CUA, selecting this option gives priority to the menu
hotkeys, overriding any key bindings using the same Alt key combination.

Alt Menu

(Not supported on Mac) When you press the Alt key in SlickEdit without following it with another key,
focus shifts to the menu bar, and the hotkeys in the menu names are underlined. Pressing one of the
underlined letters will activate the corresponding menu or menu item. For example, press Alt,V,A to
invoke the View → Show All command. Pressing Alt again toggles the focus back to the cursor location.
This is controlled by the Alt menu option (Tools → Options → Keyboard and Mouse → Advanced),
which is on by default.

Tip

On Microsoft Windows, to force menu names to be underlined all the time instead of just when
you press Alt:

1. Right-click on the desktop and select Properties.

2. Select the Appearance tab.

3. Click on Effects.

4. Uncheck Hide underlined letters for keyboard navigation until I press the Alt key.

5. Click OK.

Alt Menu Hotkeys

This option applies only to non-CUA emulations. You can make Alt-prefixed key bindings display the
corresponding drop-down menu. For example, when you press Alt+F (where F corresponds to the
underlined letter on the File menu), the File menu drop-down is displayed. Thus, pressing Alt+F,D will
invoke the File → Change Directory command. To enable this option, set the Alt menu hotkeys option
(Tools → Options → Keyboard and Mouse → Advanced) to True.

Caution

When this option is enabled, the Alt menu hotkeys may override your normal key bindings.

Short Key Names in Menus

Short Key Names in Menus

85

The SlickEdit® main menu displays the key bindings for commands associated with each menu entry.
These bindings can be condensed for non-CUA emulations. For example, Ctrl+O becomes C-O. To
enable this behavior, set the option Short key names (Tools → Options → Appearance → Advanced)
to Condensed.

See Key and Mouse Bindings for more information about working with bindings in SlickEdit.

SlickEdit® Command Line

86

SlickEdit® Command Line
SlickEdit provides a command line as a means to execute most SlickEdit operations without taking your
hands off of the keyboard. This is useful for less frequently used operations that may not warrant a key
binding, or complex commands that require arguments.

Note

For information about passing arguments to SlickEdit from the operating system command line,
see Invocation Options.

Tip

• SlickEdit® commands that contain two or more words are written throughout our
documentation with underscore separators: for example, cursor_down. Note that in the user
interface, however, these commands are displayed with hyphen separators: for example,
cursor-down. Both of these forms work in SlickEdit, so you can use whichever style you
prefer.

Activating the Command Line
To activate or toggle the SlickEdit® command line in any emulation, click on the message line with the
mouse. Key bindings are also provided for toggling the cursor to the command line, based on your
emulation:

• BBEdit - Esc

• Brief - Esc

• CodeWarrior - Esc

• CodeWright - F9

• CUA (SlickEdit's default emulation for all platforms but macOS) - Esc

• Epsilon - Alt+X or F2

• GNU Emacs - Alt+X or F2

• ISPF - Esc

• macOS (SlickEdit's default emulation for macOS) - Esc

• SlickEdit (Text Mode edition) - Esc

• Vim - Ctrl+A

Activating the Command Line

87

• Visual C++ - Esc

• Visual Studio default - Esc

• Xcode - Esc

• Eclipse - Esc

See Emulations for more information.

Command Line History
The SlickEdit® command line maintains a command history, allowing you to quickly reuse previously
entered commands. Once the command line is open, use the arrow keys to scroll up and down in the
command history. This history is stored in vrestore.slk, under your configuration directory. For more
information about configuration files, see Configuration Directories and Files.

Command Line Completion
As you type a command on the SlickEdit® command line, a list of matching completions is displayed,
including any command line arguments used in a previous command. Use Tab or the Down arrow to
move to the next command in the list, and Shift+Tab or the Up arrow to move to the previous command.
Press the Enter key to select the current command.

Some commands, like set_var, prompt for arguments. SlickEdit maintains a history of arguments used for
each command. Use the same completion and history mechanism as described above for commands to
complete arguments. Typically, the most recent argument you typed is automatically displayed.

Tip

Command completions are useful for discovering operations in SlickEdit. For instance, to find all
operations that begin with "find", type find in the command line, and SlickEdit will display a list of
those commands. Some search commands do not begin with "find", like gui_find, so you may not
discover all related commands this way. To find all commands containing the word "find," use the
Key Bindings options page (Tools → Options → Keyboard and Mouse → Key Bindings or
gui_keybindings command). See Key and Mouse Bindings for more information.

For information about other items that can be automatically completed, see Completions.

Disabling Command Line Completions

To disable command line completions, from the main menu, click Tools → Options → Appearance →
General and set the option List command line completions to False. Note that this option does not
apply to the Vim command line.

Command Line History

88

Using Shortcuts Inside the Command Line
The SlickEdit® command line is a text box control just like the text boxes that appear in various dialog
boxes. For a list of key shortcuts that can be used inside the command line and other text boxes within
SlickEdit, see Key Shortcuts in Text Boxes.

Using the Command Line to View Key Binding Associations
You can use the SlickEdit® command line to determine what keys are associated with what commands,
and vice-versa.

Tip

Alternatively, you can use the Key Bindings options page (Tools → Options → Keyboard and
Mouse → Key Bindings or gui_keybindings command) to see a list of command/key binding
associations. See Key Binding Options for more information.

Determining the Command of a Key Binding

To determine the function of a key or key binding, use the what_is command (Help → What Is Key). For
example:

1. Click Help → What Is Key, or activate the SlickEdit® command line (by pressing Esc) and type
what_is (or type what and press the spacebar for auto-completion), then press Enter.

2. The command line will prompt with the text What is key. Enter the key sequence in question. A
message box will be displayed with the information. If the key or key sequence is not bound to a
command, no message will appear.

Determining the Key Binding of a Command

To determine the key to which a command is bound, use the where_is command (Help → Where Is
Command). For example:

1. Click Help → Where Is Command, or activate the command line and type where_is, then press
Enter.

2. The command line will prompt with the text Where is command. Enter the command in question. The
status line will display the key binding or state that the command is not bound to a key.

Command Line Switches
In addition to setting options through the graphical interface, you can specify or override some options on
the SlickEdit® command line for immediate, one-time use. This way, you don't need to constantly open
the Options dialog to change an option every time you want to enable or disable it. For example, when

Using the Command Line to
View Key Binding Associations

89

using the save or save_as command, you can specify many of the Save File Options, such as Expand
tabs to spaces, for just this one operation.

Switches are described in the documentation when the switch is helpful or applicable. To use a switch,
type it between the command and file name. Depending on whether you want to enable or disable the
option, type a plus (+) or minus (-) sign before the switch character. No matter the default setting, the
specified switch will be used.

For example, perhaps you have the Save File Option Expand tabs to spaces set to False. This means
that when you save a file, tabs are not expanded to spaces. However, you may want to quickly save a file
with tabs expanded. To enable the option just this once, use the save command with the E switch, as
follows:

save +E

Starting a Program from the Command Line (Shelling)
You can use the SlickEdit® command line to start a program. Click on the command line or press Esc to
toggle the cursor to the command line. Type the program name and arguments and press Enter. When
entering a command that the editor does not recognize as an internal command, a path search is
performed to find an external program to execute. To use a program whose name contains space
characters, enclose the name in double quotes. For example, "this is" will start a program named this
is.exe if it exists.

Executing the command dir (or ls) from the command line will invoke the SlickEdit File Manager. To
bypass an internal command, prefix the command with "dos". To execute the dos dir command, type dos
-w dir and press Enter.

To get an operating system prompt, type the command dos with no arguments or from the main menu,
click Tools → OS Shell.

Command Line Prompting
Many commands that display dialog boxes have equivalent commands that prompt for arguments on the
SlickEdit® command line. For example, the gui_open command (File → Open or Ctrl+O), which displays
the Open file dialog, corresponds to the edit command, which is used to open files via the SlickEdit
command line. If you frequently use key bindings to open dialogs, a faster method of entering arguments
is to use Command Line Prompting. When this feature is enabled, you are prompted on the command line
for arguments that you would otherwise select as options on a dialog. For example, instead of displaying
the Open file dialog when you press Ctrl+O, the SlickEdit command line is invoked, so you can type the
name of the file to open and any other desired arguments. To enable Command Line Prompting, from the
main menu, select Tools → Options → Keyboard and Mouse → Advanced and set the Command line
prompting option to True.

The following table contains a partial list of user interface commands and their command line
counterparts.

Starting a Program from the
Command Line (Shelling)

90

Graphical Command Command Line Version

gui_open edit

gui_find find

gui_replace replace

gui_write_selection put

gui_append_selection append

gui_margins margins

gui_tabs tabs

gui_find_proc find_proc

Common SlickEdit® Commands
Commands are essentially the names of functions. The Help system contains a list of macro functions,
organized into categories (see Help → Macro Functions by Category. The following is a list of
commands that we use frequently in our own work, which you may also find useful.

e filename Edit a file

sa filename Save file as

number Go to line number

f symbol Find a symbol

/ search_string / options Search for a string

c/ search / replace / options Replace a string

gt/ search / options Substring search for a symbol

sb name Set a bookmark

gb name Jump to a bookmark

help topic View Help on topic

Common SlickEdit® Commands

91

man command Show UNIX man page

cd directory Change directory

dir directory Show directory in the File Manager

list wildcards Show directory tree in the File Manager

del filename Delete file

pushd directory Push directory

popd Pop directory

set env=value Set environment variable

dos command Execute command outside of editor

math expr Evaluate expression. There are also mathx, mathb,
and matho which output in hex, binary, and octal.

o filename Opens a file. On Windows, this uses WinExec to
open the file. On Unix, this either edits the file or
runs the program that is associated using SlickEdit
File Extension Manager. This command is useful for
running an external program to open a graphic
resource file.

Screen Management

92

Screen Management
There are several features regarding the handling of the monitor screen, as described below.

Full Screen Mode
To get the largest possible view of your code, use Full Screen Mode. This hides all of the toolbars and
tool windows, expanding the editor frame to fill the application window. This is useful when you need
screen real estate for editing large files and/or when tool windows and toolbars are not needed.

To activate full screen mode, from the main menu, click View → Full Screen, or use the fullscreen
command.

Multiple Monitor Support
SlickEdit® supports the use of multiple monitors on Windows, UNIX, and macOS platforms. When the
application, or any dialog or tool window, is moved to a particular monitor, the location is remembered. If
you are running UNIX using multiple monitors that have different width and height values, you will need to
set the invocation option -summ. See Invocation Options for more information.

Full Screen Mode

93

Using the Mouse and Keyboard
SlickEdit® provides four ways to launch operations: commands, menu items, key bindings, and buttons.
For example, to bring up the Find and Replace dialog, you could use any of the following methods:

• Type the gui_find command on the SlickEdit command line.

• Click Search → Find in the main menu.

• Press the key binding Ctrl+F.

• Click the binoculars button on the Standard toolbar.

The command forms the basis of each method. Commands are often bound to more than one key
sequence. They can also be bound to mouse events, including the spin wheel. Key bindings are the
fastest and most efficient means of executing operations.

See SlickEdit® Command Line for more information about commands, and Key and Mouse Bindings for
more information about bindings.

Emulations
SlickEdit has the capability of emulating other editors. An emulation controls the key sequences used to
invoke operations and many of the behaviors of the editor. For more information, see Emulations.

Platform-Specific Notes

macOS Notes

Throughout the user documentation, information that is available for Linux and UNIX operating systems
will be the same or similar when using SlickEdit on a macOS operating system. The documentation
contains specific information for the macOS operating system where relevant. Mouse and keyboard
shortcuts in the documentation are written for Microsoft Windows, but can be adapted for macOS using
the information below.

Tip

In SlickEdit, a key or key sequence that is bound to an operation is called a key binding. See
Using the Mouse and Keyboard and Key and Mouse Bindings for more information.

Mouse and keyboard shortcuts on Windows and macOS have the following similarities:

• The Command (Cmd) key on the Mac keyboard functions the same as the Windows Control (Ctrl)
key.

• The Cmd key plus a mouse click on the Mac keyboard functions the same as right-clicking the mouse

Emulations

94

on Windows.

The following table shows some of the differences between mouse and keyboard shortcuts on a Windows
operating system and the macOS operating system:

Microsoft Windows macOS

Right-click with the mouse Ctrl+Click

Left-click with the mouse Single mouse click

Ctrl+F (Find) Cmd+F (Find)

Ctrl+G (Find again) Cmd+G (Find again)

Print Screen Cmd+P (Print)

Key Shortcuts in Text Boxes
Most keyboard shortcuts for basic text operations can be used inside any text box in SlickEdit®, including
the SlickEdit command line, which is also a text box. The table below shows a list of these shortcuts,
based on the CUA emulation.

Note that even if you are not using the CUA emulation, by default, you can still use the common Cut/
Copy/Paste keyboard shortcuts inside text boxes (Ctrl+X/Ctrl+C/Ctrl+V, respectively). To disable this
capability, so that you can use your emulation's Cut/Copy/Paste shortcuts, from the main menu, click
Tools → Options → Editing → General, then set the option CUA text box to False.

Text Box Editing Operation Key Shortcut

Append Cut Ctrl+Shift+X

Append to Clipboard Ctrl+Shift+C

Copy Word to Clipboard Ctrl+K

Copy Ctrl+C

Cut Line Ctrl+Backspace

Cut to End of Line Ctrl+E

Cut Word Ctrl+Shift+K

Key Shortcuts in Text Boxes

95

Text Box Editing Operation Key Shortcut

Cut Ctrl+X

Delete Character Under Cursor or Selection Delete

Delete Previous Character or Selection Backspace

Expand Alias Ctrl+Shift+O

Expand Partially Typed Parameter or Insert Space Spacebar

Extend Selection to Mouse Position Shift+Click

Insert Mode Toggle Insert

List Clipboards Ctrl+Shift+V

List Matches to Partially Typed Parameter ?

Lowercase Word Ctrl+Shift+L

Move Cursor Left Left arrow

Move Cursor Right Right arrow

Move Cursor to Beginning of Line Home

Move Cursor to End of Line End

Next Word Ctrl+Right arrow

Paste Ctrl+V

Previous Word Ctrl+Left arrow

Select Line Triple-click

Select Text Between Cursor and Beginning of Line Shift+Home

Select Text Between Cursor and End of Line Shift+End

Select Word Double-click

Redefining Common Keys

96

Redefining Common Keys
Many users have a preference for the functions of the keys Backspace, Delete, Enter, Tab, and Home.
Options are available for changing the function of these keys. To access these options, from the main
menu, click Tools → Options → Keyboard and Mouse → Redefine Common Keys.

For a description of each option, see Redefine Common Key Options. For more information on changing
Tab key functions, see Indenting with Tabs.

Using the Minimap

97

Using the Minimap
By default, a minimap (miniaturized view of your source file) is displayed to the right of your edit window.
It allows you to see more of your source file.

Note

By default, the minimap uses the same font as your edit window in a smaller size. You can
choose a specific font name for the minimap Window (Tools → Options... → Appearance →
Fonts). On Windows, the default font height is typically 3 pixels. If you choose Lucida Console for
the minimap font name (there are others that are typically 2 pixels), you can reduce the pixel
height to 2 pixels to display more lines.

On Windows (which defaults to a 1 point font), you can try turning anti-aliasing off to make the
font look brighter. For macOS, we recommend leaving anti-aliasing on since small fonts typically
look quite a bit better when anti-aliasing is on. Use the Minimap Context Menu to toggle anti-
aliasing on/off for a particular minimap font size.

Viewing the Minimap
You can turn the minimap on/off one of the following ways:

• View → Minimap. This effects the current buffer only. If you, exit the editor, auto restore will restore
your minimap windows to their previous state.

• Tools → Options → Languages → All Languages → View and set the Minimap check box. This will
turn the minimap on/off for all languages.

• View → [Language] View Options... and set the Minimap check box. This will turn the minimap on/off
for the current edit buffers language.

Minimap Context Menu
The menu items provide the following:

• Zoom In - Increases the size of the minimap font.

• Zoom Out - Decreases the size of the minimap font.

• Unzoom - Restores the minimap font to the default setting.

• Move Cursor On Click - Determines whether clicking on a line outside the minimap slider moves the
cursor to a line just scrolls the line into view.

• Set Minimap Default Font Size. Sets the default minimap font size to the current minimap font size.

Viewing the Minimap

98

• Anti-aliasing for Current Font Size. Toggles anti-aliasing on/off for the current minimap font size.

• Show → Vertical Lines. Determines whether vertical lines are drawn in the minimap window.

• Show → Modified Lines. Determines whether modified and inserted line colors are displayed in the
left margin of the minimap window.

• Show → ToolTip . Determines whether a tooltip window is displayed which shows lines under the
mouse pointer in a larger font.

• Delayed Minimap Updating for Faster Scrolling. Determines whether modifications in the edit
window are immediately displayed in the minimap window. On macOS, which has slower graphics than
Windows or Linux, you may find it better to use delayed minimap updating for faster scrolling in the edit
window.

• Width Defaults → Set Fixed Width (Percentage Width not used). Sets the default width for all
minimap windows to the width of the current minimap window. Drag the minimap vertical size bar to
change the width of the minimap window.

• Width Defaults → Set Maximum Width (uses Percentage Width). Sets the default maximum width
for all minimap windows to the width of the current minimap window. The current default Percentage
Width gets applied to all the minimap windows as well. If the default percentage width is less than the
maximum width setting, then the minimap window will get smaller. Drag the minimap vertical size bar to
change the width of the minimap window.

• Width Defaults → Percentage Width Up To Maximum Width → [Percentage]. Sets the default
percentage width for all minimap windows to the percentage selected. For example, if the width of the
edit window area is 1000 pixels and 25% is chosen, then the minimap window will be 250 pixels.
However, the maximum width still gets taken into account. If the maximum is 300 pixels, the minimap
window will be no larger than 300 pixels. However, if the maximum width is only 150 pixels, then the
minimap window will be no larger than 150 pixels. Using a percentage width and a maximum width is
useful when the width of the edit window gets smaller so the minimap window doesn't take up as much
space.

Minimap Context Menu

99

100

User Preferences

This chapter describes how to set key options that control the look and behavior of SlickEdit. For a
complete description of all options screens, see Options Dialog.

101

Introduction to User Preferences (Options)
SlickEdit is one of the most configurable editors available. User preferences, also called options, can be
set to change the appearance and control the behavior of most editing features.

User preferences are set using the Options dialog, which can be displayed from the main menu by
clicking Tools → Options. For more information including a detailed breakdown of options, see Options
Dialog.

SlickEdit contains two kinds of preferences:

• Global Options - affect all languages.

• Language Specific Options - affect only the specified language.

Tip

If you are using SlickEdit in a multiple user environment, each user must define a
SLICKEDITCONFIG environment variable that refers to a local directory. This allows each user to
have their own configuration. If making modifications to user.cfg.xml, make a local copy of
this file and place it in the SLICKEDITCONFIG directory file. See Environment Variables for more
information.

Global Options
Global options affect all languages and include the following:

• Emulation modes (see Emulations)

• Fonts (see Fonts)

• Colors (see Colors, Color Coding, and Symbol Colors)

• Auto Restore settings (see Restoring Settings on Startup)

• File associations (see Setting File Associations)

Other global preferences, such as default search options and selection styles are also available for setting
through the Options dialog (Tools → Options). These options are described in the documentation on a
contextual basis. For a listing of options categories, see Option Categories.

Language-Specific Options
The behavior of the editor can be customized for files based on specific languages. indent, word wrap,
comment, auto-complete, Context Tagging®(Pro only), and other code-style settings are all language-
specific. These settings are located on the Options dialog (Tools → Options → Languages →

Global Options

102

[Language Category] → [Language]). The options are described in the documentation on a contextual
basis. For a flat listing of the language-specific options, see Language Options.

Tip

A shortcut method to access language options for the current buffer is to use the Document →
[Language] Options menu item (or the setupext command). This will open the Options dialog to
the General language-specific option screen for that language.

For more information about working with languages and language extensions, see Introduction to
Language-Specific Editing.

Saving, Restoring, and Backing-up User Preferences
SlickEdit stores all option settings in your configuration directory. Most options are stored in
user.cfg.xml. User created macros, forms, menus, and toolbars are cached in the state file for faster
editor launch. It is safe to delete the state file (vslick.sta) since it will be recreated if needed. There are
other option files. For more information, see Configuration Directories and Files.

If you've made many configuration changes, you should make a backup of your configuration directory or
export all your option settings (see below). This will ensure that if your machine has a hardware failure,
you still have a copy of the your configuration. You may find that just backing up user.cfg.xml is
sufficient.

Options Export and Import

SlickEdit also provides the capability to Export and Import your option settings. You can create an export
package of all or part of your SlickEdit options. You can use this to:

• Backup and restore your option settings.

• Share selected options with other team members.

• Transfer your options from one machine to another.

Note

Moving options to a machine with a different operating system will mostly work. Options that are
per platform (Windows, Mac, Unix), will be imported to the other platform (stored in
user.cfg.xml) but will have no effect (like fonts, filenames, and paths). Options exported from
one version of SlickEdit and then imported into a newer version is only fully supported for the
previous release. While this typically works, there may be some issues when importing from very
old releases of SlickEdit.

For more information see Export/Import Options.

Saving, Restoring, and Backing-
up User Preferences

103

Sharing Your Configuration with Multiple Instances
By default, SlickEdit supports running multiple instances which share one configuration directory. Be sure
this feature is turned on by setting "Save configuration" to "Share config - Save configuration
immediately"(Tools → Options → Application Options → Exit → Save configuration). For example,
if you start two instances of SlickEdit, change your edit window color profile, then switch to the other
instance, you will notice that this configuration change is transferred. This sharing feature supports almost
all configuration options (emulation, key bindings, theme, recorded macros, fonts, etc.). See "Limitations
with sharing your configuration with multiple instances" below for information on limitations.

This makes it easy to launch two different instances of SlickEdit and open a different workspace in each.
Use an additional instance of SlickEdit for a quick edit or use SlickEdit as the git comment editor. There's
no need to maintain multiple configuration directories.

Limitations with sharing your configuration with multiple instances

The following are limitations with sharing your configuration with multiple instances:

• Sharing will not work on Unix or macOS if NFS file locking doesn't work or has been disabled with the -
sul invocation (fcntl(fh,F_SETLK64,..)).

• Loading a hot fix does not supported shared configurations. If you've been running multiple instances of
SlickEdit, exit all instances of SlickEdit and restart SlickEdit before loading a hot fix.

• Auto Restore data (vrestore.slk) is not shared. (i.e. File History, Project History, Tool window
layout, command retrieval, Dialog history/position). The last instance to exit will overwrite
vrestore.slk. The project information under "Project>All Workspaces" is shared because it is not
stored in vrestore.slk.

• Per file auto restore data (perfile.xml) is not shared. (i.e. last file position, encoding override,
softwrap override, language mode override, hex mode, selective display). The last instance to exit will
overwrite perfile.xml.

• Language specific tag files may cause problems with multiple instances. These can be generated when
you first type in source for a specific language, when you use the "Tag Compiler Libraries" dialog, and
when you manually add one. If you add a language specific tag file, make sure to wait until the current
instance completes creating the tag file before switching to the other instance. Otherwise failures will
occur. The plan is to protect against this issue in the near feature.

• Opening the same workspace and/or project in two different instances may cause problems with tag
files and settings.

• Single file project data is not saved until you switch to a different file. If you want your current single file
project data transferred to another instance, switch to a different file or close the file. Also make sure
the other instance isn't already editing this file before switching to it. Switching files in the other instance
usually allows for updating the single file project settings.

• If an options dialog is already displayed in another instance, the options displayed will not be updated.
Applying any options may overwrite the auto reloaded options.

Sharing Your Configuration with
Multiple Instances

104

• Deleting a form, menu, or toolbar currently doesn't work. It won't be deleted in the another instance
when these options are transferred. The deleted form, menu, or toolbar may get regenerated by
another instance and not be deleted for newly launched instances either.

• If you've loaded custom macros:

• Make sure your macros can easily be found and automatically loaded at startup. If you put your
macros in the unversioned configuration directory and load them from there, SlickEdit will be able to
easily find them without the VSLICKPATH environment variable being modified.

• If your additional macros can not be automatically loaded at startup, you will get failure loading macro
errors any time you run an additional instance of SlickEdit.

• If you have many additional macros and they take a long time to load, running an additional instance
of SlickEdit will be slow.

Support for .editorconfig Files
SlickEdit supports .editorconfig files. The indent_style, indent_size, tab_width, end_of_line, and
trim_trailing_whitespace properties are supported. You may find this useful for defining options for a
specific project or directory of code.

In order to enable .editorconfig file support, you must turn this feature on (Tools → Options → Editing →
General → Apply .editorconfig file settings). For documentation on .editorconfig files, go to
http://editorconfig.org/.

Support for .editorconfig Files

105

Emulations
Emulation is the process of imitating another program. SlickEdit® provides emulations of key bindings for
14 editors so that you can use the style to which you are accustomed, making your coding experience as
efficient as possible.

The Key Bindings option screen allows you see what keys or key sequences are bound to what
commands. Emulation charts are also available in the Help system and as printable PDF documents in
the docs subdirectory of your SlickEdit installation directory. See Key and Mouse Bindings for more
information.

Supported Emulations
This section describes each emulation mode and any special notes. For a list of key bindings that open
the SlickEdit® command line in each emulation, see Activating the Command Line.

Note

If you are a Windows user running the Mac version of SlickEdit with a non-Mac like emulation,
you may want to reconfigure the macOS window manager which takes over a number of keys like
Ctrl+Left and Ctrl+Right.

• BBEdit

• Brief - This emulation relies heavily on Alt key bindings.

• CodeWarrior

• CodeWright

• CUA - CUA is an acronym for Common User Interface, a standard set of user interface guidelines
similar to those used in Microsoft products. This is the default emulation mode used by SlickEdit for
all platforms but macOS.

• Eclipse

• Epsilon - This emulation relies heavily on Ctrl+X and Escape (meta) key bindings.

• GNU Emacs - This emulation relies heavily on Ctrl+X and Escape (meta) key bindings. It does not
include an Emacs Lisp emulator.

• ISPF - Support is included for ISPF prefix line commands, the ISPF command line, rulers, line
numbering, and some XEDIT extensions. In addition to the ISPF emulation charts, additional
documentation about using this emulation is available (see Using the ISPF and XEDIT Emulations).

• macOS - Very similar to CUA emulation. Certain keys were changed due to macOS standards such as
Command+Comma, Ctrl+A, and Ctrl+E. A number of keys were unbound or changed due to conflicts
with the macOS window manager such as Ctrl+Left, Ctrl+Right, F9-F12, and F4. This is the default

Supported Emulations

106

emulation mode used by SlickEdit for macOS.

• SlickEdit® (Text Mode edition)

• Vim - The Vim emulation contains special keys and key sequences that are case-sensitive. A plus (+)
sign separates the simultaneous key presses and a comma (,) indicates sequential key presses. For
example, the key binding Ctrl+w,W, which moves the cursor to the window above, indicates to press at
the same time, the Ctrl key and lowercase w, release, then immediately press Shift plus w to enter the
uppercase W. Another example is the key binding gP, which pastes the text before the cursor. Press
the G key (to enter a lowercase g), release, then press Shift plus p at the same time (to enter the
uppercase P).

Tip

SlickEdit supports the vimtutor command. This opens a practice file in the editor that you can
actually edit as you learn Vim commands. See Vim Tutorial for more information.

• Visual C++ 6

• Visual Studio default - The key bindings provided for the Visual Studio default emulation are not the
same as the key bindings used in Visual C++, but there might be some overlap. If Microsoft Visual
Studio does not provide a default key binding for a particular SlickEdit command, the corresponding
Visual C++ key binding is used.

• Xcode

Changing Emulations
After SlickEdit® is installed, you are prompted to choose an emulation. CUA is the default emulation
mode for SlickEdit. Key bindings and shortcuts mentioned in our documentation are based on this
emulation. You can change emulation modes at any time by using the Emulation Options. To access
these options, from the main menu, click Tools → Options, expand Keyboard in the tree, and select
Emulation.

Changing Emulations

107

Custom key/mouse bindings for the current emulation are always saved before switching emulations. This
ensures that when you return to the original emulation those bindings are automatically available. For
example, if you have created and saved custom bindings in the CUA emulation, and then switch to Vim,
switching back to CUA will make your custom bindings for CUA available again.

To remove custom key bindings for an emulation, resetting to the defaults, click the Restore to default
key bindings button on the Emulation options page.

See Managing Bindings for more information on working with custom bindings.

Determining Keys/Functions
When/if you switch emulations, the key bindings that are assigned to commands change according to the
emulation chosen. You can use the Key Bindings option screen to look up what command is bound to
what key or key sequence (or vice-versa), or you can use the SlickEdit® menu and command line to
determine these items. See Key and Mouse Bindings and Using the Command Line to View Key Binding
Associations for more information.

Determining Keys/Functions

108

Key and Mouse Bindings
Key and mouse bindings are quick ways to execute operations in SlickEdit®. Key bindings are the most
efficient. Time is wasted each time you lift your hand from the keyboard to grab the mouse, and more time
is wasted when you move your hand back to the keyboard in preparation for more typing. Therefore, if
you learn the key bindings associated with operations that you use most frequently, you will save time
coding. If an operation you use frequently isn't already bound by default, create your own easy-
to-remember binding.

What is a Binding?
A key or mouse binding is a key sequence or mouse event associated with a command. Key terms are
defined as follows:

• Mouse event - The clicking of any button or motion of the mouse wheel.

• Key - Any single key on the keyboard.

• Key combination - Two or more keys pressed simultaneously, for example, Ctrl+O (in CUA emulation,
associated with the gui_open command, File → Open, and the Open button on the Standard toolbar).
The plus (+) sign between the keys indicates that these keys must be pressed simultaneously: press
the Ctrl and O keys at the same time. Note that the last key is case-insensitive. You do not need to
press Shift.

• Key sequence - A series of one or more keys or key combinations, for example, Ctrl+X,R (in Vim
emulation, this binding is associated with the redo command, Edit → Redo, and the Redo button on
the Standard toolbar). The comma (,) indicates that each key must be pressed consecutively: press
Ctrl and X at the same time, release, then press the R key.

• Key binding range - A command bound to a range of keys. For example, the alt_bookmark command
is bound by default to the key combination range of Ctrl+0 through Ctrl+9. Press Ctrl+0 to create a
bookmark named "0", Ctrl+1 to create a bookmark named "1", etc.

To view or change bindings, create new bindings, and export/import custom bindings, see Key and
Mouse Bindings.

The available key bindings change depending on the selected emulation. While SlickEdit® provides
emulations for 13 editors, CUA is the default emulation, so key bindings listed throughout the
documentation are for the CUA emulation. To change the emulation mode, click Tools → Options →
Emulation. For more information, see Emulations.

Note

• For documentation purposes, both mouse events and keys that are bound to commands are
often referred to collectively as key bindings.

What is a Binding?

109

• The SlickEdit main menu displays the key bindings for commands associated with each menu
entry. See Accessing Menus and Creating and Editing Menus for more information.

• A menu hotkey is a key sequence that corresponds to an underlined letter on a menu name.
See Menu Hotkeys for more information about these items.

Managing Bindings
Create and manage key bindings using the Key Bindings option screen. This displays a list of all
SlickEdit® commands, including macros that you have recorded, their associated key sequences, and the
language editing mode in which the key binding can be used. Documentation for the selected command,
if available, is also displayed. The Key Bindings screen provides capabilities to incrementally search by
command or by key sequence, export and import custom bindings, save an HTML chart of your bindings,
and run a selected command or user-recorded macro.

To access the Key Bindings option screen, from the main menu, click Tools → Options → Keyboard
and Mouse → Key Bindings, or use the gui_keybindings command.

The first time the Key Bindings screen is invoked, the Building Tag File progress bar may be displayed
while Slick-C® macro code is tagged.

Managing Bindings

110

Bindings are based on the editor emulation mode (CUA is the default). To change the emulation mode,
click Tools → Options → Keyboard and Mouse → Emulation. For more information, see Emulations.

The Search by commandand Search by key sequence boxes are used to filter the data. See Viewing
and Filtering Bindings.

The Command column shows all of the SlickEdit commands including macros that you have recorded.
The Key Sequence column shows the key sequence or mouse event to which the command/macro is
bound. If there is no binding, this field is empty. The Mode column shows the language editing mode to
which the binding is assigned. The Recorded column indicates if the item is a command (No) or user-
recorded macro (Yes).

Tip

TIP What is a language editing mode? SlickEdit uses the extension of the current file to
determine what language you are using, thereby only making available the options and features
that are possible or useful in that language. You can also manually set the language editing
mode. See Language Editing Mode for more information.

The bottom of the screen contains documentation (if available) for the selected command.

Managing Bindings

111

Columns can be sorted by clicking on the column headers. An up or down arrow in the column header
indicates ascending or descending sort order. All of the columns as well as the documentation pane can
be resized by dragging the separator bars.

The following sections describe different ways to use the Key Bindings option screen:

• Viewing and Filtering Bindings

• Creating Bindings

• Editing Bindings

• Removing Bindings

• Exporting and Importing Bindings

• Saving a Bindings Chart

• Running a Command/Macro using the Key Bindings Dialog

• Resetting Default Bindings

• Working with Key Binding Ranges

Viewing and Filtering Bindings

You can filter the data on the Key Bindings screen by using the Search by command and Search by
key sequence boxes at the top. This is useful for finding a command/macro for creating, editing, or
removing a binding, and for determining what key sequences are associated with a command/macro and
vice-versa.

• To find a command/macro, search for it by entering a string in the Search by command box. The
column of commands is filtered incrementally as you type, to show only commands that contain the
specified string. Commands that have more than one key sequence associated with them are listed on
separate rows. For example, in CUA emulation, the command gui_open is bound to F7, Command+O
(on the Mac), and Ctrl+O. Therefore, gui_open appears in the Command column three times, one row
per key sequence.

• To find a key sequence, place the focus in the Search by key sequence box (by tabbing or using the
mouse) and then press the actual key or key sequence. The column of key sequences is filtered to
show only bound sequences that contain the specified key(s). For example, to see all commands/
macros that are bound to Ctrl+O, with the focus in the search box, simply press Ctrl+O.

• To find a mouse event, place the focus in the Search by key sequence box (by tabbing or using the
mouse) and click the mouse event you want to find. If the mouse event involves the scroll wheel, click
the Mouse Event button () to the right of the field. This displays the Select Mouse Event dialog

containing a list of all mouse events. If the event involves pressing a modifier key or keys, such as Ctrl,
Alt, Shift, Cmd, Ctrl+Alt, etc., in conjunction with a mouse click, for example, Ctrl+RButtonDn, press
the modifier key(s) when clicking the Mouse Event button. Then the Select Mouse Event dialog shows
a list of modifier-prefixed mouse events. After selecting the mouse event you want to look up, click OK.

Managing Bindings

112

The option screen updates to show only those commands that are bound to that mouse event.

To clear either field, click the red X button to the right of each box. This is especially handy for the key
sequence search, due to the fact that the field recognizes any keyboard/mouse input including
Backspace.

Alternatively, you can use the what_is and where_is commands (Help → What Is Key and Help →
Where Is Command) on the SlickEdit® command line to determine binding associations. See Using the
Command Line to View Key Binding Associations for more information.

Creating Bindings

You can work more efficiently if you create key/mouse bindings for commands or user-recorded macros
that you use frequently. To create a new key or mouse binding:

1. Using the Key Bindings options screen (Tools → Options → Keyboard and Mouse → Key
Bindings), find the command or user macro you want to bind. You can search for a command/macro
by entering a string in the Search by command box (see Viewing and Filtering Bindings).

2. Initiate the binding by using one of the following methods:

• Select the row, then click the Add button.

• Select the row, then press Enter.

• Double-click on the row.

3. When you initiate a binding, the Bind Key dialog is displayed with focus in the Key Sequence box.

• For a key binding, press the key sequence just as you would to use it. For example, to bind
surround_with to Ctrl+W, simply press Ctrl+W. The key sequence you pressed is displayed in the
box.

• For a mouse binding, click the Mouse button next to the Key Sequence field, and select the mouse

Managing Bindings

113

event you want to use from the Select Mouse Event dialog. For example, to bind surround_with to
the right-click mouse event, select RButtonDn and click OK.

Use the red X button to clear the input field if you make a mistake. If you enter a key sequence or
mouse event that is already assigned to another command/macro, a warning prompt is displayed. If
you continue, the previous binding is unbound and reassigned.

Tip

• SlickEdit® allows key sequences that are very long, but shorter sequences are easier to
remember and more practical to use.

• Do not begin key sequences with keys that are normally used in typing. Otherwise, these keys
will launch the operation and not appear when you type. For example, binding a command to
the A key will prevent you from using that letter in your code. It is best to always begin your key
sequences with a Ctrl or Alt key combination.

4. The default language editing mode is the default language editing mode for new bindings, which
means the binding will work in all language editing modes. If you want the binding to work only in a
specific language editing mode, you can change it now by clicking the Advanced button on the Bind
Key dialog. Click Bind to mode, then from the drop-down list, select the mode for which the binding
should apply. Bindings assigned to a specific language editing mode override those assigned to
default.

Tip

You can create multiple bindings for the same command/macro and have one binding set to
default and the others set to specific modes. In this case, when you are editing in a specified
mode, that binding is in effect, and when editing in any other language editing mode not specified,
the default binding will be in effect. For example, in CUA emulation, Ctrl+L is bound to
select_line by default, but when in HTML mode, you may want to use Ctrl+L to insert an HTML
link instead (insert_html_link command). Therefore, you can bind Ctrl+L to insert_html_link
and specify the HTML mode for use only when editing HTML files.

5. When finished, click Bind. The key sequence or mouse event now appears in the Key Sequence
column.

Editing Bindings

To change the binding or language editing mode for a command/macro that is already bound, you will
need to first unbind the command/macro, then recreate it. See Removing Bindings and Creating Bindings.
Key binding changes are stored in user.cfg.xml. See Editing a Key Binding Profile for more
information.

Removing Bindings

Managing Bindings

114

To remove a binding:

1. Using the Key Bindings options screen, find the command/user macro or key sequence that you want
to unbind. You can search by using the search boxes at the top (see Viewing and Filtering Bindings).

2. With the command/macro row selected, click Remove, or press Delete. You are prompted to confirm
the unbind operation.

If a command is bound to a range (see Working with Key Binding Ranges), for example, Ctrl+0 through
Ctrl+9, the entire range is unbound.

Exporting and Importing Bindings

Key and mouse bindings can be exported out of SlickEdit® and imported in. This can be useful for
sharing just your key bindings with other team members. Copying your user.cfg.xml from one
machine's configuration directory to another is a better way to copy most of your configuration changes
(not just key bindings).

Exporting Bindings

When exporting, custom bindings for all language editing modes in the current emulation are exported
into an XML file with a name and location that you can specify.

To export your bindings:

1. Click the Export button on the Key Bindings option screen. The Save As dialog is displayed.

2. If you want, change the directory location and change the file name to something more meaningful to
you, such as myname_cua.cfg.xml.

3. Click Save.

Importing Bindings

Imported bindings override any existing bindings for the selected emulation. For example, if you have the
surround_with command bound to Ctrl+W, and import surround_with bound to Ctrl+Q, then Ctrl+Q is
now the binding for that command in the selected emulation. When you import for the selected emulation,
SlickEdit® resets the key bindings to the default, then loads the user key bindings.

If you import a key bindings file from a different emulation than the one currently selected, SlickEdit
displays a warning and prompts whether or not you want to continue. If you continue, the emulation mode
is changed and the key bindings are loaded for that emulation.

To import bindings into SlickEdit:

1. Click the Import button on the Key Bindings option screen. The Open dialog is displayed.

2. Find and select a bindings file that was previously exported, then click Open.

Saving a Bindings Chart

Managing Bindings

115

Click the Save Chart button on the Key Bindings option screen to save an HTML reference chart of all
current bindings for all language editing modes in the selected emulation. Commands and user macros
that are not bound are not included.

Running a Command/Macro using the Key Bindings Dialog

If you have the Key Bindings option screen open, you can conveniently run a selected command or user-
recorded macro by clicking the Run button.

Resetting Default Bindings

To reset bindings for the selected emulation to the SlickEdit® defaults, from the main menu, click Tools
→ Options → Keyboard and Mouse → Emulation, then select the Restore to default key bindings
option on the Emulation options screen. See Emulations for more information.

Working with Key Binding Ranges

A key binding range is a command that is bound to a range of keys. For example, the alt_bookmark
command is bound by default in CUA emulation to the key combination range of Ctrl+0 through Ctrl+9.
Press Ctrl+0 to create a bookmark named "0", Ctrl+1 to create a bookmark named "1", etc. Key binding
ranges are displayed in the Key Sequence column on the Key Bindings option screen. For example, the
range for alt_bookmark is displayed as Ctrl+0 -> Ctrl+9 in CUA emulation. Key binding ranges are also
shown when using the Export and Save Chart features.

You cannot remove a single key combination from within a range, but you can rebind the key range to a
different command. If you unbind a command that is bound to a range, the entire range is unbound. This
is a limitation of the dialog and not the key binding system. The unbind-key command can be used from
the SlickEdit command line to unbind a single key combination from a key range. It unbinds the next key
sequence pressed.

Key Binding Settings
The following are settings that you can make pertaining to key bindings.

Key Message Delay

For key bindings that contain multiple key combinations, like Ctrl+X,Ctrl+C, you can specify the
maximum delay between the two combinations. If that time limit is exceeded, this key sequence will be
interpreted as two separate bindings, executing the command bound to Ctrl+X followed by the command
bound to Ctrl+C, rather than the command bound to Ctrl+X,Ctrl+C.

To change this option, click Tools → Options → Keyboard and Mouse → Advanced, then set the Key
message delay for the amount, in tenths of a second, to delay before a prefix key. The prefix key is not
displayed if the next key is pressed before the delay specified in this text box.

Using Shorter Key Names in Menus

The SlickEdit® main menu displays the key bindings for commands associated with each menu entry.

Key Binding Settings

116

These bindings can be condensed for non-CUA emulations. See Short Key Names in Menus for more
information.

Cursor, Mouse, and Scroll
Settings

117

Cursor, Mouse, and Scroll Settings
This section describes settings for the cursor, mouse, and scroll style. For cursor navigation information,
see Cursor Navigation.

Setting the Cursor Style
You can use a text mode style cursor instead of a vertical cursor. To set this option, from the main menu,
click Tools → Options → Appearance → General, then select Use block cursor from the Cursor style
drop-down list.

Hiding the Mouse Pointer
To hide the mouse pointer when typing, from the main menu, click Tools → Options → Appearance →
General, then set the option Hide mouse pointer to True. The mouse pointer is then only displayed
when moving the mouse or when a dialog box is displayed.

Displaying Tool Tips
By default, hovering the mouse pointer over a button displays a tool tip about the item. To turn tool tips
off, from the main menu, click Tools → Options → Appearance → Advanced, then set the option Show
tool tips to False. To change the amount of time before tool tips are displayed, change the value of the
option Tool tip delay. The delay value is in tenths of a second.

Scroll Bar and Scroll Style Settings
The scroll bars on the right and bottom edges of the editor windows are optional in SlickEdit. To turn
these on or off, from the main menu, click Tools → Options → Appearance → General, then set the
options Horizontal scroll bar and/or Vertical scroll bar. When these options are set to True, the scroll
bars are displayed. These options do not affect edit window controls on dialog boxes.

To set the scroll style, from the main menu, click Tools → Options → Appearance → General, then set
the Scroll stylesettings that you want to use. Commands that move the cursor more than one page of
text, such as searching, always center scroll text into view. The following scroll settings are available:

• Smooth horizontal scroll - When set to True, editor windows scroll column-by-column when the
cursor moves out of view. When set to False, the cursor is centered and the text is scrolled one-fourth
the width of the window when the cursor moves out of view.

• Smooth vertical scroll - When set to True, editor windows scroll line-by-line when the cursor moves
out of view. When set to False, the cursor is centered and the text is scrolled half the height of the
window when the cursor moves out of view.

• Scroll when - Specifies how close (in number of lines) the cursor may get to the top or bottom of the

Setting the Cursor Style

118

window before scrolling occurs.

Fonts

119

Fonts
This section describes how to set the fonts used in various screen elements.

SlickEdit® provides the capability to change the fonts used by edit windows, the command line, status
text, and other screen elements. Recommended fonts are listed. You can also set fonts for editor
windows.

Setting Fonts for Screen Elements
To configure font settings for screen elements, use the Fonts options screen (Tools → Options →
Appearance → Fonts). For a description of each option, see Font Options.

Tip

The "Regular" (non-Unicode) editor window font is set by the SBCS/DBCS Source Windows
element.

The "Unicode" editor window font is set by the Unicode Source Windows element.

Setting Fonts for Screen
Elements

120

Some font names are portable font names which are translated into other fonts. This allows Slick-C®
macros and dialog boxes to be portable across Windows and UNIX.

Default Unicode Font is the default font for the Unicode Source Windows element. When this font is
selected on Windows, the Arial Unicode MS font is used if it is installed. Otherwise, the ANSI Fixed Font
is used, which only supports the English character set. Arial Unicode MS is a fairly complete font which is
included with Microsoft Office. Currently, no version of Windows ships with a complete Unicode font. For
more information on Unicode support, see Using Unicode.

Setting Editor Window Fonts
You can set the font for editor windows by selecting the SBCS/DBCS Source Windows element or the
Unicode Source Windows element in the Fonts dialog, as described above. You can also change the
font for editor windows by selecting Window → Font, or by using the wfont command. The Window Font
dialog is displayed. Font, size, and style options are the same as those on the Font Options screen.

Setting Editor Window Fonts

121

Tip

Use the Window Font dialog to set the font for a single editor window.

From the Window Font dialog, choose the Scope that you wish to affect. Select the Current window
option if you only want to change the current window's font. Select the All windows and Default option to
set the font for all editor windows that are open as well as newly-created windows.

For a complete list of the options on the Window Font dialog, see Window Dialogs and Tool Windows.

Colors, Color Coding, and
Symbol Colors

122

Colors, Color Coding, and Symbol Colors
SlickEdit provides a great deal of control over the colors in the editor, using two complimentary coloring
systems. With Color Coding you can color your code based on syntactic information about the elements:
keywords, strings, operators, etc. Using Symbol Coloring, you can define rules to color symbols based on
scope, visibility, and other detailed properties. Symbol Coloring provides more detailed information for
identifiers that would otherwise be colored the same using Color Coding.

Note

Colors for the SlickEdit application window are controlled by the operating system. This includes
the font and background color for tool windows and dialogs. The colors in editor windows are
controlled by SlickEdit.

This section is divided into the following subsections:

• Colors - describes how to set the colors for various entities in the editor window. These colors are
applied to items identified by the Color Coding engine.

• Symbol Coloring - describes how to define rules to color symbols based on scope, visibility, etc.

• Color Coding - provides information about the Color Coding engine.

Colors
Use the Colors option screen (Tools → Options → Appearance → Colors or the color command) to
set the color for different screen elements in SlickEdit. This includes syntactic elements in the editor
window, like keywords, comments, strings, etc. as well as other user interface elements like the message
area or the status line. Window colors and backgrounds are set using the facilities provided by the
operating system.

Setting Colors for Screen Elements

Colors can be set either individually or by editing a profile. To change the default colors, complete the
following steps:

1. From the main menu, click Tools → Options → Appearance → Colors (or use the color command).
The Colors option screen is displayed.

Pro:

Colors

123

Standard and Community:

Colors

124

2. Select the element you want to change from the list of customizable items. The items are categorized
by their purpose. For descriptions of the individual color elements, see Color Options).

Tip

The element selected in the list matches the symbol at the cursor position when this screen was
opened. You can use this to determine what kind of symbol SlickEdit thinks it is. If you're not sure
which screen element to pick, close the options screen and put the cursor in the symbol you want
to color, and then reopen the options screen.

Note

If you have chosen the Selection or Current line screen element, note that SlickEdit will attempt
to render the text using your normal color settings for the Foreground color. The selected
foreground color will only be used if there is not enough contrast between the foreground color for
the underlying text element and selected background color to be readable. It is best to specify a
Background color for selections that is as close as possible to your normal background color,
ensuring that the color-coded text is still easy to read.

Colors

125

3. Set the Foreground and Background colors by clicking on the color squares. The Color Picker dialog
is displayed, allowing you to pick a color from the palette, or set your own custom color using RGB
values.

Note

Several colors for syntactic screen elements such as comments, keywords, and numbers inherit
their background color information from the Window Text color. This allows you to change the
background color for an entire color profile merely by changing the background color for Window
Text.

4. If you want, choose a Font Style for the text.

For a complete list of all of the options available, see Color Options.

Using Color Profiles

Color profiles store the settings for all screen elements, allowing you to quickly change the look of your
editing environment. Several predefined color profiles are provided, and you can create your own.

To use a color profile, from the Profile drop-down, select a color profile and click Apply or OK.

To define a new color profile, click the Copy..., set your colors for the various screen elements, and click

Colors

126

OK. User-defined color profiles are stored in user.cfg.xml file located in your configuration directory.
You can change the name of a profile by clicking Rename....

Setting an Embedded Language Color

Colors for editor screen elements also have an embedded background color. This color is used as the
background when in embedded code. It is best to select an embedded background color that is only a
slight tint from your standard background color. This makes it easier to select common foreground colors
that will display with enough contrast in both embedded and normal code.

Embedded Language color is used when a file of one type embeds a language of another type within it,
like HTML files containing JavaScript. For HTML, the syntax color coding recognizes the <script
language="???"> tag and uses embedded language colors for the new language. In addition, for Perl
and UNIX shell scripts, you can prefix your here-document terminator with one of the color coding profiles
names to get embedded language color coding. The following is an example for Perl:

Symbol Coloring (Pro only)
Use the Symbol Coloring options screen (Tools → Options → Appearance → Symbol Coloring to set
the color for symbols identified by Context Tagging®. This includes function declarations, function
definitions, variables, class names, package names, type names, defines, enumerated types, constants,
as well as undefined symbol names.

Note

Symbol Coloring is turned off by default. Symbol Coloring can be enabled on a per-language
basis by going to Tools → Options → Languages → [Language Category] → [Language] →
View and checking Symbol Coloring. You can also enable Symbol Coloring for a specific file by
selecting View → Symbol Coloring → Enable Symbol Coloring. This will override the language
specific setting, but only for the current file.

Symbol Coloring is different from Color and Color Coding. The base color profile, along with the Color
Coding profile, are used to identify and color lexical elements found in source code, such as comments,
strings, numbers and keywords. Symbol coloring augments the base coloring by overlaying additional
color information for identifiers based on the corresponding symbol's name, type, and attributes. This
allows you to define symbol coloring rule sets for focusing in on certain symbols or groups of symbols. It

Symbol Coloring (Pro only)

127

also makes it easier to distinguish between different symbol types, such as local variables and constants.
See Color Coding and Colors for more information about lexical color coding and color configuration.

When you point at a symbol with the mouse cursor, SlickEdit displays a pop-up that includes information
from Symbol Coloring about what rule was applied. If that symbol is not colored by Symbol Coloring, no
information about the symbol color will be displayed in the pop-up.

Symbol Coloring under some circumstances can cause SlickEdit to pause momentarily while you type. If
you experience these pauses, please turn off Symbol Coloring by unchecking View → Symbol Coloring
→ Enable Symbol Coloring which will turn off symbol coloring for the current file. If these pauses
happen in all files for that language, you can turn Symbol Coloring off for that language by going to Tools
→ Options → Languages → [Language Category] → [Language] → View and unchecking Symbol
Coloring.

Note

The standard symbol coloring profiles shipped with SlickEdit® are very thorough and attempt to
assign a color to nearly every symbol type. While this is useful, it may be more information that is
necessary. The profiles are this way because it is easier to edit or remove rules than it is to add
new rules or create a new profile from scratch. You can use the standard symbol coloring profiles
as templates that you prune down to create your own, more focused, symbol coloring profiles
suiting your specific needs.

Symbol Coloring can be used to highlight unidentified symbols. These are symbols for which the SlickEdit
Context Tagging engine can not find a definition or declaration. If you are working without a workspace or
your libraries are not fully tagged, you would see a lot of unidentified symbols. Because of this, the
capability to highlight unidentified symbols is turned off by default, even if you enable Symbol Coloring. To
enable highlighting of unidentified symbols, select Tools → Options → Languages → [Language
Category] → [Language] → View and put a check in Highlight unidentified symbols. The Symbol
coloring checkbox must be checked for this control to become active.

Symbol Coloring Profiles (Pro only)

A symbol coloring profile is a set of rules defining what color to assign to a symbol with a specific name,
type, and attributes. You can think of a profile as a colored lens for looking at your code that highlights the
specific symbols you are interested in. Since you can quickly switch symbol coloring profiles, it is very
easy to use a special lens for specific tasks, like refactoring out global variables or identifying where your
code uses preprocessing.

Symbol Coloring (Pro only)

128

A symbol coloring rule consists of the following elements:

• A Rule name.

• Symbol types -- A matching symbol's type must be one of the specified types. The special *SYMBOL
NOT FOUND* type is used to identify symbols which Context Tagging® can not locate. See Symbol
types for detailed descriptions of each symbol type.

• Symbol attributes -- The attributes can be either required, ignored, or disallowed. A matching symbol
must have all the required attributes, and none of the disallowed attributes. See Symbol attributes for
detailed descriptions of each symbol attribute.

• Class name -- A matching symbol must belong to a class matching the regular expression.

• Symbol name -- A matching symbol's name must match the regular expression.

• Color and font attributes -- The color definition includes foreground color, background color, and font
attributes. This is the color the symbol will be highlighted using. A color definition can base it's color on
another rule, for example, in order to inherit background color and font attributes for consistency.

Symbol coloring rules are matched in order from the top to bottom of the list of rules in the symbol
coloring profile. For a symbol to match a rule, it must be the first rule in the symbol coloring profile that
matches all of the requirements above.

Unidentified Symbols

An unidentified symbol is one for which the context tagging engine cannot locate the type information.
This could be because the code is incomplete, the source file for that definition has not been tagged or is
out of date, or the definition wasn't located before a specified timeout or limit was hit. We use the term
"unidentified" instead of "undefined" because the symbol may be defined even though the tagging engine
doesn't know it. Unidentified symbols are found using the *SYMBOL NOT FOUND* symbol type.

Symbol Coloring contains a profile, Unidentified Symbols Only, that can be used to spot these symbols.
You can select that profile via the Symbol Coloring options page, Tools → Options → Appearance →
Symbol Coloring. You can also select that profile from the View menu, View → Symbol Coloring →
Unidentified Symbols Only. Lastly, you can toggle the view of unidentified symbols from the view menu
using View → Symbol Coloring → Highlight Unidentified Symbols This will work with any profile, even
if it doesn't contain a rule for unidentified symbols.

Color Profile Compatibility (Pro only)

Symbol coloring augments the standard lexical color coding for keywords, comments, strings, numbers,
and other items. Since the symbol colors will be overlayed and typically inherit background color
information from the base color profile, it is important for the selected foreground color to be chosen such
that the symbol name is still visible and readable against the editor window background.

The standard symbol coloring profiles shipped with SlickEdit are marked with the standard base color
profiles they are compatible with. Some profiles, such as Protected and Private are compatible with all
color profiles Others are fine-tuned to work best against a dark background, a light background, or a
specific color profile. User-defined color profiles can specify which base color profiles they work best with.

Symbol Coloring (Pro only)

129

In addition, each base color profile has a designated, default symbol coloring profile preferred for that
profile. This allows you to switch color profiles and automatically get a corresponding symbol coloring
profile which is compatible. See Colors for more information.

Selecting a Symbol Coloring Profile (Pro only)

Symbol coloring rules can be set either individually or by editing a profile. To change the default symbol
coloring profile, complete the following steps:

1. From the main menu, click Tools → Options → Appearance → Symbol Coloring. The Symbol
Coloring options screen is displayed.

2. Using the Profile combo box, select a profile name. If your current profile is modified, those
modifications will be automatically saved to that profile. If you select a profile which is incompatible with
your current base color profile, you will be prompted to confirm that you really want to use the selected
color profile. See Color Profile Compatibility for more information.

3. The list of rules will be shown for the selected symbol coloring profile. You can get a quick overview of
the profile from the list and see detailed information about each rule by selecting the rule.

4. Press OK or Apply to commit the changes. The change will be applied to all open files using the
default symbol coloring profile.

Symbol Coloring (Pro only)

130

Editing a Symbol Coloring Profile (Pro only)

To edit the current symbol coloring profile, from the main menu, click Tools → Options → Appearance
→ Symbol Coloring. The Symbol Coloring options screen is displayed.

Select a rule from the list of rules. Note that the rule list not only displays the name of the rule, but also a
brief summary of the rule settings. You can add a new rule after the currently selected rule by clicking on
the plus icon. Likewise, you can remove the current rule by clicking on the delete icon. Rules can be
moved up or down in the rule order by clicking on the up or down arrows.

See Color Rules for detailed descriptions of each of the standard symbol coloring rules shipped with
SlickEdit®.

The current rule can be renamed by clicking in the text box under Rule name, modifying the name, then
hitting Enter .

The display color and font choices for a rule allow you to inherit color and font information from another
rule or from certain items from the base color profile. By default a rule will inherit from the Window Text
color defined in your base color profile.

Set the Foreground and Background colors by clicking on the color squares. The Color Picker dialog is
displayed, allowing you to pick a color from the palette, or set your own custom color using RGB values.
You can also select Inherit in order to specify that the rule use the same color as it's parent rule. Set the
font attributes by clicking on Normal, Bold, Italic, or Underline. Select Inherit Font to specify that the
rule should use the same font attributes as it's parent rule.

Select a set of symbol types from the list of symbol types supported by the Context Tagging® engine. A
symbol must be one of the selected symbol types in order to match the rule. You can select as many
symbol types as you want. Select the special *SYMBOL NOT FOUND* symbol type to define a rule for
what to do with symbols that could not be found using Context Tagging®.

Caution

Not all symbol types apply to every language.

Symbol attributes can have three states. The default state is a grayed state which says we don't care if
this attribute is set or not for this rule. If an attribute is checked, it must be set in the matching symbol.

Note

If an attribute is unchecked, it must not be set. Some attributes, such as Public, Protected, and
Private, are mutually exclusive by nature. If you configure a rule that checks both Public and
Private, that rule will never be matched. You should instead either define two rules, or one rule
with Protected and Package unchecked.

In addition to the symbol type and attribute specifications, you can further refine a symbol coloring rule by
adding a Class name or Symbol name regular expression, using the regular expression syntax of your
choice. The class name regular expression is matched against the name of the scope (class, package,

Symbol Coloring (Pro only)

131

struct) which a symbol is defined in. Do not confuse this with the name of the scope in which the symbol
is used. The symbol name regular expression is matched against the name of the symbol. For example, a
Wildcards expression of "vs*" would match all symbols starting with the characters "vs". Case sensitivity
for the regular expression matching is regulated by the language's case-sensitivity. See Color Coding for
more information.

Creating a New Symbol Coloring Profile (Pro only)

New symbol coloring profiles can be created by selecting an existing profile and adding or subtracting
rules, then saving the profile under a new name. To create a new symbol coloring profile from scratch,
select the Unidentified Symbols Only profile, click the Copy... button, give the new profile a name,
remove the one existing rule, and then add your own custom rules.

Selecting a Symbol Coloring Profile for the Current File (Pro only)

From the main menu, click View → Symbol Coloring This will bring up the Symbol Coloring view menu.

The menu will list only symbol coloring profiles known to be compatible with the current base color profile.
Select a profile to switch to that profile for the current file. Select the (None) profile to disable symbol
coloring for the current file.

Selecting a specific profile for the current file will not change the symbol coloring profile for any other files,
nor will it change the default symbol coloring profile. The selected symbol coloring profile will be saved in
your file history so that the next time you open that file, it will return to using the same symbol coloring
profile you selected, as long as your base color profile does not change.

Language-Specific Symbol Coloring Settings (Pro only)

Certain Symbol Coloring features can be disabled on a per-language basis. To edit language-specific
symbol coloring options, from the main menu, click Tools → Options → Languages → [Language
Category] → [Language] → View. The Language View options are displayed.

Symbol Coloring (Pro only)

132

From this dialog, you can configure the following on a per-language basis.

• Turn off Symbol Coloring entirely for the language. This would be a good idea if symbol analysis was
particularly slow or ineffective for a language, such that symbol coloring was only slowing you down.

Note

Symbol coloring is automatically disabled for HTML and other XML variants. It is also
automatically disabled in all modes which do not have any Context Tagging® implemented.
Finally, Symbol Coloring is disabled in all embedded language contexts. This means that Symbol
Coloring is disabled for all PHP code, since PHP is always embedded in an HTML or XML
processing instruction (<?php).

• By default, Symbol Coloring will bold the name part of symbol declarations and definitions. This is
particularly useful for languages which allow implicit local variable declarations. It is also helpful when
the declaration syntax is not always visually distinct from the rest of the code. This bolding behavior can
be turned off by unchecking Use bold for symbol names in definitions and declarations.

• Symbol Coloring is able to select the Symbol not found rule for symbols with are not found by Context
Tagging®. This can serve effective as a live error checker with respect to spelling and capitalization of
symbols.

However, in certain languages, especially scripting languages that allow variables to be declared
implicitly, Context Tagging® can be rather ineffective, simply because the code can not be analyzed
statically. In this case, you might see an unusually large number of symbols highlighted as unidentified
symbols. This can also happen if you do not have Context Tagging® configured correctly for the code
and libraries you are working with.

Symbol Coloring (Pro only)

133

For this reason, this feature is disabled by default. You can enable highlighting of unidentified symbols
by checking Highlight unidentified symbols.

• By default, Symbol Coloring uses fairly strict language specific symbol lookups in order to identify
symbols. In some languages, it is necessary to relax the rules in order to find symbol definitions. This
can, for example, be useful in heavily templated or preprocessed C++ code which is too complex for
Context Tagging®. Selecting Use relaxed symbol lookups instead of the default of Use strict symbol
lookups will tell Symbol Coloring to revert to a more flexible symbol lookup, ignoring scope and
visibility rules, if the strict symbol lookup does not yield results. In other larger, more complex code
bases, the strict symbol lookup algorithm may require too much time to be practical to use. Sometimes
a more simplistic approach of looking up the symbol based on the symbol's name alone, ignoring
context, usage, and scope is adequate. Select Use simplistic symbol lookups to enable the fast,
simple symbol lookup algorithm. Note that using the simplistic symbol lookup algorithm can drastically
decreases the accuracy of Symbol Coloring, especially with respect to detecting misspelled symbols.

Symbol Coloring Performance Settings (Pro only)

Symbol Coloring requires the editor to do symbol lookup and analysis for every symbol visible on the
current page of the current file. This can be expensive, especially for extremely large files or large,
complex code bases. Because of this, it attempts to only color the symbols which are currently visible, not
the entire file. Furthermore, instead of immediately painting like basic syntax driven color coding does,
symbol coloring works on a delay timer. This way you should never have to wait for symbol coloring to
finish working except under extreme circumstances. Besides coloring the current page, symbol coloring
will also look ahead slightly to surrounding lines. This makes it possible, in the typical case, to page up
one page and not have to wait for symbol coloring to draw because the information was already
prefetched.

Note

The most effective way to increase Symbol Coloring performance is to tune your workspace and
tag files configuration so that you tag everything you need and do not tag a lot of extra code.

The second best way to increase Symbol Coloring performance is to make use of the Use
simplistic symbol lookup option. See Language-Specific Symbol Coloring Settings for more
information.

Caution

For typical users, the default performance settings will be good enough. Tinkering with these
settings without regard to the implications could result in very poor performance and/or annoying
drawing behavior.

Symbol Coloring performance can be fine-tuned through the user interface. To edit symbol coloring
performance options, from the main menu, click Tools → Options → Editing → Context Tagging. The
Context Tagging® options are displayed.

Symbol Coloring (Pro only)

134

From this dialog, you can configure the following settings.

• Update after (ms) idle -- This is the amount of idle delay symbol coloring should wait before updating
the Symbol Coloring for the current page. Increasing this value can prevent interruptions to your normal
typing due to symbol coloring updating, however, it will cause symbol coloring updates to lag further
behind your editing. Decreasing this value too much can have the effect of making symbol coloring
updates behave nearly synchronously and can create very bad editor response times. A good setting is
four times your average keypress gap, which you can estimate by looking at how many words per
minute you type when coding.

• Timeout after (ms) -- This the maximum amount of time that symbol coloring should spend trying to do
symbol analysis before giving up and trying to finish in the next pass. Increasing this time can cause
increased intrusiveness. Decreasing this time too much can cause symbol coloring to not have enough
time to paint the entire page. As a result, you would see lines get colored as symbol coloring makes
subsequent passes to finish coloring the page.

• Number of lines to color above and below the current page -- This is the amount of prefetch symbol
coloring should do for pages surrounding the current visible page of code. Setting this very high can
have the effect of forcing symbol coloring to color the entire file in one shot. Setting it to 0 will force
symbol coloring to only color the visible page and not do any prefetch at all.

• Number of off-page lines to color per pass (chunk size) -- When prefetching symbol coloring for off-

Symbol Coloring (Pro only)

135

page lines, this is the number of lines to prefetch per pass. Setting this to a large number can make
symbol coloring performance more intrusive. Setting this to a small number, such as 1, will force
symbol coloring to make many passes before it can color all the off-page lines it is supposed to. As a
result, a Page Up might reveal a page which is only partially colored.

• Windows to color -- Maybe be one of the following:

• Current window -- (Default) Only symbol color the current window

• Visible windows -- Symbol color visible windows

• All windows -- Symbol color all windows including windows that are not currently visible (like an in-
active Document tab)

Color Coding
For information on how to set up colors for various element types in the editor, see Colors This section
describes how to configure the Color Coding engine, which pairs syntactic elements with various colors.

Creating Color Coding for a New Language

To create color coding support for your language, complete the following steps:

1. Display the Color Coding dialog for your language. From the main menu, click Tools → Options →
Languages, expand your language category and language, then select Color Coding.

2. Click New... and enter the new profile name. Usually this is a language name such as JavaScript or
Groovy. Click OK.

3. Select the Color Coding General Tab.

4. On the General tab, set the ID start characters. These are valid characters which can be the start of
an identifier. Use a "-" to specify a range of characters (ex a-zA-Z).

5. Set the ID follow characters. These are additional characters which are valid after the start ID
character. For example, digits are usually allowed in identifiers, but not as the first character of an
identifier. Use a "-" to specify a range of characters (ex a-zA-Z0-9).

6. Now that you've defined the basics for your new color coding profile, you can add keywords, comment
definitions, string definitions, and other types. See How-To's below. See Language-Specific Color
Coding Options for more information on the Color Coding dialog.

7. Click OK on the Color Coding options screen to save your settings.

How to add new color coding words (keywords, library symbols,
operators, punctuation etc.)

To add color coded words to an existing color coding profile, complete the following steps:

Color Coding

136

1. From the main menu, click Tools → Options → Languages, expand your language category and
language, then select Color Coding.

2. Click the Color Coding Tokens Tab.

3. Click Add Words....

4. Enter the new words separated with a space character. If the word contains a space, double quote the
word.

5. Choose the color element Type (Keyword, Library Symbol, Operators, Punctuation, etc.).

6. Click Add.

7. Click OK on the Color Coding options screen to save your settings.

How to add a line comment

To add a line comment to an existing color coding profile, complete the following steps:

1. From the main menu, click Tools → Options → Languages, expand your language category and
language, then select Color Coding.

2. Click the Color Coding Tokens Tab.

3. Click Add Other....

4. Set the Type to Comment or Doc Comment. When Type is Doc Comment, supported documentation
keywords (JavaDoc, XML Doc, and/or Doxygen) get nicer color coding. See Color Coding Language
Tab

5. Set the Start delimiter to text you want matched. For example, a common line comment start delimiter
is "//". See Tips on using regular expressions matching in color coding for information on regular
expression matching.

6. Set Color to end of line to Comment or Doc Comment.

7. Click OK on the Color Coding options screen to save your settings.

How to add a multi-line comment

To add a multi-line comment to an existing color coding profile, complete the following steps:

1. From the main menu, click Tools → Options → Languages, expand your language category and
language, then select Color Coding.

2. Click the Color Coding Tokens Tab.

3. Click Add Other....

4. Set the Type to Comment or Doc Comment. When Type is Doc Comment, supported documentation
keywords (JavaDoc, XML Doc, and/or Doxygen) get nicer color coding. See Color Coding Language

Color Coding

137

Tab

5. Set the Start delimiter and End delimiter to the start and end text you want matched. For example, a
common multi-line comment is /* and */. A more complicated example for a Lua multi-line comment
requires the SlickEdit regular expression --\[{=@}\[and plain text search]#0]. The #0 is replaced with
the zero or more equal signs found in the start delimiter. To use a regular expression, change Plain
text search to SlickEdit regex or Perl regex. See Tips on using regular expressions matching in color
coding for information on regular expression matching.

6. Set When end delimiter is not on same line to Color to end across multiple lines.

7. Click OK on the Color Coding options screen to save your settings.

How to add a string

To add a string to an existing color coding profile, complete the following steps:

1. From the main menu, click Tools → Options → Languages, expand your language category and
language, then select Color Coding.

2. Click the Color Coding Tokens Tab.

3. Click Add Other....

4. Set the Type to String.

5. Set the Start delimiter and End delimiter to the start and end text you want matched. For example, a
common double quoted string uses " for both the start and end delimiters. A more complicated
example for a Lua multi-line string requires the SlickEdit regular expression \[{=@}\[and plain text
search]#0] for end. The #0 is replaced with the zero or more equal signs found in the start delimiter.
To use a regular expression, change Plain text search to SlickEdit regex or Perl regex. When a
string has one or more prefix words, it's more efficient to use a regular expression than to add multiple
strings (ex (s|f|raw)" is used for Scala) .

6. For a multi-line string, set When end delimiter is not on same line to Color to end across multiple
lines. Otherwise, set When end delimiter is not on same line to Color to end of line.

7. To add interpolation to this string definition, see How to add interpolation to a string

8. Click OK on the Color Coding options screen to save your settings.

How to define color coding for numbers

To define color coding for numbers for an existing color coding profile, complete the following steps:

1. From the main menu, click Tools → Options → Languages, expand your language category and
language, then select Color Coding.

2. Click the Color Coding Numbers Tab.

3. Select the variables number options on this tab. It covers the needs of most languages.

Color Coding

138

4. If there is a number construct not covered by the Color Coding Numbers tab, continue with the steps
5-7. Otherwise, skip to step 8.

5. Click Add Other....

6. Set the Type to Number, Float, or Hexadecimal Integer.

7. Set the Start delimiter to text you want matched. Since you will likely need to be a regular expression,
change Plain text search to SlickEdit regex or Perl regex. For example, a SlickEdit regular
expression for a Visual Basic hexadecimal integer is &[hH][0-9a-fA-F]# (Perl regex is
&[hH][0-9a-fA-F]+).

8. Click OK on the Color Coding options screen to save your settings.

How to add a interpolation to a string

To add a interpolation to a string of an existing color coding profile, complete the following steps:

1. From the main menu, click Tools → Options → Languages, expand your language category and
language, then select Color Coding.

2. Click the Color Coding Tokens Tab.

3. Click on the String item in the tree list which you want to add interpolation to.

4. Click Add Sub Item....

5. Set the Type to String.

6. Set the Start delimiter and End delimiter to the start and end text you want matched. To avoid
automatic word boundary checking for the start delimiter, change Plain text search to SlickEdit regex or
Perl regex. For Scala interpolated strings, the start delimiter is \$\{ and uses a SlickEdit regex. The end
delimiter is } and uses a Plain text search (definitely no identifier characters in the end delimiter so
plain text search is ok). See Tips on using regular expressions matching in color coding for information
on regular expression matching.

7. If the interpolation expression can span multiple lines, set When end delimiter is not on same line to
Color to end across multiple lines. Otherwise, set When end delimiter is not on same line to
Color to end of line. This setting will have no effect if the parent string can't span multiple lines.

8. Click the Color Coding More Tab.

9. Set the Start color and End color to Punctuation. You can choose another color if you like it better
for these.

1
0.

Click the Color Coding Embedded Tab.

1
1.

Set Embedded profile to the name of the color coding profile you are modifying. The profile name is
displayed to the right of the Profile label near the top of the dialog.

1
2.

Check Embedded end delimiter is token. This option is only needed if the interpolation expression
can contain tokens like strings which need to be ignored when searching for an instance of the End

Color Coding

139

delimiter.

1
3.

Set Embedded color style to Don't color as embedded if possible. This isn't a requirement but
maintaining the same background color looks better.

1
4.

Click OK on the Color Coding options screen to save your settings.

Tips on using regular expressions matching in color coding

Using regular expressions for the Start delimiter, End delimiter, and/or embedded profile provides a lot of
interesting possibilities for recognized and color certain syntax. Some things are obvious but some are
definitely not. This section documents some of the less obvious things you will want to know about using
regular expression to match start or end delimiters.

• Currently, using regular expressions to match a start or end delimiter does not support matching across
line boundaries. This may be added later. The start and end delimiters do not need to be on the same
line as long as When end delimiter is not on same line is set to Color to end across multiple lines.

• Sometimes you need to use a regular expression match for the start or end delimiter to avoid automatic
word break logic performed by a plain text search. For example, if the Start delimiter is ${ and the
identifier start or follow characters contain a dollar sign, you may need to use a regular expression so
that ${ is still considered a match in a text string like abc${.

• Variable length look behind assertions can be very valuable. This is a feature that is NOT supported by
other regular expression engines. Probably because it's very complicated to implement. Take the
member expression "foo.member". If you want to color code all member references in a particular color,
a variable length look behind assertion will work nicely. For example, the SlickEdit regular expression to
match this is roughly (#<=[a-zA-Z][a-zA-Z0-9]@.)[a-zA-Z][a-zA-Z0-9]@. The equivalent Perl regular
expression to match this is (?<=[a-zA-Z][a-zA-Z0-9]*\.)[a-zA-Z][a-zA-Z0-9]*It's important to note that
the text found in the look behind assertion will not be colored because it's not considered part of the
match.

• When the Start delimiter is a regular expression, tagged expressions and escapes are processed in
the End delimiter even if the end delimiter is not a regular expression. When the Start delimiter and
End delimiter are both regular expressions, things get complicated. First, tagged expressions and
escapes are processed. Then the result is compiled as a regular expressions. This means you may
need to escape a literal character twice (ex instead of just "\\" you need "\\\\"). Note that when the
tagged expressions are replaced, special characters are escaped so that the tagged expression
replacements are considered literal text. See Section_Replacing_with_Regular_Expressions for
information on tagged expressions and special characters in the replace string.

Lua multi-line string example:

If see [[, want end to match]]
If see [=[, want end to match]=]
If see [==[, want end to match]==]
etc.

Start delimiter (SlickEdit Regex): \[{=@}\[

Color Coding

140

End delimiter (Plain text search):]#0]

Start delimiter (Perl Regex): \[(=*)\[
End delimiter (Plain text search):]$1]

The above example is pretty simple but now lets change the brackets to be a backslash.

Make believe example:

If see \\, want end to match \\
If see \=\, want end to match \=\
If see \==\, want end to match \==\
etc.

Start delimiter (SlickEdit Regex): \\{=@}\\
End delimiter (Plain text search): \\#0\\

Start delimiter (Perl Regex): \\(=*)\\
End delimiter (Plain text search): \\$1\\

Notice that the End delimiter needs two backslashes to represent one. This is exactly how the replace
string is handled for a regular expression search and replace.

Now lets tweak the above example more so the End delimiter needs to be a regular expression.

Harder make believe example:

If see \\, want end to match \<optional-whitespace>\
If see \=\, want end to match \=<optional-whitespace>\
If see \==\, want end to match \==<optional-whitespace>\
etc.

Start delimiter (SlickEdit Regex): \\{=@}\\
End delimiter (Plain text search): \\\\#0[\\t]@\\\\

Start delimiter (Perl Regex): \\(=*)\\
End delimiter (Plain text search): \\\\$1[\\t]*\\\\

Noticed that escaping is only sometimes done twice. A literal backslash requires four backslashes but
only two backslashes are needed to specify the tab character (\\t). When the start delimiter is found,
\\\\#0[\\t]@\\\\ is translated to \\<zero-or-more-equals>[\t]@\\. Then the regular expression
\\<zero-or-more-equals>[\t]@\\ is compiled.

Note that when the tagged expression #0 or $1 is replaced, it is replaced as literal characters so you
are guaranteed the result can be compiled as a regular expression.

Color Coding

141

• It would be really handy to be able to specify different colors for tagged expressions. While this feature
is not yet supported, it most likely will be added in the future.

Advanced Color Coding Configuration

User defined Color Coding profiles are stored in user.cfg.xml as well as other settings. For
information about the format of these profiles, see Color Coding Profile Format.

Restoring Settings on Startup

142

Restoring Settings on Startup
By default, the files, current directory, and more from the previous edit session are automatically restored
when you switch workspaces or close and re-open SlickEdit®.

To control which elements of your SlickEdit environment that are automatically restored, from the main
menu, click Tools → Options → Application Options → Auto Restore. See Auto Restore Options for
more information.

Setting File Associations

143

Setting File Associations
Files of certain types can be associated with SlickEdit®, so that when those files are opened from
Windows Explorer, they run in the SlickEdit application. To set up these associations, use the Associate
File Types Options. To access these, from the main menu, click Tools → Options, expand File Options,
then select Associate File Types (or use the assocft command).

Check the file types you wish to associate in the File Types tree. You can organize the list by using the
View combo box. To see extensions organized by the language they are associated with, select List
extensions by language. To see the file types in one alphabetic list, select List extensions only. To
add or remove file extensions, click the Manage File Extensions link.

Note

Setting File Associations

144

NOTE If you are associating workspace files (.vpw extension) to SlickEdit, SlickEdit restores the
edit session and the project when opening the .vpw file. See Workspaces and Projects for more
information about working with projects and workspaces.

Setting File Associations

145

146

Workspaces, Projects, and Files

This chapter contains the following topics:

• Workspaces and Projects

• Working with Files

147

Workspaces and Projects

Overview of Workspaces and Projects
Workspaces and projects provide a way to organize your work. Much of the power provided by SlickEdit®
derives from the information in your projects. So, it's important to set them up correctly.

A workspace defines a set of projects and retains the settings for an editing session. Opening a
workspace returns a session to the same state as when you last worked on it, including which files are
open, the working directory, and more. To see the auto restore options, click Tools → Options →
Application Options → Auto Restore. The data for each workspace is stored in a text file with the
extension .vpw.

A project defines a set of related files that build(Pro only) and execute(Pro only) as a unit. For each
project you can specify the set of files it contains, a working directory, a set of commands(Pro only) to
build(Pro only) and execute(Pro only) the project, compiler options(Pro only), and dependencies(Pro only)
between other projects. Files can only be added to projects, not directly to a workspace. A file may belong
to multiple projects, and a project may belong to multiple workspaces. The data for each project is stored
in a text file with the extension .vpj.

Pro:

When you create a project, you select the project type based on the language and tool chain you are
using. A tool chain is the combination of compiler and debugger used. Selecting the right project type is
essential to configure SlickEdit to build, run, and debug your program. Once a project type is selected, it
is not possible to change it. For more information on this topic, see the section on Managing Projects.

The number of projects you create in a given workspace depends on the type of program you are
creating. Typically, you create a separate project for each build target in your program. In C/C++ you
would create a separate project for each DLL or SO and one for each executable. In Java, you might only
create a single project.

If you have a workspace with multiple projects, you can use project dependencies to ensure that projects
are built in the correct order (see Defining Project Dependencies). You may find it useful to define an
umbrella project that depends on all other projects. This provides an easy way to rebuild all of your
projects. Even if you have no project that meets this criterion, you can create an empty project for that
purpose.

Files in a workspace are processed by the Context Tagging® feature, building a database of the symbols
they contain. This information is used for completions, providing parameter information, navigating from a
symbol to its definition or references, and more. The Context Tagging database provides near-
instantaneous access to information for which you would otherwise have to search, saving you a great
deal of time.

You can define as many workspaces as you like. For large systems that decompose into multiple
subsystems and programs, you can create a separate workspace for each program or subsystem. This
helps you manage the complexity by limiting the number of files in your workspace. It also prevents
irrelevant information from being presented by Context Tagging when doing symbol lookups.

Overview of Workspaces and
Projects

148

SlickEdit has a default workspace that is active before you define a workspace or after you close a
workspace. However you can not add projects or files to this workspace. You can open files and edit
them, and state will be saved, but using SlickEdit in this way is like using a basic editor and will not
provide the full benefit of SlickEdit's symbol analysis. For more information on these features, see Context
Tagging Features.

Viewing your Files in the Projects tool window

You can use the Files tool window, Open tool window, or the Projects tool window for quickly opening files
from your project or workspace. Both the Files tool window and Open tool window display a flat list of files
and provide excellent search capabilities for easily searching opening project files. The Projects tool
window allows you to create various folder views of your files without changing their location on disk.

Choose the viewing style that meets your needs:

• Wildcard Directory Folder

• Folders for File Types (.cpp, .h, .png, .rc, etc.)

• Folders for each Package or Namespace

• Folders for Each Directory

• Customized Folders for Directories

Wildcard Directory Folder

The Good: Very easy to setup. Allows you to use your existing source code directory organization for
navigating and opening files in your project. When you add files to your source tree, the files will be
automatically added to SlickEdit.

The Bad: Since this uses wildcards which need to be scanned at various times, you may see
performance degradation depending on the size of the directory tree. When performance is a problem, it's
best not to use wildcards. If you are using SlickEdit to build your source code, your wildcard may include
files you don't want to build.

How to add a wildcard directory folder:

• Make sure your Project is in Custom View. Right click on the project file in the Projects tool window to
display the context menu, choose Folder View>Custom View.

• Right click on the project file in the Projects tool window and choose Add>Tree...

• Set the base path (Path), file types to list (Include filespecs), and any exclusions you want (Exclude
filespecs).

• Check the Recursive, Add as wildcard, Show subfolders, and Create parent for directory check
boxes.

Note

Overview of Workspaces and
Projects

149

(Close the any modal dialog like the Project Properties dialog first) You can drag/drop a directory
from your operating system file explorer onto SlickEdit to perform an Add Tree to the active
project. If no workspace/project is open, you will be prompted to create one.

Folders for File Types (.cpp, .h, .png, .rc, etc.)

The Good: Great for small projects. Easy to setup. (Pro only) You can create custom project templates
(Project>New>Custom...) that you can use later.

The Bad: The files of the same type and displayed in a flat list. Once you have many files, you have to
scroll the list.

How to add a folder for a file type:

• Make sure your Project is in Custom View. Right click on the project file in the Projects tool window to
display the context menu, choose Folder View>Custom View.

• Right click on the project file in the Projects tool window and choose Add>Folder...

• Type the name for the folder and the wildcards for the folders.

Overview of Workspaces and
Projects

150

Folders for each Package or Namespace

The Good: Great for any size OO project. Very easy to setup.

The Bad: Not good for non-OO projects. Can't add any custom folders. All folders names are
automatically chosen.

How to turn on package view:

• Right click on the project file in the Projects tool window to display the context menu, choose Folder
View>Package View.

Folders for each Directory

The Good: Great for any size project which has a very useful directory structure. Very easy to setup.

Overview of Workspaces and
Projects

151

The Bad: You may get odd folder names if your source files are not beneath your project file. Can't add
any custom folders. All folders names are automatically chosen.

How to turn on directory view:

• Right click on the project file in the Projects tool window to display the context menu, choose Folder
View>Directory View.

Customized Folders for Directories

The Good: Great for any size project. Most flexible.

The Bad: Not obvious how to set this up. You must manually create every root folder. As long as you
don't have that many root folders, it's not a big deal.

How to add a folder and add files to it:

• Make sure your Project is in Custom View. Right click on the project file in the Projects tool window to
display the context menu, choose Folder View>Custom View.

• Right click on the project file in the Projects tool window and choose Add>Folder...

• Type the name for the folder. Make sure you leave the wildcards text box blank.

• Right click on the folder you just created in the Projects tool window and choose Add>Tree...

• Set the base path (Path), file types to list (Include filespecs), and any exclusions you want (Exclude
filespecs).

• If you want a folder created for each directory as shown in the picture below, turn on the "Show
subfolders" check box. You may also optionally choose the "Add as wildcard" option. Adding wildcards
can cause performance issues for large source trees.

Overview of Workspaces and
Projects

152

Organizing Workspace (.vpw) and Project (.vpj) Files

SlickEdit® places no restrictions on the location of your files. Your source files do not have to be located
in the same directory as your project (.vpj) or workspace (.vpw) files. Adding files to a project does not
copy the files to a new location. It simply associates those files with the project. Likewise, adding an
existing project to a workspace does not copy the project. This gives you a great deal of flexibility to
organize your files.

In general, there are two approaches to organizing your files:

• Single Root Approach - All files are stored under a single root directory. In this approach, the
workspace .vpw file is typically located in the root folder and there is a subfolder for each project. Each
project folder contains the project .vpj file and the source files.

Overview of Workspaces and
Projects

153

• Multiple Root Approach - No single folder contains all of the workspace files exclusively. Each project
may be created in a different directory unrelated to each other, and the workspace .vpw file may be
placed in yet another directory.

Overview of Workspaces and
Projects

154

The single root approach is common when all team members are working with SlickEdit. This
organization provides a simple approach to storing your files and facilitates interaction with source control
systems. The multiple root approach may be used on complex programs that share framework code with
other programs. In this case, you may not want to duplicate the shared code to place it under the root
directory for this program.

A hybrid approach may be used if you have a single root source hierarchy but the whole team is not using
SlickEdit. In that situation, they may not want to have the SlickEdit project (.vpj) and workspace (.vpw)
files checked into the same location as the source files. You can still check out the source tree into a
single directory. Then define a separate subdirectory for your workspace and project files. If other team
members are using SlickEdit, you can check these files into a different area in source control, allowing
you to share them with other SlickEdit users but not interfere with non-SlickEdit users.

Storing files remotely will have a definite impact on performance since network latency is added to disk

Overview of Workspaces and
Projects

155

latency. If your standards require you to work with remote files, you should still either set up your
workspace locally or more importantly configure your workspace Tag Files Directory to a local drive (see
Workspace Properties Dialog). By default, tag files are stored in the same location as your workspace file.
SlickEdit reads and writes workspace files (especially tag files) frequently, so storing them remotely will
reduce performance.

Version Control

If the whole team is using SlickEdit®, then project (.vpj) and workspace (.vpw) files should be checked
in any time they are updated by SlickEdit. That way, all team members will see any new files or projects
you add to the workspace. Even if you are the only person using SlickEdit, it's a good idea to check in
your project and workspace files. This protects you from loss and allows you to fall back to earlier
versions of the program.

Do not check in the .vpwhist file. It contains breakpoints(Pro only), bookmarks, file positions, list of
open files--information that is unique to an editing session.

For more information about using version control with SlickEdit, see Version Control.

Project Wildcards

If all team members are using SlickEdit® for their development, you will pick up newly added files by
getting the latest version of the .vpj files. If some of your teammates are not using SlickEdit, then you
can use Add as wildcard when adding files to your projects in order to automatically pick up newly added
files. Each time you start SlickEdit, the wildcards are evaluated and the file list is updated (see Managing
Source Files for more information).

Working with Libraries (Pro only)

A typical program also makes calls to library routines. A library is a pre-built unit of code providing
application-independent functionality. Standard libraries are provided by the compiler, and many
programs use third-party libraries. Some development projects have their own libraries.

Libraries should not be added to your workspace as a project. The key distinction is that libraries are pre-
built and will not be edited as part of the development effort. If you have library routines that you plan to
edit and build as part of your development, these should be added to your workspace as a project.

SlickEdit® automatically tags the standard libraries for C/C++, Java, .NET, and COBOL as part of normal
installation. This adds the same type of symbolic information for these libraries to the symbol database
that is created for your source code. If you skipped auto-tagging or you switch compilers and need to tag
those libraries, you can re-run auto-tagging by clicking Tools → Tag Files and then clicking the Auto Tag
button.

If you use third-party libraries or your own internal libraries, you will want to tag them as well. See
Creating Language-Specific Tag Files for instructions on how to tag libraries.

Managing Workspaces

Managing Workspaces

156

Workspaces are just a means to aggregate projects and store values from an editing session. They are
easy to create, and you can quickly switch from one workspace to another. The Projects tool window
allows you to browse the projects within a workspace and the files contained in those projects. It is
docked as a tab on the left side of the editor by default and display can be toggled by clicking View →
Tool Windows → Projects.

Opening and Closing Workspaces

To open an existing workspace, click Project → Open Workspace (Ctrl+Shift+O or workspace_open
command). Locate the workspace file (.vpw) and click Open.

To close a workspace, click Project → Close Workspace (workspace_close command). Only one
workspace can be open at any given time. If you open another workspace when one is already open, the
existing workspace will be automatically closed first.

Creating Workspaces

Workspaces are typically created by creating a new project. At that time you have the option to create a
new workspace for this project or add it to the current workspace. If no workspace is open, you can only
elect to create a new workspace. If you choose to create a new workspace, your current workspace will
be closed and the new one opened. For more information on creating projects, see Creating Projects.

Creating a workspace without creating a project is useful when you plan to import existing projects or if
you want a workspace for editing files that aren't part of a project, like shell script files.

To create a workspace without creating a project, complete the following steps:

1. From the main menu, click Project → New and select the Workspace Tab.

2. Type a value in the Workspace name field.

3. Type the location (or use the Browse button to the right of this field to pick a location) for the new
workspace.

Organizing Workspaces

The Organize All Workspaces dialog can be found by going to Project → Organize All Workspaces....
This dialog enables you to organize the list of workspaces which appear in the Project Menu (Project →
Organize All Workspaces...). You can add or remove workspaces from the list, as well as sort them into
folders. You cannot move or delete the All Workspaces top-level folder.

Managing Workspaces

157

The dialog features a tree which shows the organizational structure of the All Workspaces menu. The
current workspace is in bold. By selecting a workspace in the tree, the Caption and Filename fields will
be filled in. You can modify the Caption field, and yours changes will be reflected in the Project →
Organize All Workspaces... menu.

The Organize All Workspaces dialog has the following buttons:

• Open Workspace - opens the workspace currently selected in the tree.

• New Instance - opens the workspace currently selected in the tree in a new instance of SlickEdit.

• Add Workspace... - add a new workspace to the list. New workspaces will be added to the bottom of
the top-level list.

• Add Folder... - add a new folder to the list. This folder will show up as a submenu on the All
Workspaces menu. You will be prompted for the new folder's name.

• Move to Folder... - move the selected item(s) to an existing folder in the tree. You will be prompted to
select the destination folder.

• Move Up - move the selected item up one spot. This button is only enabled if the option to sort the All
Workspaces menu is disabled, otherwise, moving items up or down in the list would be ineffective. See
History Options for more information.

• Move Down - move the selected item down one spot. This button is only enabled if the option to sort
the All Workspaces menu is disabled, otherwise, moving items up or down in the list would be

Managing Workspaces

158

ineffective. See History Options for more information.

• Delete - delete the selected workspace or folder from the list. You will be prompted to delete the
workspace itself, as well as all associated files. You cannot delete the currently open workspace or the
All Workspaces folder. If you delete a folder from the tree, then all workspaces inside that folder will be
removed from the list as well. Just as if you had deleted the workspace itself from the list, you will be
prompted to delete the workspace files.

• Close - close the Organize All Workspaces dialog, applying any changes to the Project menu.

Managing Projects within a Workspace

To list projects in the current workspace, add or remove projects from the current workspace, or to set the
active project, use the Workspace Properties dialog box. The dialog, pictured below, can be accessed
from the main menu by clicking Project → Workspace Properties.

For more information on using this dialog, see Project Dialogs and Tool Windows.

Sharing Projects between Workspaces

A project can be used in more than one workspace. Adding an existing project to a workspace does not
copy the project or its source files; it simply creates an association between the two. If you want a local
copy of the project, you will need to copy it before you add it to the workspace.

To share an existing workspace, complete the following steps:

1. From the main menu, click Project → Workspace Properties.

2. Click Add.

3. Locate the file and click Open.

Working with Third-Party Workspaces

Managing Workspaces

159

SlickEdit® provides compatibility with the following third-party workspaces. Use Project → Open
Workspace to open these project types.

• Visual Studio .NET - SlickEdit can directly open .sln and .vpw files. If you have difficulty opening a
Visual Studio solution or workspace, please contact Product Support. SlickEdit cannot create Visual
Studio workspaces. You need to create the workspace in Visual Studio and define the project structure
there. Once created, SlickEdit can add files to existing projects.

• Xcode

• Cargo (Cargo.toml)

Managing Projects
Projects are used to hold a set of related files. In compiled languages, a project typically represents the
files for a single build unit, either an executable or a library. For interpreted languages, you can use
projects to aggregate files into logical groups, though it is common to have a single project.

Once a project has been created, you need to add the source files to it. See Managing Source Files for
more information.

Project Types (Pro only)

SlickEdit provides a variety of project types that match commonly available languages, tool chains
(defined by the compiler and debugger you are using), and types of programs. Some project types create
main programs, starting you off with a fully compilable program.

The (Other) project type is provided for use when a specific project type does not match the language or
tool chain you are using. When you use this project type, you are responsible for configuring all build, run,
and debug commands.

Warning

It is not possible to configure the Other project type to work with supported tool chains. For
example, if you are using the GNU compiler or debugger, you need to use the GNU C/C++
Wizard. The Other C/C++ project type supports the GNU debugger but does not contain the
configuration options for the GNU compiler.

You can create a custom project type if none of the existing project types match your development. By
doing this you avoid having to redefine the build, run, and debug commands or other project properties
each time you set up a new project. You can customize the (Other) project type to create a completely
new project type or customize one of the language-specific project types, like Java, to tailor it to your
needs. See Creating Custom Project Types for more information.

The sections below describe the most commonly used project types.

GNU C/C++

Managing Projects

160

SlickEdit® provides a GNU C/C++ Wizard that leads you through the configuration options for setting up a
new GNU C/C++ project. Using this wizard, you can quickly configure a new project that will build, run,
and debug.

SlickEdit prompts you whether this project will build an executable, a shared library, or a static library. You
can specify whether this project will use C++, C, or ANSI C. Further, you can select whether to create an
empty project, an application with a main() function, or a "Hello World" application. Finally, you are
prompted whether to use SlickEdit's build system or to use a makefile.

SlickEdit detects the presence of GNU tools on your system and configures the new project
correspondingly. You can make changes to these settings by clicking Project → Project Properties.

See C and C++ for more information about SlickEdit's C/C++ features.

Microsoft Visual Studio

SlickEdit® cannot create Visual Studio solutions or projects. Visual Studio users should create a solution
in Visual Studio, and define the projects it contains using Visual Studio.

Solutions can be opened in SlickEdit by clicking Project → Open Workspace. Navigate to the directory
containing the solution and select the .sln file to be opened. SlickEdit reads the .sln file and configures
the build, run, and debug operations to be performed just as they would in Visual Studio.

Note

You can add files to projects using SlickEdit, but any modifications to the workspace or project
settings must be performed using Visual Studio. This includes adding any new projects to the
workspace.

SlickEdit lists a Visual Studio project type on the New Project dialog, but it will simply warn you that
SlickEdit cannot create a project of that type and that you need to do that in Visual Studio.

For C#, a tutorial is available that describes how to build a simple C# console application with SlickEdit,
no Visual Studio required. See Hello World Tutorial (C#).

Other C/C++ Compiler Compatible with GDB (UNIX only)

Some compilers, like the Sun™ compiler, are compatible with the GNU tool chain. For these, you should
start with the GNU C/C++ project and customize it to use the compiler, debugger, and do builds the way
you want. Doing this allows you to launch the integrated debugger using Debug → Step Into rather than
Debug → Attach Debugger → Debug Executable (GDB). (See C and C++ for more information about
C/C++ features in SlickEdit®.)

C/C++ Compiler Compatible with LLDB (macOS and 64-bit Linux only)

The LLVM compiler suite (clang, clang++) are compatible with the LLVM toolkit debugger LLDB. GNUC,
as well as other compilers, are also compatible with LLDB since they use a common ABI and can also
use the GDB remote protocol (gdbserver) for remote debugging. For these, you should start with the
CLang C/C++ project and customize it to use the compiler, debugger, and do builds the way you want.

Managing Projects

161

Doing this allows you to launch the integrated debugger using Debug → Step Into rather than Debug →
Attach Debugger → Debug Executable (GDB). (See C and C++ for more information about C/C++
features in SlickEdit®.)

Other C/C++ Compiler

SlickEdit® provides a project type for Borland® C++, both 16- and 32-bit for Windows and for Symantec™
C++. These were created for older versions of these products and may not work with the most recent
versions. In that case, or when using any other C/C++ compiler, you should select the Other
C/C++project type. You will then have to configure the build, compile, link, run, and debug commands for
both the Release and the Debug configurations. (See C and C++ for more information about C/C++
features in SlickEdit.)

Java

SlickEdit® provides a broad selection of Java project types. Select the appropriate choice based on
whether you are creating an applet or application and the type of program. SlickEdit detects the installed
JDK on your system and configures the build, run, and debug commands. (See Java for more information
about SlickEdit's Java features.)

Mono

SlickEdit® provides support for a broad selection of .NET / Mono project types. SlickEdit detects the
installed Mono interpreter on your system and configures the build, run, and debug commands. (See
Mono for more information about SlickEdit's Mono development features.)

Perl, PHP, and Python

SlickEdit has project types for Perl, PHP, and Python. These are needed so that SlickEdit knows how to
run and debug programs for these languages. If you are using one of these languages, pick the
associated project type when you create a new project.

Other Dynamic Languages, Including Ruby

Dynamic languages do not get compiled. Most of the settings in the project types provided in SlickEdit®
are related to compiling and debugging your program. Therefore, SlickEdit has no project types that are
specific to these languages. Use the (Other) project type and add your files there. You can configure run
and debug commands by clicking Project → Project Properties and selecting the Tools Tab. Create a
custom project type for this language to avoid having to redundantly configure projects each time you
create them (see Creating Custom Project Types).

Creating Projects

To create a project, complete the steps below. For more information on creating new projects, see Project
Tab.

1. From the main menu, select Project → New.

2. (Pro only)Select the type of project that you want. It is critical that you select the correct project type.
See Managing Projects for a full discussion of project types.

Managing Projects

162

3. Type the project name.

4. Select a directory location. If the directory does not exist, a prompt appears to create it when you click
OK.

5. Type the name of the executable file or output file.

6. Select either Create new workspace or Add to current workspace. If adding this project to the
existing workspace, specify whether this project depends on another project in this workspace by
checking the Dependency of check box and selecting the depended-on project from the drop-down
list.

7. Click OK.

Tip

(Close the any modal dialog like the Project Properties dialog first) You can drag/drop a directory
from your operating system file explorer onto SlickEdit to perform an Add Tree to the active
project. If no workspace/project is open, you will be prompted to create one.

You can also create a project by importing a makefile. To do this, from the main menu, click
Project → Open Other Workspace → Makefile (or use the workspace_open_makefile
command). See Importing Makefiles for more information.

Creating Custom Project Types (Pro only)

If an existing project type does not meet your needs, you can define a new project type or customize an
existing one.

To create a custom project type, complete the following steps:

1. Click Project → New, then click the Customize button.

2. On the Customize Project Types dialog, click the New button.

3. Enter a name for the new custom project type.

4. Select the project type to use as the starting point for your custom project. Use the (Other) project if
you are defining a project type for a completely new language/compiler or select one of the existing
project types to make modifications.

5. Click OK to bring up the Project Properties dialog.

6. Configure the project settings for this project type. This is similar to the process of configuring a single
project, except that you cannot add files to a project type.

7. Click OK when done to save your changes and return to the Customize Project Types dialog. Click OK
to return to the New Project dialog. Click Cancel in these dialogs to discard your changes.

To customize an existing project type, complete the following steps:

Managing Projects

163

1. Click Project → New, then click the Customize button.

2. On the Customize Project Types dialog, select the project type to customize and click the Edit button.

3. Make the changes needed for this project type.

4. Click OK when done to save your changes and return to the Customize Project Types dialog. Click OK
to return to the New Project dialog. Click Cancel in these dialogs to discard your changes.

Creating or customizing a project type creates a new project template stored in the
usrprjtemplates.vpt file located in your configuration directory. Other team members can use this
template by copying the template file into their own configuration directories. If they have also created
custom project types, they can use DIFFzilla® to compare and merge the two versions of the file.

Setting the Active Project

To make a project active, click Project → Set Active Project, and pick the project to make active.
Alternately, you can use the Workspace Properties dialog box to set the active project (see Managing
Projects within a Workspace).

(Pro only) Each workspace contains one project that is the active project. The active project is the one
that is built when you click Build → Build. If the active project depends on other projects, those projects
will be built first.

Defining Project Dependencies (Pro only)

Dependencies define a relationship between two projects, causing the dependent project to be built after
the projects it depends on. This ensures that elements in a depended-on project are up-to-date prior to
building the dependent project. Project dependencies can be defined when a project is created.

To specify dependencies, complete the following steps:

1. Click Project → Workspace Properties.

2. Select the project you want to have depend on other projects.

3. Click the Dependencies button. The Project Properties dialog box opens with the Dependencies Tab
displayed.

4. Mark the check box next to the projects upon which the selected project should depend. These
dependencies will be built before the project is built when a build or rebuild is performed.

5. Click OK.

Project Configurations (Pro only)

Projects can have multiple configurations, each with different values for project settings. The most
common use of project configurations is for creating a debug or release version of a project without
having to define a new project. The Project Configuration Settings dialog box (Build → Configurations)
is available for viewing, adding, and deleting project configurations. You can change the active

Managing Projects

164

configuration by selecting Build → Set Active Configuration from the main menu.

SlickEdit creates a "Debug" and "Release" configuration for each new project. These configurations are
identical, until you change the project settings associated with them. When you select Project → Project
Properties, the drop-down list at the top lets you select the project configuration you are modifying. The
"All configurations" value is selected by default. By selecting a configuration you can change things that
are specific to that configuration, like setting compiler flags or changing the list of source files.

Note

• Visual C++ - If you open a Visual C++ v5.0 or later workspace, the configurations are
automatically retrieved from the Visual C++ project. Some typical configurations for Visual C++
v5.0 or later are "CFG=MyApp - Win32 Debug" and "CFG=MyApp - Win32 Release." Use
Visual C++ to change the configurations.

• macOS - Opening an Xcode project imports styles that you cannot change using SlickEdit®.
You will need to change the styles using Xcode. You can work with the project in SlickEdit, but
you cannot change the project settings.

For information on using Project Configurations in builds, see Project Configurations in Builds.

Configuring Project Directories

The Directories tab of the Project Properties dialog box (Project → Project Properties) allows you to
set the working directory, references file, and include file search directories for the current project. See
Directories Tab for a list of the options.

Configuring Project Tools (Pro only)

Managing Projects

165

The Tools tab of the Project Properties dialog box (Project → Project Properties) is used to change
project commands and their properties.

The options on the Tools tab vary, depending on the tool name that is selected in the Tool name text
box. This text box contains a list of the tools/commands that can be used for projects. You can have
different tools for different projects, and you can choose whether or not each tool should appear on the
Build menu.

Use the up and down arrows to move the tools up and down in the list. This order corresponds to the
order in which the tool appears on the Build menu. Click the red X button to remove a user-defined tool
(default tools cannot be deleted). Click the New button to add a tool. Click the Advanced button to

Managing Projects

166

change environment variables (see Environment Variables).

Setting Language-Specific Options

The Options button on the Project Properties Tools tab is only available for selected tools that support
language-specific options. Click the Options button to display options specific to the language with which
you are currently working. From there you can make settings for the command that gets executed for the
tool specified in the Tool name combo box. For more information on changing language options, see the
topic for your language in the Language-Specific Editing chapter.

Tip

(Java only) You can easily change Java tool options including the class path. Click the Options
button here to display the Java Options dialog box, which allows you to customize options
supported by Javac, Javadoc, and JAR. To change the compiler from Javac to another compiler
(such as SJ or Jikes™), from the Java Options dialog, select the Compiler tab, then select the
Other tab, and type the compiler name.

Command Line Execution

The Command line text box on the Project Properties Tools tab is only available (and visible) for
selected tools that support a command line execution. It defines the command line that is set to be
executed for the selected tool in the Tool name combo box. This field is initially blank when you modify
settings for "All Configurations", and the settings differ for different configurations. Click the buttons to the
right of this text box to insert files and escape sequences (such as %f which inserts the current buffer
name) that you can use to build your command line.

Specifying a Command Directory

For each tool listed on the Project Properties Tools tab, you can specify the directory from which to run
the command in the Run from dir text box. By default, all of the tools are run from the working directory
that is specified using the %rw or %rp escape sequences, which indicate the working directory or project
directory, respectively. When running programs like ant or make, this is typically set to the directory
containing the makefile.

Other Options

The remaining options on the Project Properties Tools tab allow you to specify output, save, display, and
other settings.

Note

(UNIX only) Output of text mode programs that are executed using xterm cannot be captured. To
see the output, uncheck the Output options Capture output and Output to build window, then
prefix the program name in the Command line field with xterm -e or dos -w (this waits for a key
press).

All of the options and settings on the Project Properties Tools tab are outlined in the section Tools Tab.

Managing Projects

167

Configuring Build Settings (Pro only)

The commands project_compile (Shift+F10 or Build → Compile) and project_build (Ctrl+M or Build
→ Build) start the compile and build commands respectively for the current project.

The commands next_error (Ctrl+Shift+Down or Build → Next Error) and prev_error (Ctrl+Shift+Up or
Build → Previous Error) allow for quick navigation of compiler errors. For information about building and
compiling projects, see Building and Compiling.

To change the build and compile commands for projects as well as other project options, use the Build
tab of the Project Properties dialog (Project → Project Properties). The Build tab allows you to run
programs and/or execute commands before or after a build. You can run different programs and
commands for different projects as the information is stored per-configuration. The contents of this tab are
unavailable for extension-based projects.

Managing Projects

168

Each line in the Pre and Post Build Commands text boxes can contain a program to execute a
command. For example, the set command could be used to set environment variables. Double-click on
the text as indicated in the text boxes to add commands. Use the Up and Down arrows to the right of the
text boxes to move the commands up and down in the list. The order corresponds to the order in which
the command will be run.

When the Stop on error option is checked and the current project depends on other projects, the vsbuild
utility (see Using Build and Compile Operations) will be used to build the projects and check for error
codes. When the vsbuild program detects an error, it does not continue building other dependencies.

Managing Projects

169

Note

(Windows only) Under Windows 95 or later, vsbuild cannot detect error codes returned from a
batch program.

Build Output Options

The build output options on the Build tab allow you to configure where object files are placed by the build,
as well as the name of the executable name being created.

• Object directory - This is the directory where object files and the executable are placed by the build
process. When building using a user-defined command or a custom makefile, set this to the directory
where you expect the build process to place the object files and executable. When building using
SlickEdit's build system or an auto-generated Makefile, this is the directory where object files will be
placed. This setting is referenced elsewhere in the Project Properties dialog using the %bd project
escape sequence.

If the Object directory is not specified, the default is to use a subdirectory matching the configuration
name under the project directory.

• Executable name - This is the name of the item created by this build process. For a program, this is
typically the name of the executable. For a library, this is the name of the library, including the library
suffix (for example, .dll, .so, .a, .lib, .dylib).

This setting can be either an absolute path or just a file name or path relative to the Object directory.
This setting is referenced elsewhere in the Project Properties dialog using the %o (output file name)
project escape sequence, as well as the related escape sequences %on (output file name only), %oe
(output file extension), and %op (output file path).

Build System Options

The build method options on the Build tab apply to C/C++ projects only and affect all configurations. With
these options, you will not need to convert the current build methods to use the GNU debugger; you can
select one of these methods when you create a new GNU C/C++ Wizard project.

• Build without a makefile (dependencies automatically checked) - Automatically checks
dependencies and does not generate a makefile. Instead, the vsbuild utility (see Using Build and
Compile Operations) determines what should be compiled dynamically. This option is useful when you
are not concerned with how the build gets done. Make sure the project include directories are set up
correctly (Project → Project Properties, Directories Tab) so include files may be found (see
Configuring Project Directories).

• Build with a user-maintained makefile or custom build command - Sets the build command to
make and does not generate a makefile. The build command can be changed from the Tools tab of the
Project Properties dialog box (see Configuring Project Tools). Select this option when you already have
your own method for building the source.

• Build with an auto-generated, auto-maintained makefile - Automatically generates a makefile and
updates when files are added to the project. This option is useful when you need a makefile and do not

Managing Projects

170

want to use the built-in vsbuild utility (see Using Build and Compile Operations). Specify the path to the
makefile in the Makefile field. Make sure the project include directories are set up correctly (Project →
Project Properties, Directories Tab) so include files may be found (see Configuring Project
Directories).

To start a build from outside the application, execute the following command where make is the name of
the make program, Makefile is the name of the makefile, and ConfigName is the name of the
configuration:

make -f Makefile CFG=ConfigName

Defining Language-Specific Projects

(Pro only)Language-specific projects are based on the language of the current file. The working directory
is ignored for these projects. All language-specific projects are stored in the file project.vpe (UNIX:
uproject.vpe).

(Pro only) If you are building something that only contains one source file and no project, you can define a
language-specific project and configure project tools such as build and/or execute.

To define a language-specific project, complete the following steps:

1. From the main menu, click Tools → Options → Languages, expand your language category and
language, then select Single File Projects.

Managing Source Files

Adding and Removing Files

To get the benefits of SlickEdit’s Context Tagging features or to use the SlickEdit build system, SlickEdit
must know about the set of files you are working on. The Project Properties dialog contains a Files tab
that lists the files associated with this project. Files can be added to the project explicitly or implicitly.

Managing Source Files

171

You explicitly add files to the project using Add File or Add Tree. Files can also be explicitly added to
your project when you select File → New (added by default) or when you select File → Save As (file not
added by default). Explicitly added files are listed on the Files tab.

Note

By default SlickEdit displays the Project Properties dialog with All Configurations selected. To
invoke the Project Properties dialog with the current active configuration, use Project
Properties for Config found on the Build menu.

You can add files implicitly using the Add as wildcard option available on the Add Tree dialog. With this
mechanism, you define a filespec which SlickEdit will use to search for matching files. This search is
performed each time the editor is launched. Using this method, only the filespec is listed in the Files tab,
not the matching files.

These two approaches can be mixed. You can have some files in your project picked up by wildcard and
others that are explicitly added. In that case you will see both filespecs and actual files listed. You should
be careful not to explicitly add any files in directories that will be matched by a wildcard, or the file will be
picked up and added to the project twice.

SlickEdit works the same whether the file was added explicitly or implicitly. In both cases, the file will be
tagged and can be built using the SlickEdit build system. Which mechanism you choose depends on how
you work and whether your whole team is using SlickEdit. The following questions govern how to set up
your projects:

• Is the whole team working with SlickEdit?

• Do you want to use the SlickEdit build system?

• Do your directories often contain scratch files that should not be included into a project?

Managing Source Files

172

• Do you have a large or remotely stored codebase?

If the whole team is working with SlickEdit, then you can easily manage the list of files explicitly. You use
Add Tree and Add File when first setting up your projects. Then newly added files are picked up when
you create them, using File → New. By checking in your workspace and project files along with your
source files other team members will see newly added files when they update from the repository. This
approach is particularly useful if you plan to use the SlickEdit build system.

If some team members are not using SlickEdit, then they will be creating new files without updating the
workspace and project files. You can use Add as wildcard (found on the Add Tree dialog) to create the
file list, and it will pick up these newly added files, assuming the files were added in a location specified by
one of the filespecs.

One drawback in using Add as wildcard is that it may pick up files that you don't want to include in the
project. This is typically the case if you create scratch files with the same extension and leave them in the
same directories as your source files. While this is not a problem for Context Tagging, except for the
occasional unneeded symbol, it can pose a bigger problem for the build system. Since SlickEdit uses the
same file list for both, you need to consider your work habits when using Add as wildcard with the
SlickEdit build system.

Performance also needs to be considered before choosing Add as wildcard. If you have a normal sized
project and all of the source files are stored locally, the Add as wildcard check will only take a few
seconds. In testing, a project with over 1,000 source files took less than 10 seconds to build the initial file
list and less than a second to scan for updates. If you have a very large project or your source files are
stored on a network share, this can take significantly longer.

How to Add or Remove Files From a Project

To add or remove files from a project, complete the following steps:

1. From the main menu, click Project → Project Properties. The Project Properties dialog is displayed.

2. Click to display the Files tab.

3. Perform the file operation:

• Add Files - Use for adding individual files.

• Add Tree - Use for adding files in a directory or directory tree. Click Add Tree, then select the
directory and other options to use.

Note

(Close the any modal dialog like the Project Properties dialog first) You can drag/drop a directory
from your operating system file explorer onto SlickEdit to perform an Add Tree to the active
project. If no workspace/project is open, you will be prompted to create one.

• Remove - To remove the selected files.

• Remove All - To remove all files from this project.

Managing Source Files

173

• Refresh - To update the list of files, re-evaluating any wildcards that have been specified.

• Import - Loads files and directories specified in an import file. See Importing Files for more details.

Add Files

Use Add Files to add a single file or the files from a single directory to your SlickEdit project. When you
click the Add Files button, SlickEdit displays the Add Source Files dialog. With this, you can browse to a
directory and select one or more files to add. You can filter the list of displayed files by selecting from the
Files of type drop down list.

Note

By default, the Add Source Files dialog will not list files in the directory being viewed that are
already included in the project. This makes it easier to locate files to add that are not yet part of
the project. This feature can be turned off by changing the Open File Options.

Add Tree

Note

(Close the any modal dialog like the Project Properties dialog first) You can drag/drop a directory
from your operating system file explorer onto SlickEdit to perform an Add Tree to the active
project. If no workspace/project is open, you will be prompted to create one.

Use Add Tree to add all or some of the files under a specified directory. SlickEdit displays the Add Tree
dialog, which allows you to select a directory from which to add files. Select a value or enter a new value
in the File types combo box to specify which kinds of files are added. To enter your own file types, use *
to match any characters and separate multiple file types using a semicolon. For more information on this
dialog, see Add Tree Dialog.

Managing Source Files

174

• Path - Path to search

• Include filespecs - Semicolon delimited list of ant-like wildcards. For example, enter "*.c;*.cpp;*.h" to
include all files with .c, .cpp, and .h extensions.

• Excludes filespecs - Semicolon delimited list of ant-like wildcard file specifications to be excluded. For
example, junk*;test* will exclude all files with names beginning with "junk" or "test". To exclude a
subdirectory with a particular name, put a slash at the end of the name. For example, enter ".svn/"
(short hand for **/.svn/**) to exclude all subdirectories named ".svn" wherever they occur. A more
advanced ant-like wildcard can be used like "c*/" to exclude any directory that starts with "c". For more
examples, see Exclusion Examples.

• Recursive - Search subdirectories. To limit the search to the selected directory, uncheck Recursive.

• Show subfolders - Creating project folders for each child directory when adding files recursively.

Managing Source Files

175

Project folders are seen in the Projects tool window when the project is in Custom View.

• Add as wildcard - Specify that you want this tree to be periodically checked for new files.

• Create parent directory folder - Turn on the Create parent directory folder checkbox if you want a
project folder created for the parent directory of a wildcard. For example, if the Path for this wildcard is
f:\project\source, a source project folder will be created in the Projects tool window when in Custom
View.

Creating New Files

There are two different approaches to adding a new file to a project:

• Create a buffer with the correct name and then do a File → Save As to store the file in the correct
location and, optionally, add it to the project.

• Use File → New or Project → Add New Item from Template to create the file and put it in the correct
place in the project.

Many developers prefer the first approach because it is faster and allows you to keep your hands on the
keyboard. A new buffer named foo.cpp can be created from the command line by typing e foo.cpp.

To create a new source file using the second approach, complete the following steps:

1. From the main menu, click Project → New and select the File tab.

2. Select the document mode from the list on the left.

3. To add the new file to an existing project, mark the Add to project check box and select the project
from the drop-down list.

4. Type a file name, including the extension, in the Filename field.

5. Verify that the Location is correct.

6. Change the Encoding as needed.

7. Click OK.

This same approach can be used with the SlickEdit® Code Templates by clicking File → New Item from
Template. See Code Templates for more information.

Import Files

The Import Files dialog (Project → Project Properties, select the Files tab, then click the Import button)
allows you to load files and directories specified in an import file into your project.

Managing Source Files

176

The dialog has the following fields:

• Import file - the import file containing a list of the files and directories to be added to the current
project. Use the browse button to navigate to and select the file. Each line in the file should contain the
full path of a file or a directory to be added to the project. For directories, the application will add the
files within that directory to the project.

• Recurse directories - Check this box to recurse into the subdirectories of directories specified in the
import file.

• File types - Check this box to include only specific file types when adding files from directories
specified in the import file. Select a file type from the combo box or add your own. If this box is not
checked, then all the files found will be added (*.*). The file type restriction does not apply to individual
files listed in the import file. They will be added to the project regardless of this setting.

Importing Makefiles

You can create a project by importing a makefile. SlickEdit® parses the targets, finds all referenced
source files, and adds them to the project. When you import a makefile, SlickEdit creates a new
workspace and adds the project to it. If the same makefile is ever imported again, the corresponding
workspace can be opened without creating a new redundant workspace.

The new project automatically imports all files that are referenced by the makefile. All of the make targets
are also added and made available for execution from the main menu under Build → Execute Makefile
Target. For makefiles that contain invocations of other makefiles, the other makefiles can be optionally
added to the workspace as separate projects, or all their files added into one project.

The Build option for the makefile project is set to Build with a user-maintained makefile or custom
build command (Project → Project Properties, Build tab) and the build command is set to make. See
Build System Options for more information.

To create a new project by importing a makefile, from the main menu, click Project → Open Other
Workspace → Makefile (or use the workspace_open_makefile command). The Open Makefile as
Workspace dialog is displayed.

Managing Source Files

177

In the Makefile field, specify the makefile to import. Use the Browse button to browse for the makefile.
Check Scan for recursive makefile calls if you want to also scan for invocations of make on other
makefiles and to include them in the project. In this case, you can also check Make recursive makefile
calls separate projects if you want a new, separate project created for each of the referenced makefiles.
Then, specify any file types to include or exclude by using the drop-down lists or by typing the file
extensions separated with semicolons. The "*" wildcard is permitted. For example,
.ch;.chf;*.chs;*.cpp;*.h can be used to include or exclude all referenced files with those extensions.

Loading Project Files for Editing

The Files tool window can be used to open one or more files from the current project or the current
workspace. To display the tool window, from the main menu, click Project, then select Open Files from
Project or Open Files from Workspace (project_load command). The files that are shown in the tool
window depend on the menu item selected. A button on the tool window also lets you toggle between
viewing current project files and current workspace files.

To open a selected file, press Enter. Use Ctrl+Click to select more than one file. See Document Dialogs
and Tool Windows for more information about operations in this window.

Single File Projects (Pro only)

178

Single File Projects (Pro only)

Overview
Single file projects are perfect for building, running, and debugging single file programs. If your program
requires more than one source file to build, you need to create a workspace and project. Single file project
profiles are provided for many languages including Python, Perl, Ruby, Groovy, Google Go, Java, C#,
and C++. You can create or customize your own single file project profiles on a per language or per file
basis. To activate the single file project for the current file you are editing, close your workspace and it will
be active. When the single file project is active, the Build menu will be updated. JUnit testing and WinDbg
(for C++ debugging on Windows) are not supported by single file projects.

Configuring Single File Project Profiles
Go to Document → [Language] Options → Single File Projects to configure your single file project
profiles for a specific language.

Note

Once you modify a single file project using the Project Properties dialog from the Project menu, a
copy of the language specific profile is created. Once this happens, modifying the default single
file project in the language specific settings won't have any effect for that file. File-specific single
file projects and customized single file project profiles are stored in the configuration directory in
user.cfg.xml.

• Edit... - Displays the Project Properties dialog for modifying the selected single file project profile.

Overview

179

• Copy... or New... - Copies the settings from the selected single file project profile or creates a new
profile.

• Delete - Deletes the selected single file project profile. System profiles can't be deleted.

• Set Default - Sets the default single file profile used by files for this language.

Working with Files

180

Working with Files

Overview
SlickEdit® provides familiar operations for creating, opening, and working with files. There are many ways
to perform these tasks and many options available for specifying your preferences.

Topics in this section are:

• The Working Directory

• Creating Files

• Opening Files

• Saving Files

• File Backups

• Closing Files

• The SlickEdit® File Manager

Here are a few tips to keep in mind as you read through this section and work with files:

• SlickEdit supports file names up to 200 characters long.

• If you're using the command line and need to edit a file whose name contains space characters, place
double quotation marks around the name.

• Options are available for specifying actions that automatically occur when a file is opened or saved,
including adjustments for the line format. When you specify a file to edit, the format is automatically
recognized and necessary adjustments are made, based on whether the file type is Windows/
DOS(CRLF), Unix/macOS(LF), or Classic Mac(CR). An EOF character will not be appended to Unix/
macOS(LF), or Classic Mac(CR) text file formats when saved, regardless of the Save options.

• When the text in one text file is copied to a buffer that has a different type of text file format, the line
separation characters are reformatted to conform to the format of the destination buffer.

A Word of Caution for Binary Files

The default Load and Save options are safe for editing binary files since all reformatting is turned off. As
an extra precaution to ensure that no reformatting takes place when opening and saving binary files, set
the encoding to Binary when opening the file.

While the default options are safe, it is NOT safe to edit binary files with the following non-default settings,
due to the risk of unintentionally modifying the files. These options are located on the Load and Save
option screens (Tools → Options → File Options):

Overview

181

• Show EOF character - False

• Expand tabs to spaces - True

• Append EOF character - True

• Remove EOF character - True

• Strip trailing spaces - True

The Working Directory
SlickEdit® uses the current working directory for various operations that involve file navigation, and to
save you from tediously browsing and typing long path names when navigating files. For example, when
you use the e command to open a file for editing (see Using the e Command), you don't need to specify
the complete path if the file is in the current working directory.

To see the current working directory at any time, use the pwd command on the SlickEdit command line.

SlickEdit automatically changes the working directory to save you time in various situations. You can also
manually set the working directory at any time. Note that the working directory in SlickEdit is different from
the working directory used by the Build tool window. See the following topics:

• Automatic Changes to the Working Directory

• Manually Changing the Working Directory

• Working Directory in the Build Window

Automatic Changes to the Working Directory

SlickEdit® automatically sets or changes the working directory in the following situations:

• By default, when you start SlickEdit, the working directory is automatically set to the directory from the
previous editing session. You can turn this behavior off with the option Auto restore working
directory (Tools → Options → Application Options → Auto Restore).

• The working directory is automatically set or changed when you switch projects, according to the
specified project directory or the directory specified in the Working directory field on the Directories
tab of the Project Properties dialog (Project → Project Properties).

• By default, the working directory is automatically set or changed if you specify a directory with the open
or save_as commands or specify a directory location in the Open, Save Copy As, and Save As dialogs
(File → Open, File → Save Copy As and File → Save As). You can change this behavior by setting
the Change directory option (Tools → Options → Appearance → General) to False.

• The working directory changes to match directories you select in the Open tool window. This window is
docked to the left tab group of the editor by default, and can also be displayed by clicking View → Tool
Windows → Open from the main menu.

The Working Directory

182

• The working directory can be automatically set to the corresponding directory when you navigate to a
file, if the configuration variable def_switchbuf_cd is modified (see Configuration Variables). This is
similar to the Change directory option mentioned in the preceding bullet, except it also works for any
file navigation operation (such as e or edit or when SlickEdit opens a file automatically, such as with
Symbol Navigation). This feature is on by default in GNU Emacs emulation and off in all other
emulations.

Manually Changing the Working Directory

You can change the working directory at any time with the Change Directory dialog (from the main menu,
click File → Change Directory or use the gui_cd command). If you want to also change the directory in
the Build window, select the option Change directory in Build Window. To use an alias for the directory
name, select Expand alias. Click Save Settings to preserve your preferences. The settings here are also
used when you use the command line version of this feature.

Changing Directories From the SlickEdit® Command Line

To change the directory from the SlickEdit command line, use the cd command as follows, where the p
option corresponds to the Change directory in Build Window option on the Change Directory dialog,
and a corresponds to Expand alias:

cd {+p|-p} {+a|-a} drive/and/path/to/directory

You can also change the working directory with the pushd and popd commands. The pushd command
adds the current working directory to the top of the directory stack, and makes the specified directory the
new working directory. For example:

pushd drive/and/path/to/directory

If no arguments are given, the current working directory is swapped with the directory at the top of the
directory stack. After using pushd, you can use the popd command to remove the top directory from the
directory stack and make it the new working directory.

Working Directory in the Build Window (Pro only)

The working directory in the editor is different from the working directory in the Build tool window. The
Build window is a shell that displays build and compile output, and also allows you to type operating
system commands and see the results. It is docked to the bottom tab group of the editor by default. It can
also be displayed by clicking View → Tool Windows → Build from the main menu.

The working directory is shown in the prompt inside the Build window. When you first launch SlickEdit®,
the window is blank. Type a command in the window for the prompt to be displayed.

By default, when the directory is changed in the editor, it is also changed in the Build window. However,
the reverse is not true: changing the directory in the Build window does not change the directory in the
editor. To make the working directory completely independent so that a change directory does not affect
the Build window, make sure the Change directory in Build Window option on the Change Directory
dialog is off (not selected) and save the settings (see Manually Changing the Working Directory).

The Files Tool Window

183

The Files Tool Window
The Files tool window has three tabs to display:

• the list of open buffers.

• the list of files in the current project.

• the list of files in the workspace.

See Document Dialogs and Tool Windows for more information.

Creating Files
SlickEdit® provides four methods for creating new files:

• Using the e Command

• Using the New File Dialog

• Using Code Templates

• Using Write Selection

Using the e Command

Creating Files

184

One of the quickest ways to both create and open files in SlickEdit is to use the e command on the
SlickEdit command line. Press the ESC key to open the command line (in most emulations), then type e
file, where file is the name of the file. The e command is just shorthand for the edit command, so you can
use edit instead, if you prefer.

Tip

Many people prefer to use the e command to create new files. Typing e myfile.ext is the fastest
way to create a new file in SlickEdit. Including the extension on the filename is all that is needed
to let SlickEdit know what file type you are editing so it can use the correct language mode.

Depending on your options, SlickEdit will match the characters you type against the files in the current
working directory, open files, and files in the current workspace. To configure this option, select Tools →
Options, expand File Options → Open and set e/edit command Smart Open to one of these values:

• Smart Open off - matches only against files in the current working directory.

• Smart Open open documents - matches files in the current working directory and those that are
already open. Matching open files is useful if you have a lot of files open.

• Smart Open workspace files and open documents - matches against files in the current working
directory, open files, and files in the current workspace.

• Smart Open workspace files - matches against files in the current working directory and files in the
current workspace.

• Smart Open files in same directory - matches against files in the same directory as the current file.

If you're opening a file that is not in the current working directory, use the full path. Command Line
Completion will help entering file names and paths.

If the file already exists, the file will be loaded in a new buffer. If the specified file does not exist, a new
buffer by that name will be created. For new files, be sure to specify the file extension so SlickEdit knows
what language mode to use.

Using the New File Dialog

If you prefer working with the GUI, use the menu item File → New to create a new file. This displays the
New dialog open to the File tab. First select the Document Mode for the new file (recently chosen modes
are listed at the top). The Add to Project box determines whether the new file will be added to the active
project. Its value is retained from the last time this dialog was used. Specify a Filename, the Location,
and Encoding, then click OK. See the section on the New dialog's New Dialog for more information about
these fields.

You can create a new, untitled buffer by leaving the file name blank and then hitting OK or double-clicking
on a language in the Document Mode list.

Using Code Templates

Creating Files

185

Code templates are pre-defined units of code that you can use to automate the creation of common code
elements, like a standard class implementation or design patterns. See Code Templates for more
information and details about this feature.

To instantiate a predefined Code Template, complete the following steps:

1. From the main menu, click File → New Item from Template (or use the add_item command). The
Add New Item dialog is displayed.

2. In the Categories list, expand Installed Templates, then click through the tree to select the language
and category of the file you want to create.

3. In the Templates box, select the template you want to use.

4. In the Name field, type the name of the new file.

5. In the Location field, type the directory path where you want to store the new file, or click Browse.
This field is prepopulated with the active directory.

6. Optionally, select Add to current project.

7. The type of template you selected may generate more than one file. If you want to view a confirmation
list of the files that will be created after you click Add, select Confirm files before adding.

8. Click Add.

Using Write Selection

SlickEdit also lets you create a file from a selection. Select the text you want to write, then from the main
menu, click File → Write Selection (or use the gui_write_selection command). The Write Selection
dialog is displayed, with fields for specifying the file name and location (similar to the Save As Dialog).
The selected text is written to the specified file.

Opening Files
SlickEdit provides many ways to open files. With most editors, you must explicitly open each file you want
to view or edit. To do that you must know the filename and location of the file. In SlickEdit, you often open
files implicitly, by browsing into them. With these mechanisms, you don't have to know the filename or
where the file is located to open it.

Explicitly Opening Files

To open a file by name, use any of the following mechanisms:

• One of the quickest ways to open a file is to use the e command (in the syntax e filename), which can
also be used to create files. SlickEdit uses completions to match the filename you type against the
current directory, open files, and files in your workspace (Not in Community edition). If you are entering
the full path to a file, completions will assist you with that as well. See Using the e Command for more

Opening Files

186

information.

• If you prefer to open files with the GUI, select File → Open (or use the gui_open command). SlickEdit
will prompt whether to open files using a standard file browser or using the Open tool window

• If you choose Browse for files, SlickEdit uses the standard Open dialog (see Standard Open Dialog
for more information).

•
The Open tool window allows you to browse through directories and view a list of files. You can type
a filename and the list of displayed files will be filtered to match those from the active directory and,
optionally, open files and files in your workspace. See Open Tool Window for more information.

• The Document Dialogs and Tool Windows displays a list of files in the current project or workspace.

Opening Files

187

You can open a file by typing a portion of the filename and then selecting a matching file from the list.

• On Windows platforms, you can open a file by double-clicking on it in the Windows Explorer. This
assumes that you have associated the SlickEdit application with the extension of that file. See Setting
File Associations for more information.

• The Projects tool window displays a list of the files contained in the projects in this workspace. You can
open a file by double-clicking on it in the tree.

Implicitly Opening Files

You open a file implicitly by using information from another window or process rather than explicitly
opening the file by name and location.

• SlickEdit's Symbol Navigation allows you to jump from a symbol to its definition or declaration or from a
symbol to a reference.

• The Preview Tool Window displays the definition for the symbol at the cursor. You can open that file for
editing by double-clicking in the Preview window.

• For C and C++, you can quickly open the header or source file that is associated with the current file.
From the main menu, select Document → Edit Associated File (or use the edit_associated_file
command).

• You can quickly navigate from an error message in the Build tool window to the associated code
location. See Navigating from Build Errors to Source Locations.

• You can jump from an item in the Message List to the corresponding code location. See Message List.

• SlickEdit contains a number of search mechanisms that allow you to search based on the contents of
the file or part of the filename. For more information, see Find and Replace and Finding Files.

Recently Opened Files

SlickEdit keeps two lists of recently opened files: a list of recently opened files on the File menu and a list
of recently opened workspaces on the Project menu. To manage these lists, select Tools → Options,
expand Appearance and select History. You can see the history of items recently opened from the File
or Project menu. See History Options for more information.

Finding Files

SlickEdit® provides a Find File feature so you can search for one or more files to open. To access this
feature, from the main menu, click Search → Find File (or use the find_file command). The Find File
dialog is displayed. Files Tab for information about using this dialog.

Opening URLs

In addition to opening files on your computer, SlickEdit® lets you open files on the Web for editing. To
open a file located at a particular Web address, from the main menu, click File → Open URL. The Open
URL dialog is displayed. In the URL text box, enter a URL to open. You can use forward or backward

Opening Files

188

slashes, and the prefix "http://" is not required. The URL will be opened in a new editor window. For a
description of this dialog, see Open URL Dialog.

Tip

URLs in SlickEdit editor windows are treated as links. You can open these links in a Web browser
by hovering over the link with your mouse pointer and using the binding Ctrl+Click (or
Cmd+Click on the Mac). See Navigating to URLs for more information.

Inserting Files

The Insert File feature can be used to insert a file at the cursor location in the current buffer. To access
this feature, from the main menu, click File → Insert a File (or use the gui_insert_file command). The
Insert File dialog is displayed (similar to the standard Open dialog), which lets you specify the file to
insert.

Invoke and Edit

Using your operating system command line, you can invoke SlickEdit® with a file(s) loaded for editing.
The syntax is:

vs {options} file1 {options} file2

If the file that you want to edit is not found, an empty buffer is created with that name.

The table below shows some invocation examples. See Invocation Options in the Appendix for more
options and information.

Invocation Example Description

vs project1.vpw Auto Restore from workspace file. If you specify
.vpj, SlickEdit Auto Restores the project.

vs project1.sln Auto Restore from a Visual C++ solution file.

vs autoexec.bat config.sys Edit two files.

vs "this is.c" Edit a file with a space character.

vs test.c -#1000 Edit test.c and go to line 1000.

vs orders -#bottom-of-buffer -#/invoice/- Edit orders file, go to bottom of buffer, and search
backward for "invoice".

vs +70 test.exe Edit binary file test.exe in record width 70.

Opening Files

189

Invocation Example Description

vs *.c Edit all C source files in the current directory.

vs -r list \ Start the Windows file manager and list the entire
drive contents.

vs -x rich.sta autoexec.bat Specify a different state file (rich.sta) and edit
the file autoexec.bat.

Options for Opening Files

SlickEdit provides several options related to opening files:

• Activating Change Directory

• Setting Global Load Options

• Working with Large Files

• Different Options for Different Drives

• Setting Language-Specific Load Options

Activating Change Directory

You can specify that the current directory is changed in the editor when the directory is changed in the
Open, Save Copy As, Save As, and Change Directory dialogs. From the main menu, click Tools →
Options, expand Appearance and select General, then set the option Change directory to True.

Setting Global Load Options

SlickEdit® provides many global Load options, such as specifying which file is active after multiple files
are loaded at once, expanding tabs to spaces, size limits for files to be loaded, and Auto Reload
preferences. These options affect the Open dialog box and any other command that uses the e or edit
commands to open a file. In fact, you can override many of these global Load options by selecting the
corresponding option on the Open dialog. To access global Load options, from the main menu, click
Tools → Options, then expand File Options and select Load. See Load File Options for information
about each option.

Working with Large Files

The default settings are optimized for excellent performance when editing very large files. You will noticed
that some features such as color coding, undo, and soft wrap are turned off when you edit a large file. Go
to Tools → Options → Editing → General to configure these options.

The editor reads the entire file for files that are color-coded. However, the Load partial option enhances
system performance because the original file is used as a read-only spill file. To determine when the

Opening Files

190

entire file is read, go to the bottom of the file. If the line number is displayed at the bottom of the file, the
entire file has been read; however, this does not mean the entire file is in memory. When the entire file is
not loaded, it will be locked, and other applications will not be able to write to it.

By default, 2 MB is used for the buffer cache. When the cache is full, modified blocks are written to the
spill file. Blocks that are not modified and that can be reread from the original file are discarded. Scrolling
through a 2 GB file requires no more than 2 MB of memory (default). A search and replace operation that
hits every block requires that almost all blocks be spilled. Saving a 2 GB file requires 4 GB of disk space.
The file data must first be spilled before saving the file. Turn backups off before saving a large file since
this requires additional disk space, equal to the size of the file. The block size is 16 K.

Different Options for Different Drives

If you want to specify different global Load options for different disk drives, define an environment variable
called VSLICKLOAD and specify each drive followed by the appropriate switch. For example, the
following command specifies preloading files from jump drives M and N:

set VSLICKLOAD= m: +L n: +L

Tip

TIP See Command Line Switches for information about enabling and disabling switches on the
SlickEdit® command line.

Setting Language-Specific Load Options

Some options for loading files, such as loading as binary and expanding tabs to spaces, can be set on a
language-specific basis. Language-specific File options override all global File options as well as any
other options set for that language. To access these, from the main menu, click Tools → Options.
Expand Languages, the language category and language, then select File Options. See Language-
Specific File Options for more information.

Saving Files
You can use the following methods to save files in SlickEdit®:

• To save the current file or buffer: From the main menu, click File → Save (Ctrl+S or save
command). Alternately, right-right click on a file tab and select Save [file] from the context menu.

• To save the current file or buffer with another name: From the main menu, click File → Save As
(gui_save_as command). The standard Save As dialog is displayed. Select the Keep old file option if
you do not want the buffer name to be changed. See Save As Dialog for more information.

• To save the current file or buffer with another name: From the main menu, click File → Save Copy
As (gui_save_copy command). The standard Save Copy As dialog is displayed. See Save Copy As
Dialog for more information.

Saving Files

191

• To save all open buffers: Click File → Save All (save_all command). Alternately, right-click on any
file tab and select Save All from the context menu.

If a Save operation fails, for example, because the file does not have write permissions, the Save Failed
dialog box is displayed, presenting some alternate choices. See Save Failed Dialog for a description of
this dialog.

Options for Saving Files

SlickEdit® provides many options regarding the saving of files:

• Setting Global Save Options

• Setting Language-Specific Save Options

• Setting Backup Options

• Setting AutoSave Options

• Setting Files of Type Filter Options

Setting Global Save Options

Global Save options are available to specify actions that automatically occur when a file is saved, such as
appending/removing EOF characters, expanding tabs to spaces, and setting the line format. You can
override some of these global Save options by selecting the corresponding option on the Save As dialog.
To access global Save options, from the main menu, click Tools → Options, then expand File Options
and select Save. See Save File Options for information about each option.

Setting Language-Specific Save Options

Some options for saving files, such as saving as binary and expanding tabs to spaces, can be set on a
language-specific basis. Language-specific Save options override all global Save options as well as any
other options set for that language. To access these, from the main menu, click Tools → Options.
Expand Languages, the language category and language, then select File Options. See Language-
Specific File Options for more information.

Setting Backup Options

When a file is saved, SlickEdit can automatically create a backup of the file. To enable Backup and
configure Backup options, from the main menu, click Tools → Options, then expand File Options and
select Backup. See File Backups for more information.

Setting AutoSave Options

SlickEdit® can save temporary versions of files, in the event of power failure or other unforeseen
circumstances. To enable AutoSave and set your AutoSave preferences, from the main menu, click
Tools → Options, then expand File Options and select AutoSave. When AutoSave is enabled, SlickEdit
creates temporary files in the autosave directory of your user config. Temporary files are only created
for modified files and are replaced or deleted when AutoSave runs subsequently. AutoSave files are

Saving Files

192

deleted when they are no longer needed. See AutoSave File Options for more information.

Setting Files of Type Filter Options

You can change the file specifications that appear as choices in the drop-down lists for the Files of type
and Save as type fields on the Open, Save Copy As and Save As dialogs, respectively. By default, all
files are listed; however, you might want a smaller list that displays only the source files you typically edit.
To edit these file filters, from the main menu, click Tools → Options, then expand File Options and
select Files of Type Filters. See Files of Type Filter Options for more information.

File Backups
SlickEdit provides two mechanisms for creating backup files:

• Backup History - Creates a backup each time you save a file, forming a version history that you can
browse, compare, and restore.

• Single backup on save - Creates a single backup file of a files contents before the last save.

Backup History is on by default in the Pro and Standard editions. The Community Edition does not
support Backup History and creates a single backup file of a files contents before the last save. To
change how SlickEdit makes backup files, from the main menu select Tools → Options, expand File
Options and select Backup.

You can set other Backup options such as the location of the backup files, the number of backups to keep
for each file, and a limit for the maximum size of a particular backup. For more information see Backup
File Options.

Backup History

Backup History maintains a version history for a file, creating a new version each time you save. This
creates a more fine-grained version history that bridges the gap between checkins with your source
control system. With Backup History you can compare the current version to previous versions, compare
two previous versions, or open a previous version for editing. SlickEdit creates and stores deltas to
conserve disk space.

To access Backup History for the current file, from the main menu click File → Backup history for. An
icon is also available in the Standard toolbar to open the Backup History.

File Backups

193

Click through the list of Versions to instantly diff your file against a previous version. To diff adjacent
versions and see what changed between versions, right click in the Versions list to bring up the context
menu and select the Compare version X to version Y menu item. This changes the mode of the dialog
to always diff adjacent versions.

The less obvious buttons are as follows:

• <<Merge All - Reverts your file to the contents of the version displayed.

• Save As... - saves the selected version to the location of your choosing.

• Open - opens the selected version for editing. The file is opened as a copy with a number appended to
the filename.

• Comment... - allows you to enter a comment on a version.

The Backup History Browser (File → Backup history browser...) is great for viewing your save history.
In addition, it can be used to restore deleted files.

File Backups

194

The top list displays all saves for which a backup delta is available. Once an item in the top list is chosen,
the bottom list is filled in with all files which were saved at or after the date selected. For example, if you
choose a save date that was 5 days ago, the lower list will show you all files which you saved since then.
This is a great way to know what files you've recently been working on.

• Diff - Diffs the selected version against the current version.

• Restore - Restores one or more deleted files.

• View - Displays the selected file versions.

• Rebuild save log - You probably won't need to use this button because there's a lot of automation to
walk you through this. When you upgrade and you've been using Backup History, SlickEdit will detect
that you are missing the save log file and prompt you to rebuild your save log. If you choose not to build
the save log or if some how your log is corrupt/inaccurate, use this button to rebuild it.

There is also a Backup History (View → Tool Windows → Backup History) which is shown below.

File Backups

195

Once opened, use the context menu or icons to perform the following operations on the Backup History:

• Save Selected Backup As - saves the selected version to the location of your choosing.

• Open Selected Backup - opens the selected version for editing. The file is opened as a copy with a
number appended to the filename.

• Run Diff on Selected Backup - compares the selected version to the current version. You can also
select two versions and compare them to each other. If only one version is selected, the Backup History
dialog is displayed and your file is diffed against the selected version.

• Revert to Selected Backup - loads the selected version for editing as the most recent version of this
file.

• Add Comments to Selected Backup - allows you to enter a comment on a version.

• View Source Control History - displays the Backup History dialog for the selected file. Adjacent
versions are diffed which will show you whats changed between versions.

For more information on diffing files and using DIFFzilla, see DIFFzilla®.

Closing Files
Files can be closed in SlickEdit® with the methods below. Prior to closing, you will be prompted to save

Closing Files

196

any changes.

• To close the current file: Click File → Close (F3 or q command), or right-click on the file tab and
select Close [file] from the context menu. You can also use Shift+LeftClick or the middle mouse
button on a file tab to close a file, even if the focus is not on the file to be closed. Note that the middle
mouse button must be configured to send a Middle Button event.

Tip

The q command is a shortcut for the quit command. Use q (or quit) in the syntax q [file], where
[file] is a file or list of files to close. Wildcards are permitted. For example, q c:\temp*.* closes all
files in the temp directory that you had open.

• To close all open files: Click File → Close All (close_all command) or right-click on the file tab and
select Close All from the context menu.

• To close all open files except for the one currently in focus: Right-click on the file tab and select
Close Others from the context menu.

See Opening and Closing Workspaces for information about closing workspaces and projects.

The SlickEdit® File Manager
The SlickEdit File Manager offers a rich set of file listing, selecting, and operating capabilities. You can
select, deselect, list, and unlist files by extension, attribute, and search pattern. Once you have listed and
selected the files to be operated on, you can change file attributes, copy, move, delete, or back up the
selected files.

File Manager operations and options can be accessed from the main menu by clicking File → File
Manager.

Topics in this section:

• Creating a New File List

• Selecting Files in the File List

• Operating on Selected Files

Creating a New File List

Before managing files in the File Manager, you must first create a list of files to be managed. To create a
new file list, use the fileman command, or from the main menu, click File → File Manager → New File
List. The List Files dialog is displayed.

The SlickEdit® File Manager

197

The dialog has the following options:

• File name - Specify in this text box one or more files separated by spaces. Each file specification may
contain wildcard characters. For example, "*.c *.h" will list all C and H files.

• Include system files - When checked, files with the system attribute set are included in the list. This
option is ignored on UNIX. This option is always turned on under Windows if the Show all files option
is set on the Open dialog box (see Standard Open Dialog).

• Include hidden files - When checked, files with the hidden attribute set are included in the list. This
option is ignored on UNIX. This option is always turned on under Windows if the Show all files option
is set on the Open dialog box (see Standard Open Dialog).

• Subdirectories - When checked, all subdirectories below each file specified in the File name text box
are searched.

• Include directories - When checked, directories will be included in the listing.

The listing of files will appear in a new buffer window.

You can append files to your current file list. From the main menu, click File → File Manager → Append
File List or use the fileman command. The Append File List dialog contains the same fields and options
as the List Files dialog described above.

Tip

TIP To modify and close a file list without being prompted to save each time, from the main menu,
click Tools → Options → Editing → General, then set the Throw away file lists option to True.

Selecting Files in the File List

To select files in the file list, use the File Manager selection functions. To access these functions, from the
main menu, click File → File Manager → Select, then choose one of the following sub-menu items:

• All - Selects all files in the list.

The SlickEdit® File Manager

198

• Deselect All - Deselects all files that were previously selected.

• InvertSelect - Invert the selection.

• Attribute - Selects files that contain specific attribute flags that you specify, including Read-Only,
Hidden, System, Directory, and Archive. On UNIX systems, you can specify read/write/execute
attributes.

• Extension - Selects all files with the specified extension. Enter the extension without the Dot character.

• Highlight - Selects all files within a marked area.

• Deselect Highlight - Deselects highlighted files.

Operating on Selected Files

The following operations are available on the File Manager menu (File → File Manager):

• Sort - (fsort command) Sorts the files listed in File Manager on a primary and optionally a secondary
key. Check the Secondary Sort check box if you want to sort on a secondary key.

• Backup - (fileman_backup command) Copies the selected files (lines with ">" character as first
character of line) to a directory you choose. The directory structure on the source file is preserved.
Typically only a drive letter is specified for the destination directory. However, you may specify a path if
you wish to further nest the directory structure.

• Copy - (fileman_copy command) Copies the selected files (lines with ">" character as first character of
line) to a directory you choose.

• Move - (fileman_move command) Moves the selected files (lines with ">" character as first character
of line) to a directory you choose. The destination drive does not have to be the same as the source
drive.

• Delete - (fileman_delete command) Prompts whether to delete the selected files.

• Edit - (fileman_edit command) Opens the selected files for editing.

• Select - Displays a menu of selection commands. See Selecting Files in the File List.

• Files - Displays a menu of the following file commands:

• Unlist All - (unlist_all command) Removes all files from the list.

• Unlist Selected - (unlist_select command) Removes selected files from the list.

• Unlist Extension - (gui_unlist_ext command) Removes files with a specific extension from the list.
Enter the extension without the dot character.

• Unlist Attribute - (unlist_attr command) Removes files with a specific attribute from the list.
Windows attributes include Read-Only, Hidden, System, Directory and Archive. On UNIX systems,
you can specify read/write/execute attributes.

The SlickEdit® File Manager

199

• Unlist Search - (unlist_search command) Deletes lines which contain a search pattern you specify.

• Read List - (read_list command) This dialog box is similar to the Append List dialog box which adds
files to the current list. The difference is that the Read List dialog box prompts you for a file name
which contains the names of files to append to the current list. The file may be a list of file names or
may be a file in the same format as a file manager list. You may use the Write List dialog box to write
a list containing the selected file names.

• Write List - (write_list command) Writes a list of the currently selected file names to a file you
choose. The Open dialog box is displayed to prompt you for a file.

• Attribute - (fileman_attr command) Sets the Read Only, Hidden, System, and Archive attributes of
the selected files.

• Repeat Command - (for_select command) Runs internal or external commands on selected files.

• Global Replace - (fileman_replace command, or Alt+Shift+G) The Global Replace dialog box
performs a search and replace on the selected files in the File Manager. The following options are
available:

• Search for - Enter the string you want to search for here.

• Replace with - Search string is replaced with this string.

• Match case - When checked, a case sensitive search is performed.

• Match whole word - When checked, a word search is performed. Before a search is considered
successful, the characters to the left and right of the occurrence of the search string found are
checked to be non-word characters. To change the word characters for a specific language, use the
Word chars box on the language-specific General options screen (Tools → Options → Languages
→ [Language Category] → [Language] → General). See Language-Specific General Options.

• Regular expression - When checked, a regular expression search is performed. See Find and
Replace with Regular Expressionsfor more information.

• Place cursor at end - When checked, the cursor is placed at the end of the occurrence found.

• Global Find - (fileman_find command) Performs a search on selected files.

The SlickEdit® File Manager

200

Context Tagging® (Pro only)

This chapter describes SlickEdit Context Tagging® system used for symbol analysis, the features that
use Context Tagging, and how to manage tag files.

201

Context Tagging Features (Pro only)
Context Tagging® is a feature set that performs expression type, scope, and inheritance analysis as well
as symbol look-up within the current context to help you navigate and write code. Context Tagging uses
an engine that parses your code and builds a database of symbol definitions and declarations commonly
referred to as tags. Context Tagging features work with your source code, not just standard APIs
(Application Programming Interfaces). Symbol information is updated dynamically as you edit your source
code.

The Context Tagging feature set includes:

• Tag-Driven Navigation

• List Members

• Parameter Information

• Auto List Compatible Parameters

• Completions

• Symbol Browsing

• Statement Level Tagging

Before you begin working with these features, some configuration is required. See Building Tag Files.

Tag-Driven Navigation (Pro only)
The Context Tagging database allows you to navigate your code, jumping from a symbol to its definition,
declaration, or references. For more information, see Symbol Navigation.

List Members (Pro only)
When typing a member access operator (Dot, Comma, "->", and ":" for C++; Dot for Java; IN and OF for
COBOL), members are automatically listed. You can access this feature on demand by pressing
Ctrl+Space or Alt+Dot when the cursor is positioned after the member access character.

Tip

When the cursor is positioned after a member access character, like the dot in "foo.", Alt+Dot will
display a list of members for that symbol. If the cursor is not positioned after a member access
character, this key binding will display a list of symbols visible in the current context.

If you want to disable automatic listing and only list members on demand, turn List Members off, as
follows:

Tag-Driven Navigation (Pro only)

202

1. From the main menu, click Tools → Options → Languages, expand your language category and
language, then select Auto-Complete.

2. Clear the Auto-list members check box found in the List-Symbols options options group.

The following example shows the results of what is displayed after typing a Dot when entering Java
source. Notice that the Javadoc comments are displayed in a mini-HTML browser. To view
documentation for Java APIs, you must install the source files as part of the JDK. If clicking on a URL, the
default HTML browser starts. Clicking on other hypertext links navigates within the comment window. The
equals method in the example below has two occurrences, one in the String class and one in the Object
class. Press Ctrl+PgDn or Ctrl+PgUp to select the next or previous occurrence.

The example below shows the display after typing a Dot when entering C++ source code . The stack
class is one of the C++ standard template library classes.

Parameter Information (Pro only)
The prototype for a function is automatically displayed when typing a function operator such as the open
parenthesis. This also highlights the current argument within the displayed prototype. When working with
C++, parameter info is also automatically displayed when typing a template argument operator such as <.

The following example shows the result of pressing Alt+Comma inside the argument list of the Java API
String method startsWith. The Javadoc comments are displayed in a mini-HTML browser. To view
documentation for Java APIs, you must install the source files as part of the JDK. If clicking on a URL, the
default HTML browser starts. Clicking on other hypertext links will navigate within the comment window.
The startsWith method has two overloads that accept different arguments. Press Ctrl+PgDn or
Ctrl+PgUp to select the next or previous occurrence.

Parameter Information (Pro only)

203

The example below shows the result of pressing Alt+Comma inside the argument list of the WIN32 API
function CreateWindowEx.

Auto List Compatible Parameters (Pro only)
When typing a function operator such as the open parenthesis, "(", a list of compatible variables and
expressions for the current argument is displayed. Auto List Compatible Parameters can also be used
instead of List Members, in assignment statements (x=<Alt+Comma>) and when listing members of a
class or struct. Keep in mind, not all possible variables and expressions are listed. Press Alt+Dot if the
symbol that you want is not listed. To access Auto List Compatible Parameters on demand, press
Alt+Comma. If you want to disable automatic listing and only list parameters on demand, turn Auto List
Compatible Parameters off, as follows:

1. From the main menu, click Tools → Options → Languages, expand your language category and
language, then select Context Tagging.

2. Clear the Auto-list compatible parameters check box.

The following example displays the results of pressing Alt+Comma after an assignment operator. The
Rect, pRect, and argv are not listed because their types do not match.

Auto List Compatible
Parameters (Pro only)

204

Completions (Pro only)
Completions save keystrokes as you are typing code by providing a way to automatically complete
partially-typed text. Press Ctrl+Space to invoke the SlickEdit® codehelp_complete(Pro only) command
to automatically complete the rest of the symbol you are currently typing. If a unique match is not found, a
list is displayed allowing the selection of the exact match. See Completions for more information.

Symbol completion can also be used to correct typographical errors such as the following: See Manual
symbol completion fixes minor typos for more information.

• Correcting symbol case errors - In case-sensitive languages, if you type a symbol with the incorrect
case, such as typing "getDictionary" instead of "GetDictionary", symbol completion can look up the
correct symbol, and if it is unique, replace it with the correct case.

• Correcting transposed characters - If you mistype a symbol and transpose two characters, such as
typing "getHlep" instead of "getHelp", symbol completion can look up the symbols visible in the current
context, and match them against the symbol under the cursor. If only one unique symbol matches after
correcting transposed characters, symbol completion will replace the symbol with the corrected version.

• Correcting single mistyped character - If you mistype a single character in a symbol, such as typing
"getArrau" instead of "getArray", symbol completion can look up the symbols visible in the current
context, and match them against the symbol under the cursor. If only one unique symbol matches after
correcting a single character, symbol completion will replace the symbol with the corrected version.

• Correcting single missing character - If you miss a single character in a symbol, such as typing
"getVectr" instead of "getVector", symbol completion can look up the symbols visible in the current
context, and match them against the symbol under the cursor. If only one unique symbol matches after

Completions (Pro only)

205

inserting the missing character, symbol completion will replace the symbol with the corrected version.

• Correcting repeated character - If you accidently double type single character in a symbol, such as
typing "settValue" instead of "setValue", symbol completion can look up the symbols visible in the
current context, and match them against the symbol under the cursor. If only one unique symbol
matches after removing a single repeated character, symbol completion will replace the symbol with the
corrected version.

In general, symbol completion looks for symbols which start with the same characters as the identifier
under the cursor, but it can also be configured to match patterns in order to locate, or complete shorthand
for symbols which match an identifier pattern. Symbol completion will attempt to find all the symbols
visible in the current context which match the pattern. If only one unique symbol matches, symbol
completion will replace the symbol, otherwise a list is displayed allowing the selection of the exact match.
See Subword matching for more information.

Symbol Browsing (Pro only)
SlickEdit® gives you the ability to browse and view symbols in your files or workspaces. There are several
tool windows and dialogs that display information as you work to help you find what you need exactly
when you need it:

• Class - This tool window provides an outline view of both the members of the current class as well as
any visible inherited members. It also shows the inheritance hierarchy of the current class. The Class
tool window is docked as a tab on the left side of the editor by default.

• Current Context - Current Context displays the logical location of the cursor within your code. If it is
within a class, it displays the class name. If it is within a function, it displays the function name. If the
function is within a class, it displays the class and the function name. The tool window is docked in the
top upper-right section of the editor by default.

• Defs - The Defs (Definitions) tool window contains the defs (definitions) browser, which provides an
outline view of symbols in the current workspace. It is docked as a tab on the left side of the editor by
default.

• Find Symbol - This tool window is used to locate symbols (tags) in your code. It allows you to search
for symbols by name using either a regular expression, substring, or fast prefix match. This window can
be displayed by clicking Search → Find Symbol or by using the gui_search command.

• Preview - The Preview tool window provides a portal for viewing information in other files without
having to open them in the editor. It automatically shows this information when you are working with
certain features. This window is docked as a tab on the bottom of the editor by default.

• References - This window displays the list of symbol references (uses) found the last time that you
used the Go to Reference feature (Ctrl+/ or push_ref command (see Symbol Navigation for more
information).

• Symbols - The Symbols tool window contains the symbol browser, which lists symbols from all of the
tag files. It is docked as a tab on the left side of the editor by default.

Symbol Browsing (Pro only)

206

• Symbol Properties - This window displays detailed information about the symbol at the cursor
location. It can be displayed by clicking View → Tool Windows → Symbol Properties or by using the
activate_tag_properties_toolbar command.

For more detailed information about these tool windows and how SlickEdit can help you browse symbols,
see Symbol Browsing. For information about how to navigate between symbols in files, see Symbol
Navigation.

Statement Level Tagging (Pro only)
Statement Level Tagging is a feature of Context Tagging that provides a more detailed view of items in
the Defs tool window for C/C++, Java, Python, Fortran, SQL, Visual Basic .NET, and many other
languages. Along with definitions and declarations, view constructs like if, while, and for statements. It
also displays every non-comment line of code. To see this feature in action, from the Defs Tool Window,
right-click and select Show Statements.

Statement Level Tagging (Pro
only)

207

CTags Based Tagging Features (Standard only)
CTags Based Tagging is a feature set that integrates SlickEdit with the CTags(1) tool for building and
using tags databases to locate symbol definitions and perform simple symbol navigation and completion
operations.

The ctags program generates an index (or "tag") file for a variety of language objects found in a set of
file(s). This tag file allows these items to be quickly and easily located by a text editor or other utility. A
"tag" signifies a language object for which an index entry is available (or, alternatively, the index entry
created for that object).

The CTags Based Tagging feature set includes:

• Tag-Driven Navigation

• Completions

Before you begin working with these features, some configuration is required. See Building CTags Based
Tag Files.

Tag-Driven Navigation (Standard only)
The CTags Based Tagging database allows you to navigate your code, jumping from a symbol to its
definition. For more information, see Symbol Navigation.

Completions (Standard only)
Completions save keystrokes as you are typing code by providing a way to automatically complete
partially-typed text. Press Ctrl+Space to invoke the SlickEdit® codehelp_complete(Pro only) command,
to automatically complete the rest of the symbol you're currently typing. If a unique match is not found, a
list is displayed allowing the selection of the exact match. See Completions for more information.

Tag-Driven Navigation (Standard
only)

208

Building and Managing Tag Files
Context Tagging® creates tag files to store information about symbols and, optionally, cross-reference
information from your source code. Many of the most powerful features of SlickEdit® use this information
to speed your coding.

Tag File Categories (Pro only)
SlickEdit creates 4 kinds of tag files. The "Context Tagging - Tag Files" dialog (Tools → Tag Files) lists
the tag files by category.

• Workspace and Project tag files contain the symbols in the files that are part of your workspace. This
includes any file that has been added to a project that this workspace contains. Projects can, optionally,
have their own tag file. In this case, the files that have been added to that project are not included in the
workspace tag file, and the project tag file will also be listed under "Workspace and Project Tag Files".
This list will change when you switch workspaces in SlickEdit.

• Workspace Auto-Updated tag files contain additional symbols from files that you want to have
associated with your workspace, but are not technically part of the workspace. This is useful for things
like third-party libraries that you use only with specific workspaces. The order of these tag files is
significant because it defines the order that the tag files are searched by tagging.

Workspace Auto-Updated tag files are designed to be shared by multiple users of SlickEdit® on a
network. You can use the vsmktags utility to rebuild these tag files as part of your nightly build
process. When SlickEdit detects that a newer version of an auto-updated tag file is available, it will
automatically copy in the newer version and begin using it. These files are listed under "Workspace
Auto-Updated Tag Files".

• Compiler-specific tag files are used only when the specified compiler is selected in Project Properties
for the current project. The compiler tag files are listed with the name of the language in quotes
followed by "Compiler Configuration Tag Files".

Compiler-specific tag files have a read-only checkboxes to indicate which tag file is currently active for
the current workspace and project configuration.

• Language-specific tag files are used anytime you code in a particular language. This is useful for
things like third-party libraries that you use a lot. These tag files are listed by language. For example,
the C/C++ library tag files are listed under '"C/C++" Tag Files'.

Language-specific tag files have checkboxes which can be turned off in order to keep a tag file in the
list, but ignore it. This makes it easy to de-activate and re-activate a tag file that you need on occasion,
but do not want to always use for the current language.

Note

For languages that have compiler-specific tag files, for example, C/C++ and Java, the language-
specific tag files category is added immediately below the compiler-specific tag files category.

Tag File Categories (Pro only)

209

Building Tag Files (Pro only)
Each kind of tag file is built differently. Refer to the following sections for how to build each kind.

Caution

We do not recommend you run a second copy of the editor to perform tag file updating because it
will cause tag file access problems. Under UNIX the editor will crash if multiple editors are
updating the same tag files.

Creating Tag Files for Workspace Files (Pro only)

Tag files for your workspace files are automatically created and updated as you edit. If you edit a source
file with a different editor, you will have to retag the file or workspace to make sure that the symbol
information is up to date.

To retag your workspace, do one of the following:

• Use the Projects tool window - right-click on the root workspace node and select Retag Workspace.
This action will also rebuild any project-specific tag files.

• From the main menu, click Project → Retag workspace. This action will also rebuild any project-
specific tag files.

• Use the Context Tagging - Tag Files dialog - select Tools → Tag Files from the main menu. Select
the first tag file listed under Workspace and Project Tag Files and click the Rebuild Tag File button.

To retag the files in a project, do one of the following:

• Use the Projects tool window - right-click on the project node and select Retag Project.

• From the main menu, click Project → Retag project. This action will only retag the files in the current
project.

• Use the Context Tagging - Tag Files dialog - select Tools → Tag Files from the main menu. Select
the project tag file listed under Workspace and Project Tag Files and click the Rebuild Tag File
button.

Creating Tag Files for Compiler-Specific Libraries (Pro only)

The Tag Compiler Libraries dialog is used to tag libraries associated with the most commonly used
languages in SlickEdit. This dialog appears as part of the Quick Start Configuration Wizard, when
SlickEdit® is run for the first time. It allows you to build tag files for commonly used languages and their
libraries, including C, C++, Java, and .NET. You can access this dialog at any time from the Context
Tagging - Tag Files Dialog (select Tools → Tag Files, then click Auto Tag).

Building Tag Files (Pro only)

210

To create tag files for the languages listed, select the packages you want to build. If you want to have the
tag files built in the background, select Build tag files using a background thread. Click OK to begin. If
you have chosen to build your tag files in the foreground, then the Building Tag Files dialog box opens,
showing the progress as the tag file is built.

If you have chosen to build in the background, the progress dialog shows the progress of queuing files for
background tagging. You can then continue to edit code while your files are being tagged. To inform you
of the progress of this task, an icon id displayed in the Alert area. While background tagging is being
performed, the icon is highlighted.

You can configure some compilers by selecting them in the tree and then clicking the Configure button.
This will open the Compiler Properties dialog for that language.

For languages not listed on the "Create Tag Files for Compiler Libraries" dialog, you can create language-
specific tag files (see Configuring Other Languages).

Building Tag Files (Pro only)

211

In the Compiler Properties dialog, do the following:

1. Click Add to enter the name of the compiler you are configuring.

2. Click Set Default if this is the main compiler you use for this language.

3. Click the ... button (ellipses) next to the "Built-in Compiler Include Directories" field to specify an include
directory. SlickEdit will tag all files in that directory and any subdirectories.

4. Click Build Tag File to build the tag file for this compiler.

5. Click OK to finish.

Creating Language-Specific Tag Files (Pro only)

Language-specific tag files provide the same symbolic information for libraries that is provided for code in
your projects. A library is a pre-built unit of code that is not edited as part of this development effort.
These tag files are accessible from any project written in the same language.

You should create a language-specific tag file for any library that is not a compiler-specific library or part
of the codebase you are editing. For example, you may have local libraries that are reused from project to
project.

Note

Building Tag Files (Pro only)

212

Language-specific tag files are used by all projects using that language. If you have a library that
is used by one project and not another, the symbols in that library will show up as completions in
both projects.

You should consider using workspace-specific auto-updated tag files for libraries that are only
used by certain workspaces. This can also be helpful when you need to work with multiple
versions of the same third-party library. See Workspace Auto-Updated Tag Files for more
information.

To create a language-specific tag file, select Tools → Tag Files from the main menu. The Context
Tagging - Tag Files Dialog is displayed. Click Add Tag File to open the Add Tag File dialog.

The Add Tag File dialog has the following fields:

• Language - Select the language type into which you want the tag file inserted.

Building Tag Files (Pro only)

213

• Generate References - Select this only if you want library functions to be shown when you list
references.

Note

Generate References creates an inverted file index so that you can quickly find which files
contain which symbols. Workspace tag files create this index by default. This information is used
to build a list of references (using the push_ref command, bound to Ctrl +/ in the CUA
emulation). In general, it's better to have the reference list contain functions that are part of your
workspace and not in libraries. If Generate References is not checked, you will still be able to
jump from a symbol to its definition in a library using Ctrl+Dot (push_tag).

This option is off by default since most programmers do not want to see library functions shown in
the reference list.

• Tag files in background when possible - Check this option to use background tagging when
possible.

• Add existing tag file - If you are adding an existing tag file, select this option, which will enable the
following fields:

• File - The path to your tag file.

• Rebuild tag file - Check this option to go ahead and rebuild the tag file when adding it.

• Create new tag file - Select this option to create a new tag file. These additional options will be
enabled:

• Save as - Where to save the new tag file. Give it a name that is representative of the library being
tagged. For example, if you are tagging the Boost library, you would name the file "Boost.vtg". Tag
files are required to have the extension .vtg.

• Source path - The path to the directory from which to include files.

• Recursive - If checked, the selected directory will be searched recursively.

• Include filespecs - The Include Filespecs combo box lets you select from predefined wildcard
specifications or you can type your own. Each file spec should be separated with semicolons. For
example, to include only Java files, select *.java from the predefined list. To include all files in a
directory, type the wildcard *. To customize the items in this list, see the Files of Type Filter Options.

• Exclude filespecs - Use this combo box to exclude paths, files, or file types from the specified
directory using ant-like wildcards. To specify multiple patterns, separate them with semicolons. No
files are searched in a path that is excluded, including any files in sub-directories beneath. For
examples, see Exclusion Examples.

After filling in the fields, click OK to build your tag file. The Building Tag File dialog opens showing the
progress as the tag file is built. When finished, the contents are displayed in the Context Tagging® - Tag
Files dialog.

Building Tag Files (Pro only)

214

See Managing Tag Files for more information.

Configuring Context Tagging for COBOL (Pro only)

All of the Context Tagging features for COBOL, except Parameter Information, are provided by scanning
COBOL source file and the copy books that are included. This information is used by List Members,
completions, tag-driven navigation, symbol preview, and in the Outline view. Parameter Information for
COBOL commands and intrinsic functions are provided by the COBOL built-ins file created during product
installation. To provide Parameter Information for subroutines, you must build a tag file that will hold
linkage information from the subroutine's point of view.

Configuring Context Tagging for Other Languages (Pro only)

For languages other than C/C++, Java, or .Net, you can create language-specific tag files for the standard
libraries that are part of those languages.

A tag file is automatically built for the run-time libraries of C#, Unity, JavaScript, Perl, PV-WAVE, Slick-
C®, TCL, Visual Basic .NET, and InstallShield and usually it is not necessary to build tag files for the run-
times of these languages. If you already built a tag file for run-times during installation, you can skip this
section. If you are using Perl, Python, or TCL, and the compiler cannot be found in PATH (or registry for
Windows), you need to build tag files for these run-time libraries.

Building CTags Based Tag Files (Standard only)
In order for CTags tag navigation and completion to work, you must create a workspace and project (see
Creating Projects). You can either generate the CTags tag file yourself or use SlickEdit to generate the
ctags tag file for your workspace files (see Creating Tag Files for Workspace Files).

At this time, SlickEdit can handle generic ctags, tag files, but not emacs-style (exuberant) etags tag files.
If you are building tag files manually, it is recommended to you use the standard style.

SlickEdit will look for a CTags based tag file in one of several locations. It will only use the first tag file
found.

• First SlickEdit will look for a file in the current project directory with the project's name and the extension
".tags". Next it will look for a file named "tags" in the current project directory.

• Next it will look for a file in the workspace directory with the workspace name and the extension ".tags".
Next it will look for a file named "tags" in the workspace directory.

• Finally it will look for a file named "tags" in the current directory.

Creating Tag Files for Workspace Files (Standard only)

Tag files for your workspace files can be manually created and will be automatically used by SlickEdit for
symbol navigation and completion. You can either build the CTags tag files from within SlickEdit or build
them outside of SlickEdit using the ctags tool directly.

To retag your workspace, do the following:

Building CTags Based Tag Files
(Standard only)

215

• The ctags executable must be in your PATH or at the location configured in options Tools → Options
→ Tools → CTags Tagging).

• Use the Projects tool window - right-click on the root workspace node and select Retag Workspace.

• From the main menu, click Project → Retag workspace. This action will also rebuild any project-
specific tag files.

To retag the files in a project, do one of the following:

• Use the Projects tool window - right-click on the project node and select Retag Project.

• From the main menu, click Project → Retag project. This action will only retag the files in the current
project.

Managing Tag Files (Pro only)
The Context Tagging - Tag Files Dialog (Tools → Tag Files) is used to manage your tag files.

The left pane of the dialog lists all of your tag files, separated into categories (see Tag File Categories
below). A tag file having a File bitmap with blue arrows indicates the tag file is built with support for cross-
referencing. The right pane of the dialog lists all the source files indexed by the currently selected tag file.

For information about the buttons available, see Context Tagging - Tag Files Dialog.

Tag File Search Order (Pro only)

When doing tag lookups, the tag files are searched in a specific order, which affects the tags found. The
following are examples of the order in which tag files are searched.

Managing Tag Files (Pro only)

216

Example: C/C++ Tag File Search Order

If a C/C++ source file is open, when a tagging-related operation is performed, the tag files are searched in
the following order:

1. Local variables in the current function or symbol, and other symbols in the current source file are
searched first.

2. Workspace tag file, providing it contains other C/C++ source files.

3. Project tag files, providing they contain other C/C++ source files. The order that project tag files are
searched is not defined.

4. Auto-updated tag files containing other C/C++ source files.

5. The "C" Compiler Configuration tag file corresponding to your default C compiler configuration as
specified in your project (see C/C++ Compiler Settings), or global default.

6. Language-specific C tag files, in the order that they are listed in the Context Tagging - Tag Files Dialog.
Note that if you have a "C" Compiler Configuration tag file, cpp.vtg will be excluded from this list.

Example: Java Tag File Search Order

If a Java source file is open, when a tagging-related operation is performed, the tag files are searched in
the following order:

1. Local variables in the current function or symbol, and other symbols in the current source file are
searched first.

2. Workspace tag file, providing it contains other Java source files.

3. Project tag files, providing they contain other Java source files. The order that project tag files are
searched is not defined.

4. Auto-updated tag files, containing other Java source files.

5. The "Java" Compiler Configuration tag file corresponding to your default Java compiler configuration as
specified in your project (see Java Compiler Properties Dialog), or global default.

6. Language-specific Java tag files, in the order that they are listed in the Context Tagging - Tag Files
Dialog.

Rebuilding Tag Files (Pro only)

The Rebuild Tag File dialog box contains options for rebuilding the selected file. To display the Rebuild
Tag File dialog, click select Tools → Tag Files. When the Context Tagging - Tag Files Dialog is
displayed, select a file to rebuild, then click Rebuild Tag File.

Managing Tag Files (Pro only)

217

The following settings are available:

• Retag modified files only - If checked, SlickEdit® will incrementally rebuild the tag file, only retagging
files that have been modified since the last time they were tagged. If not checked, SlickEdit will rebuild
the entire tag file from scratch.

• Generate References - If checked, the tag file will be built with support for cross-referencing. Tag files
with support for references are slightly larger and take slightly more time to build. They will also be
included in all symbol references searches, which may not be necessary, especially for third-party
libraries.

• Remove all deleted files without prompting - If checked and the tag file contains a source file which
no longer exists on disk, the source file will be removed from the tag file without prompting for
confirmation. This checkbox is not present when rebuilding the workspace tag file and project tag files
since the list of files in the workspace's projects determine what files should be tagged.

• Keep all deleted files without prompting - If checked and the tag file contains a source file which no
longer exists on disk, the source file will not be removed from the tag file without prompting for
confirmation. This checkbox is not present when rebuilding the workspace tag file and project tag files
since the list of files in the workspace's projects determine what files should be tagged.

• Retag files in background when possible - If checked the tag file is rebuilt in the background if
background tagging is supported for these files.

Note

The options Remove all deleted files without prompting and Keep all deleted files without
prompting are mutually exclusive. Selecting one will clear the other.

Context Tagging® Options (Pro only)

Context Tagging® Options (Pro
only)

218

General Context Tagging® Options

Options are available for setting general parameters for the Context Tagging feature set. You can
designate how tagging is done, how references function within the application, and tune the application to
maximize performance. To display the options, from the main menu, select Tools → Options → Editing
→ Context Tagging. See Context Tagging® Options for descriptions of the options.

Tip

To improve tagging performance, you may need to adjust the tag file cache size (Tools →
Options → Application Options → Virtual Memory). See Virtual Memory Options for more
information.

Language-Specific Context Tagging® Options (Pro only)

You can activate and deactivate various Context Tagging features on a per-language basis. To access
these options, from the main menu, select Tools → Options → Languages, expand your language
category and language, then select Context Tagging®. See Language-Specific Context Tagging®
Options for more information.

Context Tagging® Options (Pro
only)

219

220

Building, Running, and Debugging
(Pro only)

This chapter contains the following topics:

• Building and Compiling

• Running and Debugging

• Working with Google Web Toolkit Projects

• Working with Android Projects

221

Building and Compiling (Pro only)

Project Configurations in Builds (Pro only)
Each project may have a number of configurations defined. See Project Configurations for more
information on creating and managing Project Configurations. The active configuration is used during the
build process to determine the project settings to use. The manner in which the configuration affects a
build depends on which build system you are using.

The build system is specified by selectingProject → Project Properties from the main menu and then
selecting the Build tab. The first and third options, Build without a makefile and Build with an auto-
generated, auto-maintained makefile, use the SlickEdit® build system. The second option, Build with a
user-maintained makefile or custom build command, allows you to use a custom makefile or
configure build commands on the Tools tab.

• If you use the SlickEdit build system, SlickEdit will use the project properties associated with the
currently active configuration. It will direct the build output to a directory with the same name as the
project configuration. For example, if Debug is active, SlickEdit will direct the build output to a directory,
named "Debug", inside the project directory. You can specify an output directory for a configuration by
selecting Build → Configurations from the main menu, and then enter a directory in the Object
directory field.

• If you are using custom build commands on the Tools tab, you can use the %b (current configuration)
or %bd (object directory) escape sequences to implement configuration-specific build behaviors.

• If you are using a custom makefile, you can define a macro, such as CFG, which represents the
configuration you want to build. Add code to the makefile to check for this macro and perform different
statements, like choosing different compile options or a different directory for object files. The makefiles
exported from Visual C++ already define a CFG macro. For a standard make program you will need to
use the name=value syntax when passing a macro to the make program. For example:

make CFG=Debug

Note

SlickEdit uses the vsbuild utility for all 3 build methods. Even when you build using a custom build
command or makefile, SlickEdit uses vsbuild as a wrapper to set up the environment and to
determine when the build has completed.

Using Build and Compile Operations (Pro only)
SlickEdit® provides the capability to build a project or compile single files.

• To build the active project, click Build → Build from the main menu, press Ctrl+M, or use the
project_build command.

Project Configurations in Builds
(Pro only)

222

• To build a different project, open the Projects view, right-click on a project and select Build.

• To compile the file in the active editor window, click Build → Compile from the main menu, press
Shift+F10, or use the project_compile command.

• To compile a different file, display the Projects tool window, right-click on a file, and select Compile.

If your workspace contains multiple projects, sometimes one or more projects must be compiled before a
particular project can be compiled. Click Project → Project Properties and then select the
Dependencies Tab to view or set dependencies for the active project. Alternatively, you can right-click on
a project in the Projects view and select Dependencies, allowing you to set dependencies for a project
that is not active.

Before you can execute the Build or Compile commands you must set the current project or define an
extension-based project. To define an extension-based project command, use the language-specific
Single File Projects options screen (see Defining Language-Specific Projects). You will probably want
the Build command to be based on the current project and not the current extension. Use the
workspace_new command (Project → New) to create a workspace or project. If the current project has
a Compile command defined, the language-specific project Compile command will be ignored.

By default, the Build or Compile command is executed in the Build window. This allows you to continue
editing while the compiler runs. You can process the error messages as they appear in the Build window
instead of waiting until the compile process finishes. Use the stop_process command or click Build →
Stop Build to stop the compiler running. To send the compile output to an editor window (named
.process), right-click in the Build window and select Send Compile Output to Editor Window.

To customize the Build and Compile commands, click Project → Project Properties. Select the Tools
Tab, then select an operation from the list: Build, Compile, or Rebuild. Depending on the language and
your other project settings, either a command line or an Options button will be displayed allowing you to
configure the operation.

Compiling a Project

The Build menu items Compile and Build start the compile and build commands respectively for the
current project. If you selected a compiler package, you can try these commands now. To change these
commands and a few other project options, use the Tools Tab of the Project Properties dialog box
(Project → Project Properties). The Build → Next Error and Build → Previous Error menu items allow
quick navigation of compiler errors.

Using VSBUILD to Compile

Use the utility program vsbuild to compile files in a project and process dependencies between projects.
This tool is intended to help implement project support. It has a built-in make facility for Java and C++,
performs project dependencies, and processes pre- and post-build commands. For example, if
file1.java references file2.java which references file3.java and file3.java is modified,
then when you invoke the Build command, file1.java, file2.java, file3.java will be recompiled.
Invoking vsbuild with no parameters displays invocation options.

Compiling a Visual C++ Project

Using Build and Compile
Operations (Pro only)

223

For Visual C++ v5.x and v6.x, the default compile command uses the nmake program which requires a
makefile (.mak extension). Visual C++ v5.x and v6.x do not automatically create a makefile for you. Use
Project → Export Makefile in Visual C++ to create or update the makefile. For Visual C++ v5.x or higher,
the default build and rebuild commands do not need a makefile.

You can customize the compile, build, and rebuild commands from the Tools Tab of the Project
Properties dialog box (Project → Properties).

If you get an error when you run nmake, you need to run the VCVARS32.BAT file (shipped with Visual
C++) in a DOS box that you start the editor from. This will set the environment so that the editor can run
these compiles.

Specifying Build on Save

A build can be automatically launched upon saving the file or files within a project. To specify this option
and to toggle it on/off, from the main menu click Build → Build Automatically on Save. By default this
option is not selected.

Specifying Open Commands

The Open Tab of the Project Properties dialog (Project → Project Properties) lets you enter commands
that are executed when the project is activated. This information is stored per project, not per
configuration. This tab is unavailable for extension-based projects.

To enter a new command to be opened for a project, simply type the command(s) in the editor control
window. Each line should contain a command just as you would type it on the command line. You can set
environment variables in the concurrent build window with the set command. For example, the command
set xxx=yyy sets the environment variable xxx to the value yyy. This automatically supports different
UNIX shells. Use concur_command to send a command string to the concurrent build window, for
example: concur_command export name=value.

Escape Sequences for Build Commands

The following escape sequences may be used when creating build commands using the Tools Tab on the
Project Properties Dialog.

Sequence Expands to

%B Configuration

%BD Configuration build directory. Escapes in the return
value are expanded.

%BN Configuration name. Same as %B option except for
Visual C++ configuration names where
configuration names are of the form
CFG="[ConfigName]" or [ConfigName]|[Platform]

Using Build and Compile
Operations (Pro only)

224

Sequence Expands to

%C Current word

%CP Java class path including -classpath. Escapes in
the return value are expanded.

%DEFD Configuration defines with dashes. Escapes in the
return value are expanded. Example: %DEFD,
project def = 'test' produces '"-Dtest"

%DEFS Configuration defines with slashes. Escapes in the
return value are expanded. Example: %DEFS,
project def = 'test' produces '"/Dtest"

%DM The file name only of the current buffer

%E File extension with dot

%EXE On Windows, returns ".exe". Returns empty string
for other platforms.

%F Absolute filename

%H (Java only) Builds a temp HTML file to run the
compiled applet, %H is replaced by the temp HTML
file name

%I Absolute include directories (individually listed)
including '-i'. Escapes in the return value are
expanded. Example: '-ic:\folder1 -ic:\folder2'

%IR Relative include directories (to the project) including
'-I', separated by semicolons (colons on UNIX).
Escapes in the return value are expanded.
Example: '-Ic:\folder1;c:\folder2'

%IN Absolute include directories (individually listed)
including '-i '. Escapes in the return value are
expanded. Example: '-i c:\folder1 -i c:\folder2'

%JBD Java build directory including -d. Escapes in the
return value are expanded.

%L Command line. Currently not available to vsbuild.

Using Build and Compile
Operations (Pro only)

225

Sequence Expands to

%LF Current buffer name

%LIBS Libraries space delimited. Escapes in the return
value are expanded.

%N Filename without extension or path

%O Output filename. Currently only GNU projects have
an output filename on the Link Tab. Escapes in the
return value are expanded.

%OBJS Project objects (including libraries). Escapes in the
return value are expanded.

%OE Output extension with dot. Escapes in the return
value are expanded.

%ON Output filename with no extension or path. Escapes
in the return value are expanded.

%OP Output path. Escapes in the return value are
expanded.

%P Path of current file

%R Absolute project name

%RE Project extension

%RM Project display name (for associated workspaces)

%RN Project filename without extension or path

%RP Project path

%RV (Windows only) Project drive with :

%RW Project working directory

%T Project configuration target

%V (Windows Only) Drive of current file with :

%W Absolute workspace filename

Using Build and Compile
Operations (Pro only)

226

Sequence Expands to

%WE Workspace extension with dot

%WN Workspace filename with no extension or path

%WP Workspace path

%WV or %WD Workspace drive with :

%WX The workspace folder name only. Example: %WX,
workspace = 'c:\a\b\c\workspace.vpw' produces 'c'

%XUP Translate all back slashes that follow to forward
slashes (UNIX file separator)

%XWP Translate all forward slashes to back slashes
(Windows file separator)

%-# Removes the previous # characters

%# The # item in argline (items are separated by
spaces)

%{*.*} A list of project files matching the pattern in braces

b%[regkey] Value of Windows registry entry. Example:
%[HKLM:\Software\Microsoft\Communicator@In
stallationDirectory]

%(envvar) Value of environment variable envvar. Escapes in
the return value are expanded.

%(env envvar) This alternate syntax can be used to guarantee that
the contents of an environment variable is returned.
Right now, there aren’t many conflicts. Note that
expansion is done an ALL arguments to %(word
args) syntax commands. This means you need to
use %% if an environment variable name has a %
in it. Escapes in the return value are expanded.

%(macro functionName arg1_args) Not supported in vsbuild. Calls a macro function
with one argument (arg1_args) if there are any. Any
return value is included in the build command.
functionName and arg1_args are expanded before
parsed. Parenthesis must match. Example:

Using Build and Compile
Operations (Pro only)

227

Sequence Expands to

%(macro my_function %(PATH)) , where _str
my_function(_str path) is a macro function

%(last-path-part count pathSpec) Return one path part. Starts from end of pathSpec
where count=0 is the name without path, count=1 is
first path part before name, count=2 is path before
that, etc. Example: %(last-path-part 1
c:\a\b\c\d\test.txt) produces 'd'. Example:
%(last-path-part 2 c:\a\b\c\d\test.txt) produces 'c'.

%(last-path count pathSpec) Return number of path parts specified. Starts from
end of pathSpec where count=0 returns name
without path, count=1 returns first path part before
name and name, count=2 returns is first and
second path parts before name and name, etc.
Example: %(last-path 1 c:\a\b\c\d\test.txt)
produces 'd\test.txt'. Example: %(last-path 2
c:\a\b\c\d\test.txt) produces 'c\d\test.txt'.

%(prompt prompt-text[: initial_value]) Not supported by vsbuild. Prompts the user for a
value. Returns user input. prompt-text and
initial_value is expanded before being parsed.
Parenthesis must match. Example: %(prompt
Text:initial value), will prompt the user with the text
'Prompt text' with 'initial value' in the text box.

%(last-prompt-result) Not supported by vsbuild. Returns result from last
%(prompt Text:initial value).

%(open-paren) Returns '('. Intended for use inside a parenthesized
expression which would otherwise have
mismatched parenthesis.

%(close-paren) Returns ')'. Intended for use inside a parenthesized
expression which would otherwise have
mismatched parenthesis.

%% Percent character

Language-Specific Build Methods (Pro only)

Build Methods for GNU C/C++

Language-Specific Build
Methods (Pro only)

228

There are three build methods available for GNU C/C++. With these build options you will not need to
convert the current build methods to use the GNU debugger. You can select one of these build methods
when you create a new GNU C/C++ Wizard project:

• Build without a makefile (dependencies automatically checked) - When you use the GNU C/C++
Wizard and select this build option, no makefile is ever generated. Instead, our vsbuild utility program
determines what needs to be compiled dynamically. We recommend using this option when you are not
worried about how the build gets done. Make sure the project include directories (Project → Project
Properties, select the Directories Tab) are set up correctly so include files may be found.

• Build with a user-maintained makefile or custom build command - When you use the GNU C/C++
Wizard and select this build option, no makefile is ever generated and by default the build command is
set to make. You can change the build command to anything you want using the Project Properties
dialog (Project → Project Properties, select the Tools Tab, select Build for the tool name). Choose
this option when you already have your own method for building the source.

• Build with an auto-generated, auto-maintained makefile - When you use the GNU C/C++ Wizard
and select this build option, a makefile is automatically generated and updated when files are added to
the project. We recommend using this option when you need a makefile and do not want to use the
built-in vsbuild utility. Make sure the project include directories (Project → Project Properties, select
the Directories Tab) are set up correctly so include files may be found. To start a build from outside the
application, execute the following command where make is the name of the make program, Makefile is
the name of the makefile, and ConfigName is the name of the configuration:
make-fMakefileCFG=ConfigName.

Cygwin: Using GNU C/C++ 'alternatives' system

On Cygwin, with version 4 of GNU C/C++, "gcc" and "g++" are symbolic links to one of the version-
specific executables: "gcc-3", "gcc-4", "g++-3", and "g++-4". A proprietary system called "alternatives" is
used to link the unversioned commands to the version-specific ones.

This example shows how to configure which version is used:

$ /usr/sbin/alternatives --config g++

There are 2 programs which provide 'g++'.

Selection Command

* 1 /usr/bin/g++-4.exe
+ 2 /usr/bin/g++-3.exe

Enter to keep the current selection[+], or type selection number: 1

SlickEdit uses the information from the alternatives system to run the specified version of the compiler.
This allows you to use the same build command within SlickEdit as you do from the Cygwin shell. If you
don't want to control this using the alternatives system, you can configure the build system to use "gcc-3",
"gcc-4", etc. Select Build → GNU C Options then set the Compiler field on the Compile tab and the

Language-Specific Build
Methods (Pro only)

229

Linker field on the Link tab.

Build Methods for Xcode

When SlickEdit® opens an Xcode project, it creates a view of the project that is consistent with other
SlickEdit workspaces. This creates a few discrepancies between from the view of the project that Xcode
provides. The most noticeable difference is that the files in the project cannot be viewed in a single tree,
rather the files are always separated by the target that uses the file.

There are build methods available when using Xcode. To open an Xcode project, complete the following
steps:

1. From the user interface, click Project → Open Other Workspace → Xcode Project.

2. In the Directory window, select the .Xcodedirectory. This directory appears as a file inside the Finder.

3. From the File window, select the project.pbxproj file.

4. From the main menu, click Project → Set Active Project.

5. Select the project that you want to use.

6. Click Build → Set Active Configuration.

7. Select the style that you want.

8. Click Build → Build.

9. The project is then built, and you can work with your project.

Build Methods for Ant and NAnt

SlickEdit® supports Apache Ant XML build files and NAnt build files. Apache Ant is a popular make facility
used to build Java components. NAnt is a .NET build tool that is similar to Ant.

Note

Ant build files must end with the .xml extension in order to be recognized as build files. NAnt
build files must end with the .build extension.

You must use SlickEdit projects for your Ant/NAnt files in order to access the commands that invoke build
file targets.

When you open an Ant XML or NAnt build file, SlickEdit automatically either opens the project if it already
exists, or creates a new project and adds the file to it.

• To open an Ant XML file - From the main menu, click Project → Open Other Workspace → Ant
XML Build File, or use the workspace_open_ant command.

• To open an NAnt build file - From the main menu, click Project → Open Other Workspace → NAnt
.build file, or use the workspace_open_nant command.

Language-Specific Build
Methods (Pro only)

230

Alternately, you can manually create a project and add the build files or add the files to an existing project.

When adding build files to a project, they are scanned for callable targets. If any targets are found in the
file, the icon in the project tree is changed to the "bull's eye" icon.

See Creating Projects and Adding and Removing Files for more information about creating projects and
adding files to them.

Invoking Ant or NAnt Targets

Once you have a project that contains Ant or NAnt files, you can execute Ant or NAnt targets. The
SlickEdit commands that invoke the build file targets are only available from the Build menu and the right-
click context menu of the tree in the Projects tool window.

To execute a single target, pick the target menu item. For example, for Ant, from the main menu, click
Build → Execute Ant Target, then navigate to the target. To specify arguments or execute multiple
targets, use the Select Multiple Targets menu item. For example, for Ant, from the main menu, click Build
→ Execute Ant Target → Select Multiple Targets. Alternately, you can right-click on an Ant or NAnt
project in the Projects tool window and execute one target or multiple targets.

The Execute Single Ant Target menu and the Choose Ant Target(s) dialog will display targets which
are imported into the selected build file from other Ant files. This behavior can be turned off at Tools →
Options → Languages → XML/Text Languages → Ant → Options.

Language-Specific Build
Methods (Pro only)

231

Setting Shortcuts for Build and Rebuild

To set up the Build → Build menu items or Build → Rebuild menu items or both to invoke a specific set
of targets, first select one of the target menu items:

• For Ant XML files, from the main menu, click Build → Execute Ant Target → Select Multiple Targets,
and choose Ant XML File.

• For NAnt build files, click Build → Execute NAnt target → Select Multiple Targets, and choose NAnt
.build file.

Then, complete the following steps:

1. Check one or more targets and provide any additional arguments.

2. Check the Remember and use these settings for check box.

3. Select Build or Rebuild in the adjacent combo box.

4. Click OK.

Working with Build Errors (Pro
only)

232

Working with Build Errors (Pro only)
One key advantage of building within SlickEdit is the ability to jump from an error message to the location
in the code associated with that error. This makes it much faster to find and fix problems after doing a
build.

Viewing Errors

SlickEdit provides a variety of mechanisms to display errors from a build, including:

• Error markers are placed in the margin of the editor window.

• The Build tool window displays the output from the build process.

• The Message List tool window displays a list of errors and warnings parsed from the build output.

• list_errors will display the output from a build in a pop-up window. This is useful if you have configured
a build command and configured it not to output to the Build window.

For information about how to jump from an error to the source code, see Navigating from Build Errors to
Source Locations.

Viewing Errors in the Editor Window

Error markers are displayed as red X bitmaps in the left margin of the editor window after a build or
compile is completed. To clear these markers, fix the errors and rebuild. You can also clear the markers
by selecting Build → Clear All Error Markers, from the main menu, or by using the
clear_all_error_markers command.

You can move from one error to the next using next-error and prev-error. These commands determine
the next and previous error based on their position in the build output and the current error, marked with a
green triangle. See Navigating from Build Errors to Source Locations for details on using these
commands.

Viewing Build Results in the Build Tool Window

The output from a build (Build → Build) or a compile (Build → Compile) are sent to the Build tool
window, docked at the bottom of the SlickEdit window by default. This is the same text you would see if
you ran the build in an external command shell. See Navigating from Build Errors to Source Locations for
details on jumping from an error message to the corresponding source location and for navigating to the
next or previous error.

SlickEdit is already configured to parse many common error formats. If yours is not recognized, you need
to configure a new error regular expression. See Parsing Errors with Regular Expressions for more
information.

Viewing Build Errors in the Message List Tool Window

The Message List tool window parses the errors from the Build tool window and displays a list of errors
and warnings in a tabular form. Messages can be sorted and filtered. You can also jump from a message

Working with Build Errors (Pro
only)

233

to the corresponding location in the source code. For more information see Message List.

Listing Errors with list-errors

To see a list of errors that have occurred during the current editing session, use the list_errors
command. The Error File dialog box will be displayed.

Move the cursor in the editor control to the error message you want to go to and click Go To Cursor
Error to view the source code.

Navigating from Build Errors to Source Locations

SlickEdit provides the means to jump from an error in the Build window to the corresponding location in
the source code. You can do this by any of the following:

1. Double-clicking on an error in the Build window.

2. Running the cursor-error command, bound to Alt +1 in CUA emulation.

3. Selecting Build → Go to Error or Include.

In each case you must select or position the cursor within a line that contains the filename and, optionally,
the line number and column number.

You can move from one error in the Build window to the next using the next-error command, bound to
Ctrl +Shift +Down in the CUA emulation. The same operation is available on the main menu, by
selecting Build → Next Error.

Use prev-error, bound to Ctrl +Shift +Up , to move to the previous error. Again, you can select this
operation from the main menu at Build → Previous Error.

Note

The key bindings for next-error and prev-error can be used in both the Build tool window and
the editor window. in both cases, the result is driven by the order of errors in the Build tool
window and the current error, marked by a green triangle.

If the error is within the same file, SlickEdit will move the cursor to that line. Otherwise, SlickEdit will open
the corresponding file and move to the indicated line.

Tip

Navigating to a source code location from the Build tool window is not limited to build output. You
can execute commands, like sgrep, in that window and use the same methods to jump to the
indicated locations.

Parsing Errors with Regular Expressions

Working with Build Errors (Pro
only)

234

SlickEdit uses regular expressions to parse the contents of the Build window and retrieve the file name or
path, line number, column number, and error message. A set of default regular expressions are included
that can parse error messages from supported compilers like Visual Studio, GCC, and Java. For other
tools, you may have to write additional regular expressions.

Error parsing regular expressions are written using the SlickEdit regular expression syntax (see
SlickEdit® Regular Expressions). They are stored in the ErrorRE.xml file located in your configuration
directory. If the file is deleted, SlickEdit will create a new one with the default values. Rather than
modifying the XML by hand, you can use the Options dialog to configure error parsing, creating new
regular expressions or managing the list of existing ones. See the following sections for more information:

• Configuring Error Parsing

• Enabling Expressions

• Setting Priority

• Adding New Categories

• Adding New Expressions

• Editing Expressions

• Error Expression Groups

• Sample: Creating a New Error Parsing Expression

• Testing Expressions

Configuring Error Parsing

To configure error parsing, use the Configure Error Parsing option screen. It can be accessed from the
main menu by clicking Build → Configure Error Parsing, or by opening the Options dialog (Tools →
Options) and selecting Configure Error Parsing from the Tools category. You can also display the
screen with the configure_error_regex command.

Working with Build Errors (Pro
only)

235

The Categories list displays all the expression categories that are defined in the ErrorRE.xml
configuration file. Highlighting a category will show the individual expressions for that category.

Enabling Expressions

To enable or disable an expression, or a whole category of expressions, simply click the check box to the
left of the expression or category. If a category is unchecked (disabled), then the expressions are not
used to parse build output, regardless of their checked or unchecked status.

Setting Priority

To optimize performance for your development needs, you may re-prioritize either expressions or whole
categories by using the blue Up and Down arrow buttons.

Resetting Configuration

To reset the configuration settings back to their installation defaults, click the Reset button.

Adding New Categories

Click the green Plus button next to the category listing. The following prompt is shown.

Working with Build Errors (Pro
only)

236

Enter the name for your new category and click OK. Category names must be unique and the dialog will
prevent you from adding duplicate entries.

Adding New Expressions

You can add new expressions to any category. Highlight the category you want the new expression to be
under, then click the green Plus button to the right of the Expressions listing. The following dialog is
displayed.

Enter a name for your new expression. The regular expression must be authored using SlickEdit®
Regular Expression syntax. The arrow to the right of the entry field will display a menu of common regular
expression syntax constructs to assist you. A "starter" expression is provided for you, as well as some
sample error output lines. See the following sections on how to author and test your expression.

Once you have created and tested your new expression, click OK to save the expression. You must also
click OK when quitting the main configuration dialog to save your changes.

Exclusions

Some of the error parsing expressions may match lines that you do not want recognized as errors. To

Working with Build Errors (Pro
only)

237

eliminate these "false positive" matches, define a new expression in the Exclusions category. The default
configuration file contains an expression to match the "Total Time" build output line that is generated by
SlickEdit®'s internal build system, vsbuild. Any new exclusion expressions you write should be very strict
to prevent real error lines from being skipped. You do not have to define match groups in the exclusion
expressions since they will not be used to extract file name and line number information.

Editing Expressions

To edit an existing expression, double-click the expression in the expression listing, or highlight the
expression and click the small Edit button to the right of the listing. This launches the same dialog that is
used to create a new expression.

Error Expression Groups

In order to navigate to the file that caused the build error or warning, the regular expression needs to be
able to identify the file name, and optionally the line and column number, as well as the error message.
This is accomplished by using four Tagged Expressions , also known as match groups. The following table
documents the match groups used to identify specific portions of an error message.

Group Number Group Syntax Purpose

0 {#0:p} Retrieves the file name or file
path.

1 {#1:i} Retrieves the error line number.

2 {#2:i} Retrieves the error column.

3 {#3} Retrieves the error message text.

The expression for Group #3 can match any portion of the error message you like. The sample
expression {#3?+}$ is just matching all remaining characters up to the end of the line. The groups can
occur in any order in your expression. For example, if the build tool output places the file name, line, and
column after the error message, like the following hypothetical example:

Error E509: Bad format: found in /usr/tmp/file.x, line 23, column 13

then your expression might look something like the following:

^Error {#3?+} found in {#0:p},:bline:b{#1:i},:bcolumn:b{#2:i}$

Sample: Creating a New Error Parsing Expression

The steps below demonstrate creating a new regular expression to support error output from a Lint tool.
Below are some samples of the tool's output.

Sample 1:

Working with Build Errors (Pro
only)

238

file.cpp (5) : Warning 200: Possible dereferencing of null pointer

Sample 2:

includes\file.h (17) : Warning 003: Macro not parenthesized

1. Create a new expression category, and name it "Lint".

2. Highlight the newly created Lint category. The Expressions listing is empty.

3. Create a new expression by clicking the New Expression (green Plus) button to the right of the
expression listing. Copy and paste the sample output lines into the Test Case area.

4. The first thing to match is the file name at the beginning of the line. The group number reserved for the
file is {#0}. SlickEdit® syntax for matching a file path is :p, and ^ represents the beginning of a line.
Therefore, enter the following in the Expression entry field: ^{#0:p}.

5. There is now one space, :b, followed by an integer, :i, enclosed in parentheses, \(\). The group number
reserved for the error line number is {#1}. Edit the expression to be: ^{#0:p}:b\({#1:i}\).

6. After the line number, there is a space, :b, a colon, \:, another space, and then the informative
message on the remainder of the line. To match any number of characters you can use ?+, and to
match the end of the line is $. The group number reserved for the output message is {#3}. Edit the
expression to be: ^{#0:p}:b\({#1:i}\):b\::b{#3?+}$

7. Now test the expression. Click the Validate button. You should see a pop-up message for each line of
sample output.

8. Click OK to save the new expression, and click OK on the main dialog to save your changes to the
configuration file.

Testing Expressions

Copy some sample error or warning output lines from your compiler or build tool, and enter them into the
Test Case area. Click the Validate button to validate the regular expression against the Test Case text
lines. If the regular expression syntax is invalid, then the expression text is colored red, and an error
message is displayed on the status line. If any of the lines in the Test Case area match the expression, a
message box displays the details of the match, like the following sample.

Working with Build Errors (Pro
only)

239

This pop-up displays the line of the matched test case and value for each of the four tagged expression
groups.

You may also want to use the Regex Evaluator tool window to test your expressions. From the main
menu click Tools → Regex Evaluator. Be sure to select the SlickEdit® syntax option when authoring
expressions for error parsing. For more information on the Regex Evaluator tool window, see The Regex
Evaluator.

Running and Debugging (Pro
only)

240

Running and Debugging (Pro only)

Running a Program(Pro only)
To run a program, complete the following steps:

1. From the main menu, click Build → Execute.

2. If there is more than one main program you are prompted to select the one to run.

Debugging (Pro only)
SlickEdit® provides integrated debuggers for the following. Other programs will result in SlickEdit
launching an external debugger.

• GNU C/C++

• LLVM C/C++

• Microsoft Visual Studio C++ programs using WinDbg

• Java (Including Android projects. See Working with Android Projects)

• Python

• PHP

• Ruby

• Perl

• Google Go

• Swift

• Groovy

• XCode projects (Open Project created by XCode)

• Scala

• C# using Mono

• Visual Basic using Mono

Use one of the following methods for debugging your code:

• Debug → Start executes the program and will stop when a breakpoint is reached.

Running a Program(Pro only)

241

• Debug → Step Into places you on the first executable line of the program.

• Debug → Restart stops the current debugger session if necessary and then places you on the first
executable line of the program (like Debug → Step Into).

• Debug → Run to Cursor will execute the program and will stop when the line under the cursor is
reached.

Additional debug operations can be accessed through the Debug toolbar (View → Toolbars → Debug).

64-bit Versus 32-bit Programs

On Windows and Linux, SlickEdit is available in both 64-bit and 32-bit versions. You must use the version
that matches the code you are debugging. To debug 64-bit programs, you need to use the 64-bit version
of SlickEdit. To debug 32-bit programs, use the 32-bit version.

Mixed Mode View in Debugger

When debugging, you can view your source code with the disassembled code displayed between each
line of source. In this mode you can step execution at the assembly language level for greater control
over debugging. The buffer is changed to read-only so that the SlickEdit® product can maintain
synchronization between source and disassembled code. To view mixed mode, use the Debug toolbar
(View → Toolbars → Debug) and click the button Toggle Display of Disassembly.

Debug Key Bindings

The table below shows the key bindings that are available for Debug functions.

Key Function

F5 Start/continue debugging

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

F9 Toggle breakpoint

Ctrl+F9 Toggle breakpoint enable

Ctrl+Shift+F9 Clear all breakpoints

F10 Step over

F11 Step into

Ctrl+F10 Run to cursor

Debugging (Pro only)

242

Alt+PadStar (* on the numeric keypad) Show next statement

Ctrl+Alt+B or Alt+F9 Activate breakpoints window

Alt+3 or Ctrl+Alt+W Activate watch window

Alt+4 or Ctrl+Alt+V Activate variables window

Alt+7 or Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

Multiple Session Debugging

Multiple session debugging provides the ability to start more than one debugging session within a single
instance of SlickEdit®. For example, you can have one session debugging using GDB, and one using
Java at the same time.

To create an additional debugger session, use any of the menu items under the Debug → Attach
Debugger menu.

Named Sessions

The main debugging session always acquires the name of the current project. (Additional sessions can be
created by typing debug_new_create_session.) This name is to be numeric or derived from the
executable name. The setup information and invocation information for each named session are stored in
the workspace history file (.vpwhist). When you create a new session, you can reuse a named session
to save time setting up a remote session. You must also confirm the process ID with each session.

A named session can be associated with a project in such a way that it will always be started when the
project is debugged. The named session can be debugged using the Create New dialog.

If you detach from the main session, all sessions are stopped and you exit the debugging mode. If you
detach from any other session, it simply detaches and control is assumed by another session.

Attaching to a Running Process (GNU C++ or Clang only)

To attach to a running process, complete the following steps:

1. Click Debug → Attach Debugger → Attach to Running Process(GDB) or Debug → Attach
Debugger → Attach to Running Process(LLDB), then select a process to debug.

2. Enter the path to the executable (to pick up debug symbols).

3. Click OK.

To detach from a running process, click Debug → Attach Debugger → Disconnect Remote(GDB) or
Debug → Attach Debugger → Disconnect Remote(LLDB).

Debugging (Pro only)

243

Attaching to a Remote Process (GNU C++ or Clang only)

To attach to a remote GDB server or GDB stub process, complete the following steps:

1. Click Debug → Attach Debugger → Attach to Remote Process(GDB) or Debug → Attach
Debugger → Attach to Remote Process(LLDB).

2. Enter the path to the executable (to pick up debug symbols).

3. Choose the attach method (socket or device).

4. Select the Remote Options tab to adjust remote debugging options.

5. Click OK.

To detach from a remote debugging session, click Debug → Attach Debugger → Disconnect
Remote(GDB) or Debug → Attach Debugger → Disconnect Remote(LLDB).

Attaching to a Core File (GNU C++ or Clang, UNIX only)

To attach to a core file, complete the following steps:

1. Click Debug → Attach Debugger → Analyze Core File(GDB) or Debug → Attach Debugger →
Analyze Core File(LLDB).

2. Type the path to the core file.

3. Type the path to the executable (to pick up debug symbols).

4. Click OK.

Attaching to a Remote JVM (Java only)

To attach to a remote JVM, complete the following steps:

1. Start the remote JVM with command arguments similar to the following example:

Java -Xdebug -Xnoagent
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=8000 MainClass Arg1
Arg2

2. From the main menu, click Debug → Attach Debugger → Attach to Java Virtual Machine.

To detach from a remote debugging session, click Debug → Disconnect Remote(JVM).

Attaching to a Remote VM (Mono only)

To attach to a remote Mono VM, complete the following steps:

1. Start the remote VM with command arguments similar to the following example:

Debugging (Pro only)

244

mono
--debugger-agent="transport=dt_socket,server=y,suspend=y,address=localhost:8000"
Program.exe arg1 arg2

2. From the main menu, click Debug → Attach Debugger → Attach to Mono Virtual Machine.

To detach from a remote debugging session, click Debug → Disconnect Remote(JVM).

Setting Breakpoints (Pro only)

A new breakpoint can be set using any of the following methods:

• Pressing F9 - Toggles a breakpoint on the current line. This is the fastest way to set or clear a
breakpoint. This runs the debug_toggle_breakpoint command. You can bind this command to
another key if you like.

• Double-clicking in the left margin. This sets or clears a breakpoint on the associated line. Once a
breakpoint is set, click once to disable it or double-click to remove it.

• Selecting Debug → Toggle Breakpoint from the main menu.

• Selecting Set Breakpoint from the context menu. This menu entry is only available when no selection
has been made.

• Clicking on Toggle Breakpoint button in the Debug Toolbar(View → Toolbars → Debug).

• Executing the debug_toggle_breakpoint command from the SlickEdit command line.

Breakpoints can be disabled so that their location is preserved but they no longer stop execution in the
debugger. To disable a breakpoint, you can click on the breakpoint icon in the window left margin or right-
click in the editor on the associated line of code and select Disable breakpoint. Breakpoints can be
reenabled in a similar manner.

A Breakpoints toolbar (Debug → Windows → Breakpoints) is also available that displays all of the
breakpoints and lets you easily add, remove, and activate breakpoints.

Setting Conditional Breakpoints

To set a conditional breakpoint, complete the following steps:

1. Set a breakpoint.

2. Select the Breakpoints tab on the Breakpoints toolbar.

3. Double-click on the breakpoint for which you want to set a conditional breakpoint.

4. Set the Expression to be evaluated or the Number of times to skip before stopping.

5. Click OK.

Debugging (Pro only)

245

6. Click Close.

Watches and Watchpoints

Watchpoints interrupt the debugger when a variable is read, modified, or accessed. To add a watchpoint,
select a variable, right-click and select Set Watchpoint from the context menu or select Debug → Set
Watchpoint from the main menu. A green circle will be displayed in the editor left margin, indicating the
line where the watchpoint is created. An entry will be created in the Breakpoints tool window listing the
watchpoint. Watchpoints do not interrupt debugging at a particular line; they interrupt it when the variable
is read, modified, or accessed. So, these markers are used just to manage the watchpoint.

Once you have created a watchpoint, you can control it using the Watchpoint properties dialog. To view
that, open the Breakpoints tool window, right-click on the watchpoint and select Properties.

Setting a watch, adds an expression to the Watch tool window in the debugger view. These expressions
are evaluated any time execution stops and the resulting value is displayed. They do not cause the
debugger to stop running.

Debugging (Pro only)

246

Setting Java or C# Exception Breakpoints

To set a breakpoint when an exception occurs, complete the following steps:

1. Select the Exceptions tab on the Breakpoint toolbar.

2. Click Add and select one or more exceptions from the list.

3. Click OK.

Once an exception breakpoint is added, double-click on it to display the exception properties dialog. This
dialog allows you to specify an expression, number of times to skip before stopping, and a specific thread.

Relocatable Code Markers

Breakpoints use relocatable code markers to store their location within the source code. This allows
SlickEdit to find the new location if someone makes changes to the file externally, like modifying the file
with a different editor. The next time you open the file, SlickEdit checks the location of each code marker
and verifies that it is still correct. If necessary, SlickEdit uses stored information to locate the correct line
of code for this breakpoint. If the code has changed too much, SlickEdit may not be able to find the new
location. Instead, the breakpoint will be placed at the line number where it is was last known to be.

SlickEdit does not attempt to relocate breakpoints during debugging sessions while the external debugger
is in control of placing and tracking breakpoints. Note that if multiple debug sessions each have
breakpoints in a common file, this will cause the relocatable marker information for all sessions to be
cleared when the debugger enters that file.

Generate Debug

This feature supports C#, C++, Java, and Slick-C®. Place the cursor on a function name, then click Tools
→ Generate Debug to generate a statement that dumps the name of the current function and the value of
the parameter(s) passed in. Place the cursor on a variable name, then click Tools → Generate Debug to
generate a statement that dumps the contents of that variable. The results are as follows:

• In C#, this will generate a System.Diagnostics.Trace.WriteLine() statement.

• In C++, this will generate a printf statement.

• In Java, this will generate a System.out.println statement.

• In Slick-C, this will generate a say statement.

Viewing Debugger Info and Setting Options

To view the properties of the underlying debugger system, including a general description retrieved from
the debugger, version number, run-time version, and debugger name, make sure you're in debug mode,
then from the main menu, click Debug → Debugger Information (or use the debug_props command).

Debugging (Pro only)

247

Click the Options button to tune the run-time performance of the integrated debugger, examine the
properties of the underlying debugger system, set class filters, and/or control the directories searched for
source files. See Debugging Options for more information.

Debugger Tool Windows

The toolbars and tool windows that can be used during debugging are listed in the section Available
Toolbars and Tool Windows. These can be accessed from the menu items View → Toolbars or Debug
→ Windows when the editor is in debug mode.

Debugging GNU C/C++ (Pro only)
You can debug a GNU C++ program in one of the following ways:

• Create SlickEdit project with the project type set to GNU C/C++, Clang++, or Cross Platform C++

Debugging GNU C/C++ (Pro
only)

248

Wizard.

• Attach to a running process. See Attaching to a Running Process)

• Attach to a core file. See Attaching to a Core File)

• Attach to a remote process file. See Attaching to a Remote Process)

Debugging for GNU C/C++ programs uses a customized version of GDB. Please refer to the release
notes for specific version information. You can download the customized source from
www.slickedit.com/gdb [http://www.slickedit.com/gdb].

Note

The GDB shipped with SlickEdit on Windows is based on MinGW. If you prefer to use Cygwin for
GDB, you can use the Configurations tab on the Debugger Options dialog (Debug → Debugger
Options or debug_props command) to make it the default native GDB debugger configuration.

Debugging Microsoft Visual Studio C++ Programs Using
WinDbg (Pro only)
When debugging C++ projects in a Visual Studio solution, you have the option to use the integrated
SlickEdit debugger with WinDbg or to use Visual Studio for debugging. By default, you are prompted to
select the method for debugging (see image, below). There is an option to never show the prompt again,
in which case it will always use the selected method for debugging. This option is specified in
configuration variable def_vcproj_debug_prefs. Setting this configuration macro variable to blank (the
default) will prompt always, a value of 1 prefers using the Visual Studio and a value of 2 prefers using the
integrated debugger.

WinDbg is available from Microsoft as part of their Debugging Tools for Windows. To download WinDbg
and read more about it, visit Microsoft's website.

SlickEdit requires dbgeng.dll and dbghelp.dll for debugging. By default, it will search for the dlls in the
default dynamic-link library search paths (SlickEdit directory, Windows directory, Windows system
directory, directories under PATH environment variable). You can also specify a path with a configuration
macro variable def_windbg_path. Set it using the SlickEdit command-line (set-var def_windbg_path) or

Debugging Microsoft Visual
Studio C++ Programs Using

249

http://www.slickedit.com/gdb
http://www.slickedit.com/gdb

Macro > Set Macro Variable.

Note

SlickEdit 64-bit requires 64-bit (x64) dbgeng.dll and dbghelp.dll and can debug both 32 and 64-bit
executables. SlickEdit 32-bit requires 32-bit (x86) dbgeng.dll and dbghelp.dll and can only debug
32-bit executables.

To debug, WinDbg needs the path to the executable image and the path to the symbol information. The
path to the executable image specifies the location of the .exe and .dll files that are being debugged. The
path to the symbol information specifies the location of symbol files (.pdb), which contain debugging
information. They are generated by the compiler and linker. SlickEdit may be able to determine these
paths. If it can't you can specify these paths in the dialogs that launch the debugger. See the Debug
executable dialog, below. You can enter multiple paths, separating each with semicolons.

WinDbg integration supports controlling target processes, stepping through source code, setting
breakpoints, and accessing memory and registers. Locals and member variables are automatically
generated based on the current thread and stack scope. Watches can be set for any symbol name or a
C++ expression, evaluated by the current thread and stack scope. A symbol name can be qualified by its
module name using an exclamation mark (!) separating the module name from the symbol name.
Specifying the module name in the expression will usually result in faster evaluations and resolves any
symbol ambiguity, such as if the symbol name could be interpreted as a hexadecimal number. To restrict
to local scope only, prefix a dollar sign and exclamation point ($!) to the symbol name.

Use the WinDbg debugger by selecting any of the following from the main menu:

• Debug → Start - You will be prompted which debugger to use.

• Debug → Attach Debugger → WinDbg → Attach Process - Attaches the debugger to a running
process by process ID.

Debugging Microsoft Visual
Studio C++ Programs Using

250

• Debug → Attach Debugger → Debug Executable (WinDbg) - Debugs an executable outside the
current project.

• Debug → Attach Debugger → Open Dump File (WinDbg) - Opens the debugger on a core dump file.

The following Debugging tool windows and operations are supported for WinDbg:

WinDbg (Pro only)

251

• Call Stack

• Threads

• Registers

• Breakpoints

• Members

• Locals

• Watch

• Memory

• Show Disassembly

• Step into, Step out, Step over, Continue, Break

The following commands are available on the SlickEdit command line:

• windbg_write_dumpfile - Write current debugging session to a dump file.

• windbg_list_modules - List the currently loaded exe and DLL’s. It also lists the base memory address
of the loaded module, the image name (name and extension), and the symbol file type (if any).

• windbg_update_symbols_path - List and update currently loaded Symbol paths for the current debug
session. Use this command to update the symbols path during debugging in case you need to add a
path to a PDB file after launching the debugger. Symbols are automatically reloaded when you update
the symbols path.

252

• windbg_update_image_path - List and update currently loaded Image paths for the current debug
session. Use this command to update the image path during debugging in case you need to add a path
after launching the debugger. Images are automatically reloaded when you update the image path.

• vcproj_debug_options - Option to set executable name and path and Symbols paths for current
Visual Studio project. By default, SlickEdit will try to determine the location of the output Executable file
name and the location of the program database symbols file (PDB) directly from the Visual Studio C++
project file. If you need to specify a custom location for the output filename or SlickEdit cannot correctly
evaluate the correct location from the Visual Studio project file, you can specify the path name here. Or
if you need to specify multiple paths for symbol files, you can do that here. If left blank, then either field
it will fall back to the Visual Studio project file settings. The WinDbg path is the global setting for
def_windbg_path.

Debugging Microsoft Visual
Studio C++ Programs Using

253

Running and Debugging PHP (Pro only)
To run a PHP script you need:

• PHP 5.x or later.

• A PHP project.

Additionally, to debug a PHP script you need:

• The Xdebug plugin 2.0.2 or later for PHP installed on your PHP server. You can obtain the Xdebug
plugin from http://xdebug.org.

After installing the Xdebug plugin and creating a PHP project you can debug local or remote scripts and
web pages.

Installing Xdebug

PHP projects support debugging with the Xdebug plugin for PHP. You can download the plugin from
http://xdebug.org.

1. Extract the Xdebug dll/lib to your PHP extension directory. Windows users can use the Windows
installer package provided on the xdebug.org site. Linux users may be able to install the Xdebug plugin
from their package manager. Make sure you are using Xdebug 2.0.2 or later.

Note

Set up a test page that prints out results of phpinfo() to determine PHP settings, including where

Running and Debugging PHP
(Pro only)

254

your extension directory and 'php.ini' config file resides. A test page looks like:

<!-- phpinfo.php -->
<?php
echo phpinfo();
?>

2. Add the following section to your 'php.ini' config file (see note above if you do not know the location of
your 'php.ini' file):

; Xdebug debugger extension
[Xdebug]
; Xdebug plugin installed via Windows pre-built binaries: Use thread-safe
zend_extension_ts="..."
; Xdebug plugin installed via PECL (typically UNIX): Use non-thread-safe
zend_extension="..."
; Xdebug plugin built from source: Follow directions from xdebug.org site
zend_extension_ts="c:/php5/ext/php_xdebug-2.0.3-5.2.5.dll"
xdebug.remote_enable=1
xdebug.remote_handler=dbgp
xdebug.remote_mode=req
xdebug.idekey=slickedit
xdebug.remote_host=127.0.0.1 ; for remote debugging
xdebug.remote_port=9000

Warning

Comment out any preexisting Zend optimizer and debugger extensions. Zend optimizer and
debugger extensions are not compatible with Xdebug.

Warning

Windows users can install pre-compiled modules downloaded from xdebug.org. These modules
are thread-safe and should therefore be installed using zend_extension_ts="..." as outlined in the
example above.

UNIX users that install from PECL or a package manager will typically be installing the non-
thread-safe version of the Xdebug plugin and should therefore be using zend_extension="..."
instead of zend_extension_ts="...".

Note

WinDbg (Pro only)

255

You must change the zend_extension[_ts] line to match the path you extracted the dll/lib to in
step #1.

For the xdebug.remote_host line: if your web server resides on your local machine, then no
changes need to be made. If your web server is remote, then use the IP address that SlickEdit
will be listening on for a connection from Xdebug.

3. Restart your web server.

4. Test that Xdebug is installed successfully by creating a test page that echoes 'phpinfo()' (see example
in step #1).

You should see a banner similar to the following indicating that the PHP server is using Xdebug:

Alternatively, if you are debugging standalone scripts, you can issue the following command from a
console and look for the Xdebug line:

> php -v
PHP 5.2.6 (cli) (built: May 2 2008 18:02:07)
Copyright (c) 1997-2008 The PHP Group
Zend Engine v2.2.0, Copyright (c) 1998-2008 Zend Technologies
with Xdebug v2.0.3, Copyright (c) 2002-2007, by Derick Rethans

5. Once Xdebug is installed and working, verify that the remote_host and remote_port settings in your
'php.ini' config file match those set up for your PHP project (Build → PHP).

Setting Up a PHP Project

A PHP project lets you run and debug your PHP web pages and scripts.

To create a PHP project, run the Create PHP Project wizard by selecting Project → New from the main
menu. For PHP, you only have one choice: "PHP". Fill in the project name and location for the new
project, and click OK. For more information on projects, project types, and creating projects, see
Managing Projects.

Running and Debugging PHP
(Pro only)

256

SlickEdit will display the Create PHP Project wizard, which will walk you through steps to configure the
PHP project, including:

1. Where your PHP files reside on your local file system.

2. How your local files map onto a web page URL (for the case of web projects).

3. How a PHP file on a remote server maps to a local PHP file (for the case of debugging remote web
projects).

Note

Your PHP project must contain local copies of all files being debugged.

Select Project → Project Properties to add local files to your project. After you have created your PHP
project, select Build → PHP Options to make changes to file mappings and debugger settings.

Executing and Debugging a Web Page

For web-based projects, local files in your project map to web page URLs on your web server. To launch

Running and Debugging PHP
(Pro only)

257

a web page in your web browser, open a PHP file from your project and execute it (Build → Execute).

Debugging requires the Xdebug PHP plugin be installed on your web server. If you have not installed and
verified your Xdebug installation, then please read Installing Xdebug. Verify that your project's Xdebug
server settings (Build → PHP Options, Debug tab) match the Xdebug host:port you configured for your
web server.

There are two ways to start a debug session:

1. Debugging a local file - Open a local PHP file in your project and start the debugger (Debug → Start).
The File-to-URL mapping you set up when you created the project will be used to map the local file
onto a web page URL and launch a browser to start debugging.

2. Listening for Xdebug connection - You can start a debug session from your browser by appending an
XDEBUG_SESSION_START argument to the URL:

http://localhost/index.php?XDEBUG_SESSION_START=slickedit

The web server will then attempt to connect back to your project and start a debug session. Make sure
your project is listening for the connection by toggling Debug → Xdebug Listen in Background.

You can stop a debug session started from your browser by appending the
XDEBUG_SESSION_STOP argument to the URL:

http://localhost/index.php?XDEBUG_SESSION_STOP

Note

If you use Firefox, then there is a great Firefox add-on called Xdebug Helper. You can get it from
http://addons.mozilla.org. It allows you to toggle start/stop an Xdebug session from Firefox
without messing with URL arguments. You toggle from Xdebug Helper icon in the Firefox tray
(lower-right).

Executing and Debugging a Local Script

Local scripts are PHP scripts that you run from a console. If your project was set up to run as a local
script (Build → PHP Options, Run tab, Run as), then execute your script by selecting Execute from the
Build menu Build → Execute.

Debugging requires the Xdebug PHP plugin be installed. If you have not installed and verified your
Xdebug installation yet, then please read Installing Xdebug.

Verify that your project's Xdebug server settings (Build → PHP Options, Debug tab) match the Xdebug
host:port you configured in your php.ini configuration file.

Debug your script by selecting Start from the Debug menu (Debug → Start).

Running and Debugging PHP
(Pro only)

258

http://addons.mozilla.org

PHP Options

You can set a number of options to control the execution and debugging of PHP scripts. You can access
PHP options by selecting Build → PHP Options from the main menu. This menu entry is only available if
the active project is a PHP project. Options are broken into two groups, each with its own tab:

• Run Options

• Debug Options

At the top of the PHP Options dialog, you can pick the configuration that these settings apply to. The
default is All Configurations. However, you can define different settings for separate Run and Debug
configurations if you choose.

At the bottom of the dialog you can set the PHP interpreter. This is the path to the PHP interpreter to
use.

Note

The path entered for the PHP interpreter affects all projects and configurations. SlickEdit currently
cannot use different interpreters for different projects.

Run Options

The Run options control the execution of PHP scripts both in and out of the debugger.

Running and Debugging PHP
(Pro only)

259

• Run as - determines how this script will be run. Pick one of the following:

• Local web server (launches in browser) - runs the script using a web server on this machine.

• Local script (command line) - runs the script from the command line.

• Remote web server (launches in browser) - runs the script on a remote web server.

• Default file - identifies the file to use to start the execution.

• Script arguments - arguments to be passed to the script.

• Interpreter arguments - arguments to be passed to the PHP interpreter.

Running and Debugging PHP
(Pro only)

260

• File mappings - File mappings are very important when debugging remote scripts (usually web pages).
They are used to:

• Map a local file to a web page URL in order to execute a web page

• Map a remote file to a local file when debugging.

Debug Options

The debug options set values that are used to control the debugger.

• Local host - the IP address on your local machine that Xdebug will connect to when initiating a

Running and Debugging PHP
(Pro only)

261

debugger session. This value needs to be the same as set in the php.ini file for Xdebug. See
Installing Xdebug for more information.

• Local port - the port on your machine that Xdebug will connect to when initiating a debugger session.
This goes with the Local host value, above.

• Listen for debugger connection on startup - when checked, SlickEdit will begin listening for a
connection when you start the debugger.

• When a debugger connection is requested - describes how to handle a request for a debugger
connection. Select one of the following:

• Prompt me to accept - prompts each time a debugger connection is requested.

• Always accept - silently accepts all debugger connections.

• Never accept - silently refuses all debugger connections.

• Break in a new debugger session - defines when to break for a new debugger session. Select one of
the following:

• Break on first line of script

• Run to first breakpoint

• Stay in debugger - Set this option when you do not want to exit the debugging session when a script
has completed. This is especially useful when debugging a website and you will be jumping in and out
of pages as you navigate the site.

Using an SSH Tunnel to Debug a Remote Web Page

If your web server resides on a host that supports ssh, then it is very convenient to set up an ssh tunnel to
tunnel debugger connections from your remote server back to your local machine. As an example, if your
remote web server is called 'myhost.com' and you are using the default debugger connection settings of
127.0.0.1 on port 9000 both locally and on the remote server, then start an ssh tunnel with the following
command:

ssh username@myhost.com -R 9000:127.0.0.1:9000

This saves you the hassle of having to ensure you have picked the correct interface on which to listen for
debugger connections from the remote server.

Running and Debugging Python (Pro only)
To run or debug a Python script you need:

• Python 2.6 and higher.

Running and Debugging Python
(Pro only)

262

• A Python project.

Executing and Debugging a Local Script

Execute your script by selecting Execute from the Build menu Build → Execute.

Debug your script by selecting Start from the Debug menu (Debug → Start).

Debugging a Remote Script

There are a few requirements you must meet to debug Python on remote systems.

• A copy of the script you want to debug needs to be on the local system with the editor. You need to
make sure you have the same version of that source that is on your remote system.

• You will need a copy of the PTVSD debugger on the remote system.

• Your network will need to allow TCP connections from your editor machine to the remote host, on a port
of your choosing.

If your remote source code is on a different path on the remote machine than it is on your local machine,
you'll need to configure the remote directory mapping so the debugger can display the correct files. See
Remote Mappings for details on remote mapping.

The easiest way to get PTVSD onto your remote system is to copy the version that is shipped with the
editor, under the application folder in resource/tools/ptvsd.

$ scp -r /opt/SlickEdit/resource/tools/ptvsd
remotehost:/home/user/tools

Once PTVSD is on the remote host, you can start your program on the remote host via the PTVSD
command line. The debugger will listen for connections from the editor on a port you pick.

You can run a script file under the debugger:

$ python -m tools/ptvsd --host localhost --port 5678 --wait
yourprogram.py

You can also run a module under the debugger:

$ python -m tools/ptvsd --host localhost --port 5678 --wait -m
/path/yourmodule

To connect to the running remote debugger in the editor, go to the Debug menu, select the Attach
Debugger sub-menu, and select "Attach to Python (PTVSD)...". You will be prompted for the remote host
name, and the port you told PTVSD to listen on. Once connected, the debugger will work just like a local

Running and Debugging Python
(Pro only)

263

session.

Python Options

You can set a number of options to control the execution and debugging of PYTHON scripts. access
Python options by selecting Build → Python Options from the main menu. This menu entry is only
available if the active project is a Python project. Options are broken into three groups, each with its own
tab:

• Run Options

• Debug Options

• Remote Mappings

At the top of the Python Options dialog, you can pick the configuration that these settings apply to. The
default is All Configurations. However, you can define different settings for separate Run and Debug
configurations if you choose.

At the bottom of the dialog you can set the Python interpreter. This is the path to the Python interpreter
to use.

Note

The path entered for the Python interpreter affects all projects and configurations. SlickEdit
currently cannot use different interpreters for different projects.

Run Options

Running and Debugging Python
(Pro only)

264

• Interpreter arguments - arguments to be passed to the Python interpreter.

• Default script - identifies the file to use to start the execution.

• Script arguments - arguments to be passed to the script.

Debug Options

The Debug tab contains options that pertain to debugging Python scripts.

Running and Debugging Python
(Pro only)

265

• Local host - Sets the local host interface PTVSD will listen on when starting a debugger session. The
default is 127.0.0.1.

• Specific port - Sets the port PTVSD will listen on when starting a debugger session. Defaults to 5678.

Remote Mappings

Remote Mappings allow you to define remote-to-local directory mappings. This allows the debugger to
automatically resolve the remote file being debugged to a local file.

Running and Debugging Python
(Pro only)

266

Click Add or Remove to manage the list of mappings.

Running and Debugging Perl (Pro only)
To run or debug a Perl script you need:

• Perl 5

• A Perl project

Running and Debugging Perl
(Pro only)

267

Executing and Debugging a Local Script

Execute your script by selecting Execute from the Build menu Build → Execute.

Debug your script by selecting Start from the Debug menu (Debug → Start).

Debugging a Remote Script

If your script will run on a remote host, then you will need to copy the perl5db debugger to the remote host
in order to make the debugger connection back to your local host possible. The perl5db debugger folder
is located under the application folder in resource/tools/perl5db-x.x/. Copy the entire folder to your remote
host.

Before attempting to initiate a debug session from the remote host, you must make sure you are listening
for a debugger connection on a local interface that can accept connections from the remote host (Build
→ Perl Options, Debug tab). Verify that you are listening by setting Listen in Background (Debug →
perl5db Listen in Background). Note the host:port that you are listening on by hovering over the listener
icon in the lower, right-hand corner of the application window. You should see something like:

Listening for perl5db connection on 192.168.0.101:52030

Where the host is 192.168.0.101 and the port is 52030.

Note

If your remote host supports ssh, then see Using an SSH Tunnel to Debug a Remote Script for a
convenient way to tunnel remote debugger connections back to your local host.

From the remote host, set up the environment and issue the perl5db command in order to initiate a
debugger connection back to your local machine:

$ export PERL5DB=BEGIN { require 'perl5db.pl'; }
$ export PERL5LIB=/path/to/perl5db-0.30
$ export PERLDB_OPTS=RemotePort=192.168.0.101:52030
$ perl -d path/to/script-to-debug.pl

If everything was set up correctly, then you should get a connection request on your local machine to start
a debugging session.

Using an SSH Tunnel to Debug a Remote Script

If your script will run on a remote host that supports ssh, then it is very convenient to set up an ssh tunnel
to tunnel debugger connections from your remote server back to your local machine. As an example, if
your remote server is called 'myhost.com' and you are listening for a debugger connection at 127.0.0.1 on
port 52030, then start an ssh tunnel with the following command:

Running and Debugging Perl
(Pro only)

268

ssh username@myhost.com -R 52030:127.0.0.1:52030

This saves you the hassle of having to ensure you have picked the correct interface on which to listen for
debugger connections from the remote server.

Follow directions for starting a debugger connection from the remote host as described in Debugging a
Remote Script.

Perl Options

You can set a number of options to control the execution and debugging of Perl scripts. Access Perl
options by selecting Build → Perl Options from the main menu. This menu entry is only available if the
active project is a Perl project. Options are broken into three groups, each with its own tab:

• Run Options

• Debug Options

• Remote Mappings

At the top of the Perl Options dialog, you can pick the configuration that these settings apply to. The
default is All Configurations. However, you can define different settings for separate Run and Debug
configurations if you choose.

At the bottom of the dialog you can set the Perl interpreter. This is the path to the Perl interpreter to use.

Note

The path entered for the Perl interpreter affects all projects and configurations. SlickEdit currently
cannot use different interpreters for different projects.

Run Options

Running and Debugging Perl
(Pro only)

269

• Interpreter arguments - arguments to be passed to the Perl interpreter.

• Default script - identifies the file to use to start the execution.

• Script arguments - arguments to be passed to the script.

Debug Options

The Debug tab contains options that pertain to debugging Perl scripts.

Running and Debugging Perl
(Pro only)

270

• Show private variable - Set this option if you want to show private variables in the debugger.

• Local host - Set the local host and port that pydbgp will connect to when initiating a debugger session.
The default is 127.0.0.1 on an automatically assigned port.

• Port provided by system - Use a port that is automatically assigned by the system.

• Specific port - use this to specify a port to connect to.

• Listen for debugger connection on startup - Set this option if you want to listen for a debugger
connection in the background when the project is opened.

Running and Debugging Perl
(Pro only)

271

Remote Mappings

Remote Mappings allow you to define remote-to-local directory mappings. This allows the debugger to
automatically resolve the remote file being debugged to a local file.

Click Add or Remove to manage the list of mappings.

Running and Debugging Ruby (Pro only)
To run or debug a Ruby script you need:

Running and Debugging Ruby
(Pro only)

272

• A Ruby project

• Ruby 1.8 (1.8.4 or higher for debugging)

• ruby-debug-base 0.9.1 or higher (for debugging)

Note

Use the Ruby 'gem' package manager to install the 'ruby-debug-base' gem package:

gem install ruby-debug-base

Warning

If you used a MinGW RubyInstaller installer to install Ruby on Windows (very likely), then you will
need to download and extract the Ruby-DevKit from rubyinstaller.org and perform the gem install
from the msys console by running 'msys.bat':

$ cd /c/Ruby187/bin
$ gem install ruby-debug-base

Executing and Debugging a Local Script

Execute your script by selecting Execute from the Build menu Build → Execute.

Debug your script by selecting Start from the Debug menu (Debug → Start).

Debugging a Remote Script

If your script will run on a remote host, then you will need to copy the rdbgp debugger to the remote host
in order to make the debugger connection back to your local host possible. The rdbgp debugger folder is
located under the application folder in resource/tools/rdbgp-x.x/. Copy the entire folder to your remote
host.

Warning

From the remote host, make sure you have installed the ruby-debug-base gem package
described at the beginning of this section. If you do not install the ruby-debug-base package, then
you will see an error like the following in the Build window:

Error: no such file to load -- ruby-debug-base

Running and Debugging Ruby
(Pro only)

273

Before attempting to initiate a debug session from the remote host, you must make sure you are listening
for a debugger connection on a local interface that can accept connections from the remote host (Build
→ Ruby Options, Debug tab). Verify that you are listening by setting Listen in Background (Debug →
rdbgp Listen in Background). Note the host:port that you are listening on by hovering over the listener
icon in the lower, right-hand corner of the application window. You should see something like:

Listening for rdbgp connection on 192.168.0.101:52030

Where the host is 192.168.0.101 and the port is 52030.

Note

If your remote host supports ssh, then see Using an SSH Tunnel to Debug a Remote Script for a
convenient way to tunnel remote debugger connections back to your local host.

From the remote host, set up the environment and issue the rdbgp command in order to initiate a
debugger connection back to your local machine:

$ export RUBYDB_LIB=/path/to/rdbgp-2.0
$ export RUBYDB_OPTS=HOST=192.168.0.101 PORT=52030
$ ruby -I $RUBYDB_LIB -r $RUBYDB_LIB/rdbgp.rb

path/to/script-to-debug.rb

If everything was set up correctly, then you should get a connection request on your local machine to start
a debugging session.

Using an SSH Tunnel to Debug a Remote Script

If your script will run on a remote host that supports ssh, then it is very convenient to set up an ssh tunnel
to tunnel debugger connections from your remote server back to your local machine. As an example, if
your remote server is called 'myhost.com' and you are listening for a debugger connection at 127.0.0.1 on
port 52030, then start an ssh tunnel with the following command:

ssh username@myhost.com -R 52030:127.0.0.1:52030

This saves you the hassle of having to ensure you have picked the correct interface on which to listen for
debugger connections from the remote server.

Follow directions for starting a debugger connection from the remote host as described in Debugging a
Remote Script.

Ruby Options

Running and Debugging Ruby
(Pro only)

274

You can set a number of options to control the execution and debugging of Ruby scripts. Access Ruby
options by selecting Build → Ruby Options from the main menu. This menu entry is only available if the
active project is a Ruby project. Options are broken into three groups, each with its own tab:

• Run Options

• Debug Options

• Remote Mappings

At the top of the Ruby Options dialog, you can pick the configuration that these settings apply to. The
default is All Configurations. However, you can define different settings for separate Run and Debug
configurations if you choose.

At the bottom of the dialog you can set the Ruby interpreter. This is the path to the Ruby interpreter to
use.

Note

The path entered for the Ruby interpreter affects all projects and configurations. SlickEdit
currently cannot use different interpreters for different projects.

Run Options

Running and Debugging Ruby
(Pro only)

275

• Interpreter arguments - arguments to be passed to the Ruby interpreter.

• Default script - identifies the file to use to start the execution.

• Script arguments - arguments to be passed to the script.

Debug Options

The Debug tab contains options that pertain to debugging Ruby scripts.

Running and Debugging Ruby
(Pro only)

276

• Local host - Set the local host and port that rdbgp will connect to when initiating a debugger session.
The default is 127.0.0.1 on an automatically assigned port.

• Port provided by system - Use a port that is automatically assigned by the system.

• Specific port - use this to specify a port to connect to.

• Listen for debugger connection on startup - Set this option if you want to listen for a debugger
connection in the background when the project is opened.

Remote Mappings

Remote Mappings allow you to define remote-to-local directory mappings. This allows the debugger to
automatically resolve the remote file being debugged to a local file.

Running and Debugging Ruby
(Pro only)

277

Click Add or Remove to manage the list of mappings.

Running and Debugging Google Go (Pro only)
To run or debug a Google Go program you need:

• An installation of the Go Programming Language which includes go.exe (Unix: go)

• A Google Go project. Create a project and select Google Go for the project type if you have not already
done so.

Debugging for Google Go programs uses a customized version of GDB. Please refer to the release notes
for specific version information. You can download the customized source from www.slickedit.com/gdb

Running and Debugging Google
Go (Pro only)

278

http://www.slickedit.com/gdb

http://www.slickedit.com/gdb].

Note

The GDB shipped with SlickEdit on Windows is based on MinGW. If you prefer to use Cygwin for
GDB, you can use the Configurations tab on the Debugger Options dialog (Debug → Debugger
Options or debug_props command) to make it the default native GDB debugger configuration.

Working With Google Web
Toolkit Projects (Pro only)

279

http://www.slickedit.com/gdb

Working With Google Web Toolkit Projects (Pro only)

Getting Started
Create a new Google™ Web Toolkit (GWT) Application project at Project → New → Java → Java - GWT
Application or Project → New → Python → Python - GWT Application. This creates an empty
workspace and project to which you can add files. The project contains commands to build, debug, and
deploy a GWT application. To create a SlickEdit project and workspace from an existing Java GWT
Application source tree, select Project → Open Other Workspace → Ant XML Build File, and browse to
the main Ant build file for your application.

Debugging (Java Only)
By default, the Debug command for Java GWT projects uses the Java Debug Wire Protocol (JDWP) with
a transport address of 8000. See the debug Ant target in the build.xml file for the project in order to
customize this command.

Deploying to the Google App Engine
To deploy an application to the Google™ App Engine, use the Deploy Project command, found at Build
→ Deploy Project. After entering your e-mail address, a command prompt will be launched and your
application will be uploaded. If this is the first time deploying this project, you will be prompted for your
password in the command prompt.

Getting Started

280

Working With Android Projects (Pro only)

Getting Started
Create a new Android project at Project → New → Java → Java - Android Application. You will be
prompted to fill in information pertaining to your new project as shown in the dialog below.

The Build Target field refers to the Android platform library that you would like to build your project
against. The menu to the right of this field will allow you to choose a specific target from those available if
you have already specified an Android SDK location. If you choose a target from this menu, the Minimum
SDK field will be automatically generated.

If your Android project uses the Android NDK toolset, select Android NDK Project and specify the
location of your Android NDK installation in the NDK Location field. SlickEdit will add your native-code
source files and makefiles to your project, and run the NDK build tools as part of the normal build process
for your application.

Note

Getting Started

281

Set the ANDROID_NDK_ROOT environment variable to the root of your Android NDK installation
when working with NDK applications in SlickEdit.

Open an existing Android project at Project → Open Other Workspace → Android Project... , and
browse to your existing AndroidManifest.xml file. You will then be prompted for some project
information in case you want to update your Android project before opening in SlickEdit.

Note

We recommend that you update your existing project with the location of the local Android SDK
(and NDK, if applicable) and your desired build target in order to ensure that SlickEdit is properly
configured to work with your project.

Android Toolbar

The Android Toolbar will be automatically shown when an Android project is opened in SlickEdit. You can
manually show the toolbar at View → Toolbars. The toolbar has buttons for opening Android utility tools
contained in the Android SDK (from left to right: Android AVD Manager, Android SDK Manager, and
DDMS).

Building and Running
Once your Android project is open in SlickEdit, the following build tools will be set up to work with the Ant
build files of your project: Build → Build, Build → Rebuild, and Build → Clean. SlickEdit will build the
debug or release configuration for your project depending on which configuration is set as active (Build
→ Set Active Configuration).

Install and run your Android application on a device at Build → Execute on Device.... This will launch the
device chooser shown below, where you can select any Android emulator or connected hardware device
for testing.

Building and Running

282

• Wait for Debugger - When selected, this will prevent the application from running until a debugger
attaches to the process.

• AVD Manager - Launches the Android Virtual Device Manager tool, located within the Android SDK.
This tool allows you to create, edit, or delete Android emulators.

When you select a device, your Android application will be installed and run. If the device chosen is an
emulator which is not currently running, then the emulator will be automatically started for you, and the
application will be queued up to start when the emulator is determined to be ready.

Debugging

Java

You can use the SlickEdit debugger to debug an Android application on an emulator or hardware device

Debugging

283

by attaching the debugger to the running process.

1. Once an application is running, activate the Android DDMS tool. If you have the Android Toolbar
shown in SlickEdit, you can simply click the DDMS icon. If you need to manually open the utility it is
located at ANDROID_SDK_DIR/tools/ddms.

2. In DDMS, locate the running application you wish to debug in the process list. If you select the process
you will see two ports listed, one of which will be port 8700 (by default).

3. In SlickEdit select Debug → Attach Debugger → Attach to Java Virtual Machine..., and use either
of the ports found in step 2 as the port, and use localhost as the host. Click OK to attach the
debugger.

4. You can now use the SlickEdit debugger to enable/disable breakpoints and step through the execution
of your Android application just like you would any other Java application.

C/C++

You can use the SlickEdit debugger to launch a native debugging session with GDB if you want to debug
a native-code library in your Android application. The tools used for NDK debugging require that you have
bash and make on your system and in your PATH.

1. Create a GDB Debugger Configuration at Tools → Options → Debugging → Configurations for the
GDB of your choice. The GDB builds for use with the Android NDK can be found under
ANDROID_NDK_DIR/toolchains/. Make sure that you mark this configuration as the Default native
debugging configuration.

2. Build the Debug configuration of your Android application and run it via Build → Execute on
Device....

3. Select Debug → Attach Debugger → GDB → Attach to Android Application Process (GDB)
(Debug → Attach Debugger → Attach to Android Application Process (GDB for NDK) on Mac and
Linux) and the debugger will automatically use your default native debugging configuration to attach to
the running Android process. If there are multiple online Android devices you will be prompted to select
which device you would like to debug.

Debugging

284

Editing Features

This chapter describes the editing features of SlickEdit that are not specific to a particular language.

285

Notifications
To help you better understand what's going on in the editor, SlickEdit displays notification icons in the
status area (see image, below). A pop-up message describing the activity is briefly displayed.

Icons are displayed for the following activities:

• Feature Notifications - uses the document icon to inform you about automatic editing operations that
were performed by the editor, including features like Syntax Expansion and Comment Wrapping. Icons
in the pop-up provide access to the options screen and the help for that feature.

• Background Processes - uses the clock icon to notify you when SlickEdit is performing operations in
the background. This helps you correlate high levels of system activity with otherwise invisible
operations in the editor.

• Debugger Listener(Pro only) - displays the satellite icon when a debugger is listening for a
connection, another icon is displayed.

• Warning Notifications - uses an exclamation point in a yellow triangle icon to notify you about
important information. Where Feature Notifications provide helpful information about what the editor is
doing, Warning Notifications are about the result of operations. Consequently, you can't disable the
Warning Notifications.

• Update Notifications - displays the SlickEdit "shield" with an up-arrow indicating that a hot fix or new
version is available.

For information on configuring Notifications, including a description of the notification levels, see
Notification Options.

Feature Notifications
SlickEdit offers five different levels of notifications. Some notification mechanisms are more disruptive
than others and are useful for features that have more surprising results. Once you are used to the
feature, you can select a different, less disruptive notification or turn off notifications completely.

Notification Tool Window

Regardless of the notification level selected, all feature notifications are added to the Notification tool
window. To view this tool window, select View → Tool Windows → Notifications.

Feature Notifications

286

A list of all feature notifications for the current editing session in the current workspace is displayed. Each
line includes additional information, such as when the feature was activated and the file and line number
where changes were made. Selecting a notification in the list displays more information about the feature.
You are also be provided with buttons to configure the feature or read more about it in the help
documentation. There is also a button to configure notification settings for all features. If you wish to clear
all notifications in the tool window, use the right-most button.

Files, Buffers, and Editor
Windows

287

Files, Buffers, and Editor Windows
When you edit a file, it is loaded into a buffer. A buffer is the in-memory representation of the file. Your
edits are made to the buffer, but the file is not updated until you save it. Buffers are displayed in editor
windows in the editor pane. You can split windows, so that the same buffer is visible in multiple windows.

Note

When you split a window, both windows display the same buffer. Any changes made in one are
visible in the other.

Each buffer has an associated tab in the File Tabs tool window, which displays the name of the file. If you
open a file that is already open, the existing buffer is displayed. Therefore, the terms "file" and "buffer" are
sometimes used interchangeably.

SlickEdit® provides two distinct approaches to managing buffers and editor windows, controlled through
the Files per window option (Tools → Options → Editing → Editor Windows). The value for this option
affects the behavior of the window and buffer switching commands, described later in this section.

1. One file per window - This maintains a one-to-one correspondence between a buffer and an editor
window. Each buffer is displayed in its own editor window. Closing a window closes the associated file,
and closing a file closes the associated window. This is the default behavior for SlickEdit, preferred by
many for its simplicity. In this mode, switching buffers and switching windows does the very same
thing, since each buffer has its own window (Switching Between Buffers or Windows for more
information.)

2. Multiple files share window - With this approach, you determine how many editor windows you want
and you select the buffer to display in each. You have to manually create a new editor window
(typically by splitting or duplicating an existing window). All buffers are available to all windows. Auto-
restore has better performance when restoring many buffers because each buffer doesn't need a
window. Editing and closing many files (100 or more) is also faster. You can use the file tabs to select
the buffer to edit, which will place the buffer in the currently active editor window. You can also use
Document → List Open Files... (or the list_buffers command) to view a list of the buffers and select
one.

This approach typically only appeals to users of emulations such as Brief, SlickEdit, Epsilon, GNU,
Emacs, and Vim. You can switch between these locations using the next_window and prev_window
commands (see Switching Between Buffers or Windows for more information).

Tip

For a list of Slick-C® buffer and window functions and commands, see "Macro Functions by
Category" in the Help system.

When a buffer is modified (changed and not yet saved), an asterisk will be displayed to the right of the file
name in the title bar and the Document tab.

Managing Windows

288

Managing Windows

Document Tabs

When you open a file in SlickEdit®, by default, an associated Document tab is displayed above the editor
window to indicate the name of the file. You can click on a document tab to select the buffer you want to
edit.

Note

If you want to see a document tab per buffer (probably because you are using "Multiple files
share window"), try using the File Tabs tool window. See File Tabs for more information.

You may want to hide the Document tabs when you only have only one edit window. To do this,
set the Zoom (hide tabs) when one window to Always at Tools → Options → Editing →
Editor Windows.

For each window you create (not buffer), you will see a document tab. If there isn't enough space for all of
the document tabs to be displayed, a left and right arrow icon is drawn on the right, allowing you to scroll
the tabs. A down-arrow icon is always visible, allowing you to select a file from a list of the open files. This
is a convenient way to select a file when you have a lot of files open and some tabs aren't visible.

Tip

Managing Windows

289

You may also find that using the Files tool window provides a convenient way to view a list of
open buffers and select one for editing (see Document Dialogs and Tool Windows).

When a buffer is modified (changed and not yet saved), an asterisk will be displayed on the right of the
document tab.

When you create a new, unnamed "scratchpad" buffer, it is indicated by the text "Untitled" in the
document tab along with a number that indicates the internal ID. You can create a scratchpad buffer by
using the menu item File → New and not naming the file.

If you prefer to keep your hands on the keyboard for buffer/file navigation, two commands are available:
next_doc_tab and prev_doc_tab. Use these commands to navigate through the document tabs in the
order they are displayed. Both circle around to the other end when you are on the last item. These
commands are not bound to keys by default. To create key bindings for these commands, see Creating
Bindings.

Document Tab Context Menu

The right-click context menu in the Document Tabs tool window provides operations for saving files,
closing files, splitting windows, and controlling the appearance of the Document tabs.

The right-click context menu for the document tabs is shown below.

Managing Windows

290

The items available in the right-click context menu are outlined below. Some items apply to the file
specified by the document tab underneath the mouse. Others apply to the document tabs as a whole.

• Save <file> - Saves the file specified by the document tab under the mouse.

• Close <file> - Closes the file specified by the document tab under the mouse.

Managing Windows

291

• Add <file> to project... - Adds the file to a project in the workspace. You are prompted to choose
which project.

• Change Directory to <path> - Changes directory to the path specified by the document tab under the
mouse.

• Browse Folder <path> - Open the Folder corresponding to the path specified by the document tab
under the mouse in the system File Manager (for example, Explorer on Windows or Finder on macOS).

• List Files in Folder <path> - Show a directory listing for the path specified by the document tab under
the mouse using SlickEdit's File Manager.

• Save All - Saves all modified files.

• Close All - Closes all open files.

• Close Others Document Tabs - Closes all open files except for the one specified by the document tab
under the mouse.

• List Open Files... - Shows the Files tool window See Files Tool Window for more information.

• Move to Main Window Group - Moves floating document tab from floating window group to main
window group. This menu item is not present on context menu for main window group document tabs.

• Float - Floats (undocks) the document tab under the mouse.

• Split Horizontal - Creates another window viewing the document tab under the mouse. The new
window is created below the current document window.

• Split Vertical- Creates another window viewing the document tab under the mouse. The new window
is created to the right of the current document window.

• Move to Tab Group Above, Below, on Left, on Right - Moves the document tab under the mouse to
the document tab group above, below, on left, or on right respectively.

• Zoom Toggle (Document Tabs) - Causes the document tab under the mouse to expand to take up all
of the document area and the document tabs to disappear. You can also toggle the existing zoom state
by using the Window → Zoom Toggle (Document Tabs) menu item.

• Copy Full Path to Clipboard - Copies the full path of the file on the document tab under the mouse to
the clipboard.

• Copy Name to Clipboard - Copies the name without the path of the file on the document tab under the
mouse to the clipboard.

• File tab sort order - The default order for the file or document tabs is alphabetic. This makes it easy to
predict where a file or document tab will be based on the file name. You can also change this value by
going to Tools → Options → Editing → Editor Windows. This option has several possible values:
Alphabetical, Most recently opened, Most recently viewed, or Manual. For more information see
File Tab Sort Order Options.

•

Managing Windows

292

Abbreviate similar files - When the file or document tabs are sorted alphabetically, by default, the tabs
do not show the complete name of the file when adjacent files differ only by file extension. This saves
space and provides better visibility for associated files. For file names to be abbreviated in this style,
their paths and base file name must match exactly. For example,
C:\rectangles\BorderRectangle.cpp would not abbreviate with
C:\src\include\BorderRectangle.h. You can also set this option by going to Tools → Options
→ Editing → Editor Windows.

• Tool Windows - Displays menu of tool windows. Selecting a tool window will either activate the tool
window or create a new instance. Not all tool windows support multiple instances.

• Layouts - Displays menu for creating and customizing the default tool window layout for dragged out
document tabs. This menu is not present on context menu for main window group document tabs.

Customizing the Default Layout Applied to Dragged out Document Tabs

When you drag out a document tab, a default tool window layout is applied. Use the Layouts menu found
on the context menu of a document tab in a floating window group to customize the default layout applied.
Note that the context menu of a document tab of the main window group does not have the Layouts
menu.

The Layouts menu is shown below:

• Save layout - Saves the tool window layout for current layout.

• Save layout as... - Saves the tool window layout to a layout name of your choosing. Turn on the "Set
as default layout" check box to also set the default layout applied to dragged out document tabs.

• Reset layout - Restores the current tool window layout to it's original state before modifications were
made.

• Delete layout - Deletes the current layout. System tool window layouts can't be deleted.

Managing Windows

293

• Apply layout and set default - List all layouts and allows you to set the default layout and apply the
layout to the current floating window group.

• Apply layout to all and set default - List all layouts and allows you to set the default layout and apply
the layout to all current floating window group.

Docking Tool Windows to Floating Window Groups

Document tabs can be drag and dropped outside the main window group (also called the application main
window). This is very useful when you have multiple monitors. There are couple of ways to dock tool
windows to floating window groups.

Use the View → Tool Windows menu to create a new instance of a tool window or activate a tool
window. Note that not all tool window support duplicates.

To duplicate a tool window, right click on the tool window title bar and select Duplicate. This will create a
new floating instance of that tool window. Now you drag the new tool window by the tool window title bar
to the floating window group and dock it.

Changing the Window Left Margin Width

The left margin of an editor window is used to give visual indicators for certain operations (such as when
diffing files). Increasing the size of the window left margin can make it easier to create line selections with
the mouse. It also prevents window contents from jumping to the right when a bookmark, breakpoint, or
error is first displayed.

To specify the space between the left edge of the window and the editor text, click Tools → Options →
Appearance → General, then set the value of the option Window left margin to the amount of space
desired in inches. This value has no effect when there are bitmaps displayed in the left margin, since
more space is necessary.

Splitting Windows

To split the current editor window into two parts so you can view/edit different parts of the same buffer at
the same time, click Window → Split Horizontally (Ctrl+H or hsplit_window command) or Window →
Split Vertically (vsplit_window command). You can also right-click on the document or file tab of the
current window to perform the same operations.

To view two different editor windows side-by-side, follow these steps:

• Open the two files. This will create two document tabs (unless you are using the Multiple windows
share window option).

• Now start dragging the first document tab over the second documents edit window. You will see what
we call docking guides displayed to help indicate where the document tab will be docked (on left, on
right, above, below, or same document tab group).

• While the mouse is over the docking guide portion indicating either on left, on right, above, or below, let
go of the mouse.

Managing Windows

294

Duplicating Windows

To create a duplicate of the current editor window, use the duplicate_window command (Window →
Duplicate). This will create a new window linked to the current buffer.

Tiling Windows

To resize and rearrange the open editor windows so they don't overlap, click Window → Tile
(tile_windows command). If there are three or fewer open editor windows, they will be tiled vertically. To
tile three or fewer windows horizontally, click Window → Tile Horizontal (tile_windows h).

Manipulating Tiled Windows

There are several SlickEdit® commands that can be used when the windows are tiled:

• window_below - Switches to the window tile below the current window, if one exists.

• window_left - Switches to the window tile to the left of the current window, if one exists.

• window_right - Switches to the window tile to the right of the current window, if one exists.

• move_edge - Moves the adjoining edge of a tiled window. This command is bound to Alt+F2. Press
Alt+F2, then use the arrow keys to move the cursor to point to the window edge and move it to the new
edge position, then press Enter.

• delete_tile - Deletes an adjacent tiled window. Use the arrow keys to point to the edge of the window
you wish to delete.

Switching Between Buffers or Windows
The method for switching the buffer or window with which you are working depends on whether you are
using a one-to-one relationship between buffers and files (see the introduction to Files, Buffers, and Editor
Windows). If you have selected One file per window, switching buffers and switching windows is the
same thing. If you have Multiple files share a window selected, then these are two very different
operations and you manipulate windows and buffers separately.

There are many styles and commands for switching between buffers and windows within the editor, and
we encourage you to try them out and pick the method that works best for you.

Using the mouse, you can switch between editor windows by clicking on the file tabs or by using the
Window menu items. By default, the active window will change when you switch to a specific file or buffer,
unless the active window is already displaying the buffer you select (see Linking to a Window below).

Tip

For information about navigating within files, see Cursor Navigation.

Switching Between Buffers or
Windows

295

Next Window Style

The default next window style is Smart Next Window. This style allows you to press Ctrl+Tab
(next_window command) to switch the focus between the two most frequently used open editor
windows, rather than always going to the next window. Press Ctrl+Shift+Tab (prev_window command)
to switch between all open editor windows. This style is similar to how Ctrl+Tab and Ctrl+Shift+Tab work
in other Windows MDI applications, like Visual Studio.

Note

Under the Gnome desktop environment, Smart next window may not work correctly when the
mouse option 'Highlight the pointer when you press Ctrl' is enabled.

Smart Next Window is on by default (Tools → Options → Editing → Editor Windows > Smart next
window style). There are two alternatives to this behavior (note that all three options are mutually
exclusive):

• Reorder windows - If this option is selected, activating an existing window reinserts the window after
the current window. Neither Ctrl+Tab nor Ctrl+Shift+Tab reorders the windows. This option is very
good for switching between more than two files, but it is not the Windows standard (which means you're
probably not used to it). It's similar to the way SlickEdit® reorders buffers.

• No window reordering - If this option is selected, newly opened windows are inserted after the current
window. Activating an existing window, pressing Ctrl+Tab, or pressing Ctrl+Shift+Tab does not
reorder windows. This option is best if you like to memorize the hot key numbers on the Window menu
(for example, Alt+W 1) because it attempts to keep the hot key numbers the same.

Buffer and Window Switching Commands

The following is a list of SlickEdit® commands that you can use to switch between buffers and windows:

• next_buff_tab/prev_buff_tab - Navigates through the buffers in the order they are displayed in the File
Tabs tool window. next_buff_tab moves to the right and prev_buff_tab moves to the left. Both circle
around to the other end when you are on the last item. These commands are not bound to keys by
default.

• next_buffer/prev_buffer - Navigates through the buffers using a circular list in the order they were last
used. A new file is inserted after the current file. These commands are bound to the menu items
Document → Next Buffer (Ctrl+N) and Document → Previous Buffer (Ctrl+P). If you are using
Multiple files share a window, then these operations will cycle through the buffers using the currently
active window. If you are using One file per window, then these operations will cycle through the
windows.

Note

While using push-tag (Ctrl+Dot) to navigate from one file to another does alter the order of the
buffer list, using pop-bookmark (Ctrl+Comma) to navigate back does not. So, if you have a

Switching Between Buffers or
Windows

296

buffer list of A, B, C and you use Ctrl+Dot to open D the list will be A, B, C, D. When you press
Ctrl+Comma to return to C, the buffer list will still be ordered: A, B, C, D. So you will need to use
next_buffer to get to D.

• forward/back - Navigates through previously visited locations in the code as a linear list of locations. A
new location is created by any navigation action except for simple cursor navigation, like up, down, left,
right, page up, page down, etc. These commands are bound to the green arrows on the Standard
toolbar and the forward/back mouse buttons.

• next_window/prev_window - Moves between editor windows. If you are using the option One file per
window(on by default), then this is the same as next_buffer/prev_buffer. If you are using multiple files
per window, you can use this to navigate between editor windows, but you will need to use
next_buffer/prev_buffer to cycle through the buffers within a particular window.

The next_window and prev_window commands are bound respectively to the menu items Window
→ Next (Ctrl+Tab or Ctrl+F6) and Window → Previous (Ctrl+Shift+Tab or Ctrl+Shift+F6).

• next_doc_tab/prev_doc_tab - Navigates through the windows in the order they are displayed in the
Document tabs. next_doc_tab moves to the right and prev_doc_tab moves to the left. When the end
is reached, these commands switch to the next or previous Document tab group. These commands are
not bound to keys by default.

Listing Open Files

To view and work with a list of open files in SlickEdit®, click Document → List Open Files
(Ctrl+Shift+B), or use the list_buffers command. This will display the Files tool window, which contains
an alphabetized list of the files and buffers currently open in the editor.

Note

For documentation purposes, the word "files" generally includes both files and buffers.

Switching Between Buffers or
Windows

297

Tip

• By docking this tool window, you have quick access for switching between files or opening
other files. Right-click on the title bar and select Dockable, then drag and drop the window to
your desired location.

• When the Files tool window is not docked, it can be dismissed by opening a file for editing or by
pressing Esc. To make this dialog behave like other tool windows, right-click inside the Files list
area and uncheck Dismiss on select.

• The Files tool window can also show a list of files in the active project or workspace. Use the
View buttons or the view settings on the right-click context menu to change the display.

Using the buttons on the Files tool window (or the right-click context menu), you can perform the following
operations:

• Open - Opens and brings that file into focus, ready for editing. The active file is listed in the tool window
in a bold font. You can also open files by double-clicking on them, or by pressing Enter or Alt+E.

• Save - Saves the selected file(s). Modified files are listed in a red. You can click the Disk bitmap to
quickly save a modified file, or press Ctrl+S, Alt+S, or Alt+W.

• Close - Closes the selected file(s) in the editor. You can also press Delete, Alt+C, orAlt+D to close a
selected file. Upon close, you are prompted to save modified buffers. If you are using the option One

Switching Between Buffers or
Windows

298

file per window (Tools → Options → Editing → Editor Windows → Files per window), which is on
by default, all windows displaying the buffer are closed as well.

Sort any column by clicking on the column header. When you click to sort, an arrow on the right side of
the column header shows the ascending or descending order.

Use the Filter text box to display matching file names. Right-click inside the Files list area to enable
Prefix match inside the Filter text box. When the focus is not in the Filter text box, you can incrementally
search the list of file names by typing the first few characters of the name. See Files Tool Window for
more details about filtering and searching the Files list.

Tip

You can collapse display of the buttons and the Filter text box by clicking the Minus button in the
top-left corner of the tool window. The collapsed area is replaced with a message that states your
current view and filter settings. To view the buttons and Filter text box again, click the Plus
button. Collapsing the buttons and filter gives your window a cleaner look and more room for file
listings.

For more detailed information about using the Files tool window, see Document Dialogs and Tool
Windows.

Linking to a Window

You can change the buffer that is displayed in the current window by using the Link Window
dialog(Window → Link Window or link_window command), pictured below. This is especially useful if
you like to work with split windows, for quickly bringing the buffers you want to view into focus.

Switching Between Buffers or
Windows

299

Select the buffer that you want, then click Link to Window. To start a process buffer in the current editor
window, click Start Process. If a process buffer has already been started, it is linked to in the current
window. See also Link Window Dialog for more descriptions of the available options.

Closing Buffers and Windows
If you have set Files per window to One file per window, closing a file is the same as closing a window.
If you have set it to Multiple files share window, then windows and files are closed separately. When
you close a modified buffer, you will be prompted to save the contents.

• To close an editor window, click Window → Close or use the close_window command.

• To close a single file, select File → Close or use the close-buffer command.

• To close all files, select File → Close All or use the close_all command.

You can also access these items from the right-click context menu on the File Tabs tool window, as well
as an additional operation, Close Others, which closes all open files except for the one selected.

See Closing Files for more information about closing buffers and files.

Closing Buffers and Windows

300

Basic Editing

Overview
SlickEdit® provides familiar operations for selecting, copying, moving, and operating on text, with
enhanced capabilities to meet the needs of developers.

The available editing features depend on the current emulation. Different editors provide different
capabilities, and SlickEdit attempts to match these features in each emulation. For example, the Brief
emulation provides a brief_iselect_char command that will start an inclusive character selection. This is
an operation familiar to Brief users that the other emulations don't necessarily provide. However, CUA is
the default emulation mode for SlickEdit, so the operations described in this section are based on that
mode. See Emulations for more information about emulation modes.

In addition to the basic and advanced editing features described in this section, SlickEdit provides many
more text editing-related features that can be managed on a per-language basis. See topics in the Editing
Features chapter for information.

SlickEdit and Selections

Many editing operations are performed on selected text, so you need to know how selections work in
SlickEdit in order to gain the power of its editing features. There are several types of selections, and some
are handled differently than others regarding operations and features. In particular, SlickEdit handles line
selections differently than most other editors. See Selections for more information.

SlickEdit® Clipboards

Most text editing operations involve clipboards. Clipboards in SlickEdit are internal to the editor and
separate from the system clipboard provided by the operating system. While most operating systems only
allow one clipboard at a time, SlickEdit, by default, keeps a stack of the 50 most recently used clipboards.
You can see a list of your clipboards by using the Clipboards tool window (Ctrl+Shift+V, Edit → List
Clipboards or list_clipboards command). See Clipboards for more information.

Insert/Replace Editing Mode

By default, SlickEdit® starts in Insert mode, which means text that you type is inserted at the cursor.
When the editor is in Replace mode, text is typed over the subsequent characters, essentially replacing
text as you type. The Insert or Replace editing mode is indicated in the status line of the editor (Ins or
Rep). To toggle the editing mode between Insert and Replace, click on the indicator, press the Insert key,
or use the insert_toggle command. To change the default start mode, from the main menu, click Tools
→ Options, expand Editing and click General, then change the value of the Start mode option.

Improve Your Editing Efficiency

The subsequent sections describe many editing commands. If a command you like to use isn't bound to a
key or key sequence already, it's a good practice to give it a key binding for quicker keyboard access. See
Creating Bindings for more information.

Overview

301

If you frequently use multiple text editing operations in succession, record the steps as a macro and bind
it to a key to save time in the future. See Recording a Macro for more information.

All editing features are not necessarily documented here, nor are all commands documented for each
feature. For example, in a subsequent section, common Cut operations are described, but more
commands are also available. Usually these are emulation-specific. A good way to discover related
commands is to type a portion of the command into the Search by command box on the Key Bindings
option screen (Tools → Options → Keyboard and Mouse → Key Bindings). For example, type "cut" in
this box, and the list of Commands is filtered to show only those with that contain the text "cut". Now you
can see that some additional Cut commands are append_next_cut and cut_level, two features of the
GNU Emacs emulation.

Undoing Edit Operations

To undo an edit operation, use the undo command (Edit → Undo or Ctrl+Z). To redo the operation after
using Undo, use the redo command (Edit → Redo or Ctrl+Y). To cancel a text selection, use the
deselect command or press Ctrl+U.

Selections
Most applications let you select text and perform operations on the selected text, such as Cut, Copy, and
Move. SlickEdit® offers three types of selections: character, line, and block. Each selection type provides
different capabilities for different editing situations - and easy access.

Selected text is rendered with a shaded background. You can change the color of the shading by
modifying the Background color of the Selection screen element (Tools → Options → Appearance →
Colors). See Setting Colors for Screen Elements for more information.

Selection Types

There are three selection types in SlickEdit®: character, line, and block. The following table shows a
summary of each type and some methods for creating the selection. Each type is explained in more detail
below.

Selection Type Description Creation Methods

Character selection This is created when one or more
individual characters are selected.
This is also known as a "char"
selection.

Use the mouse to drag or use the
select_char command (F8 or
Edit → Select → Char). See also
Character Selections.

Line selection This is created when one or more
whole lines are selected as lines.
You can select all of the
characters on a line and still have
a character selection. The
selection type depends on how

Triple-click within a line or use the
select_line command (Ctrl+L or
Edit → Select → Line). For
multiple lines, drag in the left
margin area of the edit window
(when the mouse pointer changes

Selections

302

Selection Type Description Creation Methods

the selection was created.
to point right). See also Line
Selections.

Block selection This is created when columns of
text are selected, also known as a
"column selection".

Right-click and drag or use the
select_block command (Ctrl+B
or Edit → Select → Block). See
also Block Selections.

Character Selections

Character selections (also called "char" selections) are used to select words, parts of a line, or a range of
text between a starting location and an ending location. To create a character selection, use any of the
following methods:

• Use the mouse to click and drag.

• Use the select_char command (F8 or Edit → Select → Char), then use the arrow keys to extend the
selection, or use the mouse to click at the end of the selection.

• Press and hold the Shift key with any navigation key. See Starting/Extending a Character Selection
below for examples.

You can also create character selections on words:

• To select the whole word under the cursor, double-click on the word or use the select_whole_word
command (Edit → Select → Word).

• To select from the cursor to the end of the current word or the next word, use the select_word
command.

When viewing a list of clipboards, character selection types are indicated with the text "CHAR" (see
Viewing and Inserting Clipboards for more information).

Starting/Extending a Character Selection

You can start or extend a character selection with Shift key shortcuts, described in the table below. For
example, press Shift+Home to create a character selection from the cursor to the beginning of the line.
Press Shift+End to create a selection from the cursor to the end of the line. You can also use
Ctrl+Shift+Home to create a character selection from the cursor to the top of the file, or Ctrl+Shift+End
to create a selection from the cursor to the end of the file.

Note that these shortcuts are based on the default CUA emulation.

Shortcut for Extending a Char Selection Description

Selections

303

Shortcut for Extending a Char Selection Description

Shift+Right Start or extend selection to right.

Shift+Left Start or extend selection to left.

Shift+Up Start or extend selection up one line.

Shift+Down Start or extend selection down one line.

Shift+Home Start or extend selection to beginning of line.

Shift+End Start or extend selection to end of line.

Shift+PgUp Start or extend selection up one page.

Shift+PgDn Start or extend selection down one page.

Ctrl+Shift+Home Start or extend selection to top of buffer.

Ctrl+Shift+End Start or extend selection to bottom of buffer.

Line Selections

A line selection is created when one or more complete lines are selected (partially selected lines are
treated as character selections).

SlickEdit® treats line selections very differently from character selections. A line selection can only be
inserted before or after another line of code. That's because a line of code is a meaningful unit of
functionality in most languages, and it would never be inserted inside another line of code. Handling line
selections in this manner makes it faster to copy and paste lines of code.

Line selections are pasted before or after the current line, depending on your Line insert style setting
(Tools → Options → Editing → General). Furthermore, line selections work with SmartPaste®, which
reindents inserted lines according to the surrounding code. See Inserting Lines for more information.

To select a line, use one of the following methods:

• Use the mouse to triple-click within a line, or to select multiple lines, drag in the left margin area of the
edit window (when the mouse pointer changes to point right).

• Use the select_line command (Ctrl+L or Edit → Select → Line). This selects the current line, or, you
can use the arrow keys to extend the selection to include more lines (or click with the mouse on the last
line of the selection).

The following operations are also treated as line selections:

Selections

304

• To select the current code block (an entire block statement such as if, loop, switch, etc.), use the
select_code_block command (Edit → Select → Code Block).

• To select the current procedure/function, use the select_proc command (Edit → Select →
Procedure).

• To select the entire buffer, use the select_all command (Ctrl+A or Edit → Select → All).

When viewing a list of clipboards, line selection types are indicated with the text "LINE" (see Viewing and
Inserting Clipboards for more information).

Block Selections

Block selections, also known as column selections, are used to process columns of text. To create a
block selection, use any of the following methods:

• Use the mouse to right-click and drag.

• Use the select_block command (Ctrl+B or Edit → Select → Block), then use the arrow keys to
extend the selection, or use the mouse to click at the end of the selection.

• Use Alt+Shift+Left/Right/Up/Down/Home/End, to start, switch to, or extend a block selection.

When viewing a list of clipboards, block selection types are indicated with the text "BLOCK" (see Viewing
and Inserting Clipboards for more information).

Selection Styles

Selections styles determine key behaviors for selections, like whether to extend the selection as the
cursor moves or to deselect after a copy or paste operation. Selection features in SlickEdit® depend on
the current selection style, which is set to match your emulation mode by default. However, note that the
key bindings described in this section are based on the default emulation mode, CUA. If you are using a
different emulation, see the emulation charts (located in the docs subdirectory of your installation
directory) for a listing of selection keys.

To change the selection style, use the Selections option screen (Tools → Options → Editing →
Selections). See Selection Options for more information.

Selection Indicator

SlickEdit® provides a selection indicator, located in the status area of the editor, to indicate the type of
selection and the number of characters or lines in a selection. This is useful to quickly determine the
selection type you have made, and to measure the length of a word or string, or the number of lines in a
function.

The selection indicator displays the following information based on your current selection:

• When nothing is selected, the indicator is dimmed and displays the text "No Selection".

• When the current selection is a character selection:

Selections

305

• If the character selection is contained on one line, the indicator displays the number of columns
selected. For example, if three characters are selected, the indicator displays "3 Cols".

Note

Because columns are "virtual", the number of columns displayed by the indicator is not
necessarily the actual number of characters or bytes in the selection, if the selection includes tab
characters, Unicode characters, or extends beyond the end of the line.

• If the character selection spans more than one line, the indicator shows the number of lines, with a
plus sign and number of columns (+N) to indicate if there are "extra" characters selected, or a minus
sign and number of columns (-N) to indicate if there are fewer characters selected, depending on the
start and end columns of the selection. For example, if the selection spans one entire line and part of
the subsequent line, the indicator displays "1 Line+4".

• When the current selection is a line selection, the indicator displays the number of lines. For example,
if two lines are selected, the indicator displays "2 Lines".

• When the current selection is a block selection, the indicator displays the size of the block in the
format Lines x Columns. For example, if the selected block is two lines long and three columns wide,
the indicator displays "2x3 Block".

Tip

The selection indicator can be used to count the number of characters in any text block. This can
be useful for database work or any type of task that involves checking the number of characters.
Simply paste the text into SlickEdit and select it with one of the character selection methods, then
look at the selection indicator to see the number of characters.

Cycling Through Selections

You can quickly cycle through the three selection types (character, line, and block) with the mouse. To do
this, press and hold the left button while clicking with the right button to change the selection type. For
example, if you have a character selection, click once to start a block selection, or twice to make a line
selection.

You can also cycle through successively larger selections by using the select_toggle command or by
clicking on the Selection Indicator in the editor's status area. For example, if you have a character
selection, you can use select_toggle to extend the selection to include the entire word. Selections are
cycled in the following order, starting with no selection:

1. Create empty character selection

2. Select current word

3. Select current line

Selections

306

4. Select current code block

5. Select larger code block

6. Select current function

7. Select entire file

8. Deselect

Except for empty character selections and line selections, the selections are locked so that the cursor
remains stationary.

Operating on Selected Text

SlickEdit® provides many methods for manipulating selected text. The table below describes some of the
most common selection operations. See Cut, Copy, Paste, and Move for more.

Selection Operation Description Usage

Add Numbers in Selection Adds selected numbers and
inserts result below the last line of
the selection. Addition is
performed for each adjacent line.
If no operator exists between two
adjacent numbers, addition is
assumed. Works with character,
line, and block selections.

Use the add command.

Add Numbers to Selection
(Enumeration)

Automatically adds incrementing
numbers to a selection of code.

Use the enumerate command to
auto-add numbers or use the
gui_enumerate command (Edit
→ Other → Enumerate) to
display the Enumerate Dialog,
where you can specify options.

Align Block Selection Center Centers text in a block selection
within the selected area.

Use the align_selection_center
command.

Align Block Selection Left Aligns text in a block selection so
that the first non-blank character
of each line is flush against the
left edge of the selection.

Use the align_selection_left
command.

Align Block Selection Right Aligns text in a block selection so
that the last non-blank character
of each line is flush against the
right edge of the selection.

Use the align_selection_right
command.

Selections

307

Selection Operation Description Usage

Append Selection to Clipboard Appends selected text to the
clipboard.

Use the append_to_clipboard
command (Ctrl+Shift+C or Edit
→ Append to Clipboard)

Beautify Selection (Pro only) Beautifies the selected
text according to the beautification
settings for the current language.
See Beautifying Code for more
information.

Use the beautify_selection
command, or check the Restrict
to selection box on the Beautifier
dialog (Tools → Beautify).

Cancel Selection Cancels the selection. Use the deselect command or
press Ctrl+U.

Casing: Lowercase Selection Translates characters within a
selection to lowercase letters. See
Case and Capitalization of Text
for more casing options.

Use the lowcase_selection
command (Ctrl+Shift+L or Edit
→ Other → Lowcase).

Casing: Toggle Selection Casing Toggles the characters within a
selection between lowercase and
uppercase.

Use the togglecase_selection
command.

Casing: Uppercase Selection Translates characters within a
selection to uppercase letters.
See Case and Capitalization of
Text for more casing options.

Use the upcase_selection
command (Ctrl+Shift+U or Edit
→ Other → Upcase).

Copy Selection by Dragging Drag/copies selected text. Press and hold Ctrl while
clicking inside a selection and
then dragging with the mouse
to the desired location (
Ctrl+LButtonDn).

Copy Selection to Clipboard Copies selected text (or the entire
line, if no selection) to the
clipboard. You can also create a
named clipboard with this
operation (see Named
Clipboards).

Use the copy_to_clipboard
command (Ctrl+C or Edit →
Copy).

Copy Selection to Cursor Copies selected text to the cursor
location. Char and block
selections are inserted before the
character at the cursor, while lines

Use the copy_to_cursor
command or press Ctrl+Shift
while holding the right mouse
button (Ctrl+Shift+RbuttonDn).

Selections

308

Selection Operation Description Usage

are inserted at the location
specified by the Line insert style
setting (Tools → Options →
Editing → General).

Cut Selection Deletes a selection and copies it
to the clipboard.

Use the cut command (Ctrl+X or
Edit → Cut).

Delete and Append to Clipboard Deletes a selection and appends
it to the clipboard.

Use the append_cut command
(Ctrl+Shift+X or Edit → Append
Cut).

Execute Selection Executes each line or sub-line of
a selection as if entered on the
command line.

Use the execute_selection
command or press Alt+=.

Files: Append Selection to File Appends selected text to the
specified file.

Specify a file name with the
append command, or use the
gui_append_selection command
to display a dialog where you can
browse to pick the file.

Files: Write Selection to File Writes selected text to the
specified file.

Specify a file name with the put
command, or use the
gui_write_selection command
(File → Write Selection) to
display a dialog where you can
browse to pick the file.

Fill Selection Fills a selection with the specified
key character.

Use the fill_selection command
to be prompted on the command
line for the key, or use the
gui_fill_selection command
(Edit → Fill) to display a dialog
prompt.

Hide Selection Hides all lines in a selection by
collapsing as a Selective Display
unit.

Use the hide_selection
command (View → Hide
Selection). Use the show_all
command (View → Show All) to
redisplay lines.

Indenting: Indent Selection Indents the selected text
according to the Syntax Indent
settings or by one tab stop,

Use the indent_selection
command (Tab or Edit →
Indent).

Selections

309

Selection Operation Description Usage

depending on the Indent with
tabs setting on the Language-
Specific Formatting Options
screen. One indent level is added
for char and line selections, while
one indent level starting from the
left edge of the selection is used
for block selections.

Indenting: Unindent Selection Unindents the selected text
according to the Syntax Indent
settings or by one tab stop,
depending on the Indent with
tabs setting on the Language-
Specific Formatting Options
screen. One indent level is
removed from each line of char
and line selections, while one
indent level starting from the left
edge of the selection is removed
for block selections.

Use the unindent_selection
command (Shift+Tab or Edit →
Unindent).

List Clipboards Allows you to view and insert a
clipboard. See Clipboards for
more information.

Use the list_clipboards
command (Ctrl+Shift+V or Edit
→ List Clipboards.

Move Selection by Dragging Drag/moves selected text. Press and hold the left mouse
button while clicking on a
selection and then dragging with
the mouse to the new location.

Overlay Block Selection Overlays a block selection at the
current cursor location.

Use the
overlay_block_selection
command (Edit → Other →
Overlay Block).

Overlay/Adjust Block Selection Overlays a block selection at the
current cursor location, and fills
the source selection with blanks.

Use the adjust_block_selection
command (Edit → Other →
Adjust Block).

Paste Inserts the most recent clipboard
at the current cursor location. To
insert another clipboard, see the
List Clipboards operation or
Clipboards.

Use the paste command (Ctrl+V
or Edit → Paste).

Selections

310

Selection Operation Description Usage

Reflow Selection Reflows text within a selection
according to the margin settings
specified on the Word Wrap
option screen (see Language-
Specific Word Wrap Options).
Block selections are wrapped
within the columns of the block.
Char selections are not supported
for this operation.

Use the reflow_selection
command (Document → Reflow
Selection).

Reverse Selection Reverses the characters in a
selection.

Use the reverse_selection
command.

Shift Text in Selection Left Shifts text within a selection to the
left by one column, maintaining
relative indentation. This
operation supports line and block
selections. If a character selection
is used, it is converted to a line
selection.

Use the shift_selection_left
command (Shift+F7 or Edit →
Other → Shift Left).

Shift Text in Selection Right Shifts text within a selection to the
right by one column, maintaining
relative indentation. This
operation supports line and block
selections. If a character selection
is used, it is converted to a line
selection.

Use the shift_selection_right
command (Shift+F8 or Edit →
Other → Shift Right).

Sort Lines Within Selection Sorts lines in a selected area in
ascending order.

Use the sort_within_selection
command or select the Sort
within selection option on the
Sort dialog (Tools → Sort).

Sort Selected Lines Sorts lines in a selected area in
ascending order, by comparing
only the first columns.

Use the sort_on_selection
command or select the Sort on
selection option on the Sort
dialog (Tools → Sort).

Spell Check Selection Checks the spelling of selected
text according to the Spell Option
settings. See Spell Checking for
more information.

Use the spell_check_selection
command (Tools → Spell Check
→ Check Selection).

Cut, Copy, Paste, and Move

311

Cut, Copy, Paste, and Move
The main menu item Edit provides access to commonly used editing features. Each menu item and its
associated command are described in the Edit Menu section. Keyboard shortcuts for each menu item (if
available) are displayed by default on the menu itself, based on the current emulation.

Tip

Several editing operations affect words. You can change the characters that SlickEdit® uses to
recognize words, on a per-language basis. To do this, use the Word chars option on the
Language-Specific General Options screen (Tools → Options → Languages → [Language
Category] → [Language] → General).

Cutting and Deleting

You can cut or delete any selected text, or individual words, lines, or entire code blocks. Cut operations
copy the text to the clipboard before deleting. To remove selected text without copying it to the clipboard,
press the Delete key.

The table below shows some common Cut operations.

Cut Operation Description Usage

Cut Deletes the selection and copies it
to the clipboard.

Use the cut command (Ctrl+X or
Edit → Cut).

Append Cut Deletes the selection and
appends it to the clipboard.

Use the append_cut command
(Ctrl+Shift+X or Edit → Append
Cut).

Cut Word Deletes text starting from the
cursor to the end of the current
word or next word, and copies it
to the clipboard. Invoking this
operation from the keyboard
multiple times in succession
creates one clipboard. See the
Tip at the beginning of this section
to change word recognition
characters.

Use the cut_word command (Ctrl
+Shift +k or Edit → Delete →
Word).

Cut Line Deletes the current line and
copies it to the clipboard. Invoking
this operation from the keyboard
multiple times in succession
creates one clipboard.

Use the cut_line command
(Ctrl+Backspace or Edit →
Delete → Line).

Cut, Copy, Paste, and Move

312

Cut Operation Description Usage

Cut to End of Line Deletes text starting from the
cursor to the end of the line, and
copies it to the clipboard. Invoking
this operation from the keyboard
multiple times in succession
creates one clipboard.

Use the cut_end_line command
(Ctrl+E or Edit → Delete → To
End of Line).

Cut Code Block Prompts to delete the current
code block statement and copies
the lines to the clipboard.

Use the cut_code_block
command or press Ctrl+Del.

Copying Text

The table below shows some common Copy operations.

Copy Operation Description Usage

Copy to Clipboard Copies the selected text (or the
entire line, if no selection) to the
clipboard. You can also create a
named clipboard with this
operation (see Named
Clipboards).

Use the copy_to_clipboard
command (Ctrl+C or Edit →
Copy).

Copy Word Copies the word at the cursor to
the clipboard. Invoking this
operation from the keyboard
multiple times in succession
creates one clipboard. See the
Tip at the beginning of this section
to change word recognition
characters.

Use the copy_word command
(Ctrl+K or Edit → Copy Word).

Copy to Cursor Copies the selected text to the
cursor location. Char and block
selections are inserted before the
character at the cursor, while lines
are inserted at the location
specified by the Line insert style
setting (Tools → Options →
Editing → General).

Use the copy_to_cursor
command or press Ctrl+Shift
while holding the right mouse
button (Ctrl+Shift+RbuttonDn).

Cut, Copy, Paste, and Move

313

Copy Operation Description Usage

Copy to System Clipboard Passes the selected text to the
operating systems clipboard.

Use the copy command.

Copy Visible Copies the currently visible lines
to the clipboard. Ignores lines
hidden by Selective Display.

Use the copy_selective_display
command (View → Copy
Visible).

Pasting Text

When pasting text created from a character or block selection, the text is inserted before the character at
the cursor. Line selections are inserted at the location specified by the Line insert style setting (Tools →
Options → Editing → General), and by default, indented according to your indent level settings. See
Inserting Lines for more information.

The most recent clipboard item can be inserted at the cursor location with the paste command (Ctrl+V or
Edit → Paste).

To insert another clipboard, use the Clipboards tool window (Edit → List Clipboards), or use the
list_clipboards command to display the Select Text to Paste dialog. Both the tool window and dialog
show a list of your clipboards and let you select the clipboard to insert. The only difference is that the tool
window can be docked and contains a Preview area that shows the entire color-coded contents of the
clipboard. See Clipboards for more information about these features.

You can also cycle through and paste clipboards with the paste_next_clipboard and
paste_prev_clipboard commands. These commands cycle through the clipboard ring and paste the top
item, while leaving the pasted text selected, so you can use the command again to see the next (or
previous) clipboard text, if that wasn't the clipboard you wanted. For example, if you have three clipboards
named 1, 2, and 3, invoking the paste_next_clipboard command inserts (yet leaves selected) clipboard
2 and moves it to the top of the ring. Invoke the command again to see/paste the next clipboard instead,
and so on.

Moving Text

To move a text selection from one location to another, use the mouse to drag and drop it where you want.
SlickEdit® allows this capability by default. To disable it, from the main menu, click Tools → Options,
expand Editing and click General, then set the Allow drag drop text option to False.

Clipboards
Use SlickEdit® clipboards to copy and move text in files, the SlickEdit command line, dialog text boxes, or
any other application that supports text clipboards, such as a word processor. Clipboards in SlickEdit are
internal to the editor and separate from the system clipboard provided by the operating system.

Clipboards

314

Common clipboard-related operations (cut, copy, paste, etc.) are available on the main Edit drop-down
menu. The corresponding key binding for each item is also shown by default. See Cut, Copy, Paste, and
Move for more information about basic editing operations.

When using a cut or copy operation, a clipboard is created. Pressing the same cut key multiple times in
succession creates one clipboard. For example, the shortcut Ctrl+Shift+K is used to cut words (the
binding for the cut_word command). If you press Ctrl+Shift+K three times to cut three words, one
clipboard is created that you can insert with Ctrl+V (the paste command). This is true for
Ctrl+Backspace (cut_line command) and Ctrl+E (cut_end_line command) as well.

Tip

If you are using the Brief emulation and want to place cut text on a clipboard, bind the commands
cut_word, cut_end_line, and cut_line to the appropriate keys.

Viewing and Inserting Clipboards

To insert the current clipboard into the buffer, from the main menu, select Edit → Paste, press Ctrl+V, or
use the paste command.

In the case of multiple clipboards, there are two ways to view and insert: by using the Clipboards tool
window, or by using the modal Select Text to Paste dialog. Both provide the same information, except the
Clipboards tool window is dockable and contains a color-coded Preview area for previewing clipboard
contents.

• To display the Clipboards tool window, from the main menu, select Edit → List Clipboards, press
Ctrl+Shift+V, or use the list_clipboards command.

• To display the Select Text to Paste dialog, you can use either the old_list_clipboards command or the
list_clipboards_modal command. These commands are identical.

Clipboards

315

With either method, double-click on a clipboard to insert it at the cursor location, or, select the clipboard to
insert and press Enter or click OK.

Both the dialog and the tool window provide the same information:

• Clipboard name/number - This is the number of the clipboard or the name, if using Named
Clipboards. Clipboards are numbered with the most recent clipboard first, which always appears at the
top of the list. You can use this value with the paste command to insert the specified clipboard. For
example, type paste 2 on the command line to insert clipboard 2 at the cursor location.

• Clipboard type - The clipboard type can be CHAR, LINE, or BLOCK. A CHAR type clipboard is
inserted before the current character. A LINE type clipboard is inserted after the current line by default.
If you want LINE type clipboards inserted before the current line, change the line insert style (Tools →
Options → Editing → General). A BLOCK type clipboard is inserted before the current character and
pushes over all text intersecting with the block. No lines are inserted.

• Line count - The number following the clipboard type indicates the number of complete or partial lines
of text in the clipboard.

• Clipboard contents/summary - This area shows all or a portion of the clipboard contents. If the
contents exceed the viewing area, they are condensed.

The Clipboards tool window contains a Preview area that shows the selected clipboard's color-coded
contents. You can copy text in the Preview to create a new clipboard. To see the entire contents of a
condensed clipboard using the Select Text to Paste dialog, click the View button. The View Clipboard
dialog opens showing the color-coded contents in an edit window. From here, you can copy all or part of
the contents to the operating system clipboard.

The Clipboards tool window contains additional functionality:

• You can filter the list of clipboards by text. By typing a string into the Filter text box, only clipboards
whose contents contain that entered string will be shown. Clearing the filter will restore all clipboards.

Clipboards

316

• To delete the selected clipboard item in the tool window, press Delete, or, right-click and select Delete
from the context-menu. To delete all clipboards, select Clear All from the right-click context menu.

• To make the selected clipboard active, select Set as Current Clipboard from the right-click context
menu.

• To save the clipboard to a file, select Save clipboard to file from the right-click context menu.

• To change the view of the tool window, the View menu item on the right-click context menu:

• Auto - When this is selected, the Clipboards tool window switches between Horizontal and Vertical
views automatically as you resize it.

• Horizontal - When this is selected, the clipboard list is displayed above the Preview area.

• Vertical - When this is selected, the clipboard list and Preview area are displayed side-by-side.

Named Clipboards

You can create a named clipboard by simply typing the name after the copy_to_clipboard command.
For example, create a selection, then, on the SlickEdit® command line, type: copy_to_clipboard a. A
clipboard named "a" is created. Now, you can use the name with the paste command to insert the named
clipboard without using the Select Text to Paste dialog or Clipboards tool window (for example, paste a).
Note that named clipboards are limited to two characters, and that the cut command is not supported for
this feature.

Clipboards in the Command Line and Text Boxes

Only clipboards of one line can be inserted into the SlickEdit® command line or a text box. Both Ctrl+V
and Ctrl+Shift+V key sequences can be used to insert clipboard text into these fields. The result of
inserting a clipboard into a text box varies depending on the clipboard type.

Setting the Max Number of Clipboards

By default, a stack of the 50 most recently used clipboards is kept. To change the maximum number of
clipboards saved, from the main menu, click Tools → Options, expand Editing and click General, then
enter a value in the Maximum clipboards box.

Other Operations

Inserting Lines

SlickEdit® provides several ways to start a new line or split a line, as described in the table below.

Line Operation Description Usage

Split Line at Cursor Splits the line at the cursor and
appends enough blanks at the

Use the split_insert_line
command or press Enter.

Other Operations

317

Line Operation Description Usage

beginning of the new line to align
it with the first non-blank
character of the original line.

No Split Insert Line (After) Inserts a blank line after the
current line, aligning the cursor
with the first non-blank character
of the current line. The current
line is not split.

Use the nosplit_insert_line
command or press Ctrl+Enter.

No Split Insert Line (Before) Inserts a blank line before the
current line, aligning the cursor
with the first non-blank character
of the current line. The current
line is not split.

Use the
nosplit_insert_line_above
command or press
Ctrl+Shift+Enter.

Case and Capitalization of Text

The table below shows some of the operations you can use to change the case and capitalization of
characters and words.

Casing Operation Description Usage

Lowercase Selection Translates characters within a
selection to lowercase letters.

Use the lowcase_selection
command (Ctrl+Shift+L or Edit
→ Other → Lowcase).

Lowercase Word Translates the current word to
lowercase letters and places the
cursor after it. See the Tip at the
beginning of this section to
change word recognition
characters.

Use the lowcase_word
command.

Uppercase Selection Translates characters within a
selection to uppercase letters.

Use the upcase_selection
command (Ctrl+Shift+U or Edit
→ Other → Upcase).

Uppercase Word Translates the current word to
uppercase letters and places the
cursor after it. See the Tip at the
beginning of this section to
change word recognition

Use the upcase_word command.

Other Operations

318

Casing Operation Description Usage

characters.

Toggle Casing Toggles the case of letters within
a selection.

Use the togglecase_selection
command.

Uppercase Mode Toggles Uppercase mode on and
off. Uppercase mode means that
letters you type are automatically
uppercased, so you don't need to
press and hold Shift. Note that
you can enable auto-caps on a
language-specific basis with the
Auto CAPS option (see
Language-Specific General
Options).

Use the caps command.

Capitalize Selection Capitalizes the first letter of each
word in a selection.

Use the cap_selection command
(Ctrl+Shift+A or Edit → Other →
Capitalize).

Capitalize Word Capitalizes the first letter of the
current word and places the
cursor after the word. See the Tip
at the beginning of this section to
change word recognition
characters.

Use the cap_word command.

Inserting Literal Characters

Characters can be inserted at the cursor location in the current buffer. This is useful if you wish to insert
non-ASCII characters (keys not on the keyboard). To insert a literal character, from the main menu, click
Edit → Insert Literal, or use the insert_literal command. The Insert Literal dialog is displayed.

The text box to the right of the Character Code label displays the character. The spin box displays the
decimal character code, hex character code, or ASCII character depending on which of those options is
selected.

Block Insert Mode

Block insert mode is useful when you need to edit a block of text instead of just copying or deleting it.
Additionally, when in this mode, characters you type, as well as other edits (such as backspacing and
deleting), apply to the entire block/column selection.

After a block selection is created, you can enter block insert mode by simply typing some characters to

Other Operations

319

insert, or by entering the block_insert_mode command (Edit → Other → Block Insert Mode). If the
block selection is more than one column wide, then the initial block selection will be deleted when you
type the first character. This mode also supports use of the keys Tab, Shift+Tab, and Backspace.

To cancel out of block insert mode, press the Esc key.

The figure below shows an example of a block selection created by right-clicking and dragging to select a
block. Notice the cursor position.

The figure below shows how the above example changes when you type "i" at the cursor while the block
is selected.

The figure below shows how the original example changes when you type "int" at the cursor while the
block is selected.

Hex Mode Editing

You can enable Hex view/edit mode on a per-document or language-specific basis:

• To view the current binary or text file in a Hex mode, click View → Hex or View → Line Hex (or use the
commands hex or linehex, respectively).

• To enable Hex or Line Hex view on a language-specific basis, so that each file opened in that language
is displayed in Hex mode, use the Language-Specific View Options.

• To specify the number of columns and number of bytes per column for Hex (not Line Hex) view, use the

Other Operations

320

Language-Specific View Options.

If you close a file in Hex mode, the file will be displayed in Hex mode the next time it is opened. When the
cursor is in hex data, the data can be overwritten or hex nibbles (characters 0 through F) can be inserted.
When the cursor is in the text data, overwrite it if you want, or insert text characters the same as if editing
a text file. All of the search and replace commands work while SlickEdit® is in Hex mode. Only character
selections are displayed when in Hex mode.

See also Hex/Line Hex View for more information.

Hex/Text View Key Bindings

Hex mode key bindings override normal key bindings for the emulation. Most of the other emulation keys
will perform the same operation. However, keys that are bound to the following commands perform hex
cursor motion: top_of_buffer, bottom_of_buffer, page_up, page_down, begin_line, end_line,
begin_line_text_toggle, cursor_left, and cursor_right.

Hex/Text View Operation Key Shortcut

Delete Byte to Left of Cursor and Move Cursor Left Backspace

Delete Byte Under Cursor Delete

Move Cursor to Beginning of Hex Line Home

Move Cursor to Last Character of Hex Line End

Toggle Cursor Between Hex Data on Left, Text
Data on Right

Tab and Shift+Tab

Multiple Cursors and Selections

321

Multiple Cursors and Selections
There are two types of navigation in SlickEdit®: Code Navigation, which provides in-depth symbol
navigation and structure matching, and Cursor Navigation, which pertains to more simple movements
within text and files.

Adding a Cursor or Selection
To add a cursor, use Ctrl-LButtonDown. To add a selection, use Ctrl-LButtonDown and drag the
mouse. Ctrl-DoubleClick will also add a selection. Use Shift-RButtonDown and drag to create multiple
character (stream) selections.

When you use Ctrl-LButtonDown and drag, you will see what looks like a typical column selection being
created. However, after you release the mouse a character selection will be created for each partial line
selected by the column selection. Virtual space past the end of the line is not selected.

If you make a mistake (really easy to do) while adding a cursor/selection, you can use undo to remove it!

To add a cursor without using the mouse, use Ctrl-| (add_multiple_cursors). Do this to initiate multiple-
cursor mode, then move the cursor to another location you want a cursor at and hit Ctrl-| again. Repeat to
create a set of cursors. If you have a multiple-line selection, Ctrl-| can be used to convert the selection to
multiple cursors by creating a cursor on each line of the selection.

To add multiple-cursors above or below the current cursor location, you can also use Ctrl-Shift-Alt-Up
(add_multiple_cursor_up) or Ctrl-Shift-Alt-Down (add_multiple_cursor_down), respectively.

When Should I use Multiple Cursors and Selections
The best use of multiple cursors is for creating source code from a list of identifiers. If the identifiers are
on separate lines, you can create the multiple selections very quickly using Shift+RbuttonDown. Once you
have the multiple selections, you can make simultaneous edits possibly to create source code for case
statements (case <CONSTANT>:) for a switch. Alternately, you can quickly create a quoted list of
identifiers for a table. Many of us have been using macro recording to get repetive editing tasks done. It
works well and has the advantage that you can save and reuse macro recordings. Use the mechanism
you are most comfortable with. In general, when you can use Shift+RButtonDown to create multiple
selections, using multiple cursors and selections will take fewer key strokes.

Cut/Paste and Multiple Cursors
When SlickEdit creates a clipboard, it stores a count of the number of cursors there were when the
clipboard was created. Then when you paste into a file with the same number of cursors as the clipboard,
SlickEdit will attempt to paste segments of the clipboard at each cursor location.

If the number of lines in the clipboard is not divisible by the number of cursors or the number of cursors
don't match, the entire clipboard is pasted at each cursor location.

Adding a Cursor or Selection

322

Navigation
There are two types of navigation in SlickEdit®: Code Navigation, which provides in-depth symbol
navigation and structure matching, and Cursor Navigation, which pertains to more simple movements
within text and files.

Code Navigation
Some of the most powerful features in SlickEdit are its code navigation methods, particularly Symbol
Navigation. These features allow you to navigate your code the way you think about it, rather than just as
a set of files. If you aren't using SlickEdit's code navigation features, you aren't getting the most out of
SlickEdit®.

Symbol Navigation (Pro only)

Symbol Navigation allows you to jump from a symbol to its definition, declaration, or to a reference with a
single keystroke. A pushed bookmark is set, allowing you to return to the symbol with another keystroke.
You can chain a series of these navigation operations together, creating a stack of locations. Then pop
your way back to the starting location.

To navigate between symbols use the following operations:

• Go to Definition - To quickly move the cursor from a symbol to its definition, pushing a bookmark in
the process, press Ctrl+Dot. Alternatively, click Search → Go to Definition or use the push_tag
command.

• Go to Declaration - To quickly move the cursor from a symbol to its declaration, pushing a bookmark
in the process, press Ctrl+Alt+Dot. Alternatively, click Search → Go to Declaration or use the
push_alttag command.

Note

This feature depends on the language-specific settings for symbol navigation priority with Context
Tagging (see Context Tagging Features).

If these preferences are set to prioritize navigation to Symbol definition (proc), then the
push_tag command (Go to Definition) will attempt to navigate directly to symbol definitions, and
the push_alttag command (Go to Declaration) will attempt to navigate directly to symbol
declarations.

Conversely, if these preferences are set to prioritize navigation to Symbol declaration (proto),
then the push_tag command will attempt to navigate directly to symbol declarations, and the
push_alttag command will attempt to navigate directly to symbol definitions. Note also that in
menus, the usual order of the Go to Definition and Go to Declaration commands will be
reversed.

Finally, if navigation is set to Prompt with all choices, then both commands will prompt you with

Code Navigation

323

both definitions and declarations. However, Go to Declaration will also include forward
declarations, even if you had specified to ignore them, and the Select Symbol Dialog dialog will
always show the symbol navigation options. Go to Declaration will not appear on menus if
navigation is set to Prompt with all choices.

Note

When a symbol has more than one definition or declaration, if you navigate to it using the Go to
Definition or Go to Declaration commands, you may immediately repeat the same command
again to cycle forward to additional definitions and declarations. For example, if you press
Ctrl+Dot to navigate directly to a function's definition, you can quickly jump to it's prototype
simply by pressing Ctrl+Dot again.

• Go to Reference - To create a list of references and optionally jump to the first one, pushing a
bookmark in the process, press Ctrl+/. Alternatively, click Search → Go to Reference or use the
push_ref command.

The References tool window is stackable, meaning that you can create a stack of references searches
and navigate between the different results sets. By default, whenever you do a references search, the
search results are pushed onto the stack.

When you navigate through all the search results and have no more references, SlickEdit® will
automatically remove the current references search from the stack and return to the previous set of
references.

In a similar fashion, if you use Pop Bookmark to return to the location where a Go to Reference
command was invoked, SlickEdit® will automatically remove the current references from the references
stack, as returning to the original location was an indication that you were done looking at those
references.

You can manually push and pop searches onto the references stack by pressing the 'Add' button (the
push_references_stack) or 'Delete' button (the pop_references_stack) on the references tool
window. You can also jump to a specific set of references deeper in the stack by clicking on it's node in
the references stack indicator bar. Hovering the mouse over one of the enabled nodes in the references
stack indicator bar will give you a tooltip indicating the symbol and search criteria that the references
search was for.

• Pop Bookmark - To pop the bookmark and return to the previous location, press Ctrl+Comma.
Alternatively, click Search → Bookmarks → Pop Bookmark or use the pop_bookmark command.
See Pushed Bookmarks for more information about working with bookmarks.

When you first call these operations, if a tag file does not exist for the current file, it will be built (see
Building Tag Files).

Tip

Code Navigation

324

Procs and prototypes - In C and C++, navigating from a symbol to its definition will prompt you
to select whether you want to go to the prototype or the function definition. You can tell SlickEdit®
to always go to one or the other by setting one of the options Prioritize navigation to symbol
definition (proc) or Prioritize navigation to symbol declaration (proto). To set these options,
from the main menu, click Tools → Options → Languages, expand your language category and
language, then select Context Tagging®. If you configure SlickEdit® to navigate directly to
definitions or to declarations, you can also navigate directly to the other by pressing
Ctrl+Alt+Dot. When the cursor is in the prototype, pressing Ctrl+Dot will navigate to the function
and vice versa. If you do not set one of these options, you will be prompted with the Select
Symbol Dialog the first time you navigate from a symbol to its definition.

Automatically Closing Visited Files

Some features and operations in SlickEdit® automatically open files for "visiting", such as Go to
Definition, Go to Declaration, Go to References, Find in Files, and Pop Bookmark (see Symbol
Navigation). A file is considered visited if it is opened as a result of a symbol navigation or search
operation, not modified, and subsequently navigated away from. An option is available to automatically
close these visited files. To access the Automatically close visited files option, from the main menu,
click Tools → Options, then expand Editing and select Bookmarks. You can enable the option or you
can choose to be prompted to close each time you navigate away from a visited file.

Navigating Between Multiple Instances

If more than one instance of the definition or reference is found, the Select Symbol Dialog is displayed,
from which you can select the instance to navigate to. To go to the next occurrence, press Ctrl+G
(Search → Next Occurrence or find_next command). To go to the previous occurrence, press
Ctrl+Shift+G (Search → Previous Occurrence or find_prev command).

Alternatively, press Ctrl+Down (next_tag command) or Ctrl+Up (prev_tag command) to place the
cursor on the next or previous symbol definition.

Using the Find Symbol Tool Window

The Find Symbol Tool Window (Search → Find Symbol or gui_push_tag command) is used to locate
symbols (tags) which are declared or defined in your code. It allows you to search for symbols by name
using either a regular expression, substring, pattern, or fast prefix match. See Find Symbol Tool Window
for descriptions of the options that are available.

More Symbol Navigation Methods

There are several other methods for navigating to symbols:

• The Symbols Tool Window shows the symbols for all tag files. Right-click in the tool window and select
Find Tag to search for a specific symbol. You can also use the cb_find command to find the symbol
under the cursor and display it in the Symbols tool window.

• At the SlickEdit® command line, use the f command and completion keys (Space and ?) to enter a tag
name. For example, if tagging the C run-time library, type f str? on the command line for a list of tag
names starting with "str" (such as strcpy, strcmp, etc.).

Code Navigation

325

• To navigate to a Slick-C® symbol, you can use the fp command (a shortcut for find_proc). If editing a
Slick-C macro, then enter the push_tag command (Ctrl+Dot) to find the symbol at the cursor. The
push_tag command actually calls the find_proc command with the symbol name at the cursor to
perform the task.

Navigating Between Words

To navigate between words, use the next_word (Ctrl+Right) and prev_word (Ctrl+Left) commands.
The next_word command moves the cursor to the beginning of the next word. The prev_word command
moves the cursor to the beginning of the previous word.

A word is determined by the Word chars value you set for the programming language (Tools → Options
→ Languages → [Language Category] → [Language] → General). For C, C++, and Java this is set to
A-Za-z0-9_$ by default. The next_word command, for example, will skip over any contiguous characters
from that set.

You can specify whether the cursor moves to the beginning or the end of the next/previous word. Click
Tools → Options → Editing → General, then set the Next word style to Begin or End. This affects
both next_word and prev_word commands.

If you have enabled subword navigation (see Subword Navigation), the word navigation commands will
behave like their subword navigation counterparts. You can still perform regular word navigation using the
"full" word commands: next_full_word, prev_full_word, select_full_word, copy_full_word,
cut_full_word, delete_full_word, and delete_prev_full_word.

Subword Navigation

Subword navigation provides the capability to navigate within a word, stopping at capitalized letters or
letters following common dividers like underscore or dash. If the target word does not contain any
subwords, then the subword commands behave like their word navigation counterparts.

You can configure SlickEdit to use subword navigation instead of the regular word navigation by selecting
Tools → Options → Editing → Cursor Movement and setting Subword Navigation to True. When this
option is on, you can still perform "full" word navigation using the _full_word commands. See Navigating
Between Words for more information.

The following subword navigation commands are provided. For convenience, you can bind them to a key
sequence using Tools → Options → Key Bindings You can also use the Key Bindings screen to
search for subword commands by entering "subword" in the Search by command field. Then you can
view further documentation on each command.

• next_subword - Moves the cursor to the next subword.

• prev_subword - Moves the cursor to the previous subword.

• select_subword - Selects the next subword.

• copy_subword - Copies the next subword to the clipboard.

• cut_subword - Cuts the next subword, putting it in the clipboard.

Code Navigation

326

• delete_subword - Deletes the next subword without putting it in the clipboard.

• delete_prev_subword - Deletes the previous subword without putting it in the clipboard.

Begin/End Structure Matching

Begin/End Structure Matching moves the cursor from the beginning of a code structure to the end, or vice
versa. This works for languages using curly braces "{ }", "begin" and "end", or any other defined begin/end
pairs.

To place the cursor on the opposite end of the structure when the cursor is on a begin or end keyword
pair, press Ctrl+] (find_matching_paren command or from the menu click Search → Go to Matching
Parenthesis). The find_matching_paren command supports matching parenthesis pairs { },[] and ().

Tip

For Python, SlickEdit® supports the matching of the colon (:) token and the end of context. See
Begin/End Structure Matching for Python for more information.

Viewing and Defining Begin/End Pairs

Use the language-specific General options screen to view or define the begin/end pairs for any language.
To access this dialog, from the main menu, click Tools → Options → Languages, expand your language
category and language, then select General.

In the Begin/end pairs text field, specify the pairs in a format similar to a regular expression.

Note

This text box is unavailable (dimmed) for languages that have special begin/end matching built-in.

The examples below illustrate the syntax for defining the begin/end pairs. The begin and end pair
matching option is case-sensitive by default. Append ";I" (a semicolon followed by an upper-case i) to
ignore case.

Example 1

(begin),(case)|(end);I

The above begin/end pairs are for the Pascal language. The Pascal language requires a more
sophisticated expression. This expression indicates the keywords begin or case start a block and the
keyword end terminates the block. The , (comma) is used to specify multiple begins or multiple ends. The
| operator is used to separate begins from ends.

Example 2

(#ifdef),(#ifndef),(#if)|(#endif)

Code Navigation

327

The above pairs are for the C language. The C language has the added complication that #if is a sub-
string of #ifdef. Due to the implementation of begin/end matching, #ifdef must appear before #if.

More settings for begin/end pairs can be found on the [Language] Formatting Options screen (Tools →
Options → Languages → [Language Category] → [Language]). See Language-Specific Formatting
Options for more information.

Setting the Paren Match Style

As you type a closing parenthesis, highlight and matching options are available. To specify these options,
from the main menu, click Tools → Options, expand Editing, then click General and set the value of the
Parenthesis matching style option.

The Highlight style option temporarily block-selects the text within the parenthesis pair. The Cursor to
Begin Pair style option temporarily places the cursor on the matching begin parenthesis.

Select Highlight matching blocks to automatically highlight the corresponding parenthesis, brace,
bracket, or begin/end word pairs under the cursor. To customize the highlighting color, from the main
menu, click Tools → Options → Appearance → Colors, and select the Block Matching screen
element. To adjust the delay in milliseconds before the highlighting is updated, go to Macro → Set Macro
Variable and modify the variable def_match_paren_idle. See Setting Colors for Screen Elements and
Setting/Changing Configuration Variables for more information.

Navigating in Statements and Tags

The following navigation commands are available for languages that support statement tagging:

• next_tag / prev_tag - Places the cursor on the next/previous tag definition, skipping any tags filtered
out by the Defs tool window.

• next_proc / prev_proc - Places the cursor on the next/previous function heading.

• find_tag - Displays a list of tags in the Select Symbol Dialog, allowing you to pick the tag to which you
want to navigate.

• goto_tag - Prompts for a procedure tag name and places the cursor on the definition of the procedure
name specified. This command is available in GNU Emacs emulation mode only.

• end_tag - Places the cursor at the end of the current symbol definition. This is useful if you are in the
middle of a large function or class definition and you want to jump to the end of it. In a class definition in
C++, the end is where inline function definitions are usually stored.

• end_proc - Moves the cursor to the end of the current procedure.

• next_statement / prev_statement - Moves the cursor to the beginning of the next/previous statement.

• begin_statement / end_statement - Places the cursor at the beginning/end of the current statement.

• next_sibling / prev_sibling - Moves the cursor to the beginning of the next/previous sibling. These are
similar to the next_statement/prev_statement commands except they stay at one level of nesting.

Code Navigation

328

• goto_parent - Moves the cursor to the beginning of the enclosing statement or symbol scope relative
to the current cursor position.

• begin_statement_block / end_statement_block - Moves the cursor to the beginning/end of the
current statement block.

Navigating with S-expressions

S-expressions are symbolic expressions. They can be a single symbol or a set of symbols contained in a
structure. First popularized in Lisp and Emacs, SlickEdit provides several navigation commands using S-
expressions.

These commands are particularly useful in XML and HTML, where the structures created by begin and
end tags are treated as S-expressions. These commands allow you to skip over or drill down into text
bounded by tags.

The following commands are available, with their default keybindings in CUA emulation:

• prev_sexp - Moves to the previous S-expression (Ctrl +Alt +Left).

• next_sexp - Moves to the next S-expression (Ctrl +Alt +Right).

• backward_up_sexp - Navigates to the start of the immediately enclosing block (Ctrl +Alt +Up).

• forward_down_sexp - Drills down into the next block (Ctrl +Alt +Down).

• select_prev_sexp - Extends a character selection from the cursor to the start of the previous S-
expression (Ctrl +Alt +Shift +Left).

• select_next_sexp - Extends a character selection from the cursor to the start of the next S-expression
(Ctrl +Alt +Shift +Right).

• cut_prev_sexp - Deletes the S-expression to the left of the cursor and copies it to the clipboard (Ctrl
+Alt +Backspace).

Cursor Navigation
These cursor navigation methods pertain to simple cursor movement within files. We recommend creating
key bindings for commands that you use frequently (if a key binding doesn't already exist by default). See
also Switching Between Buffers or Windows for information about navigating between buffers and editor
windows.

Navigating in Pages and Files

The following commands control cursor navigation in pages and files:

• cursor_right (Right Arrow) - Moves the cursor one column to the right. If the cursor is at the end of
the line, this command will move the cursor to the next line depending on the value for Cursor right/
left wraps to next/previous line (Tools → Options → Editing → Cursor Movement).

Cursor Navigation

329

• cursor_left (Left Arrow) - Moves the cursor one column to the left. If the cursor is at the beginning of
the line, this command will move the cursor to the previous line depending on the value for Cursor
right/left wraps to next/previous line (Tools → Options → Editing → Cursor Movement).

• cursor_up (Up Arrow) - Moves the cursor to the previous line. If the cursor is located in a column that
is beyond the last column of the previous line, the cursor position is controlled by Cursor up/down
places cursor in virtual space (Tools → Options → Editing → Cursor Movement).

• cursor_down (Down Arrow) - Moves the cursor to the next line. If the cursor is located in a column
that is beyond the last column of the next line, the cursor position is controlled by Cursor up/down
places cursor in virtual space (Tools → Options → Editing → Cursor Movement).

• page_up / page_down (PgUp/PgDn) - Moves the cursor to the previous/next page of text.

• page_left / page_right - Changes the left edge scroll position by half the window width to the left/right.
The cursor is moved half the window width to the left/right as well.

• top_of_window / bottom_of_window (Ctrl+PgUp/Ctrl+PgDn) - Places the cursor at the top/bottom of
the current editor window.

• top_of_buffer / bottom_of_buffer (Ctrl+Home/Ctrl+End) - The top_of_buffer command places the
cursor at the first line and first column of the current buffer. The bottom_of_buffer command places
the cursor at the end of the last line of the current buffer. If the option Preserve column on top/bottom
is enabled (Tools → Options → Editing → General), the cursor is placed at the first line/last line of the
buffer and the column position is unchanged.

Tip

There is an option to make top_of_buffer/bottom_of_buffer push a bookmark, providing quick
navigation between the top/bottom of the buffer and the previous location. See Pushed Bookmark
Options for more information.

• top_left_of_window / bottom_left_of_window - Places the cursor at the top left/bottom right of the
current editor window.

Navigating to a Specific Line

To view and place the cursor on a specific line number, from the main menu, click Search → Go to Line.
Enter the line number and click OK. Alternatively, you can use the goto_line command in the syntax
goto_line linenumber.

Navigating to an Offset

To seek to a byte offset in the current buffer, from the main menu click Search → Go to Offset, or use
the gui_seek command. This function is the same as the C lseek function. However, if you have opened
the file with tab expansion, the seek position on disk may be different.

When the Seek dialog appears, enter the position to seek for. You may specify a C syntax expression. In
addition, you may prefix the expression with a plus or minus sign (+ or -) to specify a relative seek

Cursor Navigation

330

position.

Some examples are:

• 0x10+10 - Seek to offset 26

• +8+4 - Seek to current offset + 12

• -8+4 - Seek to current offset - 12

Select the Decimal option to enter the seek position in decimal number format. Select the Hex option to
enter the seek position in hexadecimal number format. You can type an "x" as the first character in the
Position to seek for text box and this option will automatically be selected.

Navigating to URLs

SlickEdit® treats URLs in editor windows as hyperlinks, making them easy to identify and open in a Web
browser from within your code. By default, a string is interpreted as a URL if it begins with one of the
following URI schemes, or, URL types (including the colon and slashes):

• file://

• ftp://

• http://

• https://

URLs are underlined. You can navigate to a link by hovering over it with the mouse and using Ctrl+Click
(or Command+Click on the Mac). The link opens in a new Web browser window, or the current browser
window if one is already open. The file:// URI scheme is handled differently (see Handling File URLS
below).

When using the mouse to hover over an http:// link, click the green arrow to open the source code in
SlickEdit.

The URI Schemes node of the Options dialog lets you specify the recognized URI schemes, and makes it
easy to extend this feature. For example, you may want to add a mailto URI scheme so that e-mail
URLs are recognized. To access these options, from the main menu, click Tools → Options, expand
Network & Internet Options, then select URI Schemes. See URI Scheme Options for more information.

Handling File URLS

Cursor Navigation

331

Files can be designated using the file:// URI scheme. Depending on the file type, a file can be
opened in a browser, passed to an application for opening, or executed. How the file is handled depends
on the operating system and the settings in Tools → Options → Languages → File Extension
Manager.

The File Extension Manager provides two settings to control this behavior:

• Open Application - Specifies an application to open files with the selected extension.

• Use file association - Overrides the application specified in Open Application and uses the operating
system to determine what application to use. This is only applicable to Microsoft Windows operating
systems.

If an application is specified in the Open Application field, the file will be passed to that application for
opening.

If Use file association is checked, the operating system is used to determine what application to use.
This is only applicable on Windows.

If both fields are left blank, SlickEdit® will use the operating system to determine what application to use.
This is the same as if you checked Use file association and is only applicable on Windows.

Runnable Files

A file:// URI scheme can be used to specify a runnable file, like a batch file, script file, or executable.
On Windows, the operating system is used to automatically identify runnable files and run them, unless
you have specified a value for Open Application.

On Linux, UNIX, or Mac you have to specify how to run a runable file by specifying an application or
system command in the Open Application field. For example, on Linux you can run a Perl file by
specifying the path to the Perl interpreter in Open Application. You also need to include the escape
sequence denoting the file name, for example, /usr/bin/perl %f. The %f inserts the full path for the file
portion of the URL. If you want to run a binary file you would just specify put %f in the Open Application
field.

Other URI Schemes

You can add additional URI schemes to be treated as links (see URI Scheme Options). On Windows, the
operating system will determine how to handle the URL. For example, using ms-help:// will open the
associated link in MSDN Help. On all other platforms, the link will be sent to the browser.

Symbol Browsing

332

Symbol Browsing
SlickEdit® gives you the ability to browse and view symbols in your files or workspaces. Symbol browsing
relies on Context Tagging®, so symbols are updated immediately or in the background as you edit. There
are several tool windows that display information as you work to help you find what you need at exactly
the time you need it:

• Symbols Tool Window

• Current Context Toolbar

• Defs Tool Window

• Class Tool Window

• Find Symbol Tool Window

• Preview Tool Window

• References Tool Window

• Viewing Symbol Uses with the Calling Tree

• Viewing Symbol Callers Tree

• Symbol Properties Tool Window

• Symbol Arguments Tool Window

See also Symbol Navigation for information about how to navigate between symbols in files.

Class Tool Window (Pro only)
The Class tool window, docked as a tab on the left side of the editor by default, provides an outline view
of both the members of the current class as well as any visible inherited members. This tool window also
shows the inheritance hierarchy of the current class. This is useful for object-oriented programming
languages such as Java.

Display of the Class tool window can be toggled on/off by clicking View → Tool Windows → Class or by
using the toggle_tbclass command. To display the tool window on demand, use the activate_tbclass
command.

Class Tool Window (Pro only)

333

If you are coding within a class, the top pane (hierarchy pane) of the tool window shows the base class
hierarchy for the current class. The bottom pane (members pane) shows all members of the current class,
as well as all members visible from inherited superclass(es) and implemented interface(s). The name of
the current class is displayed at the top of the tool window.

If you are not currently in a class (or enum or interface), the hierarchy pane is blank and the members
pane shows the symbols in the current file. The name of the current file is displayed at the top of the tool
window.

Hover the mouse over the bitmap of any item in the hierarchy or members panes to see a tool tip that

Class Tool Window (Pro only)

334

shows the symbol's signature and scope.

To show or hide the hierarchy pane, use the two buttons located at the top-right of the tool window. If the
hierarchy pane is hidden, the members pane is resized to take up the entire space of the window. Use the
size bar to resize either pane.

Use the Up/Down buttons located to the left of the pane buttons to navigate up or down the class
hierarchy. The Up arrow button will allow you to navigate to a child class (derived class or subclass) of
the current class. The Down arrow allows you to navigate to a parent class (superclass or interface) of
the current class. When using these buttons to navigate through code, the active buffer will switch to the
destination class, and the hierarchy and members panes will update.

To jump to the definition of a class in the code, pushing a bookmark in the process, double-click on any
member or class. Left-click or press Ctrl+Comma to go back.

Filtering in the Hierarchy Pane

Right-click on a class in the hierarchy pane to display a list of filtering options. You can exclude entire
namespaces or packages, anything above a certain level in the hierarchy, and anything outside of the
current workspace. You can always include any class(es) you have excluded via the "Include" options.

By excluding a class or interface in the hierarchy view, the members of this class or interface are no
longer displayed in the members pane, but they are still visible in the hierarchy as gray text.

Select Show in Symbol Browser to jump to the class in the symbol browser.

Class Exclusion Manager

The Class Exclusion Manager, accessed by right-clicking on a class in the hierarchy pane, displays a list
of any currently excluded classes, interfaces, namespaces, and packages. Exclusions are kept on a per-
workspace basis.

Class Tool Window (Pro only)

335

To add an item to the list, type the name in the Add Item To List text box, then press Enter. Click the
buttons to remove selected items or to clear the list.

Filtering and Sorting in the Members Pane

Right-click on a member in the members pane to access a list of filtering and sorting options as well as
options for code navigation and modification. The following options are available:

• Quick Refactoring - Offers two Quick Refactorings: Rename and Modify Parameter List. See Quick
Refactoring for more information.

• Add Member Function, Add Member Variable, and Add Virtual Function - (C/C++ only) When these
options are selected for a class, you are prompted with a dialog to type a member function, member
variable, or virtual function to be added into the source code at the top of the current class.

• Organize imports - (Java and C# only) Organizes import statements in Java or C# source files. See
Organize Java Imports and Organize C# Imports for more information. (C/C++, Objective-C, and Slick-
C) Organized #include statements. See Adding #includes for more information.

• Go to Definition - Moves the cursor to the symbol's definition (proc). See Symbol Navigation for more
information.

• Go to Declaration - Moves the cursor to the symbol's declaration (proto). See Symbol Navigation for
more information.

Class Tool Window (Pro only)

336

• References - Brings the References tool window into focus, displaying the references for the symbol.
See References Tool Window for more information.

• Calls or uses - Displays a tree of symbols used by the selected symbol, for example, other functions
called by the current function. See Viewing Symbol Uses with the Calling Tree for more information.

• Callers - Displays a tree of symbols which use by the selected symbol, for example, other functions
that call the current function. See Viewing Symbol Callers Tree for more information.

• Set Breakpoint - Sets a debugging breakpoint. See Setting Breakpoints for more information.

• Show in Symbol Browser - Jumps to the member in the symbol browser. See Symbols Tool Window
for more information.

• Increase/Decrease Listed Members Limit - Controls the number of members displayed in the
members pane. When this option is selected, the command line will prompt you for a variable value.
The default is 400.

• Jump on Single Click - Toggle option to jump to the selected symbol on a single click (rather than
requiring an double-click).

• Sort Classes By Hierarchy and Sort Classes By Name - These options toggle the display of classes
sorted either by hierarchy or alphabetically by name.

• Sort Members By Line Number and Sort Members By Name - These options toggle the display of
members sorted either by line number or alphabetically by name.

• Organize Members By Class - Groups the members in the members pane by their class (or interface).
When this option is selected, all "Sort" options are available. When this option is not selected, visible
members in this pane will not be grouped at all. They will instead be displayed in one list, sorted by
name.

• Auto Expand All Top Level Classes - Expands all top level class nodes in the members pane
whenever the current class changes. The default behavior is to only auto-expand the node of the
current class.

• Auto Expand All Structs/Enums/Inner Classes - Expands all struct, enum, and inner class nodes
displayed in the members pane whenever the content is refreshed. By default this option is turned off,
and these nodes are collapsed.

• Quick Filters and Scope Filters - Quick filters allow you to display only certain items in the members
pane, such as functions, prototypes, etc. Scope filters allow you to display members only in certain
scopes, such as public or global, private, protected, etc.

Current Context Toolbar
Current Context displays the logical location of the cursor within your code. If it is within a class, it
displays the class name. If it is within a function, it displays the function name. If the function is within a
class, it displays the class and the function name.

Current Context Toolbar

337

By default, the toolbar is docked in the top upper-right section of the editor. Display can be toggled on/off
by clicking View → Toolbars → Current Context or by using the toggle_context command. To display
the tool window on demand, use the activate_context command.

Defs Tool Window
The Defs Tool Window contains the defs (definitions) browser, which provides an outline view of symbols
in the current file.

By default, the Defs Tool Window is docked as a tab on the left side of the editor. Display can be toggled
on/off by clicking View → Tool Windows → Defs or by using the toggle_defs command. To display the
tool window on demand, use the activate_defs command.

The name of the file is displayed at the top of the tool window. Hover the mouse over the bitmap of any
symbol in the window to see a tool tip that shows the symbol's signature and scope.

To jump to the definition of the symbol in the code, pushing a bookmark in the process, double-click on
any symbol. Press Ctrl+Commato go back.

Defs Tool Window

338

Defs Tool Window Options

Right-click on any symbol in the Defs Tool Window to access the following options:

• Quick Refactoring - Offers two Quick Refactorings: Rename and Modify Parameter List. See Quick
Refactoring for more information.

• Set Breakpoint - Sets a debugging breakpoint. See Setting Breakpoints for more information.

• Sort by Function Name and Sort by Line Number - These options toggle the display of symbols
sorted either alphabetically by function name or by line number.

• Show Statements - This option controls the Statement Level Tagging feature. When selected, the tool
window shows an outline of all statements in each function within the current file. This allows you to see
a primitive function flowchart or to navigate to a specific statement within a function. Note that
statement-level tagging is not supported for all languages. Also note that when Show Statements is
checked, the option to sort the Defs tool window by Function name is disabled.

• Show Statements in All {lang} Files - This option controls the Statement Level Tagging feature.
When selected, the tool window shows an outline of all statements in each function within the current
file and all other files in the current language mode. This allows you to see a primitive function flowchart
or to navigate to a specific statement within a function. Note that statement-level tagging is not
supported for all languages.

• Show Nesting - Organizes symbols and statements by their scope within the current file. Clear this
option to display everything in one flat list.

• Auto Expand - Automatically expand Defs tree as you navigate within the current file in order to bring
the current symbol or statement into view in the Defs tool window. If this option is cleared, the tree will
only be initially expanded according to the Expand All, Expand 1 Level, Expand 2 Levels, or Expand
To Statements option selected, and any further expansion will have to be done manually. When using
the Expand All mode, this option will only have an effect on items in the Defs tool window that were
manually collapsed.

• Auto Collapse - Automatically collapse items in the Defs tool window back to their original state when
you move to a different symbol or statement in the current file. If this option is cleared, but Auto
Expand is left enabled, the tree will be gradually expanded as you move around the file. This option
has no effect when using the Expand All mode.

• Expand All - Expands all symbols and statements at all levels in the current file.

• Expand 1 Level - Expands everything one level below the current symbol.

• Expand 2 Levels - Expands everything two levels below the current symbol.

• Expand To Statements - Expands all symbols in the current file, but does not expand functions and
statements. Note that statement-level tagging is not supported for all languages.

• Properties - Displays the Symbol Properties Tool Window, showing the properties of the selected item,
such as visibility, whether it's static or final, etc. Note that you cannot use this window to change the
properties.

Defs Tool Window

339

• Arguments - Displays the return type and arguments for functions/methods in the Symbol Properties
Tool Window.

• References - Displays the list of references for the selected symbol, just as if you pressed Ctrl+/ in the
editor window. See Symbol Navigation for more information.

• Calls or uses - Displays a tree of symbols used by the selected symbol, for example, other functions
called by the current function. See Viewing Symbol Uses with the Calling Tree for more information.

• Callers - Displays a tree of symbols which use by the selected symbol, for example, other functions
that call the current function. See Viewing Symbol Callers Tree for more information.

• Contents - Displays the following menu of save and print operations for the defs browser tree:

• Save - Writes the items displayed in the defs browser to a text file, prompting you for a file name and
directory location. The text file will then be displayed in the editor.

• Print - Displays the Print dialog, where you can configure options for printing the tree.

• Save Subtree and Print Subtree - These options function similarly to the above except they apply to
the selected subtree.

• Quick filters, Scope, Functions, Variables, Data Types, Statements, and Others - All of these items
are for filtering the data displayed in the Defs tool window.

Note

For XML, the Defs tool window can be customized to control how different elements are
displayed. For more information see Outline View for XML.

Find Symbol Tool Window (Pro only)
The Find Symbol tool window (Search → Find Symbol or gui_push_tag command) is used to locate
symbols in your code. It allows you to search for symbols by name using either a regular expression,
substring, fast prefix match, or a symbol pattern.

Searching for a symbol is faster than a normal text search because it is executed against the Context
Tagging® database, rather than searching through your source files. Find Symbol also avoids false hits in
comments or string literals. Though Syntax-Driven Searching in the regular Search Dialogs and Tool
Windows provides this same capability, it cannot match the speed of Find Symbol, nor restrict the results
just to symbol definitions and declarations.

See Find Symbol Tool Window for information about the options that are available on the tool window.

Preview Tool Window (Pro only)
The Preview tool window provides a portal for viewing information in other files without having to open

Find Symbol Tool Window (Pro
only)

340

them in the editor. It automatically shows this information when you are working with certain features. See
Information Displayed in the Preview Window for more information.

By default, the Preview window is docked as a tab at the bottom of the editor. Display can be toggled on/
off by clicking View → Tool Windows → Preview or by using the toggle_preview command. To display
the tool window on demand, use the activate_preview command.

The Preview tool window contains the following components:

• Symbol list - This is the list of all symbols which are currently being previewed. In most cases, this is a
single symbol. In some cases, such as for the symbol under the cursor, multiple matches are shown,
such as the definition and declaration of a symbol. You can do a few things with the symbol list:

• Hover the mouse over the bitmap of any item to see a tool tip that shows the symbol's signature and
scope.

• Click on any symbol to preview that specific symbol or it's comments.

• Right-click to adjust symbol search filtering options.

• Double-click to jump to a symbol. Press Ctrl+Comma to go back.

• You can create key bindings for the preview_next and/or preview_prev commands in order to scroll
through the items in the symbol list without using your mouse. See Creating Bindings for more
information.

• File and line label - Shows the file name and line number of the selected symbol.

• Documentation comments pane - This pane displays any existing comments for the symbol that is
selected in the symbol list. If the comments are in Javadoc or XMLdoc format, they will be formatted in
HTML. You can single-click on hypertext links within the comments to follow the links, such as "See
also" sections.

• Editor preview window - Shows the contents of the actual source file at the line number of the

Preview Tool Window (Pro only)

341

selected symbol. Double-click to open the code in the editor. Right-click to adjust symbol search
filtering options.

• Size bars - Use the size bars to adjust the width of the symbol list and/or the height of the
documentation comments area.

• Layout options - Use the layout option buttons to select the preferred layout for the preview tool
window.

• Automatic - This is the default layout. If the tool window is wide enough, it will automatically switch to
horizontal layout. If the tool window is significantly taller than it is wide, then it will automatically
switch to vertical layout.

• Standard - This is the standard layout used in previous versions of SlickEdit.

• Horizontal - Use a horizontal layout scheme to maximize the number of lines of text visible.

• Vertical - Use a vertical layout scheme to maximize the number of columns of text visible.

• Buttons - The following buttons are found along the right edge of the Preview window:

• Back and Forward - Allow you to navigate among the hypertext links that you have traversed in the
documentation comments.

• Go to definition - Opens the selected symbol in the editor.

• Go to reference - Finds references to the selected symbol.

• Show in symbol browser - Locates the selected symbol in the Symbols Tool Window.

• Manage Tag Files - Opens the Context Tagging - Tag Files Dialog for building and maintaining tag
files for indexing symbol information.

Information Displayed in the Preview Window

The table below describes what the Preview window displays under different circumstances.

Editor Element in Use Preview Window Display

Any source file open in the editor The Preview window shows the definition or
declaration of the symbol under the cursor, along
with the symbol's documentation comments, if any
exist.

The Defs, Symbols, Class, Current Context, and
Find Symbol tool windows

Single-click on a symbol and the Preview window
displays the selected symbol and its documentation
comments, if any exist. See Defs Tool Window,
Symbols Tool Window, Class Tool Window, Current
Context Toolbar , and Find Symbol Tool Window for
more information.

Preview Tool Window (Pro only)

342

Editor Element in Use Preview Window Display

Symbol Uses/Call Tree and References tool
windows

The Preview window shows the location of the
symbol reference or use. See Viewing Symbol Uses
with the Calling Tree and References Tool Window
for more information.

Symbol Refs/Callers Tree tool window Single-click on a symbol and the Preview window
displays the selected symbol and its documentation
comments, if any exist. See Viewing Symbol Callers
Tree for more information.

The Base Classes and Derived Classes tool
windows

Single-click on a symbol and the Preview window
displays the selected symbol and its documentation
comments, if any exist. See Viewing Base and
Derived Classes for more information.

The Bookmarks tool window Single-click on a bookmark and the Preview window
displays the location of the bookmark. See
Bookmarks Tool Window for more information.

The Breakpoints tool window Single-click on a breakpoint and the Preview
window displays the location of the breakpoint. See
Setting Breakpoints for more information.

The Message List tool window Single-click on a message and the Preview window
displays the message type, and the location of the
message in the source code. See Message List
Tool Window for more information.

The Search Results tool window Single-click on a line in the Search Results window
and the Preview window displays the location of the
selected search result. See Search Results Output
for more information.

List Members and Auto-Complete results Cursor up or down through the list of items in auto-
complete or list-members results and the Preview
window displays the location of the selected symbol
and its documentation comments, if any exist. See
List Members and Auto-Complete for more
information.

References Tool Window (Pro only)

References Tool Window (Pro
only)

343

The References tool window displays the list of symbol references (uses) found the last time that you
used the Go to Reference feature (Ctrl+/ or push_ref command (see Symbol Navigation for more
information).

By default, the References window is docked as a tab at the bottom of the editor. Display can be toggled
on/off by clicking View → Tool Windows → References or by using the toggle_refs command. To
display the tool window on demand, use the activate_refs command.

The References tool window automatically comes into focus when you use the Go to Reference feature or
when you select References from the right-click context menu of the Class, Defs, or Symbols tool
window.

Note

Typically, you only want to view references that occur in project files, and not run-time libraries,
which can be very large. For this reason, references are not generated automatically for run-time
library tag files. If you want to view references that occur in a run-time library tag file, you need to
generate references for the tag file. To do this, display the Context Tagging - Tag Files Dialog
(Tools → Tag Files or gui_make_tags command), choose the tag file, right-click to display the
context menu, and select Generate References. See Configuring Other Languages for more
information.

The References tool window supports filtering of the symbol references results using the right-click menu
to set filtering options. This allows you to restrict the set of references to those that occur within certain
types of symbols. Another important feature of this filtering is the ability to filter out unrecognized symbols
(occurrences of a symbol name that tagging was not able to find) by unchecking the
Others+Unrecognized filtering option. Normally, these would be displayed, because the system was
unable to prove that the symbol was or was not an instance of the symbol we are searching for.

The Symbol combo box displays the symbol the references search is for. Pull down the combo box to
select past references searches.

References search options can be fine-tuned by expanding the set of Look in options. The following
options can be used to narrow down the search results in order to locate specific kinds of references to a
symbol.

References Tool Window (Pro
only)

344

• Look in - The Look in combo box displays the scope of the references search. The default is to search
the Current Workspace, but you can fine-tune the search to restrict its scope to the Current Project,
All Open Files or just the Current File. In addition, you can restrict the scope to just projects in the
workspace which contain the current file by selecting Projects Containing Current File. Likewise, you
can expand the references search to include All Tag Files - this will also include language-specific tag
files that are built with support for symbol cross-referencing. In any case, in addition to the Look in
restrictions specified, the file containing the declaration and/or definition of the symbol will also be
included.

• Assigned - For variables, the Assigned check box can be used to filter the set of references down to
only the statements where the variable appeared to be used in an assignment statement. Note that this
is less general than looking for strictly write references to a variable, as the references engine is not
able to detect cases where a variable is passed to a function by reference, or cases where an object
calls a non-const method.

• Const - The Const check box can be used to filter the set of references down to only the statements
where the symbol is references in a const or read-only manner. This includes unqualified references in
const methods, as well as qualified references where the expression before the symbol name evaluates
to a const type.

• Non-const - The Non-const check box can be used to filter the set of references down to only the
statements where the symbol is references in a non-const or other manner potentially allowing a write.
Note that generally assignment statements are a subset of non-const references.

• Show all - The Show all check box will appear checked when all the filtering options are cleared and
you are assured that all symbol references that can be found are being shown in the list of references.
If Show all is not checked, clicking on it again will clear all filtering options other than the Look in
scope option.

• Filters - Use filters to restrict the search to certain types of symbol contexts. The filters are the same
the ones available on the Definitions tool window. See Defs Tool Window for more information.

The left pane displays a tree view of the files and locations that contain the symbol references. Hover the
mouse over the bitmap of a symbol to see a tool tip that shows the symbol's signature and scope. To
jump to the location of a symbol reference in the code, pushing a bookmark in the process, double-click
on it. Press Ctrl+Comma to go back.

The right pane displays a preview of that location in the source. The number of instances found and the
file name and line number are displayed at the top. Use the size bar to resize either pane.

Use the buttons located at the top right corner of the tool window to toggle the preview pane on and off.
Because source can also be previewed in the Preview Tool Window, you may find it more efficient to use
the References window with the preview pane off.

References Tool Window (Pro
only)

345

You can also configure the References tool window to place the preview pane below the list of references
if you prefer a vertical arrangement.

References Tool Window (Pro
only)

346

Tip

When working with a large display, it can be beneficial to relocate the References tool window to
the lower-left corner of the editor, docked below the tool window group containing Files, Projects,
Defs, and Symbols, and to the left of the tool window group containing the Preview window. In
this configuration, you can switch the References tool window to use the single-pane view.

Use the 'Delete' button to pop the top-most references stack item from the list.

Use the 'Add' button to add or refresh the current references stack item.

Use the references stack indicator bar to see the number of searches on the references stack, and to
jump to a specific set of search results. If you hover the mouse over one of the enabled buttons, a tooltip
will show you the symbol which was searched for. You can have up to 10 items on the references search
stack. By default an item is added to the stack whenever you do a new references search.

References Tool Window Options

Right-click on a symbol or file in the left pane of the References window to display the following options:

• Contents - Displays the following menu of save and print operations for the references browser tree:

• Save - Writes the items displayed in the references browser to a text file, prompting you for a file
name and directory location. The text file will then be displayed in the editor.

References Tool Window (Pro
only)

347

• Print - Displays the Print dialog, where you can configure options for printing the tree.

• Save Subtree and Print Subtree - These options function similarly to the above except they apply to
the selected subtree.

• Send to Search Results - Send list of References to the Search Results tool window.

• Quick filters, Scope, Functions, Variables, Data Types, Statements, and Others - All of these items
are for filtering the data displayed in the References tool window.

Symbols Tool Window (Pro only)
The Symbols tool window contains the symbol browser, which lists symbols from all of the tag files.

By default, the Symbols tool window is docked as a tab on the left side of the editor. Display can be
toggled on/off by clicking View → Tool Windows → Symbols or by using the toggle_symbols
command. To display the tool window on demand, use the activate_symbols command.

Symbols Tool Window (Pro only)

348

The top part of the window contains an option and combo boxes that are used for filtering. The bottom
part of the window lists the symbols grouped by category. Symbols in your workspace are listed in the top
group labeled "Workspace." The rest of the symbols are grouped by language or compiler.

The list of tag files can be controlled by selecting one of the following options from the Look in: combo
box.

• <All Tag Files> - This is the default setting. Select this setting to browse all tag files for all languages.

• <Use Context Tagging®> - Uses Context Tagging to intelligently determine which tag files to browse,
based on your current workspace and current language mode.

• <Current Workspace> - Select this setting to only browse tag files that are in the current workspace.

• <Current Project> - Select this setting to only browse symbols in the tag file associated with the
current project. Note that this is essentially the same as <Current Workspace> unless you have a
project-specific tag file for the current project.

Symbols Tool Window (Pro only)

349

• <Projects Containing Current File> - Select this setting to only browse symbols in the tag files
associated with all projects that contain the current file. Note that this is essentially the same as
<Current Workspace> unless you have a project-specific tag files.

• <Language Tag Files> - Select this setting to browse all language-specific tag files for the indicated
extension. This may also include your workspace and project tag files.

Hover the mouse over the bitmap of a symbol to see a tool tip that shows the symbol's signature and
scope. To jump to the definition of a symbol in the code, pushing a bookmark in the process, double-click
on any symbol. Press Ctrl+Comma to go back.

Filtering Symbols in the Symbols Tool Window

The symbols listed in the symbol browser can be filtered using the Class and Member combo boxes. The
Class combo box filters the items listed under the Classes folder. The Member combo box filters the
items listed under any displayed classes or under any of the other folders, like Global Variables, Static
Variables, Defines, etc. Enter multiple words in either combo box to search for items containing either
word. You can also use a regular expression (see below).

For example:

• Enter person into the Class combo box to find all classes containing the word "person".

• Enter person manager into the Member combo box to find all members, variables, etc. containing the
word "person" or "manager".

Note

• The filters can also use regular expressions, using the regular expression syntax defined in the
default search options.

• The filters use the case-sensitivity options defined in the default search options.

• The items listed under the Classes folder are global classes that are not part of a namespace
or package.

To clear the filters and see all items again, select the Show all tags option.

For non-object-oriented languages, use the Member combo box to search, since there are no classes.
You can hide the combo boxes to save space by right-clicking and selecting Filters, then unchecking the
corresponding check box.

Symbols Tool Window Options

Right-click on a symbol in the Symbols tool window to access the following additional filtering options as
well as code management options:

• Go to Definition - Moves the cursor to the symbol's definition (proc). See Symbol Navigation for more

Symbols Tool Window (Pro only)

350

information.

• Go to Declaration - Moves the cursor to the symbol's declaration (proto). See Symbol Navigation for
more information.

• Quick Refactoring - Offers two Quick Refactorings: Rename and Modify Parameter List. See Quick
Refactoring for more information.

• Set Breakpoint - Sets a debugging breakpoint. See Setting Breakpoints for more information.

• Find Tag - Searches for symbols and displays them in the symbol browser. Note that the Find Symbol
tool window also provides this functionality.

• Manage Tag Files - Displays the Context Tagging - Tag Files Dialog for use in managing your tag files.

• Rebuild Tag File - Rebuild the tag file currently being explored in the Symbols tool window.

• Expand and Collapse options - Expands/collapses symbols as specified.

• Sort by - Sorts symbols displayed by tag name, line number, or containers to top, which puts classes,
structs, etc. at the top of the list.

• Filters - Filter by class or member, or select Filtering Options to display the Symbol Browser Filter
Options dialog. See Symbol Browser Filter Options for information on the available options.

• Contents - Displays the following menu of save and print operations for the symbol browser tree:

• Save - Writes the items displayed in the symbol browser to a text file, prompting you for a file name
and directory location. The text file will then be displayed in the editor.

• Print - Displays the Print dialog, where you can configure options for printing the tree.

• Save Subtree and Print Subtree - These options function similarly to the above except they apply to
the selected subtree.

• Base Classes - Displays the Base Classes dialog, which shows a list of base classes for the selected
class on the left with the list of that class's members on the right. Base classes are displayed in a tree
view, allowing you to explore up the inheritance hierarchy. See Viewing Base and Derived Classes for
more information. Note that the Class Tool Window provides this same functionality.

• Derived Classes - Displays the Derived Classes dialog, which works the same as above but for
derived classes. See Viewing Base and Derived Classes for more information.

• Properties - Displays the Symbol Properties Tool Window, showing the properties of the selected item,
such as visibility, whether it's static or final, etc. Note that this window is read-only, so you can't use it to
change the properties.

• Arguments - Displays the return type and arguments for functions/methods in the Symbol Properties
Tool Window.

• References - Displays the list of references for the selected symbol in the References Tool Window,
just as if you pressed Ctrl+/ in the editor window. See Symbol Navigation for more information.

Symbols Tool Window (Pro only)

351

• Calls or uses - Displays a tree of symbols that are used by this symbol or called by this function. See
Viewing Symbol Uses with the Calling Tree for more information.

• Callers - Displays a tree of symbols that call or use this function. See Viewing Symbol Callers Tree for
more information.

Viewing Symbol Uses with the Calling Tree (Pro only)

View symbol uses to see what symbols (variables, functions, methods, classes, etc.) are used by a
specific function or method.

To view the symbols that a particular function or method uses, first create a project or open an existing
project. Then from the Symbols tool window, right-click on the desired function or method and select
Calls or uses. The Symbol Uses/Calling Tree dialog will be displayed.

Tip

You can also access the Symbol Uses/Calling Tree from within the Defs Tool Window or Class
Tool Window by right-clicking on a symbol and selecting Calls or uses, or by right-clicking on a
symbol in the editor and selecting Show Symbol+Calls or uses.

The Call Trace list on the top shows a trace from the top-most item in the call tree to the currently
selected item. This provides a simple overview of where you are when navigating the call tree.

Right-click in this tree to display/modify the symbol filters. Items in the tree can be expanded to view uses
recursively. Double-click or press the spacebar on an item in the tree list to go to an item. Double-click
and Space are the same except when the item is a prototype that has a corresponding code section.
Double-clicking will then go to the prototype's corresponding code section.

If the focus is in the Symbol Uses/Calling Tree dialog, the selected item will be shown in the Preview Tool
Window tool window, just as it is in the Symbols Tool Window.

Symbols Tool Window (Pro only)

352

Viewing Symbol Callers Tree (Pro only)

View symbol references to see what symbols (variables, functions, methods, classes, etc.) call or use a
specific function or method.

To view the symbols that call or use a particular function or method, first create a project or open an
existing project. Then from the Symbols tool window, right-click on the desired function or method and
select Calls or uses. The Symbol Refs/Callers Tree dialog will be displayed.

Note

The Symbol Refs/Callers Tree is similar in some ways to the References Tool Window, because
it finds what other symbols reference the originating symbol. The distinction is that it displays a
multi-level caller relationship hierarchy rather than simply focusing in finding all the specific
locations where a symbol is referenced.

Tip

You can also access the Symbol Refs/Callers Tree from within the Defs Tool Window or Class
Tool Window by right-clicking on a symbol and selecting Callers, or by right-clicking on a symbol
in the editor and selecting Show Symbol+Callers.

The Call Trace list on the top shows a trace from the top-most item in the callers tree to the currently
selected item. This provides a simple overview of where you are when navigating the callers tree.

Right-click in this tree to display/modify the symbol filters. Items in the tree can be expanded to view uses
recursively. Double-click or press the spacebar on an item in the tree list to go to an item. Double-click
and Space are the same except when the item is a prototype that has a corresponding code section.
Double-clicking will then go to the prototype's corresponding code section.

If the focus is in the Symbol Refs/Callers Tree dialog, the selected item will be shown in the Preview Tool
Window tool window, just as it is in the Symbols Tool Window.

Symbols Tool Window (Pro only)

353

Viewing Base and Derived Classes (Pro only)

To see what classes are inherited by a particular class, right-click on the class in the Symbols tool window
and select Base Classes.

To see what classes are derived from a particular class, right-click on the class in the Symbols tool
window and select Derived Classes.

Both dialogs have the same interface.

The left pane of each dialog contains a tree showing the class inheritance hierarchy (the class list). The
right pane shows a list of the members of the selected class (the member list).

If the focus is in the class list, the selected class will be displayed in the member list, if it can be resolved.
If the focus is in the member list, the selected item will be shown in the Preview window, and is the name
as it appears within the class definition.

To jump to the symbol in the code, pushing a bookmark in the process, double-click on a symbol in either
pane. Press Ctrl+Comma to go back. Right-click on a symbol for filtering options.

Symbol Browser Filter Options (Pro only)

To access symbol browser filter options, right-click in the Symbols tool window and click Filters →
Filtering Options.

Symbols Tool Window (Pro only)

354

Each option has three states: If the option is selected, only the specified items will be displayed. If the
option is cleared, the specified item will not be displayed. If the option is in a neutral state, the item will not
be considered in the filter.

The following options are available:

• Class Members

• Public - When selected, public members are displayed.

• Protected - When selected, protected members are displayed.

• Private - When selected, private members are displayed.

• Package - (Java only) When selected, package members are displayed. Java members have
package scope if they do not specify public, protected, or private.

Symbols Tool Window (Pro only)

355

• Inherited - When selected, only inherited members that this class can access are displayed. When
cleared, only members of this class are displayed.

• Preprocessed - When selected, only members expanded by pre-processing are displayed. This is
specifically useful for MFC classes. When cleared, only non-preprocess members displayed.

• Declarations

• Template - (C++ only) When selected, only template classes are displayed. When cleared, only non-
template classes are displayed.

• Const - (C++ only) When selected, only methods which do not modify members (method1() const)
are displayed. When cleared, only non-const methods are displayed.

Use the Symbol Properties Tool Window (right-click in the Symbols tool window and choose
Arguments,or from the main menu click View → Tool Windows → Symbol Properties) to view
other const information for declarations (for example, int const * const *pcpcvariable;).

• Final - (Java only) When selected, only final members are displayed. When cleared, only non-final
members are displayed.

• Volatile - (C++ only) When selected, only volatile method members (method1() volatile) are
displayed. When cleared, only non-volatile members are displayed.

• Synchronized - (Java only) When selected, only synchronized members are displayed. When
cleared, only non-synchronized members are displayed.

• Extern - When selected, only identifiers defined explicitly using the extern keyword are displayed.
When cleared, only identifiers defined which do not explicitly use the extern keyword are displayed.

• Anonymous - When selected, only class names which are automatically generated by Context
Tagging® are displayed. When cleared, only explicitly named classes are displayed.

• Functions/Methods

• Inline - When selected, inline functions or methods are displayed.

• Constructors - When selected, constructors are displayed.

• Operators - When selected, overloaded operators are displayed.

• Abstract - When selected, only abstract methods are displayed. When cleared, only non-abstract
methods are displayed.

• Virtual - When selected, only virtual methods are displayed. When cleared, only non-virtual methods
are displayed. All non-static Java methods are implicitly virtual.

• Static (class methods) - When selected, only static methods are displayed. When cleared, only
non-static methods are displayed.

• Native - When selected, only methods explicitly defined with the native keyword are displayed. When
cleared, only non-native methods are displayed.

Symbols Tool Window (Pro only)

356

• Data Members

• Show data only - When selected, only data members are displayed. When cleared, only methods
are displayed.

• Static (class data) - When selected, only static data members are displayed. When cleared, only
non-static data members are displayed.

• Transient - (Java only) When selected, only transient data members are displayed. When cleared,
only non-transient data members are displayed.

• Display or Hide

• Class Filter - When selected, the class filter is displayed in the Symbols tool window.

• Member Filter - When selected, the member filter is displayed in the Symbols tool window.

Symbol Properties Tool Window (Pro only)
The Symbol Properties tool window displays detailed symbol property information for the symbol at the
cursor location. Note that this window is read-only, so you can't use it to change properties.

Display can be toggled on/off by clicking View → Tool Windows → Symbol Properties. To display the
tool window on demand, right-click on a symbol in the Symbols tool window and select Properties or use
the activate_tag_properties_toolbar command.

Symbol Arguments Tool Window (Pro only)
The Symbol Arguments tool window displays the return type and both template and function arguments
for the symbol at the cursor location. Note that this window is read-only, so you can't use it to change the
symbol.

Display can be toggled on/off by clicking View → Tool Windows → Symbol Arguments. To display the
tool window on demand, right-click on a symbol in the Symbols tool window and select Arguments or use
the activate_tag_arguments_toolbar command.

Symbol Properties Tool Window
(Pro only)

357

Viewing and Displaying

358

Viewing and Displaying
SlickEdit® offers several features and options regarding viewing and displaying. See the following topics
for more information:

• Colors and Color Coding

• Current Line

• Modified Lines

• Viewing Special Characters

• Viewing Line Numbers

• Soft Wrap

• Selective Display

• Hex/Line Hex View

• Other Display Options

Colors and Color Coding
SlickEdit provides comprehensive capabilities to color the text in the editor window. For more information,
see Colors, Color Coding, and Symbol Colors.

Current Line
SlickEdit provides two ways to highlight the current line:

• Draw a box around the current line - You can enable the Current line highlight for all languages.
This draws a box around the current line. You can specify what type of box to use: a plain box, a tabs
ruler, a syntax indent ruler, or a decimal ruler. You can also control the color of the box and column
markers when using a ruler. To enable the current line highlight and specify options, open the Options
dialog (Tools → Options), expand Appearance and select General, then modify the options under the
Current line highlight category.

• Change the background and foreground color - On a language-specific basis, you can enable a
different background and foreground color for the current line. From the main menu, select Tools →
Options → Languages, expand your language category and language, then select View. Put a check
in Current line. To select the colors for the foreground and background, select Tools → Options →
Appearance → Colors, then select Current Line under the Selections node. For more information on
setting colors. see Colors.

Note

Colors and Color Coding

359

Depending on the background color you select, SlickEdit will still use the foreground colors you
have selected for other color coding elements, like strings, comments, etc. If the color you select
for the background would make those colors too hard to read, SlickEdit will apply the foreground
color selected for the Current line element.

Modified Lines
You can mark lines that have been modified or inserted during the current editing session. This will
display a color indicator in the left margin of editor windows for each changed line. To enable this feature,
select Tools → Options → Languages then expand your language category and select the language
you are configuring. Select the View options and put a check in Modified lines. To select the colors to
use, select Tools → Options → Appearance → Colors, then select Modified Line or Inserted Line
under the Modifications node. For more information about setting colors, see Colors.

SlickEdit can clear the modified and inserted line color when you save a file. To activate this feature, from
the main menu, click Tools → Options, expand File Options and select the Save node. Then set the
Reset modified lines option to True.

Tip

To show the modified lines on demand, bind the command color_modified_toggle to a key. It
will toggle display of modified lines in a different color on/off. You can bind the color_toggle
command to a key as well. This command toggles between current line, modified line, and
language specific coloring individually.

Viewing Special Characters
By default, many important characters are not visible in the editor, like tabs, spaces, and newline
characters. When you enable view of these special characters, SlickEdit® displays a visible character to
represent the invisible characters.

You can enable view of special characters on a per-document or language-specific basis:

• For the current document - From the main menu, click View → Special Chars, or use the
view_specialchars_toggle command. This toggles the display of all special characters (tabs, spaces,
and newline characters) on and off. The menu also provides options to toggle display of these
characters individually. See View Menu for more information.

• For a specific language - Using the Options dialog (Tools → Options), expand the Languages node
and your language, then select View. Select the option Special Characters. This enables the display
of all special characters for the chosen language. Alternately, you can select to enable display of the
characters individually.

To define the characters that are displayed to represent the special characters, see Defining Special

Modified Lines

360

Characters. To define the colors that are used for special characters, see Changing the Color of Special
Characters.

Note

• Viewing special characters is only available for ASCII files.

• When the display of special characters is enabled along with View → Line Hex, the hex value
for the actual character (like space) will be displayed, not the value for the character used to
represent it (like a dot).

Defining Special Characters

To define the characters that are displayed to represent the special characters, from the main menu, click
Tools → Options, expand Appearance and select Special Characters. Enter the character codes that
you wish to use.

The CR and LF characters are only shown for end of line when End-Of-Line is set to a zero length string
for Unicode Editor Windows or 13 for Non-Unicode Editor Windows.

Changing the Color of Special Characters

To change the colors and styles of special characters, use the Color options screen (Tools → Options
→ Appearance → Colors). Select Special Characters from the screen element drop-down list. For more
information on color settings, see Colors, Color Coding, and Symbol Colors.

Viewing Line Numbers
The current line number is always displayed in the editor's status line (see The SlickEdit Interface). Click
on the line number indicator to display the Go to Line dialog. This shows the total number of lines and
allows you to navigate to a specific line.

Line numbers can be displayed in the left margin area. You can enable them for a single document, a
single language,or for all languages:

• For the current document - From the main menu, click View → Line Numbers, or use the
view_line_numbers_toggle command. This toggles the display of line numbers on and off.

• For a specific language - Using the Options dialog (Tools → Options), expand the Languages node
and your language, then select View. Select the option Line numbers.

• For all languages - From the main menu, select Tools → Quick Start Configuration. The Coding
screen allows you to turn on line numbers for all languages.

You can select options that control the width of the line numbers. For more information see Language-
Specific View Options.

Viewing Line Numbers

361

Tip

• To control whether a colon is displayed with line numbers, use the
line_numbers_show_colon command. At the command line prompt, type Y (for yes) or N (for
no).

• To change the amount of space used in the left margin of editor windows for line numbers, use
the line_numbers_set_width command. At the command line prompt, enter the number of the
desired width, in pixels.

• To change the color of line numbers, select Tools → Options → Appearance → Colors node
in the Options dialog, and select the Line Number screen element.

Soft Wrap
Soft Wrap makes it easy to view long lines of code without scrolling. When Soft Wrap is enabled, each
line is wrapped as though a carriage return was inserted; however, unlike Word Wrap, the file itself is not
modified.

You can enable Soft Wrap on a per-document or language-specific basis:

• For the current document - From the main menu, click View → Soft Wrap, or use the
softwrap_toggle command. This toggles Soft Wrap on and off.

• For a specific language - Using the Options dialog (Tools → Options), expand the Languages node
and your language, then select Word Wrap. Select the option Wrap long lines to window width.
Options are also available here to break the text at the end of a word so that words are kept whole
(Break on word boundary), and to enable Soft Wrap for all languages so you don't have to configure
each one (Enable soft wrap).

When Soft Wrap is on, arrows in the right margin indicate lines that are wrapped. The following screen
shows Soft Wrap enabled in an XML document:

For related information, see Word Wrap, Comment Wrap, and Reflowing Text .

Soft Wrap

362

Selective Display
Selective Display (also known as code folding) is a convenient way to display or hide regions of your
code, so that you can view those regions that are relevant to your current editing session.

Use the Selective Display dialog to activate this feature and to specify the type of regions to display or
hide. This dialog is displayed by clicking View → Selective Display, or by using the selective_display
command. For more information, see View Dialogs and Tool Windows. For a description of additional
menu entries for Selective Display, see View Menu.

When Selective Display is active, a Plus (+) or Minus (-) bitmap is placed before hidden or expanded
lines in the editor window margin. The following screen shot shows a sample file with two function
definitions expanded and the rest collapsed. If the mouse is hovering over the Plus (+) of a collapsed
code region, a tooltip will be displayed showing the code which is hidden. If the hidden region is a
documentation comment, the tooltip will display the formatted documentation comment.

When Selective Display is active, you can perform the following operations:

• Display or hide lines - Double-click on the Plus (+) or Minus (-) bitmaps. Alternatively, click View →
Expand/Collapse Block, press Ctrl+\, or use the plusminus command. See Expanding/Collapsing

Selective Display

363

Code Blocks for more details.

• Copy visible text to the clipboard - Click View → Copy Visible or use the copy_selective_display
command. Normally when you copy a selection that spans multiple lines, hidden lines are copied as
well. This command ignores hidden lines and only copies visible text. This operation does not work with
block selections.

• Redisplay all lines and remove the bitmaps - From the main menu click View → Show All(show_all
command).

To define the type of information to show/hide, see Selective Display Regions.

Expanding/Collapsing Code Blocks

SlickEdit® provides a more keyboard-centric way to expand and collapse code blocks. You can expand or
collapse blocks of code by using the plusminus command, whether or not Selective Display Plus or
Minus bitmaps are displayed.

The plusminus command expands or collapses code blocks under the following conditions:

• If the cursor is on the first line of a code block, the block is collapsed, creating a new Selective Display
region.

• If the cursor is on a line that contains a Plus (+) bitmap, the block is expanded.

• If the cursor is on a line that contains a Minus (-) bitmap, the expanded block is collapsed.

Note

• The definition of a "code block" is based on your language.

• Selective Display bitmaps can be expanded or collapsed with a single click, causing Selective
Display to operate similar to Windows Explorer. Note, however, that you will not be able to
select a line by clicking to the left of a text line which contains a Selective Display bitmap. To
set this option, from the main menu, click Tools → Options → Appearance → Advanced,
then set the value of Expand/collapse to Expand on single click.

• The plusminus command is controlled by the def_plusminus_blocks configuration variable.
The value is set to true (1) by default. For more information, see Configuration Variables.

• The plusminus command uses the same logic to identify code blocks as the command
cut_code_block. See Deleting Code Blocks for more information.

Selective Display Regions

Using the Selective Display dialog, you can choose the regions you want to display or hide. Specific
settings are provided for each region.

Selective Display

364

• Selective Display Tool Window - Displays lines that contain the specified search string or lines that do
not contain the specified string.

• Function Headers - Displays only function headings and optionally, function heading comments.

• Preprocessor Directives - Displays a source file as if it were preprocessed according to the define
values specified here. If you do not remember your defines, use the Scan for Defines button.

• Multi-Level outline - Select this option to set multiple levels of Selective Display based on symbols,
statements, braces or indent.

• Comments - Select this option to set collapse multi-line comments.

• Paragraphs - Displays the first line of each paragraph. A paragraph is defined by a group of lines
followed by one or more blank lines.

• Hide Selection - Select this option to hide the lines in the current selection.

The Selective Display dialog also contains static options for expanding/collapsing sub-levels. See View
Dialogs and Tool Windows for more information and details about the available settings.

Hex/Line Hex View
SlickEdit® supports hex/line hex viewing and editing on a per-document or per-language basis.

Hex view displays your code using hexadecimal values to represent each character. The ASCII
representation is also shown on the right side of the editor window. When you position the cursor in one
representation, the corresponding location in the other is highlighted. You can edit by changing the hex
values or by changing the ASCII characters.

Line hex preserves your code layout, formatting, and color coding. It shows the hexadecimal value for
each character below the corresponding character. Since two hex digits are needed, the value is
displayed in a column below the corresponding character with the most significant digit at the top. This
makes it easier to read your code and still see the hex values for each character. As with regular hex
view, you can edit either the ASCII representation or the hexadecimal values.

See also Hex Mode Editing for more information.

Other Display Options
This section describes other general display options that you might find useful.

Displaying a Top of File Line

You can specify that each buffer opened displays a line which contains the text "Top of File". This
indicator for the location of the top of the file is displayed at line 0, which does not affect lines of code.
This is useful when you need a line inserted before the first line of a buffer when in CUA or SlickEdit® text
mode emulation. It is also useful when using Selective Display, because a Plus (+) bitmap can be

Hex/Line Hex View

365

displayed on line 0.

To enable this option, from the main menu, click Tools → Options, expand Appearance and select
General, then set the Top of file line option to True.

Rather than using this option, you can use Ctrl+Shift+Enter (Ctrl+Enter in the Visual C++ and Visual
Studio default emulations) to insert a new line above the line where the cursor is located.

Displaying a Vertical Line

You can choose to display a vertical line in all files that are open for editing. To access this setting, from
the main menu, click Tools → Options, expand Appearance and select General, then in the Vertical
line column spin box, specify the column number at which you want the vertical line displayed. A value of
0 (default) displays no vertical line. Click on the Vertical line color option to change the color of the
vertical line. Note that the vertical line will only be displayed for fixed-width fonts. It will not be displayed
for proportional fonts, as are used for Unicode files.

Syntax Indent and SmartPaste®

366

Syntax Indent and SmartPaste®
Syntax Indent and SmartPaste® are two of the many SlickEdit® features designed to decrease typing,
improving your coding efficiency. Syntax Indent automatically indents code to the correct levels. There are
two ways that code can be indented: by using the automatic Syntax Indent feature, and/or by using tabs.
SmartPaste reindents pasted text to the correct level based on surrounding code.

Syntax Indent
By default, if you press Enter while you are editing a source file, Syntax Indent automatically indents the
cursor to the next level if it is moved inside a structure block. For example, if you edit a C file and the
cursor is on a line containing the text for (:){ and you press Enter, a new line is inserted and the cursor is
indented four spaces in from the letter "f" in the word "for".

To change the Syntax Indent spacing, complete the following steps:

1. From the main menu, click Tools → Options → Languages, expand your language category and
language, then select Editing.

2. Change the value in the Syntax indent text box.

Indenting with Tabs

By default, when you press the Tab key to indent, literal spaces are inserted. If you plan to indent your
code using tab characters, or if you will be editing files that already contain tabs, you will need to specify
these preferences.

To activate tab indenting, from the main menu, click Tools → Options → Languages, expand your
language category and language, then click Editing. Select the Indent with tabs option.

Setting Tab Spacing

Typical default values for the Tab key are four or eight spaces. You can change this value in the Tabs
text box. In general, the Tabs setting should match the Syntax indent value. For example, by default for
the C language extension, the Syntax indent value is set to 4, and the Tabs setting is set to +4. The plus
sign (+) indicates that the editor will automatically expand the stops by four.

To work properly with the Sun Java API source code, the tab stops need to be in increments of eight, but
the syntax indent must be set to four. The Syntax Indent affects not only the Tab key, but also the number
of spaces to indent for each code block level.

Note

• When you change the tab stops and indent for all languages except COBOL, change the Tabs
text box to +value where value is the same value used for the Syntax indent text box. The
Tabs text box only affects how tab characters are expanded on the screen. This does not affect

Syntax Indent

367

the indent when pressing Tab, or the amount of indent for statements inside a code block.

• For COBOL files, the Tabs text box also affects the Tab key. Syntax Indent still affects the
indent for each code block level.

Setting Tab to Indent Selections

For the Tab key to indent the selection when text is selected, select the option Indent selection when
text selected.

Setting Tabs for the Current File

To set tabs for the current buffer only, use the Tabs dialog box (Document → Tabs or gui_tabs
command). You can set tabs in increments or at specific column positions. For example, to specify an
increment of three, enter +3 in the text box. To specify columns, you could enter1 8 27 44 to specify tab
stops that have absolute locations.

By default, the Tab key inserts enough spaces to move the text to the next tab stop. The Shift+Tab key
combination deletes enough spaces to move the text to the previous tab stop. See Redefining Common
Keys for information on other Tab and Shift+Tab key bindings. Regardless of the Tab key binding, if the
language-specific setting Indent with tabs is on, a physical tab character is inserted (see Indenting with
Tabs).

Setting the Backspace Unindent Style

By default, pressing the Backspace key when the previous character is a tab, causes the rest of the line
to be moved to the previous tab stop. If you want your Backspace key to delete through tab characters
one column at a time, from the main menu, click Tools → Options, expand Keyboard and select
Redefine Common Keys, then set the Backspace over tab option. See Redefining Common Keys for
more information.

SmartPaste®
When pasting lines of text into a source file, SmartPaste reindents the added lines according to the
surrounding code. For example, if editing a C or C++ file, select some lines with a line selection (Ctrl+L),
copy them to the clipboard (Ctrl+C), then paste them inside a for loop block (Ctrl+V). The added lines
are correctly indented according to the for loop's indent level. SmartPaste will work for character/stream
selections; however, the last line of the selection must include the end-of-line character. Use the mouse to
copy and move lines and still take advantage of SmartPaste.

SmartPaste is enabled by default, and can be turned on and off from the language-specific Indent option
screen. To access these options, from the main menu, click Tools → Options. Expand Languages in the
tree, select the language category and language, then click Editing. Select or clear the Use
SmartPaste® option.

Note

SmartPaste®

368

SmartPaste only works with line selections. For information about creating a line selection, see
Line Selections.

Adaptive Formatting

369

Adaptive Formatting
Many development teams set standards for code formatting styles. These standards often vary from
project to project or between languages. In this environment, you can lose valuable time in having to
change configurations, set/unset options, or run beautifiers from file to file just so you can meet the team's
requirements.

Adaptive Formatting addresses these situations by scanning a file for the formatting styles in use, and
automatically matching those settings for the current editing session. This provides seamless integration
of new code with existing code, making it easier to read, not only for you but for the next person who
needs to edit the file.

Adaptive Formatting recognizes indentation and tab style settings, parentheses padding, and begin/end
style settings. It also recognizes case settings, such as keyword casing for case-insensitive languages,
and tag, attribute, and value casing for HTML-based languages.

Feature Notifications are used when Adaptive Formatting identifies formatting that conflicts with your
settings. With Feature Notifications, you can control whether you get a dialog, a pop-up message, or no
notice at all. By default, Adaptive Formatting is set to display a pop-up message. You can change the
notification level by selecting Tools → Options → Application Options → Notfications.

Enabling/Disabling Adaptive Formatting
Adaptive Formatting is disabled by default. You can toggle it on and off on a language-specific basis, and
you can also enable/disable each of the individual formatting settings on a language-specific basis as
well. To access these options, from the main menu, select Tools → Options → Languages →
Application Languages → [Language] → Adaptive Formatting. As an example, the C/C++ Adaptive
Formatting options are shown below.

Enabling/Disabling Adaptive
Formatting

370

The specific Adaptive Formatting settings available for that language are shown on the options screen.
Select or clear the Use Adaptive Formatting check box to enable or disable the feature. When Adaptive
Formatting is enabled, use the subsequent check boxes to select the settings for which SlickEdit® should
scan.

You can also toggle Adaptive Formatting on and off for a language by using the menu item Document →
Adaptive Formatting (or the adaptive_format_toggle command). This turns the feature on and off for
the current language without affecting the individual style settings.

Recognized Settings
The table below shows each option recognized by Adaptive Formatting, the path to the option in
SlickEdit®, and a description, along with a link for more information. Because these options are language-
specific, the option paths are relative to the language-specific portion of the Options dialog: click Tools →
Options → Languages, expand your language category and then select your language.

Formatting Option Path to Option in SlickEdit Description

Syntax indent Formatting (Language-Specific
Formatting Options)

When enabled, the Enter key
indents according to the language
syntax, and you can specify the
amount to indent for each level.
See Syntax Indent for information.

Tabs Formatting (Language-Specific
Formatting Options)

Specifies tab stops, which can be
in increments of a specific value
or at specific column positions.
See Indenting with Tabs for
information.

Indent with tabs Formatting (Language-Specific
Formatting Options)

Determines whether the Tab key,
Enter key, and paragraph
reformat commands indent with
spaces or tabs. See Indenting
with Tabs for information.

Begin/End style Formatting Options (Language-
Specific Formatting Options)

The is the brace style used for
Syntax Expansion and smart
indenting. See the section for your
language in the Language-
Specific Editing chapter. For
example, Language-Specific
Formatting Options.

Indent CASE from SWITCH and
Indent constant from case

Formatting Options (Language-
Specific Formatting Options)

Specifies Syntax Expansion
indentation. See the section for

Recognized Settings

371

Formatting Option Path to Option in SlickEdit Description

your language in the Language-
Specific Editing chapter. For
example, Language-Specific
Formatting Options.

No space before parenthesis Formatting Options (Language-
Specific Formatting Options)

When enabled, no space is
placed between keywords (such
as if, for, or while) and the open
paren when Syntax Expansion
occurs. See the section for your
language in the Language-
Specific Editing chapter. For
example, Language-Specific
Formatting Options.

Insert padding between
parenthesis

Formatting Options (Language-
Specific Formatting Options)

When enabled, a space is placed
after the open parenthesis and
before the close parenthesis,
providing padding for the
enclosed text. See the section for
your language in the Language-
Specific Editing chapter. For
example, Language-Specific
Formatting Options.

Keyword case Formatting Options (Language-
Specific Formatting Options)

Specifies the case of keywords
used by Syntax Expansion. See
the section for your language in
the Language-Specific Editing
chapter. For example, Ada
Formatting Options.

Case for inserted tags Formatting Options (Language-
Specific Formatting Options)

Specifies the case for tags that
are automatically inserted. See
HTML Formatting Options for
more information.

Case for inserted attributes Formatting Options (Language-
Specific Formatting Options)

Specifies the case for tag
attributes that are automatically
inserted. See HTML Formatting
Options for more information.

Case for inserted single word
values

Formatting Options (Language-
Specific Formatting Options)

Specifies the case of word values
that are automatically inserted
inside a tag. See HTML

Recognized Settings

372

Formatting Option Path to Option in SlickEdit Description

Formatting Options for more
information.

Case for hex values Formatting Options (Language-
Specific Formatting Options)

Specifies the case for hex values
that are automatically inserted
inside a tag. See HTML
Formatting Options for more
information.

Scanning for Styles in Use
Adaptive Formatting has two modes of scanning: automatic, which is the default behavior, and manual,
which lets you run a scan at any time to determine a file's formatting styles in order to quickly save them
as the default settings.

When you open a file for editing, Adaptive Formatting initially scans for the indent-related settings that are
in effect (Syntax indent, Indent with tabs, and Tabs), starting at the beginning of the file. Thereafter,
Adaptive Formatting scans as you type to determine brace settings, parentheses padding, and other
formatting styles. If Adaptive Formatting determines that the file is using a different formatting style than
the current language-specific setting, a dialog is displayed that shows the settings in effect. You can then
choose to use the settings or use the settings set for the language. Once the formatting style is
determined, the options for those styles are used as long as the buffer is open for editing.

For example, when you type a keyword such as if in a C/C++ file that uses formatting styles different from
the current settings, the C/C++ Adaptive Formatting Results dialog is displayed (depending on your
settings for Adaptive Formatting under Feature Notifications).

Scanning for Styles in Use

373

On this dialog, the selected settings are used only for the current buffer. You can access the Adaptive
Formatting options screen to enable/disable Adaptive Formatting for this language by clicking the
hyperlink to Configure or disable Adaptive Formatting.

If you always want to accept the Adaptive Formatting results, select Don't show me this again to
suppress the dialog from appearing in the future.

A similar dialog is shown when you run Adaptive Formatting manually. This mode lets you run Adaptive
Formatting on the entire file at once, in order to quickly save the settings as the defaults for that language.
To run a manual scan, use the adaptive_format_stats command. The Adaptive Formatting Results
dialog for that language is displayed, showing all of the recognized style settings that are in use in the
current file.

Scanning for Styles in Use

374

This dialog lets you enable/disable the settings just for the current buffer, or select Use these settings
for all files of this language to quickly set these values as the default.

Scanning for Styles in Use

375

Confidence Level and Statistics

Both Adaptive Formatting Results dialogs show a confidence level and provide a link to a statistics
screen. The Confidence Level is a statistical percentage, based on the frequency of use of that style in
the file, that indicates the editor's confidence in this being a "correct" setting. To be considered the
"correct" setting, the option must meet a confidence level of 66%. SlickEdit® ignores setting results with a
confidence level of less than 66% and they do not appear on the results dialogs. For these options, the
current language settings are used.

For example, if the dialog shows Indent with tabs enabled and a Confidence Level of 85%, this means
that out of all of the examined instances of this style in the file, 85% of them were indented with tabs, and
15% were indented with spaces.

Click the Statistics button, and the Adaptive Formatting Statistics dialog shows each style that was found
and the total number of times it occurred in the examined instances. Each individual setting is categorized
in the tree according to type. Click on the plus/minus bitmaps to expand/collapse the tree categories.

Scanning for Styles in Use

376

Rescanning

Certain events require the file to be rescanned in case any formatting changes have occurred. These
events include beautification, auto-reload, and version control update. After one of these processes,
Adaptive Formatting is placed again in automatic mode, just as when you first opened the file, scanning
the entire file once for indent-type settings, then as you type for all of the other settings.

You can also rescan a file manually with the adaptive_format_update command. This clears the

Scanning for Styles in Use

377

Adaptive Formatting results from memory, then scans the entire file for all Adaptive Formatting settings
available for that language. This is useful if you want to create a new file and use different settings for it
than what you currently have configured.

Completions

378

Completions
Completions save keystrokes as you are typing code by providing a way to automatically complete
partially-typed text. There are four types of completions in SlickEdit®:

• Auto-Complete - A feature set that includes syntax, keyword, and symbol completions.

• Auto-Close - Automatically insert closing characters for bracketed and quotation punctuation pairs.

• Word Completion - Completions that work for any text in an editor window.

• Completion in Dialogs - Completions that work in dialog text box fields.

• Command Line Completion - Completions for command line entries.

Auto-Complete
Auto-Complete offers suggestions for how syntax, keywords, symbols, and lines of code may be
completed by the editor. It works by looking at the word prefix under the cursor and using several different
queries to find and suggest completion options. Each of these types of suggestions can be individually
turned on or off, allowing you to customize auto-completion to your liking.

Using Auto-Complete

Auto-Complete is activated when the editor is idle for a short period of time and there is a partially-typed
word under the cursor. When Auto-Complete is active, the available completions are indicated in several
ways:

• A light bulb appears on the left edge of the editor.

• A list of completions appears under the word being typed.

• The rest of the completed word or statement appears to the right of the cursor.

Auto-Complete

379

These visual hints can also be individually turned on or off through the Auto-Complete options. See
Language-Specific Auto-Complete Options.

Tip

Auto-Complete can be activated manually by using the autocomplete command. Bind this
command to a key sequence if you use it frequently. See Creating Bindings for more information.

To cancel out of Auto-Complete mode, use the Escape key.

To scroll through the items in the completion list, use the Up, Down, PgUp, and PgDn keys. Optionally,
you can use Tab and Shift+Tab to cycle through the choices.

If a completion is selected, you can press Space, Enter, or any non-identifier key to cause the selected
completion to be inserted along with the character typed (except for Enter).

Use Shift+Space to insert a real space rather than the completion. Use Ctrl+Shift+Space to insert the
next character of the currently selected completion. This can be useful if you only want part of the word
being completed and you do not want to type it yourself. Optionally, pressing Tab will cause auto-
completion to attempt to insert the longest unique prefix match of all its completions.

If the completion has comments, you can use Shift+PageDown, Shift+PageUp, Shift+Home, or
Shift+End to page through the comments. Use Ctrl+C to copy the comments for the current item to the
clipboard.

Auto-Complete options can be configured on a language-specific basis. See Language-Specific Auto-

Auto-Complete

380

Complete Options for information.

Auto-Close
Auto-Close will automatically insert closing characters for bracketed and quotation punctuation pairs. The
following list shows the available pairings.

• Parenthesis ()

• Bracket []

• Angle Bracket < >

• Double Quote " "

• Single Quote ' '

• Braces { }

Note

SlickEdit automatically closes block comments. For example, in C++ when you type "/*" SlickEdit
automatically inserts "*/". This is not part of the Auto-Close feature. To configure this, go to Tools
→ Options → Languages → [Language Category] → [Language] → Comments and check or
uncheck Automatically close block comments See Language-Specific Comment Options.

Auto-Close can be configured, as well as enabled/disabled, on a language specific basis. Specific pairs
can also be enabled/disabled per language, as well as automatically inserting padding for Parenthesis,
Brackets and Angle Brackets. To do this, select Tools → Options → Languages → [Language
Category] → [Language] → Auto-Close. For more information on Auto-Close options, see Language-
Specific Auto-Close Options.

When an opening character in a pair is typed, the closing character will automatically be inserted. The
closing character is automatically overtyped if you key in the matching close character as you are typing,
helping to avoid any syntax errors. There are also navigation helpers when the close character is
inserted. A hotspot marker is inserted on the right edge of the closing character. When this marker is
visible, TAB or ENTER key will jump to the next column past the close bracket, and ESC will dismiss the
marker as well as dismiss overtyping of the close character. Editing outside of the punctuation pair will
also automatically dismiss the marker. You can disable the TAB or ENTER navigation key (or both) in
Tools → Options → Languages → [Language Category] → [Language] → Auto-Close. If both TAB
and ENTER are both disabled, the hotspot marker is not inserted, though overtyping is still available.

When enabled, Auto-Close will only insert the matching closing character for the specific punctuation
where appropriate for the current language. This is determined by scanning the current location and line.
For example, it does not insert any closing characters in comments or strings. In the C++ language, the
angle brackets are only auto-closed when following the template or cast keywords (ex: static_cast).

Auto-Close

381

Word Completion
Word Completions search the current editor window for text matching the prefix at the current cursor
position. Most completions are driven by Context Tagging®, matching symbols such as function names
and variables. Word Completions can match any text in the current editor window, including comments.

Auto-Complete also lists word completions, but it is often faster to use key bindings to search for and
insert Word Completions. The following is a list of commands for these operations and the key bindings in
the CUA emulation. See Creating Bindings to change them.

• complete_prev (Ctrl+Shift+Comma) ® Searches backwards through the current editor window to find
a match.

• complete_next (Ctrl+Shift+Dot) ® Searches forwards through the current editor window to find a
match.

• complete_more (Ctrl+Shift+Space) ® Adds subsequently more text from the matched line to the
cursor position, allowing you to extend the amount of text inserted.

The following example of code shows how word completion is used:

if (pWindowView->pBuffer->LineNum>100) {
pW<Cursor is Here>

}

Press Ctrl+Shift+Comma,Ctrl+Shift+Space,Ctrl+Shift+Space to obtain the following result:

if (pWindowView->pBuffer->LineNum >100) {
pWindowView->pBuffer->LineNum <Cursor is Here>

}

Pressing Ctrl+Shift+Comma matched "pWindowView" in the previous line. If you wanted to match an
earlier occurrence beginning with "pW", press Ctrl+Shift+Comma to find the next previous match. This
also changed "pW" on the second line to the matching text, "pWindowView". Pressing Ctrl+Shift+Space
extends that selection, matching "pWindow->pBuffer". Pressing Ctrl+Shift+Space, again, extends the
selection to include "pWindow->pBuffer->LineNum".

You can easily see how this would save time typing in multiple lines that access structs, class members,
arrays, etc.

Completion in Dialogs
Many SlickEdit® dialogs contain fields that offer completions. Dialogs such as the Open dialog box (File
→ Open) and the New Project dialog box (Project → New) contain text fields for file names or directory
paths. SlickEdit uses completions to help you enter values for these fields. When you type a character,

Completion in Dialogs

382

SlickEdit pops up a list of matching values. Some dialog such as the Find tool window, support dialog box
retrieval. Dialog box retrieval enables previous responses for all check boxes, radio buttons, spin boxes,
text boxes, and combo boxes to be retrieved. Press F7 to retrieve the previous response, and F8 to
retrieve the next response

When this list is displayed, the following keys have different behaviors:

Key Behavior

Esc Closes the list.

Enter Uses the current value selected.

Tab, Down, or Ctrl+K Moves to the next item in the list.

Shift+Tab, Up, or Ctrl+I Moves up one item in the list.

Home or End If an item is selected in the list, the cursor moves to
the top or bottom of the list, otherwise the cursor
moves to the beginning or end of the text box,
respectively.

PgUp or PgDn Moves up or down a page of items in the list.

Space If an item is selected in the list, that item is used
and you are advanced to the next argument.

For a demonstration of how completions in dialogs work, complete the following steps:

1. From the main menu, click Project → New.

2. Press Tab to jump to the Location field.

3. Start typing a directory path. Notice the completion options.

4. Press Esc to cancel.

Argument Completion

For a larger list of possible matches, type "?" to list the matches. For a demonstration of how this works,
complete the following steps:

1. From the main menu, click Macro → Open Form.

Completion in Dialogs

383

2. Type _open and the _open_form command is highlighted.

3. Press the question mark key (?) to display the Select a Command Parameter dialog. A selection list of
possible matches to an argument that is partially-typed is displayed.

Configuring Completion
Settings

384

Configuring Completion Settings
To configure Auto-Complete settings, from the main menu, click Tools → Options → Languages,
expand your language category and language, then select Auto-Complete. See Language-Specific Auto-
Complete Options for more information.

Aliases

385

Aliases
Aliases are identifiers that you can quickly type which are then expanded into snippets of text. You can
use aliases for any text that you frequently type, including directory paths, function names, statements,
and comment headers.

There are two types of aliases in SlickEdit®:

• Global Aliases - These aliases can be used across multiple languages. They are also very useful as
directory aliases, because they save you from having to type long paths in file name or directory fields
within the editor.

• Language-Specific Aliases - These aliases are set up on a per-language basis. For example, if you
work in multiple languages, you could have one alias identifier for the same function but with different
expansions applicable to each language.

Expanding Aliases
After typing the alias identifier, aliases can be expanded using any of these methods:

• Pressing Ctrl+Shift+O for the expand_alias command. This command always expands the alias,
regardless of available completions.

• Pressing Ctrl+Space for the codehelp_complete(Pro only) command. This command will expand the
alias only if there are no matching symbol completions. Otherwise, it will show a list of symbol
completions. See List Members for more information.

• If Syntax Expansion is enabled (Tools → Options → Languages → [Language Category] →
[Language] → Indent), aliases will automatically be expanded by typing a space.

• Pause while typing and the alias will be displayed in the Auto-Complete list.

Tip

By default, alias expansion is not case-sensitive. However, if you wish alias identifier matching to
be case-sensitive, you can get this behavior by setting the macro variable def_alias_case to e.
To turn off case-sensitivity, set this variable to i. To set a configuration variable, go to Macro →
Set Macro Variable or use the command set-var. For more information about configuration
variables, see Configuration Variables

Tip

An option is available to show a tool tip of the matching alias for the word under the cursor. Click
Tools → Options → Languages → [Language Category] → [Language] → Auto-Complete

Expanding Aliases

386

and check the option Alias expansion. See Completions for more information.

Global Aliases
Global aliases work across all languages. One way to use global aliases is to save time in entering long
directory paths. See Directory Aliases below.

Directory Aliases

Directory aliases take advantage of the fact that most users are constantly opening files from a small
number of directories throughout the day. By using a directory alias when opening a file or changing
directories, you do not have to type in long paths or click the mouse repeatedly in directory and file name
fields within the editor.

After typing the alias identifier, directory aliases can be expanded by pressing Ctrl+Space. Global aliases
are stored in the file user.cfg.xml, located in the SlickEdit® root installation directory.

Note

SlickEdit Core doesn't modify Eclipse's file management-related dialogs such as File → Open or
File → Save As. Therefore, directory aliases are not available in these dialogs.

Defining a New Directory Alias

Directory aliases typically consist of a short abbreviation of the last name in a long directory path. For
example, if you had a directory called c:\version20\src\project2\, a good alias name might be
p2. For compiler include files, define an alias called inc (vinc in Microsoft Visual C++, binc in C++
Builder®, or ginc for GCC) if you have multiple compilers.

To define a new directory alias, complete the following steps:

1. From the main menu, click Tools → Options → Editing → Global Aliases.

2. Click New, then type the characters you wish to use for an identifier in the Alias Name text box.

3. Click OK. The identifier you entered is now displayed in the alias list box on the options page.

4. Make sure your new identifier is selected, then in the large text box to the right, enter the alias value by
typing in the directory path that you want the identifier substituted with.

5. Click OK.

Using Directory Aliases

After the directory aliases are defined, you can use them in any text box or buffer, including the Build tool
window and the Open and Change Directory dialogs. For example, to use a directory alias in the Open
dialog, complete the following steps:

Global Aliases

387

1. On the SlickEdit command line, type e (for "edit").

2. Type the alias name (identifier) for the directory where the file resides.

3. Press Ctrl+Space to expand the alias.

4. Type the name of the file to open.

5. Press Enter.

When using the system native Open panel on macOS, use Option+Escape to trigger directory alias
expansion.

Embedding Environment Variables in Directory Aliases

If you keep source code in a version directory tree, you might want to set an environment variable and
embed the environment variable in the alias value. For example, if you have a directory named
c:\version20\src\project2\, define a p2 alias and give it a value such as
%VERSION%\src\project2\. Type the following command on the command line to set or create the
VERSION environment variable:

set VERSION=c:\version20

For more information about setting environment variables, see Environment Variables.

Language-Specific Aliases
You can set up language-specific aliases for any frequently used text, such as comment headers. Each
language can have one alias file, allowing aliases to be defined that do not affect other languages.
Language-specific aliases are stored in files with the extension .als located in the user configuration
directory.

The aliases that you create in a language are made available each time you open or create a file in that
language. To manage language-specific aliases, from the main menu, click Tools → Options →
Languages, expand your language category and language, then select Aliases. As an example, the C/
C++ Aliases screen is shown below.

Language-Specific Aliases

388

Alias names are displayed in the list box on the left. The value for the selected alias name is displayed in
the large text box to the right. Click Delete to remove a selected alias and its value.

Creating a Language-Specific Alias

To create a new alias, complete the following steps:

1. Click New, then type the characters you wish to use for an identifier in the Alias Name text box. If you
wish to create a Surround With alias, check the Surround With checkbox. For more information about
Surround With aliases, see Surround With.

2. Click OK. The identifier you entered is now displayed in the list box in the Alias options page.

3. Make sure your new identifier is selected, then in the large text box to the right, enter the alias value by
typing in the text that you want the identifier substituted with.

4. Click OK.

Tip

Language-Specific Aliases

389

• You can use special escape sequences in your aliases, which will be substituted upon
expansion with certain values. See Alias Escape Sequences for more information.

• You can also specify parameters in alias values. When the alias is expanded, you are
prompted with a dialog to input the values. See Parameter Prompting for more information.

Alias Escape Sequences

Alias escape sequences can be used in alias values. When the aliases are expanded, the sequences are
replaced with their values. The following table contains a list of the escape sequences that can be used
for aliases. For examples, see Escape Sequence Examples below.

Note

If you leave a blank line in an alias, SlickEdit will automatically insert the sequence to preserve
leading spaces, %\l, when you save the alias. This ensures that the blank line is preserved.

Escape Sequence Description

%\a Inserts the authors name.

%\c Places the cursor. This sequence can be used
multiple times in the same alias value in order to
create a series of "hot spots" within the alias. After
the alias is expanded, press Ctrl+[(next_hotspot
command) to jump to the next cursor stop.

%\c Creates multiple cursors. This sequence can be
used multiple times in the same alias value in order
to create multiple cursors for initially entering the
same text into multiple locations. After the alias is
expanded, the multiple cursors will be active. Press
Ctrl+[(next_hotspot command) to jump to the
next cursor stop.

%\d Inserts the date (locale-dependent).

%\e Inserts the date in MMDDYY format.

%\t Inserts the time (locale-dependent).

%% Inserts a percent character.

%\f Inserts the current file name without path.

Language-Specific Aliases

390

Escape Sequence Description

%\fn Inserts the current file name without path or
extension.

%\g Inserts a file separator character. This is the
backslash on Windows (\) platforms and slash (/) on
UNIX/Mac.

%\w Outputs the line number.

%\n Inserts the current function name.

%\o Inserts the current function name with signature.

%\j Inserts the current class name.

%\j+ Inserts the current class name, fully-qualified.

%\i Indents.

%\b Unindents.

%\s Preserves trailing spaces. This should be placed at
the end of a line.

%\l Preserves leading spaces.

%\x ColumnNumber Moves the cursor to the specified column number.

%\x+ ddd Increments column by ddd.

%\x- ddd Decrements column by ddd.

%\m MacroName ArgumentList % Calls the specified Slick-C® macro with a specified
optional argument. This can be used for many
purposes including surrounding text (see below)
and inserting formatted dates (see Escape
Sequence Examples).

%\m sur_text% Uses the escape sequence to call a macro to
surround the selected text. Indicates where the text
to be surrounded is placed. See Surrounding and
Unsurrounding for more information.

%\h alias_name % Embeds another alias within the current alias. Can

Language-Specific Aliases

391

Escape Sequence Description

be used to embed a language-specific alias within a
global alias depending on what kind of file is being
edited.

% EnvironmentVariable % Inserts the value of the environment variable
specified.

%(ParameterName) Parameter Prompting replacement. See Parameter
Prompting for more information.

%\p Inserts parameters from the function that is located
beneath it. See Doc Comments for more
information.

%\q Insert the type for the parameters (double, integer,
string, etc.) from the function that is located beneath
it. Typically used in conjunction with the %\p
escape sequence. See Doc Comments for more
information.

%\r Inserts the return type from the function that is
located beneath it. See Doc Comments for more
information.

%\u Includes this line in the expansion, if there are any
function parameters that are expanded. If there are
no function parameters expanded, this line is not
included in the full expansion. See Doc Comments
for more information.

%\v Includes this line in the expansion, if there are any
return types that are expanded. If there are no
return types expanded, this line is not included in
the full expansion. See Doc Comments for more
information.

%\un If there are any function parameters that are
expanded, this line is not included in the full
expansion. If there are no function parameters
expanded, this line is included in the full expansion.
See Doc Comments for more information.

%\vn If there are any return types that are expanded, this
line is not included in the full expansion. If there are

Language-Specific Aliases

392

Escape Sequence Description

no return types expanded, this line is included in the
full expansion. See Doc Comments for more
information.

%() Used to separate identifier characters. For example,
%\u%()n has the effect of the %\u option followed
by a literal "n". It is recommended that %() be used
to separate alias escape sequences ending with a
letter from other identifier characters so that new
aliases escape sequences won't break existing
aliases you have. Don't write %\dx. Write %\d%()x
instead.

Escape Sequence Examples

The following table contains some examples of using escape sequences in alias values:

Alias Name and Description Value

Sample formatted dates %\m printtime #b. #d, #Y% ==> Apr. 07, 2008

%\m printtime #A, #B #d, #Y% ==> Monday, April
07, 2008

%\m printtime #m/#d/#Y% ==> 04/07/2008

comment - A header comment to have the date
and time inserted. /**/

/* Date: %\d Time: %\t */
/***/

if - A simple if statement, with indenting, support for
surround, and a cursor position. if (%\c){

%\i// Comment goes here
%\i%\m sur_text%

}

ifelse - An if/else statement with indenting and
several cursor hot spots. if (%\c){

%\i%\c
} else {

%\i%\c

Language-Specific Aliases

393

Alias Name and Description Value
}

fori - A for statement with a local indexing variable
and multiple cursors. for (int %\|=0; %\| < %\c; %\|++) {

%\i%\c
}

wm - A WinMain function template with indenting
and a cursor position. int APIENTRY WinMain(HANDLE hInstance,

HANDLE
hPrevInstance,

LPSTR
lpszCmdParam,

int nCmdShow)
{
%\i%\c
}

/** - A Javadoc comment.
/**
*
* %\c
*
* @author %\a (%\d)
* %\u
* @param %\p %\c
* %\v
* @return %\c%\v
*/

Parameter Prompting

Parameters can be set up for aliases, so that when the alias is expanded, you are prompted with a dialog
to input the values. This is useful for reducing even more key strokes for repetitive tasks when using
aliases that may require different values each time they are used.

To use parameter prompting, first define the parameters, then use them in your alias values by typing
%(ParamName) where ParamName is the name of the parameter that you have defined (see Creating an
Alias for Parameter Prompting below). When the alias is used and expanded, the Parameter Entry dialog
will appear, prompting you for the parameter values, which will then be inserted into your text.

Creating an Alias for Parameter Prompting

Language-Specific Aliases

394

To create an alias for parameter prompting, complete the following steps:

1. Click New, then enter the new alias name. In the aliases list box (on the left side of the Alias page),
make sure the new alias is selected.

2. Click the Add button below the Parameters group box. The Enter Alias Parameter dialog is displayed.

3. Enter the following values:

• Parameter Name - Enter the name that you wish to use in the alias value.

• Prompt - Enter the text that you wish to be prompted with. This is the label that will appear on the
Parameter Entry dialog that prompts for values after the alias is expanded.

• Initial Value - (Optional) Enter the initial value of the parameter. This text will appear in the text field
of the Parameter Entry dialog that prompts for values after the alias is expanded.

4. Click OK.

5. If you wish to add more parameters, repeat Steps 2 through 4.

6. On the Alias options page, the Parameters group box will now display a list of the parameters that you
have added.

7. In the large text field on the right side of the Alias options page, you can now type the alias value. In
the places where you want parameter prompting to occur, type %(ParamName), where ParamName is
the parameter name that you entered in Step 3.

8. Click OK when you are finished.

Example: Instantiating a Variable in Java with Parameter Prompting

In Java, instantiating variables can be a repetitive task. The following code shows a common Java code
snippet:

public class {
public static void main (String args[]) {

String x = new String(arg[0]);
}

}

You could define an alias for entering new class names with variables and arguments. That way, when
you press Enter after the third line and type and expand the alias, you will be prompted for the values.

For this alias, use the Parameters section of the Alias options page to first define three parameters:
class_name, var_name, and arg_list. Then, enter the following text for the alias value:

%(class_name) %(var_name) = new %(class_name)(%(arg_list));

Language-Specific Aliases

395

Creating a Language-Specific Alias from a Selection

You can create a language-specific alias from a selection by following the steps below.

1. Select some code.

2. Right-click and select Create Alias.

3. Give the alias a name and click OK.

4. The language-specific Alias options page appears, from which you can edit the code to fine-tune or
add parameters.

Syntax Expansion

396

Syntax Expansion
Syntax Expansion is a feature designed to minimize keystrokes, increasing your code editing efficiency.
When you type certain keywords and then press the spacebar, Syntax Expansion inserts a default
template that is specifically designed for this statement. For example, if you are using the C language and
type "for", press Space and the following text expansion is inserted, with the cursor location between the
parentheses:

for() {
}

Syntax Expansion triggers Dynamic Surround for block-oriented statements. This allows you to expand
and collapse the newly inserted block to include more/less code. Additionally, for C, C#, C++, J#, Java,
and Slick-C®, after the statement is expanded, you can use the next_hotspot command (Ctrl+[) to jump
the cursor to the next part of the statement. In the case of the for loop above, Ctrl+[would move the
cursor from the group in parentheses to the code block.

The statements loop, if, and switch or case are also expanded. You do not have to type the entire
keyword for Syntax Expansion to occur. If there is more than one keyword that matches what you type, a
list of possible keyword matches is displayed. To get the C template displayed above, type " f" followed by
pressing Space.

To override the insertion of braces immediately for one line if, for, or while statements, type a semicolon
immediately after the keyword. You do not have to type the entire keyword for Syntax Expansion to occur.
For example:

if; => if (<cursor here>) <next hotspot>;

The statements if, while, catch, return and switch are also expanded if you type an open paren
immediately afterwards. If your programming style is to omit these keywords, you would not be
accustomed to typing space after these keywords, so this feature allows you to still get syntax expansion
using your normal typing patterns.

To override non-insertion of braces immediately for if, for, while, foreach, with, lock, fixed, and switch
statements, type an open brace immediately after the keyword. For example:

if{ => if (<cursor here>) { <next hotspot> }

If the default behavior of Syntax Expansion does not match your coding style, for most languages, it can
be customized. From the main menu, click Tools → Options → Languages, expand your language
category and language, then select [Language] Formatting Options. See Language-Specific Formatting
Options for more information.

For further customization, for most languages, you can override the default keyword expansion by

Syntax Expansion

397

defining an alias for that keyword. See Language-Specific Aliases for more information.

Syntax Expansion Settings
To access Syntax Expansion settings, from the main menu, click Tools → Options → Languages,
expand your language category and language, then select Editing.

To turn Syntax Expansion on or off, select or clear the option Syntax expansion. To change the
minimum expandable keyword length, enter the value by using the Minimum expandable keyword
length spin box.

To set options such as brace style, from the main menu, use the [Language] Formatting Options
screen.

Tip

SlickEdit® can display Syntax Expansion choices for the word prefix under the cursor. To turn this
option on/off, select the Auto-Complete language-specific options screen and select/clear the
Syntax expansion option. See Completions for more information.

Modifying Syntax Expansion Templates
Syntax Expansion templates are essentially language-specific aliases that have been pre-defined. You
can modify these templates by replacing them with your own.

For example, to add a comment to the end of C for, while, if, and switch statements:

1. From the main menu, click Tools → Options → Languages, expand your language category and
language, then select Aliases.

2. Click New and then type for as the alias name.

3. Type the following lines in the text box to the right of the alias name:

for (%\c;;) {
} /* for */

The %\c escape sequence above specifies the cursor placement after expansion is performed.

4. Repeat Steps 2 and 3 for the while, if, and switch keywords.

5. Click OK to save new aliases.

The above steps replace the default Syntax Expansion templates for these keywords. The C brace style
options will not affect defined aliases.

Syntax Expansion Settings

398

For more information on working with aliases, using the Alias options page, or using alias escape
sequences, see Language-Specific Aliases.

Adding Syntax Expansion for Other Languages (Pro only)
To add syntax expansion and indenting for other languages, complete the following steps:

1. Use the prg.e macro as a template. This file is located in the macros subdirectory of your installation
directory. Make a copy of it and give it another name.

2. Change the #define constants EXTENSION and MODE_NAME near the top of the file to reflect the
new extension and mode name respectively. Do not use any spaces in these constants.

3. Change the name of the first five characters of the _command functions dbase_mode, dbase_enter,
and dbase_space to use the value given to the MODE_NAME constant in Step 2.

4. Modify the prg_expand_enter function to provide the Enter key the desired support.

5. Modify the prg_expand_space function to provide the spacebar key the desired support. If you can
rely on language-specific aliases, follow the comment in this function.

6. Use the load command Macro → Load Module to load new macro modules.

Steps 4 and 5 require a good understanding of the Slick-C® language and what this specific macro is
doing. See the Slick-C® Macro Programming Guide for more information.

Adding Syntax Expansion for
Other Languages (Pro only)

399

Code Templates
Code templates are pre-defined units of code that you can use to automate the creation of common code
elements, like a standard class implementation or design patterns. You can create templates for a whole
file or multiple files. Templates can contain substitution parameters that are replaced when the template is
instantiated when a new element is created from that template. Some parameters are replaced with
calculated or pre-defined values, like date or author. If a value is not known, you will be prompted for a
value when the template is instantiated.

Note

Code Templates are for creating new files. To insert code into an existing file, use SlickEdit
Aliases.

Code templates are composed of one or more template source files and a metadata file providing
additional information, like the name of the template, a description of the template, prompts for
substitution parameters, and default values for substitution parameters. The following is an example of a
single file source template. The items surrounded by dollar signs, "$", are the substitution parameters.

/*
* $copyright$
*/

package $package$;

/**
* @author $author$
* @version $version$
*/
public class $safeitemname$ {

/**
* Default constructor.
*/
public $safeitemname$(){
}

}

Templates can be organized into Categories to make them easier to manage. The templates shipped with
SlickEdit® are listed under Installed Templates and are organized into categories by language and then
by purpose. The Template Manager dialog will not allow you to add, edit, or delete Installed Templates.
Use the Template Manager dialog to add, edit, and delete templates under User Templates. The
Template Manager dialog is accessed by clicking File → Template Manager.

Instantiating a Template

400

Instantiating a Template
You can add an item to your current project by clicking Project → Add New Item from Template. If you
want to create a new item from a template without adding it to your current project, then click File → New
Item from Template. The Add New Item dialog box is shown below.

We call the process of creating new files from a template "instantiating a template". When a template is
instantiated, you are prompted for the name of the new item. This name is often used heavily in the
template. For a class template, the name will likely be the class name or a part of the class name. In the
sample template, $safeitemname$ is a form of this name that strips out any spaces, making it safe to
use as part of an identifier. This value can even be used as part of the file name when the template is
instantiated.

If any of the values in the template are not known at instantiation time, the Parameter Entry dialog box,
shown below, will prompt you for values.

Instantiating a Template

401

Creating Templates
Creating templates is very much like writing code. To create a new code template, complete the following
steps:

1. Create the template source files.

2. Insert substitution parameters into the template files.

3. Use the Template Manager to create a new template.

4. Add the template files to the newly-defined template.

Create the Template Source Files

This is the same process as writing any source file. Use SlickEdit® to write a file from scratch or to modify
an existing file. Make sure your file is syntactically correct to minimize compile errors after it is
instantiated.

In many languages, the $name$ syntax used by SlickEdit Code Templates is legal for identifiers, so you
will be able to compile and run your template source files prior to instantiating them. In other languages,
you will have to use temporary identifier names while writing the templates, and then put in the
substitution parameters once you are sure the source is correct.

You can store these source files in any directory and copy them to the templates directory during Step 4.

Insert Substitution Parameters into the Template Files

Use substitution parameters for any part of the source code that can differ from instantiation to
instantiation. This includes class names, author names (if several people are sharing the same template
files), or creation dates.

In our sample, we put in a substitution for copyright statement. See Substitution Parameters for more

Creating Templates

402

details.

Use the Template Manager to Create a New Template

Click File → Template Manager to bring up the Template Manager. Select the User Template folder in
the tree, and right-click in either the Categories pane or the Templates pane to create a new template.

There are different operations based on whether you want to create a new category or not. You will be
prompted for the name of the new template. Fill in a name and click OK. Now you can use the Template
Manager to enter a description, add files, or set values for Custom Parameters.

Add the Template Files to the Newly-Defined Template

Select the Files tab on the Code Template Manager dialog and click the Plus (+) button to add the files
you created in Step 1 to this template. You will have the option to link to the source in its current location
or copy it to the template directory. You will also be prompted for a target file name. If you want the name
of the instantiated template to appear in the file name, you should use a substitution variable in the name,
like "My$safeitemname$Class.java".

Substitution Parameters
Substitution parameters provide the real power in Code Templates. Without them, you would simply be
making copies of static files. You can use substitution parameters to replace any text in the template's
source code. You can also use substitution parameters in file names, which is useful in Java where a
class must be defined in a file by the same name.

Substitution parameters are written as identifiers surrounded by a delimiter. The default delimiter is $. Use
a double delimiter to represent the delimiter character in a template source file, $$. You can specify a
different character to use as the delimiter. Click File → Template Manager and click on the Custom
Parameters tab to change the value for the Delimiter field.

We provide a set of predefined substitution parameters for items related to item name, project name,
directories, date, and time. We can determine the value for these items rather than having to prompt for
them. See the list at the end of this section for all the predefined substitution parameters.

You can define substitution parameters that are common to all templates. For example, you might want to
define an "author" parameter where the parameter value is your name. You could then create code
templates that fill in a header comment with the author's (your) name. You would only have to define the
substitution parameter once. To define these parameters, open the Template Manager and select the
Custom Parameters tab.

If no value is provided for a substitution parameter, you will be prompted for one when the template is
instantiated. This is useful for things like class name or other values that are different each time the
template is instantiated.

Predefined Substitution Parameters

The following substitution parameter names and values are pre-defined for use in an item template. The
default delimiter "$" is used:

Substitution Parameters

403

Parameter Name Description

$itemname$ Name of item entered, as on the Add New Item
dialog.

$fileinputname$ Name of item entered, as on the Add New Item
dialog, without file extension.

$safeitemname$ Name of item entered, as on the Add New Item
dialog, with all unsafe characters replaced with safe
characters. For example, if the item name was My
Custom Class, then the $safeitemname$ would
evaluate to My_Custom_Class for a C++ source
code file.

$upcasesafeitemname$ Same as $safeitemname$ with all characters
uppercased.

$lowcasesafeitemname$ Same as $safeitemname$ with all characters
lowercased.

$tempdir$ Location of operating system temp directory. No
trailing file separator.

$rootnamespace$ Root namespace or package for the current project.
This is typically used for C# and Java projects to
find the namespace containing Main() (or main() in
the case of Java).

$ampmtime$ Time of day in the form hh:mm[am|pm]. Example:
11:34pm

$localtime$ Time of day in locale-specific format.

$time$ Time of day in the form hh:mm:ss.

$localdate$ Current date in locale-specific format.

$date$ Current date in the form mm/dd/yyyy.

$projectname$ Current project name (no path, no extension).

$safeprojectname$ Current project name (no path, no extension), with
all unsafe characters replaced with safe characters.
For example, if the project name was: My
Project.vpj, then $safeprojectname$ would

Substitution Parameters

404

Parameter Name Description

evaluate to My_Project for a C++ source code file.

$workspacename$ Current workspace name (no path, no extension).

$safeworkspacename$ Current workspace name (no path, no extension),
with all unsafe characters replaced with safe
characters. For example, if the workspace name
was: My Workspace.vpw, then
$safeworkspacename$ would evaluate to
My_Workspace for a C++ source code file.

$projectworkingdir$ Current project working directory. No trailing file
separator.

$projectbuilddir$ Current project build (output) directory. No trailing
file separator.

$projectconfigname$ Current project configuration name.

$workspaceconfigname$ Current workspace configuration name. This will be
the same as $projectconfigname$ except for MS
Visual Studio workspace which will have a separate
workspace/solution configuration name.

$projectdir$ Location of current project file. No trailing file
separator.

$workspacedir$ Location of current workspace file. No trailing file
separator.

$username$ Operating system login name.

Organizing Templates
Templates are organized into category hierarchies as shown on the Add New Item dialog. These category
hierarchies map exactly to the directory structure under the locations for installed and user templates.

To create a new template item category:

1. Create a new folder under the user templates directory. For example, if you wanted to create a Dialogs
category for Java project items, you would create the following directory:

[ConfigDir]/templates/ItemTemplates/Java/Dialogs/

Organizing Templates

405

2. Place all templates for the category under this directory.

3. Create a new project or open an existing one.

4. From the main menu click Project → Add New Item.

5. Verify that your new category appears in the Categories list on the Add New Item dialog box.

Caution

The Template Manager dialog will not allow you to create new categories or re-organize
categories under Installed Templates since the next patch or upgrade would overwrite any
customizations you have made. If you want to customize an installed template, then we suggest
you copy it to the User Templates directory and perform your customization on the copy. For
information about the location of shipped templates, see Locating Templates.

Template Manager Operations
Use the Template Manager dialog to add, edit, and delete templates. You can show this dialog by clicking
File → Template Manager. Use the Categories list to select a category. Selecting a category populates
the Templates list with templates for that category.

Note

You can only add, edit, and delete templates under the User Templates node in the Template
Manager dialog. If you want to modify a template shipped with SlickEdit, copy it to the
ItemTemplate subdirectory in your config. See Locating Templates.

Creating a New Category

To create a new category under the selected category, right-click in the Categories tree and select New
Category. You will be prompted for a category name. After clicking OK, you can add templates in the
new category.

Creating a New Template

To create a new template, select the category in which to create the template, then right-click in the
Templates list and select New Template. You will be prompted for a template name which is used to
create the new template file. After clicking OK, you can edit the new template the lower half of the dialog.

Editing an Existing Template

To edit an existing template, select a template from the Templates list, and edit its properties in the lower
half of the dialog.

Template Manager Operations

406

Deleting a Template

To delete a template, select the template you want to delete from the Templates list, right-click and select
Delete Template from the context menu.

Template Manager Dialog
The Template Manager dialog is made up of the following elements:

• Categories - Lists a hierarchy of item categories for installed and user template items.

Note

Installed templates can be viewed but not modified.

• Templates - Lists the templates for the currently selected category. When you select a template, you
are able to edit its properties in the lower half of the dialog.

• Template file - File name of the currently selected template.

Details Tab

The Details tab of the Template Manager dialog contains the following:

• Name - Specifies the name for the template item. The name is used in the Templates list of the Add
New Item dialog.

• Description - Specifies the description for the template item. The description is displayed on the Add
New Item dialog when the template is selected.

• Default name - Specifies the default item name when using the Add New Item dialog box.

• Sort order - Specifies an order number that is used to sort the template item in relation to other
template items in a list. Used to sort template items in a category on the Add New Item dialog box.
Lower sort orders are placed ahead of higher sort order values in a sorted list.

Files Tab

Use the Files tab of the Template Manager dialog to add, edit, order, and delete files in a template. Files
are created from a template when using the Add New Item dialog, as when adding an item template to a
project.

Add, Edit, Order, and Delete operations are accessible from the buttons on the right side or from the
context menu inside the list of files.

Custom Parameters Tab

Template Manager Dialog

407

Use the Custom Parameters tab of the Template Manager dialog to add, edit, and delete substitution
parameters in a template. Substitution parameters are used to replace parameter names in the content of
files created from a template with a pre-defined value. Substitution parameters can also be used to form
target file names (Files tab).

Add, Edit, and Delete operations are accessible from the buttons on the right side or from the context
menu inside the list of parameters.

Template Options Dialog
Use this dialog to edit options that are common to all templates. You can launch this dialog from the
Template Manager dialog by clicking the Options button.

Global Substitution Parameters

The Global substitution parameters area on the Template Options dialog lists the substitution
parameters that are common to all templates. A common substitution parameter, for example, could be
"author" where the parameter value is your name. You could then create code templates that
automatically fill in a header comment with the author's (your) name.

Add, Edit, and Delete operations are accessible from the buttons on the right side or from the context
menu inside the list of parameters.

Add File Dialog
Used to add a file to a template. To launch this dialog, right-click on a file in the Files tab of the Template
Manager dialog, and select Add File, or use the Add File button. The dialog contains the following:

• Source file name - When a file is created from a template, as when adding an item template from the
Add New Item dialog, it is created from the source file with this file name.

• Copy source file to template directory - Check this option to place a copy of the file in the current
template's directory and change the source file name to point to the new file in the template. The file is
not copied until you click OK.

• Target file name - When a file is created from a template, as when adding an item template from the
Add New Item dialog, the file name of the file that is created on disk is formed from the target file name
in the location you specify. Use the menu button to the right of this field to insert common pre-defined
substitution parameters. For example, $fileinputname$ is the item name provided on the Add New
Item dialog when adding an item template to your project.

• Replace parameters in target file content - Check this option if you want substitution parameters
embedded in the content of the target file to be replaced when the file is created from the template, as
when adding an item template to your project from the Add New Item dialog.

• Preview - Previews how the file would be copied when creating the file from a template as if the source
file name and target file name were fully resolved.

Template Options Dialog

408

Add Parameter Dialog
Used to add a custom substitution parameter to a template. This dialog is launched when performing an
Add operation from the Custom Parameters tab of the Template Manager Dialog. When files are created
from a template, as when adding an item template to your project from the Add New Item dialog box, you
can configure your template to replace all substitution parameters with values. For a list of pre-defined
substitution parameters, see Predefined Substitution Parameters.

The Add Parameter dialog contains the following:

• Name - This is the name of the substitution parameter WITHOUT delimiters. For example, if the
delimiter is "$" (the default), then a substitution parameter that inserts a copyright string would have a
name of "copyright" and NOT "$copyright$". Do not use quotes in the name. Valid characters for a
parameter name are: A-Za-z0-9_

• Value - This is the value that the substitution parameter evaluates to when a string or file is created
from the template and has its substitution parameters replaced with values.

• Prompt for value - Check this option if you always want to be prompted for the value of a substitution
parameter. When set, the Value field becomes a default value field and is used to pre-populate the
value when you are prompted.

• Prompt string - Specifies the prompt string to display when being prompted for a substitution
parameter value.

Add New Item Dialog
Used to add an item to your current project, the Add New Item dialog is displayed when you click Project
→ Add New Item or File → New Item from Template.

Use the Categories list to select a category. Selecting a category populates the Templates list with
template items for that category. You can then select an item from the Templates list, enter a unique
Name for the item, and enter a Location. Click Add to instantiate the template with the name and
location you provided.

You can manage your templates from the Template Manager dialog box by choosing File > Template
Manager.

The Add New Item dialog contains the following:

• Categories - Lists a hierarchy of item categories for installed and user template items.

• Templates - Lists the template items for the currently selected category. When you select a template
item, a brief description for that item is displayed just above the Name field.

• Name - Enter the name of the file you want to create.

Note

Add New Item Dialog

409

For single file templates (templates that create a single file) this is the name of the file. Multi-file
templates use the name of the item entered to form names of files in the template. For more
information about creating multi-file templates, see Creating a Multi-file Template.

• Location - Enter the location to which to save the item.

• Add to project - When selected, the new item is added to the project selected.

• Add - After you have selected a template item, provided a name and a location, click Add to instantiate
the template item.

Locating Templates

Installed Templates

Templates that are installed with the product are located at:

[SlickEditInstallDir]/sysconfig/templates/ItemTemplates/

For example, the following directory under Windows contains item templates for the C++ language:

[My Documents]\My SlickEdit Core Config\[VERSION]\templates\ItemTemplates\C++

User Templates

User templates are templates that the user creates and are located at:

[ConfigDir]/templates/ItemTemplates/

Tip

You can locate your Configuration Directory from the main menu by clicking Help → About
SlickEdit.

Manually Creating a Template
SlickEdit® Code Templates are represented as files stored in specific directories. A template is composed
of the source file or files for the template and a metadata template file that provides additional information.
Since these are just files, you can write them using SlickEdit.

To manually create an item template:

1. Choose a category folder under the user templates directory. Your user templates directory is at:

Locating Templates

410

[ConfigDir]/templates/ItemTemplates/

Tip

You can locate your Configuration Directory from the main menu by clicking Help → About
SlickEdit.

All files will be created relative to the folder you choose. For more information about how templates are
organized, see Organizing Templates.

2. Create or edit a code file (e.g. *.cpp, *.java, etc.). Replace occurrences of substitutable text with
substitution parameter names. For example, you might want to make the name of a C++ or Java class
into a substitution parameter, in which case you could use the $safeitemname$ substitution
parameter. For more information on substitution parameters, see Substitution Parameters.

3. Create an XML file and give it an extension of .setemplate.

4. Insert template metadata into the .setemplate file. See the example below. For more information on
template metadata elements, see Code Template Metadata File Reference.

5. Create a new project or open an existing one.

6. From the main menu, click Project → Add New Item.

7. Verify that your new template item appears in the Templates list on the Add New Item dialog box.

Example

The following example illustrates the metadata for an item template for a custom Java class, along with
the content of the Java source code file.

From the Add New Item dialog box, if the user entered Foo.java for the item name, then
$fileinputname$ would be replaced with "Foo" in the file name of the file created, and $safeitemname$
would be replaced with "Foo" in the Java source code file.

MyClass.setemplate:

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

<TemplateDetails>
<Name>My Java Class</Name>
<Description>My custom Java class</Description>
<DefaultName>MyClass.java</DefaultName>

</TemplateDetails>

Manually Creating a Template

411

<TemplateContent>
<Files>
<File TargetFilename="$fileinputname$.java">MyClass.java</File>

</Files>
</TemplateContent>

</SETemplate>

MyClass.java:

class $safeitemname$ {
};

Creating a Multi-file Template

A multi-file template is a template item that creates more than one file.

Multi-file templates require the use of substitution parameters to ensure that file name and extension parts
are used when creating each file of the template item. For example, a C++ class typically consists of:

• A .h file that contains the class definition.

• A .cpp file that contains the class implementation.

Since you can only enter one name into the Name field on the Add New Item dialog box, you need a way
to specify the target file name for each file created by the multi-file template. In the C++ class example
below, the .h and .cpp files are created with the name you provide, while their extensions are
preserved.

To create a multi-file item template from the Template Manager dialog, click File → Template Manager.

To manually create a multi-file item template:

1. Create the item template the same way a single file template would be created. For more information
on manually creating a template item, see Manually Creating a Template.

2. Add TargetFilename attributes to each of the File elements in your template metadata file
(.setemplate). Set the value of each TargetFilename attribute to $fileinputname$.[extension],
where [extension] is the file extension of the target file name being created. When the files are created,
their names will be based on the name you entered in the Name field of the Add New Item dialog box.
See the example below.

Example

The following example demonstrates a multi-file item template .setemplate file. The item creates C++
class header (.h) and implementation (.cpp) files.

Manually Creating a Template

412

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

<TemplateDetails>
<Name>My C++ Class</Name>
<Description>My complete C++ class header and

implementation</Description>
<DefaultName>MyClass.cpp</DefaultName>

</TemplateDetails>
<TemplateContent>
<Files>
<File

TargetFilename="$fileinputname$.cpp">MyClass.cpp</File>
<File TargetFilename="$fileinputname$.h">MyClass.h</File>

</Files>
</TemplateContent>

</SETemplate>

Code Template Metadata File Reference
Template metadata describes the template item, its files, and how to create the template. Template
metadata files have a .setemplate extension.

The SETemplate element is the root element of a template file.

Summary of metadata elements:

Element Child Elements Attributes

Elements - -

Description - -

File - ReplaceParameters,TargetFilena
me

Files File -

Name - -

Parameter - Name,Value

Code Template Metadata File
Reference

413

Element Child Elements Attributes

Parameters Parameter -

SETemplate TemplateContent,TemplateDetails Type,Version

SortOrder - -

Template Content Files,Parameters Delimiter

TemplateDetails DefaultName,Description,Name,S
ortOrder

-

Elements

DefaultName

DefaultName is an optional child element of TemplateDetails. Specifies the default item name when
using the Add New Item dialog box. This element becomes more important in multi-file templates where
you need to specify a DefaultName element in order to create file names from parts of the input item
name. See the example below.

• Attributes - None.

• Child elements - None.

• Parent elements - TemplateDetails.

• Value - Text value is required. The text value specifies the default name of the template item. Used to
populate the name field with an initial value on the Add New Item dialog box.

Example

The following example illustrates the metadata for an item template for a C++ class that creates a header
file (.h) and implementation file (.cpp).

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

<TemplateDetails>
<Name>My C++ Class</Name>
<Description>My complete C++ class header and

implementation</Description>
<DefaultName>MyClass.cpp</DefaultName>

Code Template Metadata File
Reference

414

</TemplateDetails>
<TemplateContent>
<Files>
<File

TargetFilename="$fileinputname$.cpp">MyClass.cpp</File>
<File TargetFilename="$fileinputname$.h">MyClass.h</File>

</Files>
</TemplateContent>

</SETemplate>

Description

Description is a required child element of TemplateDetails. Specifies the description for the template
item. See the example below.

• Attributes - None.

• Child elements - None.

• Parent elements - TemplateDetails.

• Value - Text value is required. The text value specifies the description of the template item. The
description is shown on the Add New Item dialog box.

Example

The following example illustrates the metadata for an item template for a custom Java class.

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

<TemplateDetails>
<Name>My Java Class</Name>
<Description>My custom Java class</Description>
<DefaultName>MyClass.java</DefaultName>

</TemplateDetails>
<TemplateContent>
<Files>
<File>MyClass.java</File>

</Files>
</TemplateContent>

</SETemplate>

Code Template Metadata File
Reference

415

File

File is an optional child element of Files. Specifies a file for the template item. See the example below.

• Attributes

Attribute Description

ReplaceParameters Optional.

Specifies whether parameter substitution takes
place on the file contents when the file is created
from the template. Note that parameter substitution
always takes place on the TargetFilename attribute
value (example:

TargetFilename="$fileinputname$.cpp").

Possible values are "1" (true) or "0" (false).

Defaults to "1" (true).

TargetFilename Optional.

Specifies the actual name of the item that is created
from the template.

This attribute is especially useful when creating a
multi-file template where file names of files created
from the template are assembled by parameter
substitution.

• Child elements - None.

• Parent elements - TemplateContent.

• Value - Text value is required. Value is the path of a file in the template item.

Example

The following example illustrates the metadata for an item template for a C++ class that creates a header
file (.h) and implementation file (.cpp).

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

Code Template Metadata File
Reference

416

<TemplateDetails>
<Name>My C++ Class</Name>
<Description>My complete C++ class header and

implementation</Description>
<DefaultName>MyClass.cpp</DefaultName>

</TemplateDetails>
<TemplateContent>
<Files>
<File

TargetFilename="$fileinputname$.cpp">MyClass.cpp</File>
<File TargetFilename="$fileinputname$.h">MyClass.h</File>

</Files>
</TemplateContent>

</SETemplate>

Files

Files is a required child element of TemplateContent. Specifies files for the template item. See the
example below.

• Attributes - None.

• Child elements - File.

• Parent elements - TemplateContent.

• Value - N/A

Example

The following example illustrates the metadata for an item template for a C++ class that creates a header
file (.h) and implementation file (.cpp).

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

<TemplateDetails>
<Name>My C++ Class</Name>
<Description>My complete C++ class header and

implementation</Description>
<DefaultName>MyClass.cpp</DefaultName>

</TemplateDetails>
<TemplateContent>
<Files>
<File

Code Template Metadata File
Reference

417

TargetFilename="$fileinputname$.cpp">MyClass.cpp</File>
<File TargetFilename="$fileinputname$.h">MyClass.h</File>

</Files>
</TemplateContent>

</SETemplate>

Name

Name is a required child element of TemplateDetails. Specifies the name for the template item. See the
example below.

• Attributes - None.

• Child elements - None.

• Parent elements - TemplateDetails.

• Value - Text value is required. The text value specifies the name of the template item. The name is
shown in the Templates list on the Add New Item dialog box.

Example

The following example illustrates the metadata for an item template for a custom Java class.

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

<TemplateDetails>
<Name>My Java Class</Name>
<Description>My custom Java class</Description>
<DefaultName>MyClass.java</DefaultName>

</TemplateDetails>
<TemplateContent>
<Files>
<File>MyClass.java</File>

</Files>
</TemplateContent>

</SETemplate>

Parameter

Parameter is an optional child element of Parameters. Specifies a custom substitution parameter for the
template item. For a list of pre-defined substitution parameters, see Predefined Substitution Parameters.

Code Template Metadata File
Reference

418

See the example below.

• Attributes

Attribute Description

Name Parameter name. This is the name of the
substitution parameter WITHOUT delimiters. For
example, if the delimiter is "$" (the default), then a
substitution parameter that inserts a copyright string
would be defined as "copyright" and NOT as

"$copyright$".

Value Parameter value. This is the value that the
substitution parameter evaluates to when a string or
File is created from the template.

• Child elements - None.

• Parent elements - Parameters.

• Value - N/A

Example

The following example illustrates the metadata for an item template for a custom Java class.

When MyClass.java is used to create the file from the template, all occurrences of $copyright$ in the
created file will be replaced with "(c)2005-2006".

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

<TemplateDetails>
<Name>My Java Class</Name>
<Description>My custom Java class</Description>
<DefaultName>MyClass.java</DefaultName>

</TemplateDetails>
<TemplateContent>
<Parameters>
<Parameter Name="copyright" Value="(c)2005-2006" />

<Parameters>
<Files>
<File>MyClass.java</File>

Code Template Metadata File
Reference

419

</Files>
</TemplateContent>

</SETemplate>

Parameters

Parameters is a required child element of TemplateContent. Specifies custom substitution parameters
for the template item. For a list of pre-defined substitution parameters, see Predefined Substitution
Parameters.

See the example below.

• Attributes - None.

• Child elements - Parameter.

• Parent elements - TemplateContent.

• Value - N/A

Example

The following example illustrates the metadata for an item template for a custom Java class.

When MyClass.java is used to create the file from the template, all occurrences of $copyright$ in the
created file will be replaced with "(c)2005-2006".

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

<TemplateDetails>
<Name>My Java Class</Name>
<Description>My custom Java class</Description>
<DefaultName>MyClass.java</DefaultName>

</TemplateDetails>
<TemplateContent>
<Parameters>
<Parameter Name="copyright" Value="(c)2005-2006" />

<Parameters>
<Files>
<File>MyClass.java</File>

</Files>
</TemplateContent>

</SETemplate>

Code Template Metadata File
Reference

420

SETemplate

Root element. Contains all metadata about template item.

• Attributes

Attribute Description

Version Template version number. The current version is
"1.0".

Type Template type. Valid types are: "Item".

• Child elements - TemplateDetails, TemplateContent.

• Parent elements - None.

• Value - N/A

Example

The following example illustrates the metadata for an item template for a custom Java class.

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

<TemplateDetails>
<Name>My Java Class</Name>
<Description>My custom Java class</Description>
<DefaultName>MyClass.java</DefaultName>

</TemplateDetails>
<TemplateContent>
<Files>
<File>MyClass.java</File>

</Files>
</TemplateContent>

</SETemplate>

SortOrder

SortOrder is an optional child element of TemplateDetails. Specifies an order number that is used to
sort the template item in relation to other template items in a list. Used to sort template items in a category
on the Add New Item dialog box.

Code Template Metadata File
Reference

421

If no SortOrder is specified for a template item, then the SortOrder value defaults to "0".

• Attributes - None.

• Child elements - None.

• Parent elements - TemplateDetails.

• Value - Text value is required. An integer that is greater than or equal to "0". When sorting in relation to
other template items, low SortOrder values are placed ahead of higher values in a sorted list.

Example

The following example illustrates the metadata for an item template for a custom Java class.

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

<TemplateDetails>
<Name>My Java Class</Name>
<Description>My custom Java class</Description>
<DefaultName>MyClass.java</DefaultName>
<SortOrder>100</SortOrder>

</TemplateDetails>
<TemplateContent>
<Files>
<File>MyClass.java</File>

</Files>
</TemplateContent>

</SETemplate>

TemplateContent

TemplateContent is a required child element of SETemplate. Specifies the contents of a template item.

• Attributes

Attribute Description

Delimiter Optional.

Delimiter used when replacing substitution
parameters in content.

Defaults to "$".

Code Template Metadata File
Reference

422

Attribute Description

• Child elements - Files, Parameters.

• Parent elements - SETemplate.

• Value - N/A

Example

The following example illustrates the metadata for an item template for a custom Java class.

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

<TemplateDetails>
<Name>My Java Class</Name>
<Description>My custom Java class</Description>
<DefaultName>MyClass.java</DefaultName>

</TemplateDetails>
<TemplateContent>
<Files>
<File>MyClass.java</File>

</Files>
</TemplateContent>

</SETemplate>

TemplateDetails

TemplateDetails is a required child element of SETemplate. Describes the template item. Details are
used to display the template item on the Add New Item dialog box.

• Attributes - None.

• Child elements - DefaultName, Description, Name, SortOrder.

• Parent elements - SETemplate.

• Value - N/A

Example

The following example illustrates the metadata for an item template for a custom Java class.

Code Template Metadata File
Reference

423

<?xml version="1.0" ?>
<!DOCTYPE SETemplate SYSTEM

"http://www.slickedit.com/dtd/vse/setemplate/1.0/setemplate.dtd">
<SETemplate Version="1.0" Type="Item">

<TemplateDetails>
<Name>My Java Class</Name>
<Description>My custom Java class</Description>
<DefaultName>MyClass.java</DefaultName>

</TemplateDetails>
<TemplateContent>
<Files>
<File>MyClass.java</File>

</Files>
</TemplateContent>

</SETemplate>

Quick Brace/Unbrace

424

Quick Brace/Unbrace
Quick Brace makes it easy to convert single line statements into a brace-enclosed blocks, so you can add
new lines without having to manually position the cursor and type extra keystrokes. Unbrace removes the
braces from a block that contains a single line statement.

Tip

• As you write new code, SlickEdit® automatically expands statement templates for common
block structures (such as if, for, or while) when you type the initial keyword. See Syntax
Expansion for more information.

• Quick Brace and Unbrace do not support code blocks containing multiple statements, but you
can use Dynamic Surround and Unsurround instead.

A single line statement is defined as a single line child statement that is not enclosed in braces, for
example:

if (cond) doSomething();

Hanging single line statements are often broken across two lines in the editor:

if (cond)
doSomething();

Using Quick Brace/Unbrace
When you use Quick Brace, SlickEdit attempts to honor your brace style and indent settings. To use
Quick Brace, position the cursor where you would normally type the open brace, and type it. Using the
preceding code samples, you could position the cursor as follows:

if (cond) <cursor here> doSomething();

or

if (cond)
<cursor here> doSomething();

After typing the opening brace, the child statement is moved to the next line if necessary, indented

Using Quick Brace/Unbrace

425

according to your indent settings, and the closing brace is inserted automatically. The result on the
preceding code sample is:

if (cond) {
doSomething();

}

Tip

TIP Indentation and brace style settings are specified on the Formatting Options screen specific
to your language (Tools → Options → Languages → [Language Category] → [Language] →
Formatting). For all languages, use the Language-Specific Formatting Options screen.

Unbrace does the opposite of Quick Brace, removing the braces from a brace-enclosed block that
contains a single line statement and moving the statement to the preceding line that contains the parent
statement (unless it is just too long). To use Unbrace, simply delete the opening brace. Using the
preceding code example, the result is as follows:

if (cond) doSomething();

You can use Unbrace on any brace-enclosed block that contains a single line statement, not just a block
that was created with Quick Brace. Unbrace works on any brace style.

Depending on the original brace style and the column location of the open brace, Unbrace either pulls the
statement up to the same line or leaves it hanging. The default column threshold is 40, which can be
modified by setting the configuration variable def_hanging_statements_after_col (Macro → Set Macro
Variable). Set the value to 1 for statements to always remain on the second line. Set the value to a very
large number to always pull up statements to the original line. See Setting/Changing Configuration
Variables for more information on setting variables.

Quick Brace and Unbrace work for C/C++ and similar languages that support brace blocks. Statements
such as if, while, and for are supported, as well as the handling of else clauses for if statements and the
splicing of the close brace with a trailing else.

Disabling Quick Brace/Unbrace
Quick Brace/Unbrace is on by default, and can be enabled/disabled on an language-specific basis. To
access this option, from the main menu, click Tools → Options → Languages, expand your language
category and language, then click [Language] Formatting Options and select or clear the option Quick
brace/unbrace one line statements.

Disabling Quick Brace/Unbrace

426

Surrounding and Unsurrounding
SlickEdit® provides two features that allow you to surround existing text with new text. Dynamic Surround
lets you selectively include more or fewer lines in a block structure, like an if statement. Surround With
lets you surround any selected text with text predefined in one of the Surround With Aliases. In addition,
Unsurround can be used to remove code block structures.

Dynamic Surround
Dynamic Surround provides a convenient way to surround a group of statements with a block statement,
indented to the correct levels according to your preferences. This feature works in conjunction with the
syntax expansion and alias expansion features (see Syntax Expansion and Language-Specific Aliases). It
is designed to help you keep your hands on the keyboard, thereby improving your speed and efficiency.

Dynamic Surround is supported for any language that uses block statements. By default, Dynamic
Surround is turned on for all supported languages. To turn it off, select Tools → Options → Languages,
expand your language category and language, then click Indent and uncheck Use Dynamic Surround.

SlickEdit® enters Dynamic Surround mode automatically immediately after you expand a block statement
(for instance, by typing if then pressing Space). After expanding the statement, a box is drawn around it
as a visual guide, and you can pull the subsequent lines of code or whole statements into the block by
using the Up, Down, PgUp, or PgDn keys.

Dynamic Surround stays active until you press ESC. During that time auto-completions and symbol
preview are unavailable.

You can also invoke Dynamic Surround on an existing block structure using the dynamic-surround
command. Put the cursor on the line containing the block structure keyword, like an "if" or a "for", press
ESC to open the SlickEdit command line, then type dynamic-surround. If SlickEdit recognizes the block
structure, the box will be drawn and you will be able to expand or contract the structure using the Up,
Down, PgUp, or PgDn keys. By default, this command is not associated with a key binding. See Creating
Bindings for information on creating your own.

The following screen shot shows the Syntax Expansion menu that appears after typing "if" in a C++ file:

Dynamic Surround

427

After pressing Space to expand the statement, Dynamic Surround is activated, with a blue rectangle
drawn around the expanded statement, as shown below:

Dynamic Surround

428

Pressing the Down arrow key pulls the code block into the statement, indented to the correct levels, as
shown below:

Dynamic Surround

429

The finished code is shown below:

Dynamic Surround

430

Statements that are pulled into the block are indented according to your indent settings (see Syntax
Indent). The color of the rectangle box guide is controlled by the Block Matching screen element (see
Colors).

Syntax Expansion must be on for Dynamic Surround to work. Both options are on by default. To turn off
either of these options, from the main menu, select Tools → Options → Languages, expand your
language category and language, then select Indent. Clear the option(s) Use Dynamic Surround and/or
Syntax expansion.

Surround With
Surround With makes it fast and easy to wrap existing lines of code in a new block structure. Surround
With is supported for the languages C, C++, C#, HTML, Java, JavaScript, and XML. Highlight the lines to
surround, right-click, and select Surround Selection With, or use the surround_with command. The
Surround With dialog appears, with a pre-defined list of structures based on the current file extension.

Surround With

431

Select the structure you wish to surround with, then click OK.

If there is no selection and you activate Surround With, the current line or code block will be automatically
highlighted for surrounding (the same function performed by the select_code_block command).

Tip

The surround_with command has a button available for toolbar customization. See Customizing
Toolbars for more information about creating your own custom toolbars.

Surround With Aliases

Surround With aliases are created and modified the same way as other aliases, with the addition of the
%\m sur_text% escape sequence. This sequence indicates where the selected text should be placed,
and can be used multiple times within a single Surround With alias. See Surround With Commands for
more information on sur_text.

To view or modify the Surround With aliases, use the surround_with command to display the Surround
With dialog, then click the Customize button. This will display the language-specific Alias options page.
As an example, the C/C++ Alias options page is shown below.

Surround With

432

The list of Surround With structures for the chosen language is shown in the list box on the left. To modify
one of the Surround With structures, complete the following steps:

1. Select the structure that you wish to modify. Notice the alias for the structure appears in the text box on
the right.

2. Modify the alias to suit your needs. For a list of escape sequences and examples, see Alias Escape
Sequences. For more information about using the Alias options page, see Creating a Language-
Specific Alias.

3. When you are finished, click OK on the Alias options page.

4. Click OK on the Surround With dialog.

Surround With Commands

There are three commands available for working with Surround With:

• surround_with - This command is used to display the Surround With dialog, allowing you to pick a
structure to surround selected text with. This command can be bound to a key, see Creating Bindings
for more information.

Surround With

433

• sur_text - This is a Slick-C® function that can only be used inside of a Surround With alias. It is used to
indicate where the selected text should be placed and can be used multiple times within a single
Surround With alias. sur_text can take several parameters, which can appear in any order. The
available parameters are:

• -beautify - This is the default for C, Java, and others. It beautifies the results of the alias expansion.

• -begin text - Prefixes each line of the selection with text.

• -deselect - This is the default parameter. It specifies to leave the text deselected.

• -end text - Suffixes each line of the selection with text.

• -ignore chars - The -begin, -indent, and -stripbegin options will ignore any chars when finding the
beginning of the selected line.

• -indent - Indents each line of the selection.

• -nobeautify - This is the default for HTML, XML, and others. It specifies that the editor should not
attempt to beautify the results of the alias expansion.

• -notext - Specifies that no text should be pasted.

• -select - Leaves the text selected.

• -stripbegin text - If any line begins with text, text is removed from the line. This option is applied
before -begin.

• -stripend text - If any line ends with text, text is removed from the line. This option is applied before -
end.

• surround_with_if - This is a wrapper command that expands the if alias for the selected text. This
command can be bound to a key, see Creating Bindings for more information.

The use of Surround With can be streamlined by using wrapper commands and key bindings. You can
create your own wrapper commands. The following example is the definition of surround_with_if:

_command void surround_with_if()
name_info(','VSARG2_REQUIRES_EDITORCTL | VSARG2_MARK |
VSARG2_REQUIRES_AB_SELECTION)

{
surround_with('if');

}

You must change the name of the command and the argument passed to surround_with. The argument
does not have to be an exact match with the alias name. For instance, calling surround_with('i') will
prompt you to select the if, if...else, or include once alias. If there is an exact match, that alias will be
used. In the case of surround_with_if, "if" matches the beginning of both the if and if...else aliases, but
the if alias is used because it is an exact match.

Surround With

434

After you create your wrapper command, you can bind it a key or invoke it from the command line.

For more information on working with commands, see the Slick-C® Macro Programming Guide.

Unsurround
Unsurround is a feature that lets you remove the surrounding text from a code block. This is particularly
effective when used with Dynamic Surround. Unsurround is supported for the following languages:
ActionScript, AWK, C#, C++, CFML, HTML, Java, JavaScript, Perl, PHP, Slick-C®, Tcl, and XML.

To use Unsurround, right-click on a selected code block and select Unsurround, or use the unsurround
command. By default, the unsurround command is bound to Ctrl +Shift +Del.

For example, to remove the if statement structure from a code block, select the code block or part of the
code block, then right-click and select Unsurround (or use the unsurround command). The entire code
block under the cursor is automatically highlighted and a dialog prompt appears to confirm the unsurround
operation. Click OK, and the if line of the code block as well as the line containing the closing brace are
removed. The remaining code is unindented to the correct level.

Tip

The unsurround command has a button available for toolbar customization. See Customizing
Toolbars for more information about creating your own custom toolbars.

Deleting Code Blocks

Unsurround is also associated with the cut_line (Ctrl+Backspace) and delete_line (Ctrl+Del)
commands. When one of these commands is invoked while the cursor is on the first line of a block
statement, the Delete Code Block dialog appears, from which you can choose to delete the line, delete
the entire block, or unsurround the block.

Each of these operations copies the removed text to the clipboard. This is useful if you want to paste the

Unsurround

435

structure into a different location, because as soon as the text is pasted, SlickEdit® enters Dynamic
Surround mode, allowing you to pull statements into the pasted block.

The Delete Code Block dialog also contains an option to Always just delete line when cut_line or
delete_line operations are invoked. Selecting this option will prevent the dialog from appearing when
these operations are used. To see the dialog again, use the cut_code_block command.

Bookmarks

436

Bookmarks
Bookmarks are used to save the current edit location, so you can quickly return to it later. There are two
types of bookmarks:

• Named Bookmarks - Uses a green flag to mark long-term, meaningful locations in the code, or to
quickly set a temporary, named bookmark on the current line.

• Pushed Bookmarks - Uses a blue flag to set temporary "breadcrumbs" as you explore the code.
Pushed bookmarks are manipulated separately from named bookmarks.

Bookmark options for named and pushed bookmarks can be found on the Bookmark Options screen of
the Options dialog (Tools → Options → Editing → Bookmarks).

A set of bookmark controls for named and pushed bookmarks is available for adding to your custom
toolbars. See Customizing Toolbars for more information.

Named Bookmarks
Named bookmarks are great for marking long-term, meaningful locations in your code. For example, if
you have a project with a lot of include files, you might want to bookmark the top of the main header file.
Or you could bookmark a file with instructional comments about a particular project you're working on.

In addition to menu items and command line operations, the Bookmarks tool window (View → Tool
Windows → Bookmarks) is available for creating and managing named bookmarks. See Bookmarks
Tool Window for more information.

See the following sections for more information about working with named bookmarks:

• Setting Named Bookmarks

• Navigating Named Bookmarks

• Deleting Named Bookmarks

• Using Workspace Bookmarks

Setting Named Bookmarks

There are various ways to use named bookmarks, and the way you set them depends on which way you
want to use them:

Named Bookmarks

437

• Give them a specific name - Creating a bookmark and naming it yourself is one of the best ways to
mark a location in your code. For example, you could set a bookmark named "main" to save the
location of the main function. See Setting a Bookmark With a Specific Name.

• Allow automatic naming - This is a quicker way to set named bookmarks. This method could be
useful to mark locations that you temporarily need to reference, perhaps only in the current editing
session. See Setting a Bookmark With an Automatic Name.

• Use a key binding shortcut for the name - The quickest way to set and navigate named bookmarks
is to name according to a specific key binding. This method lets you create a bookmark with one key
binding, and navigate back to the bookmark with a similar key binding. See Setting a Bookmark With a
Key Binding.

After setting a named bookmark, a green bitmap is displayed in the left margin of the editor window,
indicating the location of the bookmark. Use the Show set bookmarks option to enable or disable the
display of the indicator (Tools → Options → Editing → Bookmarks).

Setting a Bookmark With a Specific Name

There are several different ways to set a bookmark on the current line and give it a name:

• Using the Bookmarks Tool Window, click the Create a New Bookmark button.

• From the main menu, click Search → Bookmarks → Set Bookmark. The Bookmarks Dialog is
displayed. Type the name of the bookmark in the combo box, then click Add.

• On the SlickEdit® command line, use the set_bookmark or sb command. The sb command is a
shortcut for set_bookmark, so you can use whichever you prefer. If you use the command without
arguments, the Bookmarks Dialog is displayed. Or, you can append sb or set_bookmark with any
character or text string, and a bookmark will be instantly set using that value for the name. This works
best in conjunction with the goto_bookmark (or gb) command, because you can use sb 1 on the
command line to create an instant bookmark named "1", and then navigate back to that bookmark at
any time by using gb 1. See Navigating Named Bookmarks for more information.

Setting a Bookmark With an Automatic Name

Most of the methods described in the section for Setting a Bookmark With a Specific Name display a
dialog that prompts for the name of the new bookmark. In each case, SlickEdit® prepopulates the name
field with an automatic name that you can use if you don't want to specify your own name.

The automatic name will be in one of two formats: SymbolName:LineNumber, or FileName:LineNumber.
The symbol name is used if the bookmark is inside of a symbol. The file name is used if there is no
symbol on the line or if the file does not support Context Tagging®.

While you can use the methods described in Setting a Bookmark With a Specific Name, the quickest
method of setting a named bookmark with an automatic name is to use the Toggle Bookmark feature,
which instantly sets an automatically named bookmark and lets you toggle it on and off. To use this
feature, from the main menu, click Search → Bookmarks → Toggle Bookmark, press Ctrl+Shift+J, or
use the toggle_bookmark command.

Named Bookmarks

438

Setting a Bookmark With a Key Binding

You can set a bookmark that takes its name from the key used to set it. There are two commands that
can be used: alt_bookmark, for setting a bookmark, and alt_gtbookmark, for navigating to the
bookmark.The purpose of these commands is so that you can bind them to keys, providing a way for you
to have one type of keyboard shortcut for setting the bookmarks, naming them in the process, and
another for navigating to the bookmarks.

These commands can be bound to any of the following keys/ranges:

• Ctrl+[0-9], Ctrl+[A-Z], Ctrl+[F1-F12]

• Alt+[0-9], Alt+[A-Z], Alt+[F1-F12]

• Ctrl+Alt [0-9], Ctrl+Alt[A-Z], Ctrl+Alt[F1-F12]

• Shift+[F1-F12]

For example, you could bind alt_bookmark to Ctrl+[0-9] and alt_gtbookmark to Alt+[0-9], for a more
efficient means of setting bookmarks named "0" through "9", and navigating back to them. See Working
with Key Binding Ranges for more information.

Note

Different emulations have different default assignments for alt_bookmark and alt_gtbookmark.
Use the menu item Help → Where Is Command to see what keys are set up by default in your
emulation. See Using the Command Line to View Key Binding Associations for more information.

Navigating Named Bookmarks

To jump to and navigate between your named bookmarks, use one of the following methods:

• From the main menu, click Search → Bookmarks → Previous Bookmark or Search → Bookmarks
→ Next Bookmark(or use the prev_bookmark and next_bookmark commands, respectively). The
order of navigation matches the order in which the bookmarks were created.These operations are also
available on the Bookmarks Tool Window.

• Use the Go to Bookmark feature: From the main menu, click Search → Bookmarks → Go to
Bookmark, or, use the goto_bookmark command or the gb command. The gb command is a shortcut
for goto_bookmark, so you can use whichever command you prefer. This displays the Bookmarks
Tool Window, from which you can select a bookmark to navigate to.

Tip

When you use the Go to Bookmark dialog to jump to a named bookmark, SlickEdit® pushes a
bookmark in the process. To get back to where you were, press Ctrl+Comma. See Pushing and
Popping Bookmarks.

Named Bookmarks

439

• You can also append goto_bookmark or gb with the name of the bookmark to go directly to that
bookmark's location in the code. This works best in conjunction with the set_bookmark (or sb)
command. For example, you can set a bookmark named "1" by using sb 1 on the SlickEdit command
line, then use gb 1 to navigate back to that location. Command Line Completion is supported to assist
you with typing the name of the bookmark. See also Setting a Bookmark With a Specific Name.

Deleting Named Bookmarks

To remove a named bookmark, use one of the following methods:

• Using the Bookmarks Tool Window, select the bookmark to delete and click the Delete Selected
Bookmark button or press the Delete key.

• When the cursor is on the bookmark line, use the Toggle Bookmark feature to toggle that bookmark off
(in effect, deleting it): From the main menu, click Search → Bookmarks → Toggle Bookmark, or,
press Ctrl+Shift+J or use the toggle_bookmark command. Use the feature again to toggle the
bookmark back on.

• On the SlickEdit® command line, use the delete_bookmark command with the name of the bookmark
to delete. For example, if the bookmark to delete is named "1", type delete_bookmark 1 on the
command line. Command Line Completion is supported to assist you with typing the name of the
bookmark.

• On the Bookmarks Dialog or Go to Bookmark Dialog, select the bookmark to remove and click Delete.

To remove all named bookmarks at once:

• Using the Bookmarks Tool Window, click the Delete All Bookmarks button.

• On the SlickEdit® command line, use the clear_bookmarks command.

Using Workspace Bookmarks

By default, named bookmarks are global and are not associated with a specific workspace (see Managing
Workspaces). However, you can choose to associate your bookmarks with a workspace instead. When
you use workspace bookmarks, the Bookmarks Tool Window (and other dialogs that show bookmarks)
only displays bookmarks that are associated with the current workspace. You can set bookmarks for files
that are not in the current workspace. To enable workspace bookmarks, set the Use workspace
bookmarks option to True (Tools → Options → Editing → Bookmarks).

Relocatable Code Markers

Named bookmarks use relocatable code markers to store their location within the source code. This
allows SlickEdit to find the new location if someone makes changes to the file externally, like modifying
the file with a different editor. The next time you open the file, SlickEdit checks the location of each code
marker and verifies that it is still correct. If necessary, SlickEdit uses stored information to locate the
correct line of code for this bookmark. If the code has changed too much, SlickEdit may not be able to find
the new location. Instead, the bookmark will be placed at the line number where it is was last known to
be.

Pushed Bookmarks

440

Pushed Bookmarks
Pushed bookmarks are used to set temporary "breadcrumbs" as you move throughout your code. For
example, you may have multiple spots in your code that you want to examine. You can push a bookmark
(drop a breadcrumb) at each location, one right after the other. When you're done examining the code
and pushing bookmarks, you can backtrack to where you first started by popping the bookmarks (picking
up the breadcrumbs).

Pushed bookmarks are stored on the bookmark stack, which is simply an internal list of pushed
bookmarks. When you push a bookmark, the current line is placed on top of the bookmark stack. Popping
a bookmark removes the top bookmark from the stack, and navigates the cursor to the location of the
previous bookmark.

Pushed bookmarks are deleted when you close SlickEdit®.

See the following sections for more information:

• Pushing and Popping Bookmarks

• Viewing Pushed Bookmarks

• Pushed Bookmark Options

Pushing and Popping Bookmarks

To push a bookmark for the current line, placing it on top of the bookmark stack, use one of the following
methods:

• From the main menu, click Search → Bookmarks → Push Bookmark (or use the push_bookmark
command).

• Use the Go to Definition or Go to Reference feature: Press Ctrl+Dot (bound to the push_tag
command) to move the cursor from a symbol to its definition, or Ctrl+/ (bound to the push_ref
command) to navigate from a symbol to its reference, pushing a bookmark in the process. See Symbol
Navigation for more information.

• To pop a bookmark, from the main menu, click Search → Bookmarks → Pop Bookmark, press
Ctrl+Comma, or use the pop_bookmark command. The top bookmark on the stack is removed and
the cursor jumps to the location of the previous bookmark.

To pop all pushed bookmarks at once, use the pop_all_bookmarks command.

Tip

When you use the Go to Bookmark dialog to jump to a named bookmark (see Navigating Named
Bookmarks), SlickEdit pushes a bookmark in the process. This way you can quickly go back to
your previous location.

Pushed Bookmarks

441

Viewing Pushed Bookmarks

In most use cases, you will never need to see pushed bookmark locations or a list of pushed bookmarks,
because they are intended to act as temporary "breadcrumbs" as you explore your way through code.

However, there are two ways to see visual representations of pushed bookmarks:

• Enable the visual indicator - SlickEdit® can display a blue bitmap in the left margin of editor windows
at the location of each pushed bookmark. To enable display of the indicator, set the Show pushed
bookmarks option to True (Tools → Options → Editing → Bookmarks).

• Use the Bookmark Stack dialog - SlickEdit provides a Bookmark Stack dialog that shows a list of all
pushed bookmarks that are currently set. To display it, from the main menu, click Search →
Bookmarks → Bookmark Stack, or use the bookmark_stack command. The Bookmark Stack dialog
can also be used to navigate between and delete pushed bookmarks. See Bookmark Stack Dialog for
more information.

Pushed Bookmark Options

There are several options for pushed bookmarks:

• When using Symbol Navigation (Go to Definition or Go to Reference), if SlickEdit® opens a file that was
not previously open and you navigate away from it, SlickEdit prompts to close the visited, unmodified
file. To remove the prompt and specify the default action, set the option Automatically close visited
files (Tools → Options → Editing → Bookmarks). See Automatically Closing Visited Files for more
information.

• To delete pushed bookmarks automatically when a file is closed, set the Close deletes pushed
bookmarks option to True (Tools → Options → Editing → Bookmarks). SlickEdit automatically
deletes pushed bookmarks when the editor is closed.

• SlickEdit can automatically push a bookmark whenever you jump to the top or bottom of the buffer
(Ctrl+Home/Ctrl+End, or top_of_buffer/bottom_of_buffer commands, respectively). This is
convenient, for example, in C++: if you jump to the top of the buffer to add a #include statement, a
bookmark is pushed, so you can use Ctrl+Comma (pop_bookmark command) to get back to your
previous position. To enable this behavior, set the Top/bottom buffer pushes bookmark option to
True (Tools → Options → Editing → Bookmarks). Note that this option corresponds to the
def_top_bottom_push_bookmark configuration variable.

Commenting

442

Commenting
SlickEdit® makes commenting your code easy. You can comment out selected text, or type the start
characters for a new doc comment and have the doc comment skeleton automatically expanded.
SlickEdit also makes your comments easier to read by automatically wrapping them as you type. Existing
comments can be "reflowed" to match current comment wrap settings.

Commenting Blocks and Lines
Existing text in your code can be commented out (or uncommented) as follows:

• To comment out a selected code block, from the main menu, click Document → Comment Block (or
use the box command). This comments out the entire selection as a single block comment by
surrounding the block with comment characters you have specified in your comment settings.

• To comment out selected lines, from the main menu, click Document → Comment Lines (or use the
comment command). Each line in the selection is commented out as a single line comment. If there is
no selection, the current line is commented out. If using a block selection where there are partially
selected lines, comment characters are placed at the beginning and end of the selection. If using a
character selection where there are partially selected lines, comment characters are placed based on
your settings. The comment characters that are placed to the left and right of the text are also specified
in your comment settings.

• To uncomment lines in a selection, from the main menu, click Document → Uncomment Line (or use
the comment_erase command). Surrounding line comment characters are removed from the line. If
there is no active selection, the current line will be uncommented. Uncomment Line only works for well-
formed comments, which means that every line in the selection is commented and that the comment
characters occur in the same column.

Whether you are creating a comment block or a comment line, if the selected text already contains
comments, another set of comment characters is added. SlickEdit® attempts to preserve the indentation
level of the code and any existing comments when adding or removing comment characters.

Comment Block and Line Settings

To specify the characters and other settings used for comment blocks and lines, from the main menu,
click Document → Comment Setup (or use the comment_setup command). The Options dialog opens
to the language-specific Comments screen for the current language. You can also open this screen by
clicking Tools → Options → Languages → [Language Category] → [Language] → Comments.

The Comment block group box provides eight fields to specify the characters used in your commenting
style. If you want to apply a comment with no additional decoration, fill in the upper-left and lower-right
fields with the characters to begin and end a block comment. To draw a box around the comment, fill in
additional characters in the other fields. For example, you might put an asterisk in each of the other fields
to draw a box of asterisks around the block comment.

The Comment line group box contains fields for you to specify the characters to be inserted at left and

Commenting Blocks and Lines

443

right sides of a line comment.

For code examples and descriptions of the other available options, see Language-Specific Comment
Options.

Doc Comments
Doc comments are specially formatted comments that are processed by tools that extract and present the
information in a formatted manner. Doc comments follow a predefined structure, based on the
programming language and the tool processing the comments.

SlickEdit® supports the most common doc comment formats (Javadoc, XMLDoc, and Doxygen). When
you type the start characters for one of these comment formats and press Enter on a line directly above a
function, class, or variable, SlickEdit can automatically insert a skeleton doc comment for that style.

Note

In C#, you do not need to press Enter, as the skeleton comment is inserted after you type the
third slash.

To activate and configure automatic completion of doc comment skeletons, complete the following steps:

1. From the main menu, click Document → Comment Setup (or use the comment_setup command).
The Options dialog is displayed, open to the Comments option screen for the current language. You
can also open this screen by clicking Tools → Options → Languages → [Language Category] →
[Language] → Comments.

2. In the Doc comments box, check the option Automatically expand doc comments.

3. Click the Edit expansion button to configure the start characters and comment templates for the doc
comment style you plan to use for the selected language. For comments formatted in Javadoc, select /
**. For XMLDoc, select ///. For Doxygen, select /*! or //!.

4. Optionally, click the Edit expansion button to view or edit the doc comment template that is inserted
when you type the selected start characters. See Modifying Doc Comment Templates for more
information.

5. Click OK on the Options dialog.

Tip

If you modify a function signature, you can update the associated doc comment by running the
update_doc_comment command from the SlickEdit command line.

Doc Comment Examples

Javadoc Format

Doc Comments

444

To use the Javadoc commenting format for the selected language, select the start characters /** and use
style @param. Check Insert leading *. Using the following code sample:

/**[CURSOR_HERE]*/
int setDimensions(int length, int width, int height) {
...

}

Pressing Enter at the "CURSOR HERE" location results in the following automatic completion:

/**
* [CURSOR_HERE]
*
* @param length
* @param width
* @param height
*
* @return int
*/
int setDimensions(int length, int width, int height) {
...

}

XMLDoc Format

To use the XMLDoc comment format, select the start characters /// and the <param> style. Using the
following code sample:

///[CURSOR_HERE]
int setDimensions(int length, int width, int height) {
...

}

Pressing Enter at the "CURSOR HERE" location results in the following automatic completion:

/// <summary>
/// [CURSOR_HERE]
/// </summary>
/// <param name="length"></param>
/// <param name="width"></param>
/// <param name="height"></param>
/// <returns>int</returns>
int setDimensions(int length, int width, int height) {

Doc Comments

445

...
}

Doxygen Format

To use a Doxygen comment format, select the start characters /*! or //! (based on your preference) and
the \param style. Using the following code sample:

/*![CURSOR_HERE]*/
int setDimensions(int length, int width, int height) {
...

}

Pressing Enter at the "CURSOR HERE" location results in the following automatic completion:

/*!
* [CURSOR_HERE]
*
* \param length
* \param width
* \param height
*
* \return int
*/
int setDimensions(int length, int width, int height) {
...

}

Modifying Doc Comment Templates

To modify a doc comment template, from the main menu, click Tools → Options → Languages, expand
your language category and language, and select Comments. Then click the Edit expansion button. The
Doc Comment Editor dialog for the selected language opens. Click on the start characters for style of
comments you want to use to view and edit the associated comment template.

Doc Comments

446

The box on the left contains a list of doc comment start characters. The edit window on the right contains
the expansion for the selected start characters. See Alias Escape Sequences for a list of special escape
characters you can use inside doc comment templates, for example, to insert local function param names,
types, and return types. See Doc Comment Examples for an example of each comment style.

Tip

You cannot add or delete doc comment templates using the Doc Comment Editor. You can,
however, add a new doc comment expansion as a regular language-specific alias. See Creating
a Language-Specific Alias for more information. All of the doc comment escape sequences will
work as long as you expand the alias on a blank line above a function or class declaration.

String Editing
When the cursor is inside of a string, if you press Enter to split the line, SlickEdit® can automatically align
the string with the original string as well as insert the closing and opening quotes and, if necessary,

String Editing

447

operators. To set this option, click Document → Comment Setup (comment_setup command). The
Options dialog is displayed open to the Comments screen. Select the option Split strings on Enter.

Comment Wrapping
Comments can be set to automatically wrap to the next line as you type. This feature is available for C,
C++, C#, Java, and Slick-C® files.

To activate comment wrapping, from the main menu, click Tools → Options → Languages, expand your
language category and language, then select Comment Wrap. Select the option Enable comment wrap,
then select the type of comments you want wrapped (block comments, line comments, and/or doc
comments).

The Comment Wrap screen also provides options to control how comments are wrapped. There are
three types of width settings:

• Fixed - Comments will be formatted to a specified width.

• Automatic - Comments will be formatted according to the width of existing comments.

• Fixed right margin - Lines will break before a specified number of columns has been reached.

For more details on comment wrapping configuration, see Language-Specific Comment Wrap Options.

Reflowing Comments

After configuring comment wrap settings, you can use the Reflow Comment dialog to reflow block
comments, paragraphs, or a selection of the current file. To display this dialog, click Document → Reflow
Comment. For more information on the available options, see Reflow Comment Dialog.

Comment Wrapping

448

Code Annotations (Pro only)

Code Annotations Overview (Pro only)
Code Annotations provide a mechanism to store information about the code without actually modifying the
code. Unlike code comments, code annotations are not stored in the source file but in an external file. The
information you record is associated with a specific location in the code and can be viewed while you
work on a source file.

You can use Code Annotations for recording various information, like comments about something that
needs to be changed, tasks that need to be performed (see Using Code Annotations to Record Tasks), or
comments in preparation for a code review (see Using Code Annotations for Code Reviews). Anything
you can record in a code comment can be stored in a Code Annotation.

Because code annotations are not stored in the source code, you can use them to record private
information you don't want to share with the rest of the team. Or you can use code annotations to record
information that is shared with the team but should never be visible in the source code.

Annotation Types (Pro only)

Each annotation contains a set of data fields specific to that type of annotation. All annotations contain a
set of default fields, including the author who created or last edited this annotation, and the date this
annotation was last changed. Code annotations used for different purposes also include specific fields
related to that purpose. For example, a task annotation will also have a due date and a field to record the
person who has been assigned this task. A code review annotation will include a text field for the
proposed resolution and a status field indicating whether this change was accepted or rejected.

SlickEdit® provides some predefined annotation types, but you can create your own by specifying the set
of fields contained. For each field, you specify the name of the field, the type of the field, and the default
value. When an annotation of that type is created, you are prompted for these values. See Managing
Annotation Types for more information.

Purpose-Based Locations

When you create a code annotation, you specify where it is to be stored. You select the location based on
the purpose of the annotation. The location can be one of these values:

• Personal - These annotations are for your own use and not intended to be shared with others.
Personal annotations are stored in your configuration directory. They are not specific to any workspace.

• Workspace - Used to record information about files in the current workspace. The annotation file is
stored in the same directory as your workspace file (.vpw) and uses the same base file name but with
a different extension. These are intended to be shared with anyone else working in this workspace, so
the annotation file should be checked into source control.

• Project - Used to record information about files in a specific project. The annotation file is stored in the
same directory as your project file (.vpj) and uses the same base file name but with a different

Code Annotations Overview (Pro
only)

449

extension These are intended to be shared with anyone else working on this project.

• User-Defined - These annotations are stored in a file of your choice. These annotations cannot be
readily shared since they store a full path to the referenced file. Unless two users have the same
directory structure on their machines, the annotations will not be able to locate the referenced source
files.

Workspace and Project annotations are very similar. If you don't create too many annotations, you could
save all of your annotations as Workspace annotations. However, if you have projects that are shared
between workspaces, you should use Project annotations so that the information is available regardless
of which workspace you are using. If you create a lot of annotations, you may wish to use Project instead
of Workspace so that you can view the list of annotations for a single project, providing a way to view a
more manageable subset of annotations.

See Managing Annotation Files for more information.

Private and Shared Annotations

Code annotations can be private or shared. Annotations are shared by sharing the annotation file with
other users. Like source files, annotation files are most easily shared using a version control system.

Only Workspace and Project annotations can be shared effectively. Because they refer to files in the
workspace or project, the path to those files is stored relative to the workspace or project. Even if users
have the same workspace in different directories, SlickEdit® will be able to locate the source files
referenced by annotations. Personal annotations and User-Defined annotations are not sharable. They
store a fully qualified path to the referenced file. Unless two people have the same directory hierarchy on
their machines, SlickEdit will not be able to located the referenced source files.

Relocatable Code Marker

Code Annotations use a relocatable code marker to store the location within the source code. This allows
SlickEdit® to find the new location if someone makes edits to the file externally, like editing the file with a
different editor. The next time you open the file, SlickEdit checks the location of each code marker and
verifies that it is still correct. If necessary, SlickEdit uses stored information to locate the correct line of
code for this annotation. If the code has changed too much, SlickEdit may not be able to find the new
location, and you will be prompted to find the new location yourself. This will only happen when the code
near the code marker has been heavily edited.

Annotations Tool Window and File Manager

SlickEdit provides a Code Annotations tool window that lists all of the currently visible annotations. This
tool window allows you to filter the set of visible annotations. The primary filter is by type. If annotations of
more than one type are displayed, only the default fields common to all annotations are displayed in the
annotation list. You can use the tool window to create, edit, and delete code annotations as well. See
Managing Annotations for more information.

Code Annotations are stored in files, and they become visible when the annotation file is opened.
SlickEdit automatically opens the annotations from your personal annotations file along with those from
the workspace and project annotation files. You can use the Annotation File Manager to open any other

Code Annotations Overview (Pro
only)

450

annotation files you like. See Managing Annotation Files for more information.

Managing Annotations (Pro only)
The Code Annotations tool window provides a detailed view of annotations that you have created as well
as operations for adding, modifying, copying, moving, and removing annotations. From this window, you
can also manage annotation files and create your own annotation types.

To display the tool window, from the main menu click View → Tool Windows → Code Annotations, or
use the annotations_browser command on the SlickEdit command line.

Creating Annotations

Creating a code annotation is similar to setting a bookmark or breakpoint. To create a new annotation:

1. From within the editor window, position the cursor on the desired line of code.

2. There are three methods for initiating a new annotation, after which the New Annotation dialog is
displayed:

• Right-click and select Create Code Annotation.

• Click the Add button on the Code Annotations tool window.

• Use the new_annotation command on the SlickEdit® command line.

3. On the New Annotation dialog, select an Annotation Type from the drop-down list.

4. Select where the annotation is to be stored from the Annotation File drop-down list (see Managing

Managing Annotations (Pro
only)

451

Annotation Files), then click OK.

5.
SlickEdit displays a dialog with fields matching the selected annotation type. Some of the fields are
common to all annotation types, while others are specific to the chosen annotation type. Some of the
values, like author, creation date and time, and source file where the annotation marker is located, are
presented read-only, since they cannot be changed. Each dialog also contains specific fields
applicable to the annotation type:

• Comment - The Comment Annotation dialog provides a box for typing a text comment.

• Task - The Task Annotation dialog provides boxes for typing the name of the person this task is
assigned to, the due date, and a description. Note that the Due Date field allows any text input.

• Review Comment - The Review Comment Annotation dialog provides boxes for typing an issue, a
resolution, and a status.

6. After entering the annotation details, click OK.

Viewing Code Annotations

Annotations in your source code are indicated with a yellow Annotation bitmap in the left margin of
the editor window. Hover the mouse over a bitmap to see a preview of the annotations on that line.

The Code Annotations tool window is used to view and work with a list of your annotations and displays
them in a table format, by default, in the order of last operation. Click on any column header to sort by that
column. When you sort, an arrow on the column header shows the ascending or descending order. Drag
the column size bars to resize columns to your desired width.

The Show Types area lets you choose what types of annotations to display in the tool window. Click and
drag the separator bar to resize this area.

A preview pane, located on the right side of the tool window, shows the details of the selected annotation.
This pane can also be resized by clicking and dragging the separator bar.

By default, the tool window view is set to show all annotations. To view only annotations of a specific type,
select it in the Show Types list. Click (Show All) to display all annotations again. When (Show All) is
selected, only the default fields common to all annotations are displayed in the annotation list.

Double-click on an annotation in the tool window to go to the location of the annotation in the source
code. You can also select Go to Annotation from the right-click context menu, or use the
show_annotation_source command on the SlickEdit® command line. Note that this command only
works from within the tool window.

Filtering Code Annotations

To filter the list of visible annotations, use the filter boxes at the top of the tool window. Use the Filter on
Column drop-down list to select a column to filter by. When you select a column, the Filter Key drop-
down list is populated with all of the entries for that column, and you can select the item that you want
displayed. For example, to see all annotations that share the same author, select Author in the Filter on

Managing Annotations (Pro
only)

452

Column drop-down, then select the author's name from the Filter Key drop-down list.

Note

The columns listed in the Filter on Column drop-down list depend on the annotation types
selected. If you have selected (Show All), then only the columns shared by all annotation types
will be listed. If you don't see the column you want to filter by, then you may need to select a
different annotation type.

Copying and Moving Annotations

Copying

You can create a new annotation by copying an existing one. This is useful if you have similar lines of
code that need to have similar annotations. From within the Code Annotations tool window, select the
code annotation to copy, then click the Copybutton . Alternatively, right-click on a selected

annotation and select Copy. When you copy an annotation, your name is assigned as the author.

Moving

Click the Relocate button on the tool window to move the selected annotation to the current line in

the current file.

Alternatively, you can click and drag the yellow Annotation bitmap in the editor window margin to the
desired location. If the line contains multiple annotations, the first annotation is moved.

Note

You cannot move annotations between files. If the selected annotation is not located in the
current file, the Relocate button on the tool window is unavailable.

Editing Annotations

SlickEdit® allows you to edit the data that was entered for existing annotations. You cannot change the
original source file, author, date, or annotation file, but the data entry fields can be edited.

To edit an existing annotation, from within the Code Annotations tool window, select the annotation to edit
then click the Editbutton . You can also right-click in the tool window and select Edit or use the

edit_annotation command on the SlickEdit command line. Note that this command will only work for an
item selected in the tool window.

Deleting Annotations

To delete an annotation, from within the Code Annotations tool window, select the annotation to delete
then click the Delete button. You can also right-click and select Delete or use the delete_annotation

Managing Annotations (Pro
only)

453

command on the SlickEdit® command line. Note that this command will only work for an item selected in
the tool window.

Managing Annotation Types

SlickEdit® provides several predefined annotation types: Comment, Task, and Review Comment. To
define your own annotation types, from the Code Annotations tool window click the Annotation Types
button , or use the annotation_definitions command on the SlickEdit command line. The

Annotation Types dialog is displayed.

Creating a new annotation type is similar to creating a form. First you define a name, then you define the
fields. The name that you give the new type will be the title of the dialog that appears when you create a
new annotation of that type. The fields that you define will be the fields that are available on the dialog.

To create a new annotation type:

1. In the Types area, click the green Plusbutton.

2. Type a name for your new annotation type.

3. In the Fields area, click the green Plusbutton.

4. From the Field Type drop-down list, choose the type of control you want to use, then click OK.

5. The third area on the Annotation Types dialog is now populated with the Field Type that you just
added. Click the green Plusbutton in this area to define values for the control.

6. Repeat Steps 3 through 5 to add more fields to your new type. Use the Up/Down arrows to control the
order in which the fields should appear on the form.

7. Repeat these steps to define additional types.

8. Click OK on the Annotation Types dialog when finished.

Managing Annotations (Pro
only)

454

Now, when you create a new code annotation, you can use the newly defined type(s) that will be
displayed in the Annotation Type drop-down list on the New Annotation dialog.

To delete the selected type or a field, click the red X button next to the Types or Fields area.

Handling Annotation Type Conflicts

Every annotation file contains the annotation type definitions for the annotations it contains. If a user
modifies the type definition for an annotation, it will conflict with the type definition for annotations in other
files. All annotation types by the same name must have the same definition. SlickEdit® detects any
discrepancies between types and tries to rectify them.

When two conflicting types are found, SlickEdit prompts you for which definition to use. Once you have
selected the master type, SlickEdit attempts to correct annotations that matched the other type. The
resolution depends on the category of the change:

1. Field added - The new master type contains a field not present in the other version of this annotation
type. SlickEdit will add the new field to all annotations of that type the next time they are saved.

2. Field deleted - The new master type is missing a field that is present in the other version of this
annotation type. SlickEdit will delete that field from all annotations of that type the next time they are
saved. This will result in the data in that field being lost.

3. Field modified - The new master type contains a field by the same name as a field in the other
annotation type but the definition of the two fields differ. SlickEdit will attempt to coerce the data from
the one type to the other. Since all data is stored as text, this will work in many cases. In some cases
this will result in data loss. For example, if data is coerced from a text type to a discrete type (like
Dropdown, List, or Checkbox), data will be lost if the text value doesn't match one of the predefined
values for this control.

This system for resolving conflicts in Annotation Types does not allow you to merge two sets of changes
to the same type. For example, if two users both add a field to the same type, one of them will be lost.
Because of this, changes to annotation types should be made in a deliberate, planned manner and rolled
out to the team in a way that avoids this issue. When a shared annotation type needs to be changed,
have one person make that change and distribute a document with that type. The rest of the team can
update their annotation files by opening that document while other documents are open. Remember,
there is no centralized repository for annotation types, so conflict resolution is only performed on the set
of open documents. To update multiple workspaces, you will have to open each workspace and then
open the document containing the changed type.

To avoid conflicts in your personal annotation types, you may want to create your own types. Conflict
resolution is performed using the name of the annotation type to uniquely identify a type. If the types you
use in your personal annotations have their own, unique names then you can avoid conflicts with
annotation types in other documents.

Managing Annotation Files

Code annotations are stored in files with a .sca extension. There are four types of locations for these
files, based on the purpose of the annotation: Personal, Workspace, Project, and User-Defined. Each
of these are "aliases" that correspond to a path on your computer where the annotation file is stored. You

Managing Annotations (Pro
only)

455

specify the location when you create new code annotations by selecting from the Annotation File drop-
down list on the New Annotation dialog.

Personal Annotations

Personal annotations are for your own private use and are not specific to any workspace or project. They
are stored in the personal.sca file located in your configuration directory.

Workspace Annotations

Workspace annotations are used to record information about files in the current workspace. They are
intended to be shared with others using the same workspace, so you can check the annotation file into
source control. These annotations are stored in a .sca file located in the same directory as your
workspace file (.vpw). The base file name is the same as your workspace base file name, except it is
appended with "_workspace". For example, if your workspace is named Diff.vpw, your Workspace
annotations are stored in Diff_workspace.sca in the same directory.

Project Annotations

Project annotations are used to record information about files in projects. They are also intended to be
shared with others using the same project, and can be checked into source control. Project annotations
are stored in a .sca file located in the same directory as your project file (.vpj). The base file name is
the same as your project base file name, except it is appended with "_project". For example, if your
project is named Diff.vpj, your Project annotations are stored in Diff_project.sca.

User-Defined Annotations

User-defined annotations are stored in a file of your choice, and can be kept private or you can share
them if you want. You will need to specify a location path for user-defined annotations prior to creating
new annotations for this location type. This is done through the Annotation File Manager.

Annotation File Manager

You can view annotation file information and add, open, or close user-defined annotation files by using
the Annotation File Manager. It can be accessed from the Code Annotations tool window by clicking the
Annotation Files button.

Managing Annotations (Pro
only)

456

The top of the dialog contains a list of all annotation files that are currently open, showing the alias, the
name of the file, and the location path. Click on any column header to sort by that column. An arrow in the
header indicates the ascending or descending sort order. Click and drag to resize any column. You can
also click and drag the horizontal separator bar to resize the entire Annotation Files area.

Personal, Workspace, and Project annotation files are always open and displayed. User-defined
annotation files are also displayed if you have created them and they are open.

Use the buttons on the Annotation File Manager to perform the following operations on User-defined
annotations:

• Click the New Annotation File button to create a new User-Defined annotation file. The New

dialog is displayed where you can specify the name and path of the new file.

• Click the Open Annotation File button to open the selected User-Defined annotation file. The

Open dialog is displayed where you can specify an annotation file to open (note that annotation files
have the extension .sca).

• Click the Close Annotation File button to close the selected User-Defined annotation file. Closing

an annotation file removes its associated types from the list when creating new annotations, and also
removes the margin indicators for the associated annotations. This is useful to prevent cluttering,
should the annotation file have many types or many annotations.

The bottom of the Annotation File Manager contains details about the selected file. The Annotation File
Comments area shows a tree view of the annotation types and the specific annotations that are

Managing Annotations (Pro
only)

457

contained in the file. Click and drag the separator bar to resize this area. When you select a task or
annotation in this list, details are shown on the right. If a task type is selected, the dialog displays the
fields and details for that type. If an annotation is selected, the dialog displays the contents of that
annotation.

The Version Info area displays the version information for the selected type or annotation, include the
original author, date of creation, version number, and the author and date of the last edit, if applicable.

Using Code Annotations to Record Tasks (Pro only)
Code annotations provide a convenient mechanism to record tasks associated with specific locations in
the code. You can use Personal annotations to record your own tasks, or use shared annotations to
assign tasks to another team member.

SlickEdit® includes an Annotation Type for tasks, called Task. Along with the standard fields, it adds
three additional fields: Assigned To, Due Date, and Description. Follow the instructions in Creating
Annotations to create a new task annotation, and select the Task annotation type.

If this is a personal task, select (Personal Annotations) for the location value. If this task is for another
team member or you want others to see this task, select (Workspace Annotations) or (Project
Annotations) for the location. See Managing Annotation Files for more information about annotation file
locations.

Using Code Annotations for Code Reviews (Pro only)
Code Reviews provide an excellent use for Code Annotations. In a typical code review process, code is
reviewed by a number of team members, who record issues and forward their comments to a review
coordinator. During the review, the comments are discussed and a resolution is recorded.

SlickEdit® includes an Annotation Type for code reviews, called Review Comment. Along with the
standard fields, it also includes Issue, Resolution, and Status. If your review process requires a different
set of fields, refer to Managing Annotation Types for information on how to create your own.

There are many ways to implement a code review using SlickEdit and Code Annotations. We will describe
one approach that should be the easiest. You may find other methods that work best with your processes.

Prior to the review, the review coordinator creates a Workspace in SlickEdit for the files to be reviewed.
Copy those files to the Workspace directory and then add the files to the Workspace. If you have modified
the stock definition of the Review Comment, you can make sure that everyone is using the same
definition by creating a Workspace Annotation using that definition. You might put one on the first line of
code with instructions for how to perform the review.

Send a copy of this workspace to each of the reviewers. This can be done by compressing the directory
into a ZIP, TAR, or other archive file. Each reviewer then reviews the code and records their comments
using the Review Comment annotation type as a Workspace annotation. When they are finished, they
send the Workspace's .sca file back to the review coordinator.

The review coordinator will merge the .sca files together to produce a single workspace annotation file.
Since these are XML files, they are easy to read and merge using many different tools. The consolidated

Using Code Annotations to
Record Tasks (Pro only)

458

annotation file is used for the review walkthrough. You can also accomplish the sharing and merging with
most source control tools. Many provide automatic merging capabilities that will add the inserted lines into
the master file. You'll have to test your system to make sure that the merges it performs are safe. If not,
you can use SlickEdit's DIFFzilla® to compare and merge the files.

During the review meeting, the review coordinator opens the single, merged document and then walks
through the issues by double-clicking on each in the Code Annotation tool window. The review team
discusses the recorded comment, and appropriate resolution remarks and status are recorded for each.

Message List (Pro only)

459

Message List (Pro only)
Message List is a feature that shows output messages from processes running in SlickEdit®, such as
build warnings and errors.

Messages are automatically displayed in the Message List tool window, docked in the bottom tab group of
the editor by default. The tool window shows messages in tabular format, with columns for the message
type (warning, error, etc.), source file and line number associated with the message, a description, the
message origin (Build, Java Live Errors, XML validation, etc.), and the date. Messages can be filtered and
sorted. You can clear the tool window of all messages, or clear only messages with a certain creator or
type.

Messages are associated with a location in the code. When the cursor is on a line with an error or
warning in the source code, the corresponding message in the Message List is highlighted. You can also
navigate to the message in the source code from within the Message List by double-clicking on it (or right-
click on a selected message and click Go to code location).

Processes That Use Message List
The following processes originate messages that are automatically displayed in the Message List:

• Build operations (such as Build → Compile or Build → Build) show Warning and Error messages.
See Working with Build Errors for more information.

• Live Errors, when it is enabled, shows Caution and Error messages. See Java Live Errors and
Overview for more information.

• XML validation shows Error messages. SlickEdit® automatically validates XML files that you open in
the editor. You can force a validation check at any time with the xml_validate command.

Message List Tool Window (Pro only)
The Message List tool window is docked to the bottom tab group of the editor by default. Display of the
tool window can be toggled on/off by clicking View → Tool Windows → Message List or by using the
toggle_messages command. To display the tool window on demand, use the activate_messages
command.

Processes That Use Message
List

460

Messages are shown in tabular format with the information divided into columns. Click on a column
header to sort by that column in ascending order, or click again to sort in descending order. An arrow in
the column header indicates the ascending or descending sort order. Drag the column separators to
resize columns.

The columns are:

• Indicator - The first column in the Message List window shows the icon that corresponds to the
message in the code. The same icon is used in editor window margins to indicate lines that contain
messages. This column can also be used as a type of "To Do" checklist. Click inside a cell in this
column to place a checkmark next to the message, and click again to clear it. This could be useful if
you just want to change the state of a message, rather than removing the message.

• Type - This column shows the type of message, such as Error, Warning, etc.

• Source File - Messages are associated with a location in the code. This column shows the complete
path to the source file containing the message. As you resize this column, the path is elided to keep the
file name visible.

• Line Number - Shows the line number containing the message.

• Description - The text of the message.

• Creator - The Creator is the process that originated the message, such as Build, Java Live Errors, XML
validation, etc.

• Date - This column contains the date and timestamp showing exactly when the message was
generated. This could be useful if a process is lengthy, to see the order in which messages were
generated.

As you move the mouse over messages the Message List window, a tool tip shows the message detail.
You can also see a preview of the location of the message in the source code in the Preview Tool
Window, assuming it is docked so that both are visible, by single-clicking on a message in the Message
List.

When the cursor is on an error or warning in the source code, the corresponding message in the
Message List is highlighted. Double-click on a message in the Message List and the cursor moves to that
message in the source code (or select the message and choose Go to Message from the right-click

Message List Tool Window (Pro
only)

461

context menu).

For messages originating from Build processes, the Build tool window shows Build output for a selected
message when you choose Go to Build Output from the right-click context menu.

Filtering and Removing Messages

Use the Creator and Type drop-down boxes at the top of the tool window to filter the Message List to
only show messages with the selected Creator and/or Type. The default value for both is (show all).

The Clear button is used to remove all visible messages from the Message List. Clicking Clear also
resets the filters to (show all), displaying all messages except for the ones you just cleared. The
messages do not appear again until/unless the originating operation regenerates them.

Remove selected messages in the Message List by choosing Delete from the right-click context menu.

Document Overview Bar

462

Document Overview Bar
SlickEdit features an overview bar that will be positioned alongside vertical scrollbars to indicate the
position of important items in the current document relative to the current scroll position in the document.
This allows you to glance at the scrollbar and get a quick overview of where in the document different
items exist. To quickly scroll a marked location into view, you can drag the scrollbar slider to the mark, or
click on the mark itself.

The following items are marked up on the SlickEdit edit window scrollbar:

• Find output when List all occurrences or Highlight all matches is on. These options can be found on
the Find Tab. See Find and Replace for more information about searching within the application.

• Compiler errors and warnings

• Named Bookmarks

The Document Overview bar is also used in the DIFFzilla® edit window, shown below.

Document Overview Bar

463

The following items are marked up on the DIFFzilla window scrollbar:

• Modified lines

• Inserted lines

• Imaginary (deleted) lines

For larger files, the scrollbar slider will not be an exact representation of the viewable portion of the
screen since there is a minimum size for the scrollbar slider. In these cases, clicking on the markers will
be more useful.

Beautifying Code

464

Beautifying Code

Code Beautifiers
Code beautifiers, available for many languages, reformat the layout of existing text based on settings that
you specify, such as begin/end styles and indenting.

To beautify selected lines of code, or to beautify the entire buffer, from the main menu, click Tools →
Beautify (or use the gui_beautify command). A dialog box is displayed with functions specific to the type
of project that is active. If an HTML project is active, then the HTML Beautifier dialog appears with
options. If a GNU C/C++ project is active, then the C/C++ Beautifier dialog opens, and so on. Beautifying
is supported for the languages listed below. Follow the cross-reference links to learn more about working
with each beautifier.

• C/C++, Objective-C, Java, C#, Python, JavaScript, VBScript, PHP, SystemVerilog, Verilog, Groovy -
These languages use beautifiers accessible through the Language options. See Beautifiers.

• HTML, CFML, XML, and XSD - These beautifiers contain the same options and settings. See HTML
and XML Beautifiers.

• Javadoc - See Javadoc Beautifier Options Dialog.

Code Beautifiers

465

Live Errors

Overview
The Live Errors system provides error and warning feedback as you edit the source code, using user
configurable syntax checking programs to generate the errors.

Languages with well known checkers, such as Python & Pylint, are shipped as pre-configured profiles for
convenience.

Configuring Live Errors
Live Errors profiles are grouped by source language. See Language-Specific Live Errors Profiles for
details.

Overview

466

Reflowing Text
To reflow text in the current paragraph according to your margin settings, click Document → Reflow
Paragraph or use the reflow_paragraph command. Margin settings are defined on the language-specific
Word Wrap options screen (see Language-Specific Word Wrap Options).

When you reflow a paragraph, the cursor will be kept at the same location within the current paragraph
after reflow has occurred, unless the Reflow next option is changed (Tools → Options → Editing →
General). If Reflow next is set to Cursor on next paragraph, the reflow_paragraph command places
the cursor on the next paragraph after it has reformatted the current paragraph.

Comments can also be reflowed according to the comment wrap settings. See Reflowing Comments for
more information.

Quick Refactoring (Pro only)

467

Quick Refactoring (Pro only)
Refactoring is a code editing technique used to "clean up" and improve the understandability of source
code without affecting the code's external behavior. Quick Refactoring is a feature set that provides
several fast and easy-to-use refactoring methods:

• Quick Rename ® Rename a symbol under the cursor or any symbol selected in the Defs or Symbols
tool windows.

• Quick Extract Method ® Create a new method using currently selected lines as the body and any
undeclared variables as parameters.

• Quick Modify Parameter List ® Use to add, delete, and re-order parameters for a selected function.

• Quick Replace Literal with Constant ® Replace a selected literal with a constant.

Quick Refactoring performs refactorings using Context Tagging Features rather than a formal language
parser. Quick Refactorings are supported for C++, C#, Java, and Slick-C®.

Available Refactorings (Pro only)
To access Quick Refactoring, from the main menu, click Tools → Quick Refactoring. Quick Refactoring
menu can also be accessed from the right-click context menus in the Symbols and Defs tool windows.

Tip

Refactoring operations can modify more than one file. You can undo all of the refactoring
modifications in one step by clicking Edit → Undo Refactoring.

Quick Rename

Quick Rename uses the Context Tagging® to rename a symbol under the cursor or any symbol selected
in the Defs or Symbols tool windows. This operation works for all tagged languages. Quick Rename does
not treat renaming classes, constructors, and destructors as a special case. Quick Rename will rename
all of the overloads of a function. Quick Rename does not rename overridden methods (in parent and
child classes).

Available Refactorings (Pro
only)

468

Quick Extract Method

After selecting a set of lines, Quick Extract Method creates a new method with the selected lines as the
body. It discovers any undeclared variables and creates them as parameters to the new method. The
extracted method is created in the same scope as the original method.

Quick Modify Parameter List

This refactoring allows you to add, delete, and re-order parameters for a selected function. The

Available Refactorings (Pro
only)

469

refactoring will modify the parameter list for the selected function and all of its counterparts within the
class hierarchy.

Quick Replace Literal with Constant

Replaces the selected literal with a constant, replacing use of the literal with the new constant.

Reviewing Refactoring Changes (Pro only)
When a refactoring finishes, the Refactoring results dialog box is displayed, allowing you to review the
changes.

There are three panes in this window:

• The left pane is read-only and shows the original file(s).

• The right pane shows the refactored file(s). For convenience, this pane can be edited.

• The bottom pane lists all files that have been modified by the refactoring. Clicking on any file in this list
brings that file into view, where it can be reviewed and edited.

Reviewing Refactoring Changes
(Pro only)

470

Note

NOTE If you prefer to view the modified file on the left-hand side, there is an option to reverse the
left and right panes. See Refactoring Options and ??? for more information.

Click Save All at the bottom of this window to save all the refactoring and editing changes that were
made on all files. Click Cancel to discard changes and have all files remain the way they were before the
refactoring process.

Click Next Fileor Prev File to advance to the next or previous file in the list of files.

Click Next Diffor Prev Diff to advance to the next or previous change made by the refactoring.

Click File>> to restore the contents of the currently selected file to its original contents.

Click Block>> to restore an entire block of changes to the original contents. Click Del Block to remove a
block of code inserted by the refactoring. Click Line>> to restore the current line to its original contents.

Some refactorings, in particular Quick Modify Parameter List, may require further user input to complete
the refactoring operation. In this case each input request will be displayed under the file it is in, and there
will be two additional buttons: Next Input and Prev Input. You will not be able to save the refactoring
results until you have resolved all of the input requests.

Reviewing Refactoring Changes
(Pro only)

471

472

Language-Specific Editing

This chapter describes the language-specific editing features of SlickEdit.

473

Introduction to Language-Specific Editing
Many features in SlickEdit® are language-specific and based on the language editing mode. You can also
configure different settings for different languages. See Language-Specific Options and Language Editing
Mode below for more information.

Language-Specific Options
Options for language-specific features can be set through the Options dialog (Tools → Options →
Languages → [Language Category] → [Language] or config command). A shortcut method to access
language options for the current buffer is to use the Document → [Language] → Options menu item, or
the setupext command. This will open the Options dialog to the General language-specific option screen
for that language. See Language Options for more information.

Language Editing Mode
SlickEdit® uses the extension of the current file to determine what language you are using, thereby only
making available the options and features that are possible in that language.

Manually Setting the Language Mode

If you have a file with a non-standard extension or no extension at all, you will need to manually specify
the language editing mode. To specify a mode, from the main menu click Document → Select Mode (or
use the select_mode command). The Select Mode dialog is displayed with a list of modes from which to
select.

Managing Languages
Supported languages are listed in the Language Manager (Tools → Options → Languages →
Language Manager). You can use this tool to add languages and delete languages you have added.

Language-Specific Options

474

Installed languages are denoted in the list with a SlickEdit bitmap. Use the filter box at the top of the
language list to search the list incrementally as you type. Use the Add Language and Delete Language
buttons to add and remove languages (see Adding and Removing Languages below). Click Settings to
jump to the Language-Specific General Options screen for the selected language.

Adding and Removing Languages

To add a language, complete the following steps:

1. Click Add Language on the Language Manager screen. The Add New Language dialog is displayed.

Managing Languages

475

2. In the Mode name field, type a name for the new language (for example, C/C++, Java, etc.).

3. In the File extensions field, type the file extension(s) associated with this language. Separate each
extension with a space, and do not include the dot character (for example: c h cc cpp). The
extensions you list here, if not already defined, are added to the File Extensions list on the File
Extension Manager. If you specify an extension that already exists and is associated with another
language, a confirmation prompt is displayed.

Tip

To see a list of file extensions that are associated with a language, see the language-specific

Managing Languages

476

General options page (Tools → Options → Languages → [Language Category] →
[Language] → General).

4. In the Color coding profile name field, specify the language identifier so that SlickEdit® knows what
elements to color. Use the drop-down list to select the profile.

5. If you wish to copy settings from an existing language, check the Copy settings from checkbox and
select the language from the combo box. Then check any boxes that correspond to settings you wish
to copy from the selected language to your new language. These options are organized by their
respective nodes in the options dialog. For more information, see Language Options.

6. Click Add Language. The new language will be displayed in the Languages list as well as the list of
document language modes on the Select Mode dialog (Document → Select Mode).

To delete a language you have added, select it in the Language list and click Delete Language. Installed
languages cannot be deleted.

Managing File Extensions
The File Extension Manager (Tools → Options → Languages → File Extension Manager) is used to
add and work with file extensions in SlickEdit®.

Managing File Extensions

477

Recognized file extensions are listed in the File Extensions list. There is also an All Extensions item in
the list to allow you to set certain settings for all known extensions. See Adding and Removing File
Extensions for more information.

The settings on the File Extension Manager screen are described as follows:

• Associate with language - This drop-down shows the language that is associated with the selected
file extension. Associations are created when you add a new language using the Language Manager.
You can use this field to change the language association.

The "(Plain Text)" option at the top of the list is an easy-to-find alias for the default "Plain Text" mode
for text files.

The "(Ignore File Suffix)" option instructs SlickEdit to ignore this file extension and attempt to map the
filename to a language mode based on the rest of the file name. For example, if you have a file named
"FileName.ada.orig", and ".orig" is set to "(Ignore File Suffix)", then SlickEdit will use "FileName.ada"
to determine the language mode (e.g., "Ada"). This option is very useful to help SlickEdit intelligently
select the document mode for backup copies of files.

• Language Setup - Click this button to jump to the language-specific General options screen, which
shows a list of file extensions associated with the selected language and provides general language-
specific options.

• Encoding - Each extension can have its own encoding specification. Both the language-specific and
global option settings are overridden if an encoding is previously specified in the Open dialog box. The
encoding used to override default encoding settings is recorded and this setting is used the next time
the same file is opened. This provides per-file encoding support. If the extension-specific encoding is
set to Default, then the global setting defined on the Load File Options screen (Tools → Options →
File Options → Load) is used. You can set the encoding for all extensions at once by selecting All
Extensions in the File Extensions list and then selecting the encoding you want. Note that Unicode
support is required to work with encodings. For more information about working with encodings and
Unicode, see Encoding.

• Open Application and Use file association - These options are mutually exclusive. Open
Application is used to specify the application in which to open files when you use the Projects tool
window to open them. Use the arrow to the right of this field to insert escape sequences that are used
as arguments. On Windows, if the option Use file association is selected, the association specified in
your operating system is used instead, overriding Open Application. When Use file association is
selected, SlickEdit checks the Windows registry for the application associated with the selected file
extension and invokes that application to display the file, rather than the one specified by Open
Application. Note that Use file association is a Windows-only option. To open a selected file from the
Projects tool window, double-click on it or right-click and select Open from the context menu.

Adding and Removing File Extensions

If SlickEdit® does not provide a file extension that you need to use, you can add it. If you have added a
new language to SlickEdit with a file extension that was not already defined, the new extension is added
to the File Extension list automatically. Or you can just add a new extension by clicking New, and the New
Extension dialog is displayed.

Managing File Extensions

478

Enter the new file extension in the Extension box (without the dot character), then select the associated
language from the Language drop-down list and click OK. If the language does not exist, cancel this
dialog and add it using the Language Manager first (see Adding and Removing Languages).

If you do not want your new extension to refer to a language, select "(Plain Text)" in order to treat the file
as a plain text file.

If you want SlickEdit to treat file files with the new extension as binary files (and display them in hex mode
by default), select "binary.

\n\nIf you want to ignore the suffix of a compound file extension, for example, \"test.cpp.bak\", select
"(Ignore File Suffix)".

To delete the selected extension from the File Extensions list, click Delete.

Managing Extensionless Files
When you open a file within the application, the extension is used to determine which language mode
should be associated with the file. You can also use Advanced File Mappings to associate languages to
files that do not have extensions or need to be recognized by location/filename. Advanced File
Mappings can be accessed by going to Tools → Options → Languages → Advanced File Mappings
and is shown below:

Managing Extensionless Files

479

File Mapping

If you wish to select a specific file and map it to a language, add it to the Files list. Use the Add button
next to the Files list to add a file mapping. Select your file and language and click OK.

Now that file is treated as a file of the language you specify. You can edit or delete a file mapping using
the appropriate buttons.

Pattern Mapping

You can also specify mappings for files that match a certain pattern. For instance, if you want all files that
are named "foo" or all files located in “C:\bar\” to be mapped to a specific language, you can set up a
pattern mapping.

To create a pattern map that matches a filename, click the Add filename button. You can select a file
using the ... button or you can simply type in a filename. You can use * as a wildcard in the filename.
Select the language you want. When you click OK, the filename pattern will be added to the list. Notice
that the filename will be translated into an Ant pattern that will match any file in any directory with that
name.

Managing Extensionless Files

480

To create a pattern map that matches a directory, click the Add path button. Select a path using the ...
button or type one in. Use the Recursive checkbox to specify if you want all files below that directory or
only files directly under it. Select the language you want and click OK. When the item is added to the list,
it will be translated into an Ant pattern that matches files under that directory.

If you wish to create a more complex pattern than a simple filename or path match, use the Add pattern
button. You can enter your own Ant pattern and map it to a language.

The mappings in the Patterns list can be re-ordered. When an extensionless file is encountered, the top
mapping is checked first. If the file matches the pattern, then the associated language is used. If not, then
the second pattern is checked. Each pattern is tested against the file until a match is found. Use the Move
up and Move down buttons to reorder the patterns in order of desired precedence. Use the Edit and
Delete buttons to do the respective actions.

Ada

481

Ada
This section describes some of the options that are available for Ada.

Ada Formatting Options (Standard or Community only)
To access the Ada Formatting Options, from the main menu, click Tools → Options → Languages,
expand Application Languages > Ada, then click Ada Formatting Options.

Note

Languages similar to Ada may have similar Formatting Options screens that are not specifically
documented.

The following options are available for Ada:

• Indent with tabs - Determines whether Tab key, Enter key, and paragraph reformat commands indent
with spaces or tabs. The hyperlink indicates if Adaptive Formatting is on or off for this setting. See
Indenting with Tabs for more information.

• Syntax indent- When this option is selected, the Enter key indents according to language syntax. The
value in the text box specifies the amount to indent for each level. The hyperlink indicates if Adaptive
Formatting is on or off for this setting. See Syntax Indent for more information.

• Tabs - Set tabs in increments of a specific value or at specific column positions. To specify an
increment of three, enter +3 in the text box. To specify columns, for example, enter 1 8 27 44, to specify

Ada Formatting Options
(Standard or Community only)

482

tab stops that are not an increment of a specific value. The hyperlink indicates if Adaptive Formatting is
on or off for this setting.

• Keyword case - The Keyword case option specifies the case of keywords used by Syntax Expansion.
For example, when you type the word "procedure" and the Keyword case is set to Upper case, the
editor changes "procedure" to "PROCEDURE". The hyperlink indicates if Adaptive Formatting is on or
off for this setting.

Ada Beautifier (Pro only)
See Beautifiers for more information.

Ada Beautifier (Pro only)

483

Ant
This section describes some of the features and options that are available for Ant.

Ant Options
There are several settings which are specific to editing Ant files. These options can be configured by
going to Tools → Options → Languages → XML/Text Languages → Ant → Options and are pictured
below.

The following options are available:

• Find targets imported from external build files - When set to On, SlickEdit will find targets imported
into the selected file from other Ant files.

• Use visibility to filter goto-definition matches - When set to On, Ant goto-definition match results will
be filtered based on visibility.

• Identify Ant files on open - When set to On, all XML files are parsed when opened to identify Ant
build files.

Ant Options

484

C and C++
This section describes some of the advanced features and options that are available in SlickEdit® for C
and C++, including language-specific formatting options, the C/C++ Beautifier, compiler settings, and
preprocessing.

• Working with ANSI-C - Read this to configure SlickEdit what file extensions should be interpreted as
ANSI-C vs C/C++

• Beautifiers - Detailed information about C and C++ beautifiers, as well as for related languages.

• C/C++ Compiler Settings - Information about C and C++ compiler configuration options.

• C/C++ Parsing Options - Information about C and C++ parsing options.

• C/C++ Preprocessing - Information about how to configure C and C++ parsing to handle C
preprocessing macros.

• C/C++ Documentation Comments - Information about using Javadoc and XMLDoc comments in C and
C++.

• Adding #includes - Describes how to automate adding a #include dependency while editing C and C++
source code.

Working with ANSI-C
SlickEdit's default editing mode for C and C++ allows for programming in either language. If you are
coding to strict ANSI C standards, you should configure the value of the macro variable def_ansic_exts
to contain a space-delimited list of extensions for files you want interpreted as ANSI C. To set the macro
variable, press Esc to bring up the SlickEdit command line, then type set-var def_ansic_exts
"<extensions>", where <extensions> is the space-delimited list of extensions.

For example:

set-var def_ansic_exts "c h"

Please note that if you also code in C++ and any of these extensions are used for C++, they will be
interpreted as ANSI C.

Beautifiers (Pro only)
Most of SlickEdit's beautifiers have been updated to allow more control over source formatting details,
and to allow formatting settings to be grouped into profiles for easier management over multiple projects.

You can use the commands beautify or beautify_selection to instantly beautify the file or the selection
according to the settings on the Beautifier dialog.

Working with ANSI-C

485

In addition to being an on-command beautifier, the updated beautifiers can also format your text as your
type. You can control when the beautifier will be automatically invoked as you code by setting the
beautifier-related options found on the Language-Specific General Options. See Editing Beautify Options
for more information.

Beautifier Profiles

The C++, Object-C, Java, C#, Python, JavaScript, VBScript, PHP, HTML, XML Formatting,
SystemVerilog, Verilog, Groovy, Ada, and Slick-C options allow you to pick which formatting profile you
want to be in effect, edit or delete existing profiles, and create new profiles. To access these Beautifier
settings, go to Tools → Options → Languages → [Language Category] → [Language] → Formatting.

The Formatting page has the following controls:

• Profile Combo Box - allows you to select which beautifier profile is in effect. The preview window
below the combo box will show how the profile would beautify a snippet of code. Once you've selected
a profile, and hit OK, the profile's settings are used for both formatting as you're editing code, and as
the default profile to use for the language if you beautify the source using the beautify command, or by
going to Tools → Beautify.

• Edit... - Allows you to edit the settings of an existing profile. Profiles that shipped with the system are
read-only, but will allow you to save modified versions under a different name. Clicking this button will
take you to the Beautifier Profile Editor.

• Copy... - Creates a copy of the currently selected profile, after prompting you for a name. This is how

Beautifiers (Pro only)

486

you create new profiles, by selecting a profile that's closest to the formatting that you want, and creating
a copy of it that you can modify.

• Delete - Deletes a profile. Profiles that shipped with the product can not be deleted.

• Reset - Clears changes to a built-in profile. This button is only enabled if changes have been made to a
built-in profile.

• Load File - loads a different file as the example code snippet in the preview window.

• Reset Preview - Resets the contents of the preview window back to the default code snippet.

Beautifier Profile Editor

The profile editor allows you to change the formatting options for a beautifier profile. Every editor page
has a preview window that allows you to see the effects of your changes on source code snippets.

Most options have an Enabled checkbox to the left of the option description. If the checkbox is cleared,
the option is disabled, which means the beautifier will leave the source code normally targeted by the
option unchanged. As an example, there's an option for padding the parenthesis of an 'if' statement.
Assuming it's enabled, it will either force padding in all 'if' statements, or removes the padding from all if
statements. If you disable it by clearing the checkbox, then the padding for if statements will be left alone,
leaving whatever type of padding that already exists in the original source.

Beautifiers (Pro only)

487

The following controls are available on the Beautifier Profile Editor:

• Search - Like the options dialog, there are a lot of settings, the search box allows you to type in search
terms to only show options that match the search term.

• Load File - Allows you to load a different example file into preview window.

• Reset Preview - Resets the preview window back to the default example code snippet.

• Beautify - This button will only appear if the profile editor was launched from a menu or button. Clicking
this button will beautify the active buffer in the editor with the settings from the profile editor.

C/C++ Compiler Settings (Pro only)
In order to correctly perform full preprocessing, parsing, symbol analysis, and cross-referencing,
SlickEdit® needs to emulate the implementation-specific parsing behavior of your compiler, including
built-in functions, preset #defines, and include directories.

These properties can be specified using the C/C++ Compiler Properties options screen or the C/C++
Compiler Properties dialog. The interfaces contain the same fields and options so you can make changes
using the one you prefer:

• From the main menu, click Tools → Options → Languages → Application Languages → C/C++ →
Compiler Properties.

• With a C/C++ project open, from the main menu, click Project → Project Properties. Select the
Compile/Link tab, then click the Ellipsis button to the right of the Compiler combo box. The C/C++
Properties dialog is displayed.

C/C++ Compiler Settings (Pro
only)

488

The interface shows the default compiler and its associated header file and include directories, known
collectively as a "configuration". Configurations can be created and modified as needed.

In the Compiler Name drop-down list, select the compiler you wish to use. If this is to be the global
default compiler for all projects, click the Set Default button.

Note

It is possible to select other compilers for individual projects. In those cases, the project-specific
compiler is used and overrides the global default.

SlickEdit ships with header files for each compiler, and the correct header file will appear in the Header
File field. The header file configures the parser to emulate the compiler that is chosen in the Compiler
Name field.

Creating New Configurations

There are two ways to begin a new configuration. In both cases, a dialog box will be invoked, prompting
for the name of the new configuration.

• Click Copy to copy the selected compiler configuration. This can be used as a template for creating a
new configuration and makes the process of creating similar configurations more convenient.

• Or, click Add to create a configuration from scratch or to add a newly installed compiler.

If you wish to remove the selected compiler and associated configuration from the list, click Delete. This

C/C++ Compiler Settings (Pro
only)

489

does not delete any files from disk.

Building the Tag File

The Build tag file button on the C/C++ Compiler Properties dialog is used to build tag files from the
header file found in the include directories for the selected compiler configuration. This is especially useful
when new configurations are created. If you do not build the tag file here manually, it will be built on
demand.

C/C++ Parsing Options
The C/C++ parsing options allow you to fine-tune the behavior of the C/C++ parser in order to better
handle parsing your code.

• Parsing Options

• Tag function prototypes - Tag prototypes (function declarations) in C/C++ style code. We
recommend leaving this option on, otherwise you will not be able to navigate to function declarations.

• Tag function prototypes with no semicolon - Do not skip over function definitions/prototypes that
do not have a semicolon or open brace following the parameter list. Set this option when you do not
want old C-style function definitions skipped.

• Tag function prototypes with no return type - Do not skip over old style C/C++ prototypes that do
not have an explicit return type. This should be off in order for local-variable search to work properly,
otherwise it is very difficult to distinguish a function call from a prototype.

• Treat close brace in column 1 as function end - Do not break out of parsing a function if we see a
brace in column 1. We normally do this as a safeguard against parsing past the end of a function
when the braces mismatch.

• Ignore stray identifiers that may be preprocessing - Ignore stray identifiers that may be
preprocessing. This only works in very specific parsing contexts.

• Tag Visual C++ bracketed attributes - Tag Visual C++ bracketed attributes in C++ code.

• Dynamically expand local #defines - Dynamically expand local #defines within the current file as if
they were defined in the C/C++ Preprocessing options. Note that this feature only works within the
current file and does not work for local variable tagging. It can also have the side-effect of dumbing
down code by replacing preprocessing constant names with their values in certain contexts. This
feature is off by default because it can negatively effect performance for files that contain extremely
large amounts of preprocessing.

• Dynamically expand project #defines - Dynamically expand preprocessing defines in the project
properties for the current project and build configuration, as if they were defined in the C/C++
Preprocessing options. Note this feature gets defines from the current project and build configuration
only. If your workspace contains multiple projects, when you switch projects or build configuration,
changes to preprocessing options will not be fully in effect until you rebuild your workspace tag file.
On account of this, this feature is a partial solution, off by default, designed to be helpful, but not
comprehensive, without having a negative impact on performance.

C/C++ Parsing Options

490

• Editing Options

• Auto-Correct '.' to '->' for pointers - When you type '.' after a variable which evaluates to a pointer
type, automatically translate '.' to '->' to dereference the pointer type.

C/C++ Preprocessing
Typically your source code base will include preprocessor macros that you use in your code for portability
or convenience. For performance considerations, Context Tagging® does not do full preprocessing, so
macros that interfere with normal C++ syntax can cause the parser to miss symbols. For example:

MYNAMESPACEDECL(my)
struct MYPACKEDMACRO BinaryTree {

MYTYPELESS data;
MYPOINTER(BinaryTree) next;
MYPOINTER(BinaryTree) prev;

};
MYPOINTER(BinaryTree) proot = MYNULL;
MYENDNAMESPACE

This example uses the following preprocessor macros:

#define MYNAMESPACEDECL(name) namespace name {
#define MYPACKEDMACRO __packed
#define MTYPELESS void*
#define MYPOINTER(t) t*
#define MYNULL ((void*)0)
#define MYENDNAMESPACE }

Among them, the only two that are harmless are MYTYPELESS and MYNULL, because they just create
name aliases for types or constants. However, the other four are troublesome and cause the entire code
snippet to be unparsable unless you configure SlickEdit® to be aware of these preprocessor macros. To
do so, complete the following steps:

1. From the main menu, click Tools → Options → Languages and expand the Application Languages
node in the tree.

2. Depending on your language, select ANSI-C or C/C++ in the tree, then click C/C++ Preprocessing.

C/C++ Preprocessing

491

3. Click New to add new preprocessing macros. Arguments are allowed; for example, mymacro(a,b,c)

4. When finished, click OK.

5. A prompt appears asking whether to rebuild your workspace tag file. Click Yes.

Preprocessor macros are stored in usercpp.h, located in your configuration directory. Rather than using
the dialog, you can add large numbers of #defines directly to this file. You may want to make sure that
your entire development team has an up-to-date copy of this configuration file once you have added all of
your local preprocessor macros.

Note

The usercpp.h file should only be used for #defines and #undefs® not #includes.

Each workspace may have a [workspace]_cpp.h file which can be used for the same purpose
as usercpp.h, except that the configuration is for the corresponding workspace only. This file
may be edited using the C/C++ Preprocessing dialog accessible from Project → Workspace
Properties.

C/C++ Documentation
Comments

492

C/C++ Documentation Comments
Several features are available to help you enter and format Javadoc and XMLDoc comments See Doc
Comments for more information.

Add #include (Pro only)

Adding #include

To add a #include statement for a symbol name under the cursor in C, C++, Objective-C, or Slick-C code,
move the cursor to the symbol name you want to import, then from the main menu, click Tools →
Imports → Add #include, or from the right-click context menu, select Imports → Add #include. This
feature works for types (classes, structs, etc), functions, and constants. Alternately, use the
refactor_add_import command. This command can also be used to generate using statements for
symbols imported from namespaces.

To jump to the #include statement for the symbol name under the cursor, move the cursor to the symbol
name, then from the main menu, click Tools → Imports → Go to #include, or from the right-click context
menu, select Imports → Go to #include. Alternately, use the refactor_goto_import command. This
command is helpful for identifying which package an unqualified class name comes from.

Note

C and C++ #include dependencies can be very delicate. The Add #include feature works by
finding the location of a symbol's declaration in a header file and attempts to add the specific
header file physically containing the symbol's declaration to the list of #include dependencies for
the current file. For very cleanly written code, this strategy will generally work very well, however,
it should be recognized that SlickEdit will occasionally select a header file to include which isn't
the entry point that you would want. This can happen when there are header file wrappers or if
you have a more general header file you prefer to #include rather than the individual files where a
symbol is actually declared. Furthermore, many header files can not stand on their own because
they depend on declarations pulled form other header files which are typically included first in the
dependency chain. These and many other reasons mean that Add #include may or many not
produce useful results in your code. Always verify the results when using it in C and C++ code.

Note

The Add #include feature will generate #include statements using double quotes for header files
that are part of your project, and angle brackets for symbols coming from system header files.
This is best practice for C and C++ code, thus there is no option to generate the #include
statements differently.

Add #include (Pro only)

493

COBOL
This section describes some of the advanced options that are available for COBOL.

COBOL Formatting Options
Options are available for COBOL for changing Syntax Indent and Syntax Expansion styles. To access
these options, from the main menu, click Tools → Options → Languages, expand Mainframe
Languages > Cobol, then click Cobol Formatting Options.

Note

Languages similar to COBOL may have similar Formatting Options screens that are not
specifically documented.

The following options are available:

• Indent with tabs - Determines whether Tab key, Enter key, and paragraph reformat commands indent
with spaces or tabs. The hyperlink indicates if Adaptive Formatting is on or off for this setting. See
Indenting with Tabs for more information.

• Syntax indent- When this option is selected, the Enter key indents according to language syntax. The
value in the text box specifies the amount to indent for each level. The hyperlink indicates if Adaptive
Formatting is on or off for this setting. See Syntax Indent for more information.

• Tabs - Set tabs in increments of a specific value or at specific column positions. To specify an
increment of three, enter +3 in the text box. To specify columns, for example, enter 1 8 27 44, to specify

COBOL Formatting Options

494

tab stops that are not an increment of a specific value. The hyperlink indicates if Adaptive Formatting is
on or off for this setting.

• Keyword case - Specifies the case of keywords used by Syntax Expansion. If Auto case keywords is
selected, the case of keywords are changed to the keyword case specified when you type them. For
example, when you type the word "procedure" and the Keyword case is set to Upper case, the editor
changes "procedure" to "PROCEDURE". The hyperlink indicates if Adaptive Formatting is on or off for
this setting.

• Embedded SQL Dialect - Specifies the specific type of SQL that is embedded in your COBOL source.
This affects embedded SQL-language color coding.

• Line Numbering - Choose the line numbering style from the following options:

• COBOL style line numbering - When selected, expect line numbers in columns one through six
when renumbering lines.

• SPF style line numbering - When selected, expect line numbers in columns 73 through 80 when
renumbering lines.

Java

495

Java
SlickEdit® provides a full-featured Java development environment, allowing you to edit, build, and debug
Java programs. Topics in this section:

Note

NOTE There are numerous compilers which are compatible with the JVM environment, including
compilers for Ruby (JRuby), Clojure, Groovy, Python (Jython), Kotlin, Scala, JavaScript, COBOL,
Common List, Cypher, Mercury, Oberon, Pascal, PHP, Prolog, Perl 6, R, Rexx, Scheme,
Smalltalk, Tcl, and Visual Basic. Many of these can be used with SlickEdit® by customizing a
Java - Other project to use the compile and build commands required by the given compiler. See
Creating Custom Project Types for more information.

• Initial Setup - Read this to configure SlickEdit for your JDK and other settings needed for compiling and
debugging.

• Java-Specific Features - Information about features designed specifically for Java programmers.

• Java-Specific Interfaces - Detailed descriptions of dialogs, tool windows, and option screens specific to
Java programming.

Initial Setup (Pro only)
SlickEdit® relies on an installed Java Development Kit (JDK) for compiling and debugging. After you have
installed the JDK on your computer, the following steps will configure SlickEdit to use it. The steps are
divided into three categories:

• Context Tagging® for Java

• Setting Up a Java Workspace and Project

• Configuring Java Build and Runtime Options

Context Tagging® for Java (Pro only)

SlickEdit® needs to tag the Java libraries to provide symbol completions and other Context Tagging
features for those classes (see Context Tagging Features). When you first run SlickEdit after an
installation, you are prompted with a dialog to create these tag files. Complete the steps below if you did
not create tag files at that time or to configure additional JDKs.

1. Open the Context Tagging - Tag Files Dialog by selecting Tools → Tag Files.

Initial Setup (Pro only)

496

2. Click the Auto Tag button to open the Tag Compiler Libraries dialog.

Initial Setup (Pro only)

497

3. SlickEdit may detect that you have installed the JDK. If so, the section for Java will be filled out. If not,
you will have to configure this manually.

4. Click the Configure button to open the Java Compiler Properties Dialog. You can have multiple
JDKs installed on your computer at the same time and configure SlickEdit to use different JDKs for
each project. This dialog provides the name and location for each JDK so that you can select it for
tagging or building.

Initial Setup (Pro only)

498

5. Click the Add button to browse to the root of the desired JDK (or JRE). If SlickEdit recognizes the Java
vendor and version, it will automatically set the appropriate properties. If not, you will be prompted for
the configuration name. Give it a name that represents the associated JDK, like "JDK 1.6".

6. If a default JDK has not been specified, click the Set Default button to set this JDK as the default.

7. When finished, click the OK button to return to the auto tag dialog.

8. Make sure there is a check in the Create tag file for Java compiler libraries check box. Depending
on your environment, there may be checks in the check boxes for C++ and .NET. Leave those checked
if you have not already tagged those libraries. If you just want to tag the Java libraries, uncheck the
other check boxes.

9. Click the Create tag file(s) button.

1
0.

SlickEdit will display a progress bar while your libraries are being tagged. When finished, SlickEdit will
display the Context Tagging - Tag Files dialog. You can close this if you have no other libraries to tag.

Setting Up a Java Workspace and Project (Pro only)

In SlickEdit®, files are contained in projects, and projects are contained in workspaces. Except for the

Initial Setup (Pro only)

499

most basic editing, you should always work within a workspace and project in SlickEdit. Context
Tagging® relies on having your source files contained in a project. See Workspaces and Projects for
more information.

Editing options are determined by the file extension and accessed by selecting Tools → Options from
the main menu, then selecting the corresponding language in the options hierarchy. Editing options
control how your code is formatted and key editing behaviors as you type.

The project type determines your build environment and provides options specific to that project type. For
Java, this includes specifying which JDK to use, setting up the debugger, and configuring Java Live
Errors. To create a new Java project or to see a list of the available Java project types, select Project →
New from the main menu, then expand the Java node in the tree under Project type.

After you have created a Java project, you can set the build options by selecting Project → Project
Properties from the main menu, selecting Build in the Tool name list, then clicking the Options button.
The options displayed are specific to the project type of the active project. If you are in a Java project, you
will see Java options. If you are in a C++ project, you will see options for the C++ compiler.

Note

The Options button is only available if you have selected Build without a makefile
(dependencies automatically checked) on the Build tab of Project Properties Dialog. If you
select either of the other two options, SlickEdit uses an external command to launch the build.
The Options button is not available in Java - Other projects.

You can change the build options for Java by selecting Build → Java Options from the main menu (or
the corresponding item for other languages).

You can change the execution and debugging options for Mono by selecting the Run/Debug tab on the
Project → Project Properties dialog.

Configuring Java Build and Runtime Options (Pro only)

The Java Options dialog contains settings used when you build or execute a Java project. Most of the
settings are stored for the particular Java project and configuration selected. You can set different values
for different projects and for different configurations of the same project. For example, you might have
different settings for the Debug configuration than from the Release configuration, allowing you to turn on
optimizations used for release that are incompatible with debugging. See Java Options Dialog for more
information.

Java-Specific Features
SlickEdit® provides many features that work across several languages including Java, and Java-specific
information is described throughout the documentation where applicable. The following are additional
features designed specifically for Java developers:

• Javadoc Comments

Java-Specific Features

500

• Organize Java Imports

• Java Live Errors

• JUnit Testing

Javadoc Comments

Several features are available to help you enter and format Javadoc comments (as well as other doc
comment formats). See Doc Comments for more information.

Organize Imports (Pro only)

Organize Imports automates the management of import statements in Java files. This feature minimizes
the amount of time that it takes to compile code by only importing the classes that are used. Existing
import statements are also sorted in a readable format and are more consistent between different Java
packages in the same project. Organizing of imports is applied to an entire file.

To organize imports, from the main menu, click Tools → Imports → Organize Imports, or from the right-
click context menu, select Imports → Organize Imports. Alternately, use the
refactor_organize_imports command.

Adding Imports

To add an import statement for the class name under the cursor in Java code, move the cursor to the
class name you want to import, then from the main menu, click Tools → Imports → Add Import, or from
the right-click context menu, select Imports → Add Import. Alternately, use the refactor_add_import
command.

Go to Import

To jump to the import statement for the class name under the cursor in Java code, move the cursor to the
class name, then from the main menu, click Tools → Imports → Go to Import, or from the right-click
context menu, select Imports → Go to Import. Alternately, use the refactor_goto_import command.
This command is helpful for identifying which package an unqualified class name comes from.

Import Options

Several options are available on the Options dialog to control the behavior of Organize Imports. See
Organize Java Imports Options Interface for details.

Java Live Errors (Pro only)

Java Live Errors is a feature that flags syntax and compilation errors as you edit your code. This feature
also provides coding "best practice" warnings, and can be configured to accommodate any source
compliance level.

To activate Live Errors, open a Java project then complete the following steps:

1. Open the Java Options dialog by selecting Build → Java Options from the main menu.

Java-Specific Features

501

2. Select the Compiler tab and enter the Source Compliance level.

3. Select the Live Errors tab and check Enable Live Errors.

4. In the Path to JDK 6 or later field, specify the root of the JDK 6 (or compatible JDK) installation. There
is no requirement that you build your code with JDK 6, only that it is available to Live Errors.

Note

If you have Live Errors running and wish to specify a different JDK 6 (or other compatible JDK)
root, after changing the path on the Java Options dialog, you must restart SlickEdit®.

After activating Live Errors, you can use the rte_next_error command to jump through the live errors in
the current file. Bind this command to a key sequence for more efficiency (see Creating Bindings).

See Live Errors Tab for more information about the fields and options on this tab.

JUnit Testing (Pro only)

JUnit tests can be run from within SlickEdit®. The results can be viewed and code that fails the testing
can be easily reconciled.

Note

JUnit support in SlickEdit® requires Java 8 or later. JUnit4 or Junit5 tests are both supported.
JUnit dependencies are included with SlickEdit installation located in the vsjunit, and are
automatically added to classpath when running unit tests. If you want to include different or more
recent JUnit dependent jars, add them to the project classpath in the Java Options dialog (Build
→ Java Options).

To run a JUnit test, in the Projects tool window, select the project, package or file that you want, then on
the right-click context menu, select Unit Test → Run (junit command) or Unit Test → Debug
(junit_debug command). The results are displayed in the Unit Testing tool window.

Java-Specific Features

502

The Unit Testing tool window displays the number of tests that ran, failed, passed, had errors, and were
not run. Double-click the items found on the Tests or Defects tab to be redirected to the code that needs
to be debugged.

A tree control displays the defect trace(s) for the currently selected test item. Buttons are available above
the tabs to rerun tests:

• To rerun the last set of tests, click Run Current TestCases.

• To rerun only the tests with defects from the last set of tests run, click Run Current TestCases with
Defects.

Java-Specific Interfaces

Java-Specific Interfaces

503

This section provides detailed information about the following dialogs, tool windows, and option screens
that are specific to Java programming:

• Java Compiler Properties Dialog

• Java Options Dialog

• Organize Java Imports Options Interface

• Beautifiers

• Javadoc Editor Dialog

• Javadoc Beautifier Options Dialog

Java Compiler Properties Dialog (Pro only)

In order to correctly perform symbol analysis and cross-referencing, SlickEdit® needs to know which JDK
you are using and where the system libraries are located.

These properties can be specified using the Java Compiler Properties option screen or the Java Compiler
Properties dialog. The interfaces contain the same fields and options so you can make changes using the
one you prefer:

• From the main menu, click Tools → Options → Languages → Application Languages → Java, then
select Compiler Properties.

• With a Java project open, from the main menu, click Project → Project Properties. Select the
Compile/Link tab, then click the Ellipsis button to the right of the Compiler combo box. The Java
Properties dialog is displayed.

Java-Specific Interfaces

504

For Java, you can have multiple JDKs installed on your computer at the same time and configure
SlickEdit to use different JDKs for each project. The interface provides the name and location for each
JDK so that you can select it for tagging or building. See Language-Specific Compiler Properties for more
information about these options.

Java Options Dialog (Pro only)

The Java Options dialog contains settings used when you build or execute a Java project. Most of the
settings are stored for the particular Java project and configuration selected. You can set different values
for different projects and for different configurations of the same project. For example, you might have
different settings for the Debug configuration than from the Release configuration, allowing you to turn on
optimizations used for release that are incompatible with debugging.

To access the Java Options dialog, first make sure you have a Java project or file open, then from the
main menu, click Build → Java Options (or, use the javaoptions command).

Java-Specific Interfaces

505

There are three settings on the dialog that apply to all tabs:

• Settings for - The Settings for drop-down list at the top of the dialog is used to specify the project
configuration you want to affect with the option settings. This is the same field that is on the Project
Properties dialog, where you can also create new configurations. See Project Configurations for more
information.

• JDK installation directory (affects all projects and configurations) - Specifies the full path to the
root of the JDK used to build and execute Java programs. This value is shared by all Java projects and

Java-Specific Interfaces

506

all configurations. Click the button to the right of the field to browse. Use the drop-down button to select
a recently used entry.

• Ant installation directory (affects all projects and configurations) - Specifies the full path to the
root of the Ant installation directory. Ant is a commonly used build tool for Java. It is not shipped with
SlickEdit, so you need to specify where it is installed. Click the button to the right of the field to browse.
Use the drop-down button to select a recently used entry.

The other settings and options are divided into the following tabs:

• Compiler Tab

• Javadoc Tab

• Jar Tab

• Classpath Tab

• JRE Tab

• Live Errors Tab

Note

• Options that are self-explanatory are not described in the documentation.

• Prior to making changes on the tabs of the dialog, be sure that your desired project
configuration is selected in the Settings for drop-down list at the top of the dialog.

Compiler Tab

The Compiler tab on the Java Options dialog (Build → Java Options) is shown below.

Java-Specific Interfaces

507

This tab contains the following fields and options:

• Compiler name - Specifies the name of the compiler executable without the file extension. Click the
Ellipsis button to browse for the file.

• Output directory (-d) - Specifies the full path to a directory to save the generated class files. Click the
Ellipsis button to browse for the directory.

• Optimize output (-O)

• Generate no warnings (-nowarn)

• Verbose compiler output (-verbose)

• Notify about locations where deprecated APIs are used (-deprecation)

• Generate debug information (-g)

• Source Compliance level - Specifies the JDK version number to use when parsing the code. For
example, JDK 1.6 can still parse the syntax for code written using JDK 1.4. Use this field to tell the
compiler which Java syntax to use. This is the same as setting the -source option on the javac
command line.

• Target Compliance level - Setting this value will generate code that will run on the specified version of

Java-Specific Interfaces

508

the Java VM. This is the same as setting the -target option on the javac command line.

• Other options - Specify additional command line options in this text field. For example, you can use
this field to enter a value like "-sourcepath c:\dev\src\BigProject".

Javadoc Tab

The Javadoc tab on the Java Options dialog (Build → Java Options) contains options to configure the
application that processes the Javadoc comments in your code to produce project documentation. By
default, SlickEdit® uses the javah program. Many of the options are specific to that processor. If you
choose to use a different program, uncheck the command line arguments and enter your options using
the Other options field.

This tab contains the following fields and options:

• Javadoc app name - Specifies the name of the executable used to process the Javadoc comments in
your source code. By default, this is set to javadoc. The extension is not needed. Click the Ellipsis
button to browse for the file.

• Output directory (-d) - Specifies the directory in which to save the generated Javadoc. You can
specify a full path or relative path. Relative paths are interpreted relative to the project location,
specified when you created the project. For example, a value of docs will create a subdirectory in the
project directory to store the output from the Javadoc processor.

Java-Specific Interfaces

509

• Include @version paragraphs (-version)

• Include @author paragraphs (-author)

• Do not include @deprecated paragraphs (-nodeprecated)

• Do not generate class hierarchy (-notree)

• Do not generate index (-noindex)

• Other options - Specify additional command line options in this text field to be passed to the Javadoc
processor.

Jar Tab

The Jar tab on the Java Options dialog (Build → Java Options) is used to configure the Jar application
that is used to package compiled Java classes.

This tab contains the following fields and options:

• Jar app name - Specifies the name of the Jar executable, without the extension. Click the Ellipsis
button to browse for the file.

• Archive filename - Specifies the name of the archive to create.

Java-Specific Interfaces

510

• Manifest filename - If you want to create a manifest, specify the name of the manifest file here. If
necessary, use this file to specify a main class for your application.

• Store only - no compression (-0)

• Verbose output (-v)

• Other options - Specify additional command line options to pass to the Jar application.

• Additional class files not included in this project (-C) - Used to specify additional classes you would
like to include in the archive.

• Add File - Click to add a new class file to the archive.

• Add Path - Click to specify a directory. All of the classes in that directory will be added.

• Remove - Click to remove the selected file or directory.

Classpath Tab

In Java, the classpath defines a search path for compiled Java classes. The elements are searched in the
order specified and the first matching class is used. The Classpath tab on the Java Options dialog (Build
→ Java Options) allows you to configure the Java classpath used in SlickEdit® for running and
debugging programs. This does not affect the classpath set in the operating system.

Warning

If your classpath contains unnecessary files or directories, it could slow down the launching of the
Java debugger using the step-into command. If you experience this problem, remove any
elements not needed by this specific project and avoid using the system Classpath.

If you have different classpaths for different projects, configuring the classpath inside of SlickEdit is very
useful. If you have a single classpath and use it with other external tools, it is best to configure it in the
operating system and then put a reference to the external classpath in SlickEdit by using the Add Path
button on this tab.

Java-Specific Interfaces

511

This tab contains the following fields and options:

• Add Path - Click to browse for a directory. This directory is added to the classpath.

• Add Jar File - Click to add a JAR file to the classpath.

• Add Class Path - Click to insert the environment variable that contains the classpath defined in the
operating system.

• Edit - Click to edit the selected classpath element.

• Delete - Click to delete the selected classpath element.

• Up/Down - Use the Up and Down buttons to move the selected item up and down in the list.

• Use Classpath settings for antmake commands - When this option is selected, the SlickEdit
classpath is passed to Ant. See Language-specific Build Methods for more information about Ant
support.

JRE Tab

The JRE tab on the Java Options dialog (Build → Java Options) is used to configure options for the
Java Runtime Environment. These are used when executing a Java program inside SlickEdit®.

Java-Specific Interfaces

512

This tab contains the following fields and options:

• JRE app name - Specifies the name of the executable for the Java interpreter, java by default. The
extension is not needed. Click the Ellipsis button to browse for the executable.

• Main class - Specifies the name of the class to begin execution. In Java, each class can contain a
main function. This value determines where execution begins when you select Build → Execute for
this project.

• Arguments - Specifies parameter values passed to the main function contained in the main class.

The remaining options are common configuration parameters to pass to the Java interpreter. Each
displays the command line switch used. For more information, look up the corresponding switch in the
JRE documentation. If these values are not supported by the JRE you are using, uncheck them and use
Other options to pass arguments to the JRE.

Live Errors Tab

The Live Errors tab on the Java Options dialog (Build → Java Options) is used to configure the Live
Errors feature. Live Errors identifies syntax errors as you type. SlickEdit compiles your code in the
background and highlights errors directly in the editor.

Java-Specific Interfaces

513

This tab provides the following fields and options:

• Enable Live Errors - When selected, the Live Errors feature is activated. This setting is checked by
default if SlickEdit has detected a valid JDK 6, or compatible, installation on your system, the first time a
Java project is opened. For some coding, you may want to disable Live Errors since it will point out all
syntax errors, which are common in incomplete code.

After activating Live Errors, you can use the rte_next_error command to jump through the live errors in
the current file. Bind this command to a key sequence for more efficiency.

Note

• For Java Live Errors to work, you must have the full JDK downloaded and installed from Sun,
and you must specify the root of the JDK installation in the JDK installation directory field of
the Java Options dialog (Build → Java Options), unless it is automatically detected upon
startup. There is no requirement that you build your code with JDK 6, only that it is available to
Live Errors.

• If you have Java Live Errors running and wish to specify a different JDK 6 (or compatible JDK)
root, after changing the JDK path on the Java Options dialog, you must restart SlickEdit.

Java-Specific Interfaces

514

• In order to boost performance, Java Live Errors generates .class files as you code. These
files are stored in the java_rte_classes subdirectory of your config. You can remove these
files, but they will be rebuilt the next time Java Live Errors is invoked.

• To specify the source compliance level, use the Source Compliance level setting on the
Compiler Tab.

• Deprecation warnings - When this option is selected, a Warning bitmap appears when Live Errors
encounters a keyword that has been deprecated. This is useful for programmers coding to strict Java
standards.

• No Warnings - When this option is selected, warning notices from Live Errors are not displayed.

• Use "Other Options" from Compiler Tab - When this option is selected, any options specified in the
"Other Options" field on the Compiler tab will be used for Live Errors. Live Errors will automatically
parse out those javac options which are not supported by the Java Compiler API.

• Sleep Interval(ms) - Specifies the amount of time, in milliseconds, in which a Live Errors thread sleeps
before checking for errors (during times when an error check is not forced). Use this to tune
performance. A larger value will give the editor more time between builds and should reduce any
performance issues.

• JVM Tuning - These options control how much memory is allocated to the JVM used for Live Errors.
SlickEdit will require a restart in order for new values to take effect.

• Initial Heap Size: -Xms (M) - Initial heap size, in megabytes. Must be greater than or equal to 2.

• Max Heap Size: -Xmx (M) - Maximum heap size, in megabytes.

• Stack Size: -Xss (K) - Stack size for each thread, in kilobytes.

• Path to JDK 6 or later - Specifies the root directory of a valid JDK 6 or compatible JDK installation.
Live Errors requires JDK 6 or a compatible JDK to run, and will not activate if this path is not correct.
SlickEdit attempts to populate this field for you the first time a Java project is opened. Click the Ellipsis
button to browse for the directory.

Organize Java Imports Options Interface (Pro only)

Options are available on the Options dialog to configure the Organize Imports feature (Tools → Options
→ Languages → Application Languages → Java → Organize Imports). A more direct route to the
options is to use one of the following methods:

• From the main menu, click Tools → Imports → Options

• Select Tools → Imports → Options from the right-click context menu in the editor window.

• Use the refactor_organize_imports_options command.

Java-Specific Interfaces

515

The following settings are available:

• Package explicit import limit before using wildcard(.*) - If more than this number of classes are
explicitly imported from the same package in one file, the imports will be replaced with a single wildcard
import.

• Add blank line between groups of imports - Organize Imports will group imports by package name
or top-level package name. Select this option to force Organize Imports to add a blank line between
these groups instead of having just one flat list of imports.

• Number of package nesting levels to group imports by - If this is set to 1, import statements will
be grouped by top-level package name only. For example, all your imports from java. packages
would be in a separate group from your imports from com. packages. If set to 2, import statements
will be grouped by second level package names. For example, all your imports from java.util
would be in a separate group from your imports from java.awt.

• Automatically add import during code help for Java - If selected, SlickEdit® will attempt to
automatically add imports as you edit Java code.

• Automatically add import during code help for JSP - If selected, SlickEdit will attempt to
automatically add imports as you edit Java code embedded in HTML. JSP imports are added using the
following notation: <%@ page import="java.util.Vector"%>.

• Package sort order - This list specifies the order in which package groups are sorted. Use the
Ellipses (...) button to add a new package. Use the Up and Down arrow buttons to move items. Use
the X button to delete the currently selected package from the list.

Java-Specific Interfaces

516

Javadoc Editor Dialog

Use the Javadoc Editor to generate Javadoc syntax comments for Java, C, C++, JavaScript, and Slick-
C®. To access the Javadoc Editor, choose Document → Edit Documentation Comment.

To add a custom or unsupported tag, append the tag (with an @ prefix) and its description into the
Description text box. You can add @serial, @serialField, and @serialData fields this way.

For more information, see Sun's Javadoc documentation at http://java.sun.com.

Note

NOTE SlickEdit® provides powerful capabilities to create and edit Javadoc comments within the
editor. See Commenting for more information.

Javadoc Beautifier Options Dialog

To beautify Javadoc comments or set up Javadoc Beautifier options, first invoke the Javadoc Editor by
choosing Document → Edit Documentation Comment. Then click the Options button. The Javadoc
Beautifier Options dialog is displayed. The following settings are available:

• Align parameter comments to longest parameter name - If checked, the parameters are aligned to
the length of the longest parameter name. If the parameter name length is less than the minimum
length, the minimum length is used. If the parameter length is longer than the maximum parameter
length, the description for the parameter will start on the next line.

• Align exception comments to longest exception name - If checked, the exceptions are aligned to
the length of the longest exception name. If the exception name length is less than the minimum length,
the minimum length is used. If the exception length is longer than the maximum exception length, the
description of the parameter will start on the next line.

• Align return comments - Indicates whether @return comments should be aligned to the first line of
comment text. No alignment is performed if tags which are indent-sensitive such as the <pre> tag are
used.

• Align deprecated comments - Indicates whether @return comments should be aligned to the first line
of comment text. No alignment is performed if tags which are indent-sensitive such as the <pre> tag
are used.

• Add blank line after parameter comment - If checked, a blank line is added if a tag follows an
@param tag.

• Add blank line after parameter comment group - If checked, a blank line is added if a tag follows an
@param group.

• Add blank line after return comment - If checked, a blank line is added if a tag follows the @return
tag.

• Add blank line after description - If checked, a blank line is added between the description and the

Java-Specific Interfaces

517

http://java.sun.com

first @ tag. This option is ignored if the description contains a custom or unsupported @ tag.

• Add blank line after example - If checked, a blank line is added if a tag follows the @example tag.

Mono

518

Mono
SlickEdit® provides a full-featured Mono development environment, allowing you to edit, build, and debug
C#, F#, and Visual Basic programs using Mono. Topics in this section:

Note

NOTE There are numerous compilers which are compatible with the Mono environment, including
compilers for C#, F#, Mono, Scala, Boo, Visual Basic.NET, Python.NET, JavaScript, Oberon,
PHP, Lua, Cobra, Synergy-DBL, and Object Pascal. Many of these can be used with SlickEdit by
customizing a C# Mono project to use the compile and build commands required by the given
compiler. See Creating Custom Project Types for more information. Note that only C# and Visual
Basic have been tested and verified by the SlickEdit team.

• Initial Setup - Read this to configure SlickEdit for your Mono installation and other settings needed for
compiling and debugging.

• C# Organize Imports - Information about the Organize Imports feature for C#.

• XMLDoc Comments - Information about features designed specifically for C# and Visual Basic
programmers.

Initial Setup (Pro only)
SlickEdit® relies on an installed Mono development kit for compiling and debugging. After you have
installed Mono on your computer, the following steps will configure SlickEdit to use it. The steps are
divided into three categories:

• Context Tagging® for .NET

• Setting Up a Mono Workspace and Project

• Mono Options Dialog

Context Tagging® for .NET(Pro only)

SlickEdit® needs to tag the .NET framework libraries to provide symbol completions and other Context
Tagging features for those classes (see Context Tagging Features). When you first run SlickEdit after an
installation, you are prompted with a dialog to create these tag files. Complete the steps below if you did
not create tag files at that time or to configure additional C# or Visual Basic libraries.

1. Open the Context Tagging - Tag Files Dialog by selecting Tools → Tag Files.

Initial Setup (Pro only)

519

2. Click the Auto Tag button to open the Tag Compiler Libraries dialog.

Initial Setup (Pro only)

520

3. SlickEdit may detect that you have installed Mono or Microsoft .NET. If so, the section for .NET
Frameworks will be filled out. If not, you will have to configure this manually.

4. Make sure there is a check in the .NET Frameworks (C# and VB) check box. Depending on your
environment, there may be checks in the check boxes for C++ and Java. Leave those checked if you
have not already tagged those libraries. If you just want to tag the .NET libraries, uncheck the other
check boxes.

5. Click the Create tag file(s) button.

6. SlickEdit will display a progress bar while your libraries are being tagged. When finished, SlickEdit will
display the Context Tagging - Tag Files dialog. You can close this if you have no other libraries to tag.

Setting Up a Mono Workspace and Project (Pro only)

In SlickEdit®, files are contained in projects, and projects are contained in workspaces. Except for the

Initial Setup (Pro only)

521

most basic editing, you should always work within a workspace and project in SlickEdit. Context
Tagging® relies on having your source files contained in a project. See Workspaces and Projects for
more information.

Editing options are determined by the file extension and accessed by selecting Tools → Options from
the main menu, then selecting the corresponding language in the options hierarchy. Editing options
control how your code is formatted and key editing behaviors as you type.

The project type determines your build environment and provides options specific to that project type. For
Mono, this includes specifying which Mono interpreter to use, along with arguments, and setting up the
debugger. To create a new Mono project or to see a list of the available project types, select Project →
New from the main menu, then expand the C#, F#, or Visual Basic node in the tree under Project type.
Note that, on Windows, there are separate project types both for Mono and Visual Studio.

After you have created a Mono project, you can set the build options by selecting Project → Project
Properties from the main menu, selecting Tools and selecting an item in the Tool name list to edit
specific command parameters.

You can also change the execution and debugging options for Mono by selecting the Run/Debug tab on
the Project → Project Properties dialog.

Mono Options Dialog (Pro only)

The Mono Options dialog contains settings used when you build or execute a Mono project. Most of the
settings are stored for the particular Mono project and configuration selected. You can set different values
for different projects and for different configurations of the same project. For example, you might have
different settings for the Debug configuration than from the Release configuration, allowing you to turn on
optimizations used for release that are incompatible with debugging.

To access the Mono Options dialog, first make sure you have a Mono project or C# or Visual Basic file
open, then from the main menu, click Build → Mono Options (or, use the mono_options command).

Initial Setup (Pro only)

522

There are three settings on the dialog that apply to all tabs:

• Settings for - The Settings for drop-down list at the top of the dialog is used to specify the project
configuration you want to affect with the option settings. This is the same field that is on the Project
Properties dialog, where you can also create new configurations. See Project Configurations for more
information.

• Mono installation directory (affects all projects and configurations) - Specifies the full path to the
root of the Mono installation used to build and execute Mono programs. This value is shared by all
Mono projects and all configurations. Click the button to the right of the field to browse. Use the drop-
down button to select a recently used entry.

Initial Setup (Pro only)

523

The other settings and options are divided into the following tabs:

• Compiler Tab

• Assemblies Tab

• Intepreter Tab

Note

• Options that are self-explanatory are not described in the documentation.

• Prior to making changes on the tabs of the dialog, be sure that your desired project
configuration is selected in the Settings for drop-down list at the top of the dialog.

Compiler Tab

The Compiler tab on the Mono Options dialog (Build → Mono Options) is shown below. It provides quick
access to the most common C# compiler options. Additional options and options that are different for
alternate compilers can be specified in Other Options. If any of these options are not supported by the
specific compiler you are using, uncheck it or leave it blank to take them out of the compile command.

Initial Setup (Pro only)

524

This tab contains the following fields and options:

• Compiler name - Specifies the name of the compiler executable without the file extension. Click the
Ellipsis button to browse for the file.

• Output file (-out:) - Specifies the full path to the output file to be created by this build. Click the Ellipsis
button to browse for the file location.

• Optimize output (-optimize)

• Release build (-release)

• Generate debug information (-debug)

• Make match operations checked (-checked)

• Common Language Specification (CLS) checks (-clscheck)

• Unsafe compilation mode (-unsafe)

• Target type:

• Warning level:

• Language version:

• Other options - Specify additional command line options in this text field. For example, you can use
this field to enter a value like "-linkresource ..."

Assemblies Tab

In the .NET framework, the path defines a search path for compiled Mono assemblies. The elements are
searched in the order specified and the first matching assembly is used. The Assemblies tab on the
Mono Options dialog (Build → Mono Options) allows you to configure the path used in SlickEdit® for
compiling, running and debugging programs. This does not affect the path set in the operating system.

Warning

If your path contains unnecessary files or directories, it could slow down the launching of the
Mono debugger using the step-into command. If you experience this problem, remove any
elements not needed by this specific project.

If you have different paths for different projects, configuring the path inside of SlickEdit is very useful. If
you have a single path and use it with other external tools, it is best to configure it in the operating system
and then put a reference to the external classpath in SlickEdit by using the Add Path button on this tab.

Initial Setup (Pro only)

525

This tab contains the following fields and options:

• Add Path - Click to browse for a directory. This directory is added to the search path.

• Add Assembly - Click to add a .NET Assembly to the path.

• Add Package - Click to add a .NET package to the path.

• Edit - Click to edit the selected path element.

• Delete - Click to delete the selected path element.

• Up/Down - Use the Up and Down buttons to move the selected item up and down in the list.

JRE Tab

The Interpreter tab on the Mono Options dialog (Build → Mono Options) is used to configure options for
the Mono runtime environment. These are used when executing a Mono program inside SlickEdit®.

Initial Setup (Pro only)

526

This tab contains the following fields and options:

• Mono VM: - Specifies the name of the executable for the Mono interpreter, mono by default. The
extension is not needed. Click the Ellipsis button to browse for the executable.

• Application path: - Specifies the name of the executable to launch to run this project. This will
normally be the executable you are building for executables, but for library projects, it can be another
executable that you launch in order to run the code in the library.

• Runtime version: - Specifies the version of the Mono or .NET runtime to run the application using.

• Arguments - Specifies parameter values passed to the main function contained in the main class.

The remaining options are common configuration parameters to pass to the Mono interpreter. Each
displays the command line switch used. For more information, look up the corresponding switch in the
Mono documentation. If these values are not supported by the version of Mono you are using, uncheck
them and use Other options to pass arguments to the interpreter.

• Verbose output (--verbose)

• Show project version (--version)

• Run as desktop application (--desktop)

Initial Setup (Pro only)

527

• Run as server application (--server)

• Use Boehm garbage collector (--gc=boehm)

• Use SGen garbage collector (--gc=sgen)

• Force 32-bit architecture (--arch=32)

• Force 64-bit architecture (--arch=64)

• Other options - Specify additional Mono command line options in this text field.

C# Organize Imports
SlickEdit® provides many features that work across several languages including C#, and C#-specific
information is described throughout the documentation where applicable. The following are additional
features designed specifically for C# developers:

• Organize C# Imports

• Organize C# Imports Options Interface

Organize Imports (Pro only)

Organize Imports automates the management of using statements in C# source files. This feature
minimizes the amount of time that it takes to compile code by only importing the classes that are used.
Existing using statements are also sorted in a readable format and are more consistent between different
C# namespaces in the same project. Organizing of using statements is applied to an entire file.

To organize using statements, from the main menu, click Tools → Imports → Organize Imports, or from
the right-click context menu, select Imports → Organize Imports. Alternately, use the
refactor_organize_imports command.

Adding using statements

To add a using statement for the class name under the cursor in C# code, move the cursor to the class
name you want to import, then from the main menu, click Tools → Imports → Add using statement, or
from the right-click context menu, select Imports → Add using statement. Alternately, use the
refactor_add_import command.

Goto using statement

To jump to the import statement for the class name under the cursor in C# source code, move the cursor
to the class name, then from the main menu, click Tools → Imports → Go to using statement, or from
the right-click context menu, select Imports → Go to using statement. Alternately, use the
refactor_goto_import command. This command is helpful for identifying which namespace an
unqualified class name comes from.

Import Options

C# Organize Imports

528

Several options are available on the Options dialog to control the behavior of Organize Imports. See
Organize C# Imports Options Interface for details.

Organize C# Imports Options Interface (Pro only)

Options are available on the Options dialog to configure the Organize Imports feature (Tools → Options
→ Languages → Application Languages → C# → Organize Imports). A more direct route to the
options is to use one of the following methods:

• From the main menu, click Tools → Imports → Options

• Select Tools → Imports → Options from the right-click context menu in the editor window.

• Use the refactor_organize_imports_options command.

The following settings are available:

• Static class using statement limit before using entire namespace - If more than this number of
classes are explicitly imported from the same namespace in one file, the imports will be replaced with a
single namespace using statement.

C# Organize Imports

529

• Add blank line between groups of using statements - Organize Imports will group using statements
by namespace name or top-level namespace name. Select this option to force Organize Imports to add
a blank line between these groups instead of having just one flat list of using statements.

• Number of namespace nesting levels to group using statements by - If this is set to 1, using
statements will be grouped by top-level namespace name only. For example, all your using
statements from System. namespaces would be in a separate group from your using statements
from Microsoft. namespaces. If set to 2, using statements will be grouped by second level
namespace names. For example, all your using statements from System.Windows would be in a
separate group from your using statements from System.Web.

• Automatically add using statement during code help for C# - If selected, SlickEdit® will attempt to
automatically add using statements as you edit C# code.

• Automatically add using stement during code help for ASP - If selected, SlickEdit will attempt to
automatically add using statements as you edit C# code embedded in HTML. ASP using statements
are added using the following notation: <%@ page import="System.Web"%>.

• Namespace sort order - This list specifies the order in which namespace groups are sorted. Use the
Ellipses (...) button to add a new package. Use the Up and Down arrow buttons to move items. Use
the X button to delete the currently selected namespace from the list.

XMLDoc Comments
• Editing XMLDoc Comments

• XMLDoc Editor Dialog

• XMLDoc Beautifier Options Dialog

Editing XMLDoc Comments

Several features are available to help you enter and format XMLDoc comments (as well as other
documentation comment formats). See Doc Comments for more information.

XMLDoc Editor Dialog

Use the XMLDoc Editor to generate XMLDoc syntax comments for C#, Visual Basic, F#, Java, C, C++,
and JavaScript. To access the XMLDoc Editor, choose Document → Edit Dococumentation Comment.

To add a custom or unsupported tag, append the tag with optional attributes and content into the
Description text box.

For more information, see Microsoft's XMLDoc documentation at
https://docs.microsoft.com/en-us/dotnet/csharp/codedoc.

Note

XMLDoc Comments

530

https://docs.microsoft.com/en-us/dotnet/csharp/codedoc

NOTE SlickEdit® provides powerful capabilities to create and edit XMLDoc comments within the
editor. See Commenting for more information.

XMLDoc Beautifier Options Dialog

To beautify XMLDoc comments or set up XMLDoc Beautifier options, first invoke the XMLDoc Editor by
choosing Document → Edit Dococumentation Comment. Then click the Options button. The XMLDoc
Beautifier Options dialog is displayed. The following settings are available:

• Add blank line after parameter comment - If checked, a blank line is added if a tag follows an
<param> tag.

• Add blank line after last parameter - If checked, a blank line is added if a tag follows the last
<param> tag.

• Add blank line after return comment - If checked, a blank line is added if a tag follows the <returns>
tag.

• Add blank line after description - If checked, a blank line is added between the description and the
first tag. This option is ignored if the description contains a custom or unsupported XMLDoc tag.

• Add blank line after example - If checked, a blank line is added if a tag follows the <example> tag.

• Add blank line after remarks - If checked, a blank line is added if a tag follows the <remarks> tag.

Pascal

531

Pascal
This section describes some of the advanced options that are available for Pascal.

Pascal Formatting Options
Options are available for Pascal for changing Syntax Indent and Syntax Expansion styles. To access
these options, from the main menu, click Tools → Options → Languages, expand Application
Languages > Pascal, then click Pascal Formatting Options.

Note

Languages similar to Pascal may have similar Formatting Options screens that are not
specifically documented.

Pascal Formatting Options

532

The following options are available:

• Indent with tabs - Determines whether Tab key, Enter key, and paragraph reformat commands indent
with spaces or tabs. The hyperlink indicates if Adaptive Formatting is on or off for this setting. See
Indenting with Tabs for more information.

• Syntax indent- When this option is selected, the Enter key indents according to language syntax. The
value in the text box specifies the amount to indent for each level. The hyperlink indicates if Adaptive
Formatting is on or off for this setting. See Syntax Indent for more information.

• Tabs - Set tabs in increments of a specific value or at specific column positions. To specify an
increment of three, enter +3 in the text box. To specify columns, for example, enter 1 8 27 44, to specify
tab stops that are not an increment of a specific value. The hyperlink indicates if Adaptive Formatting is
on or off for this setting.

• Begin-end style - Specify the begin/end style used by Syntax Indent and Syntax Expansion. The

Pascal Formatting Options

533

hyperlink indicates if Adaptive Formatting is on or off for this setting. For each style, select from the
following options:

• Insert begin/end pairs - Specifies whether template should be inserted with begin and end.

• Begin/End comments - Specifies whether a comment is appended after the end keyword to indicate
the type of loop or case it terminates. In addition the begin and end for procedures and functions are
commented. No comment is appended to the begin/end pair of an if statement.

• Keyword case - Specifies the case of keywords used by Syntax Expansion. The hyperlink indicates if
Adaptive Formatting is on or off for this setting.

• Indent constant from case - Specifies whether constants of a case statement are indented or aligned
to the case keyword. The hyperlink indicates if Adaptive Formatting is on or off for this setting.

• Use Delphi expansions - Specify whether Delphi®-style expansions should be used.

PL/I

534

PL/I
This section describes some of the advanced options that are available for the PL/I language.

PL/I Formatting Options
Options are available for PL/I for changing Syntax Indent and Syntax Expansion styles. To access these
options, from the main menu, click Tools → Options → Languages, expand Mainframe Languages >
PL/I, then click PL/I Formatting Options..

Note

Languages similar to PL/I may have similar Formatting Options screens that are not specifically
documented.

PL/I Formatting Options

535

The following options are available:

• Indent with tabs - Determines whether Tab key, Enter key, and paragraph reformat commands indent
with spaces or tabs. The hyperlink indicates if Adaptive Formatting is on or off for this setting. See
Indenting with Tabs for more information.

• Syntax indent- When this option is selected, the Enter key indents according to language syntax. The
value in the text box specifies the amount to indent for each level. The hyperlink indicates if Adaptive
Formatting is on or off for this setting. See Syntax Indent for more information.

• Tabs - Set tabs in increments of a specific value or at specific column positions. To specify an
increment of three, enter +3 in the text box. To specify columns, for example, enter 1 8 27 44, to specify
tab stops that are not an increment of a specific value. The hyperlink indicates if Adaptive Formatting is
on or off for this setting.

• DO/END style - Select the syntax expansion style that indicates whether syntax expansion should

PL/I Formatting Options

536

place the DO on a separate line. Then select from the following options:

• Insert DO/END immediately - Indicates whether syntax expansion should automatically add a DO/
END block.

• Insert blank line between DO/END - Indicates whether syntax expansion should insert a blank line
when a DO/END block is inserted.

• Keyword case - Specifies the case of keywords used by Syntax Expansion. For example, when you
type the word "procedure" and the Keyword case is set to Upper case, the editor changes "procedure"
to "PROCEDURE".

• Indent WHEN from SELECT - Indicates whether the WHEN clause inside a SELECT statement should
be indented.

• SPF style line numbering (columns 73-80) - When selected, expect line numbers in columns 73
through 80 when renumbering lines.

• Code margins - Indicates where the margins are for PL/I source. These values are set to 2 and 72 by
default. Any code, comments, sequence numbers, or printer control characters outside of these
margins will be ignored by the language support in SlickEdit. This setting will be overridden for a
particular file should the file contain a preprocessor "MARGINS" statement.

Python

537

Python
Python support includes many advanced features such as a built-in debugger, Context Tagging®, smart
indenting, SmartPaste®, a beautifier, and project support. Those features are described elsewhere. This
section describes some Python specific features not described elsewhere.

Begin/End Structure Matching for Python
Begin/End Structure Matching moves the cursor from the beginning of a code structure to the end, or vice
versa.

To place the cursor on the opposite end of the structure when the cursor is on a begin or end keyword
pair, press Ctrl+] (find_matching_paren command or from the menu click Search → Go to Matching
Parenthesis). The find_matching_paren command supports matching parenthesis pairs {},[] and ().

For Python, SlickEdit® supports the matching of the colon (:) token and the end of context.

Note the cursor location in the code block below:

def function_foo(arg):| <- cursor

....
return 0| <- destination

Executing find_matching_paren will move the cursor to the end of line containing the return 0
statement. Executing it while the cursor is at the end of the return 0 statement will bring the cursor back
to the colon (:) position of the function signature line (def function_foo(arg):).

This works on function, class, for, while, if, and try statements.

There is one limitation of this feature. Note the following code block:

for i in xrange(0, 10):| <- A
for j in xrange(0, 10):| <- B
for k in xrange(0, 10):| <- C
print i, j, k| <- D

Invoking find_matching_paren at position A, B, or C will move the cursor to D, but doing so while the
cursor is at D will only move the cursor back to C (not A nor B). This is because the Python language
doesn't have the notion of end-of-scope token (such as } in C/C++, Java, etc.), so it's impossible to
determine the correct destination when jumping from D. Therefore we pick the nearest possible
destination in this scenario.

See Begin/End Structure Matching for more information about this feature.

Begin/End Structure Matching
for Python

538

Verilog and SystemVerilog
This section describes some of the advanced features and options that are available in SlickEdit® for
Verilog and SystemVerilog, including language-specific formatting options, the Verilog Beautifier, and
Verilog Preprocessing.

Verilog Beautifiers (Pro only)
The Verilog and SystemVerilog Beautifiers are described in the C and C++ language-specific options
page. They work and are configured in the same manner using very similar dialogs. Refer to Beautifiers
for more details.

Verilog Preprocessing
Typically your source code base will include preprocessor macros that you use in your code for portability
or convenience. For performance considerations, Context Tagging® does not do full preprocessing, so
macros that interfere with normal Verilog or SystemVerilog syntax can cause the parser to miss symbols.
In addition, macros defined in Verilog or SystemVerilog frameworks, such as UVM need to be pre-
configured.

1. From the main menu, click Tools → Options → Languages and expand the Hardware Description
Languages node in the tree.

2. Depending on your language, select Verilog or SystemVerilog in the tree, then click Verilog
Preprocessing.

Verilog Beautifiers (Pro only)

539

3. Click New to add new preprocessing macros. Arguments are allowed; for example, mymacro(a,b,c)

4. When finished, click OK.

5. A prompt appears asking whether to rebuild your workspace tag file. Click Yes.

Preprocessor macros are stored in userverilog.vh and/or usersystemverilog.svh, located in
your configuration directory. Rather than using the dialog, you can add large numbers of `defines directly
to this file. You may want to make sure that your entire development team has an up-to-date copy of this
configuration file once you have added all of your local preprocessor macros.

Note

The configuration file should only be used for `defines and `undefs not `includes.

Verilog Parsing Options
The Verilog parsing options allow you to fine-tune the behavior of the Verilog and SystemVerilog parsers
in order to better handle parsing your code.

• Parse `include files inline - When set to On, the Verilog and/or SystemVerilog tagging parsers will
recursively parse quoted include if the file is found relative to the current file or on the include path.

Note

Note that the parser does not look for bracketed include files because those are typically system
headers and this feature is intended to provide more complete parsing of user code.

• `include file search path - Specifies a list of directories, in addition to the directory relative to the
current file, to search for `include files.

Verilog Parsing Options

540

XML and HTML
Features for XML and HTML are described below. See also HTML and XML Beautifiers.

XML
XML features in SlickEdit® include Context Tagging® (Pro only), validation, well-formedness checking, a
beautifier(Pro only), Color Coding, URL Mapping, Syntax Expansion, and Syntax Indenting for XML,
XSLT, and schemas (DTD or XSD).

For information about working with Ant XML files for Java, see Language-specific Build Methods.

XML Validation

You can optionally configure SlickEdit to validate XML documents when opened, select Tools → Options
→ Languages → [Language Category] → [Language] → Formatting and check Auto validate on
open.

You can manually check the validity of an XML document using the xml_validate command. You can
manually check if the document is well-formed using the xml_wellformedness command. There are
buttons on the XML toolbar for these two operations. See XML Toolbar for more information.

If the XML file being edited references a DTD or schema, SlickEdit will attempt to access it. This is used
for validating the XML file and for color coding. You can customize this capability in the following ways:

• If the location of the DTD or schema is not accessible, you can map a local directory to that URL. From
the main menu, select Tools → Options → Network & Internet Options → URL Mappings. Then add
the URL for this DTD/schema and specify a directory where that file can be found.

• Even if you turn off auto-validation, the DTD/schema will be loaded for color coding. To prevent it from
being loaded, you can add the extension of the file specifying the DTD/schema to the
def_xml_no_schema_list variable. For more information, see Setting/Changing Configuration
Variables.

Tip

If you don't want to suppress the loading of DTDs or schema files for all files of a particular
extension, you can define an empty DTD or schema and put it in a directory, then map the URL
for that file to the directory as described above.

XML Toolbar

The XML toolbar is available for quickly accessing common XML operations. To display the XML toolbar,
from the main menu, click View → Toolbars → XML. By default, three buttons are available:

• Beautify selection or entire buffer - Use this button to instantly beautify the current file according to

XML

541

the Beautifier settings. See HTML and XML Beautifiers for more information.

• Validate XML document - Use this button to validate an XML file against a DTD or schema. The
results of the validation are displayed in the Output tool window. If there are errors during validation,
you can double-click on the error line and the appropriate file will be opened and moved to the specified
line.

• Check for Well-Formedness - Use this button to check if the document is well-formed according to
XML syntax rules.

(Standard or Community only) XML Formatting Options

See (Standard and Community only) HTML and XML Formatting Options.

XML Formatting Options (Pro only)

Content in XML and HTML files may be set to automatically wrap and format as you edit by turning on the
Beautify while typing check box (Tools → Options → Languages → [Language Category] →
[Language] → Editing).

Many beautifier options including tag and attribute options are set in your XML beautifier profile. To
access these options, from the main menu, click Tools → Options → Languages, expand XML/Text
Languages > XML, then click Formatting. See HTML and XML Beautifiers for more information.

Tip

If you are currently editing an XML file, you can access your XML beautifier profile settings more
quickly here (Tools → Beautify → Edit Current Profile).

XMLDoc Editor

Use the XMLDoc Editor to generate Microsoft XML syntax comments for C#, C, C++, Java, and
JavaScript. Note that by default, when creating a new comment, the Javadoc Editor is displayed for all file
types except C#. To work around this limitation, start an XML comment with "///" and then right-click in the
edit window and select Edit XML Comments.

Unknown XML tags are left "as is" and not removed.

DTD Caching

When you open an XML document that has a document type definition of (!DOCTYPE) that refers to a
remote external DTD, the DTD file is downloaded and cached locally. The DTD is processed to provide
Context Tagging®(Pro only) and better color coding. Currently, only HTTP (and not FTP) remote files are
supported. This automatic caching allows you to work offline and edit XML documents that reference
remote DTDs when you do not have an Internet connection. If you want to force re-caching of the DTD for
the current XML document, right-click to open the context menu and select Apply DTD changes.
Applying DTD changes is necessary after you create a new XML document and complete the document
type definition (!DOCTYPE).

XML

542

Opening DTD Files from XML

To open the external DTD referenced by document type definition (!DOCTYPE), place the cursor
anywhere on the !DOCTYPE tag and press Alt+1 (or right-click to display the context menu and select Go
to Error/Include File).

URL Mapping

SlickEdit® provides a way to map URLs to different locations. Whenever opening a URL, the URL map is
examined to see if this URL is mapped to a different location. If the URL is mapped elsewhere, then that
mapped location is used.

This feature allows you to work offline or from a test location. For example, if you need to work with XML
documents that contain external DTDs while offline you can map the URL to the DTD to a local file.
Similarly, if you wanted to test changes to a DTD without modifying every XML document's DTD
references, you can map the URL to the test DTD location.

Optionally, you can specify a default lookup directory that contains all of your DTDs and namespace
schemas files. Every mapping doesn't need to be explicitly configured. You can also create mappings for
namespace URIs as well as DTD files.

To map a URL, complete the following steps.

1. From the main menu, click Tools → Options → Network & Internet Options → URL Mappings.

2. Click the Add button, and a new line opens.

3. In the From field, type in the URL that will be mapped to a different location.

4. Press Tab or click in the To field and type in the location to use for this URL.

5. Optionally, use the Search directory field to specify the default lookup directory for DTDs and
namespaces. Files in this directory are searched prior to validation.

6. Click OK to save the changes and close the Options dialog.

Toggling Between Begin and End XML Tags

Place the cursor anywhere on the begin or end tag and press Ctrl+] to find the corresponding end or
begin tag respectively.

HTML
This section describes some of the features and options that are available for HTML, including language-
specific options, the HTML Beautifier, and more.

HTML support includes Context Tagging®, a beautifier, Color Coding, Syntax Expansion, and Syntax
Indenting for HTML, JSP, and ASP. Many of the language features in SlickEdit® are supported for
languages embedded in HTML, including Context Tagging, Color Coding, SmartPaste®, Syntax

HTML

543

Expansion, and Syntax Indenting.

Tip

When working with HTML files, you can toggle between the begin and end HTML tags by
pressing Ctrl+].

HTML Toolbar

The HTML toolbar is available for many common operations you may want to perform. To display the
HTML toolbar, from the main menu, click View → Toolbars → HTML.

To invoke a Web browser or to display the current file in a browser, use the Web Browser button on the
HTML toolbar. To configure the browser that is used, see Configuring the Web Browser below.

Exporting to HTML

To save the current open buffer as HTML file with formatting and color coding, from the main menu, click
File → Export to HTML (or use the export_html command).

Configuring the Web Browser

To specify the Web browser that is used for previewing, from the main menu click Tools → Options →
Network & Internet Options → Web Browser Setup. See Web Browser Setup Options for more
information.

(Standard or Community only) HTML and XML Formatting Options

Various formatting options may be specified for XML and HTML files (Tools → Options → Languages →
[Language Category] → [Language] → Formatting).

General Tab

• Indent for each level (Syntax indent): - The amount to indent for each new nesting level of tags. We
have put the words "Syntax indent" in parenthesis since this is terminology we use elsewhere.

• Indent with tabs - Determines whether the Tab key and Enter key indent with spaces or tabs.

• Tab size: - Specifies the tab size for displaying tabs.

• Max line length - Specifies the maximum length a line can be before it is wrapped to a new line. This
max line length is relative to the current indent level. For example, if you were inside a <TD> block
which was at an indent level of 30, and your max line length was set to 80, then that line would not be
wrapped until it reached a total length of 30+80=110 characters. Set this value to 0 if you want your line
breaks preserved.

• Auto Symbol Translation - Enables or disables auto symbol translations. Auto Symbol Translation
automatically converts a character or sequence of characters to the appropriate entity reference, saving
you from having to repeatedly guess at the correct entity or look up reference charts. This feature works

HTML

544

automatically as you type, so you don't need to press a special key or key sequence to trigger the
translation. For example, type >>, and SlickEdit® automatically converts the >> sequence to >, which is
the entity reference for the right angle bracket (>). Typing && translates to &, the entity reference for
the ampersand symbol (&).

• Edit Translations - Displays the Symbol Translation Editor dialog which is used to configure symbol
aliases.

Tags Tab

• Standalone - When off, all white space and line breaks are preserved. However, tags are formatted
(tag case, attribute case, etc.).

• Indent - When on, the selected tag's content, bounded by the opening and closing tag, will be indented
one syntax indent level.

• Literal - When on, all white space and line breaks are preserved. In addition, tags within the content
are treated as literal text.

• End-tag - When on, the selected tag has an end tag. For example, the tag <TD> has an ending tag that
is </TD>, so End tag would be checked in this case.

• End-tag required - When on, the selected tag's ending tag is required. This means that the ending tag
is not optional. An example of a tag whose ending tag could be optional is <P>.

• Parent Tag - Allows tag options to be set (inherited) from a parent tag. This is useful when many tags
have the same options as a particular tag. When you change the options in the parent tag, all child tags
are changed as well.

Case and Quoting Tab

• Attribute case - Specifies how you want attributes cased inside the body of a tag. For example, if you
choose Upper, then <td align="right"> would be beautified to <td ALIGN="right">.

• Word value case - Specifies how you want word values cased after the = of an attribute inside the
body of a tag. For example, if you choose Upper, then <td align="right"> would be beautified to <td
align=RIGHT>.

HTML Formatting Options (Pro only)

Content in XML and HTML files may be set to automatically wrap and format as you edit by turning on the
Beautify while typing check box (Tools → Options → Languages → [Language Category] →
[Language] → Editing).

Many beautifier options including tag and attribute options are set in your HTML beautifier profile. To
access these options, from the main menu, click Tools → Options → Languages, expand Web
Authoring Languages > HTML, then click Formatting. See HTML and XML Beautifiers for more
information.

Tip

HTML

545

If you are currently editing an HTML file, you can access your HTML beautifier profile settings
more quickly here (Tools → Beautify → Edit Current Profile).

HTML and XML Beautifiers (Pro only)

To beautify an HTML or XML document, open the document you want to beautify, then from the main
menu, click Tools → Beautify (or use the gui_beautify command). The HTML/XML Beautifier dialog will
be displayed, which allows you to make settings for how the code will be beautified.

Tip

Content in XML and HTML files may be set to automatically wrap and format as you edit by
turning on the Beautify while typing check box (Tools → Options → Languages → [Language
Category] → [Language] → Editing).

You can use the commands beautify or beautify_selection to instantly beautify the file or the selection
according to the settings on the Beautifier dialog.

Note

The CFML and XSD beautifiers contains the same options and settings as the HTML and XML
beautifiers.

The following buttons and options are available on the Beautifier:

• Beautify - Beautifies current selection or buffer and closes the dialog box.

• Reset - Restores the dialog box settings to the values that appeared when you invoked the dialog.

• Save Settings - Saves beautify options in uformat.ini file. These settings are used by the
h_beautify command.

• Restrict to selection - When on, only lines in the selection are beautified.

• Sync extension options - When on, the language options are updated to reflect any changes that
these dialogs have in common.

The tabs on the HTML Beautifier are described in the sections below.

Indent Tab

The Indent tab on the HTML Beautifier is pictured below.

HTML

546

The following settings are available:

• Indent for each level (Syntax indent) - The amount to indent for each new nesting level. We have put
the words "Syntax indent" in parenthesis to help indicate that this field has the same value as the
Syntax indent text box on the language-specific Formatting options screen (see Language-Specific
Formatting Options). By default, we initialize this text box with your current extension setup setting.

• Indent with tabs - When on, tab characters are used for leading indent of lines. This value defaults to
the Tabs text box on the language-specific Formatting options screen (see Language-Specific
Formatting Options).

• Tab size - Specifies output tab size. The output tab size is only used if Indent with tabs check box is
on. This value defaults to the Syntax indent text box on the language-specific Formatting options
screen (see Language-Specific Formatting Options).

• Original tab size - Specifies what the original file's tab expansion size was. We need to know the tab
expansion size of your original file to handle reusing indent amounts from your original file. Currently

HTML

547

the beautifier only reuses the original source file's indenting for comments. This option has no effect if
the original file has no tab characters.

• Max line length - Specifies the maximum length a line can be before it is wrapped to a new line. This
max line length is relative to the current indent level. For example, if you were inside a <TD> block
which was at an indent level of 30, and your max line length was set to 80, then that line would not be
wrapped until it reached a total length of 30+80=110 characters. Set this value to 0 if you want your line
breaks preserved.

• Attribute style - Specifies how attributes for tags are formatted. Specifies one the following:

• All On One Line, With Wrap - Place tag and attributes on one line and wrap at the maximum line
length.

• All On One Line - Place tag and attributes on one line but don't wrap at the maximum line length.

• One Line If One Attr - Place tag and attribute on one line if there is one attribute. Otherwise, place
the each attribute on separate lines.

• Preserve Layout, Reindent - Preserve line breaks and white space of attributes but reindent them.

• One Per Line - Place each attribute on a separate line from the tag.

• Preserve Layout - Preserve line breaks and white space for attributes

Tags Tab

The Tags tab on the HTML Beautifier is pictured below.

HTML

548

The Tags tab contains the following options and settings:

• Tag settings - The settings in this group box apply to the tag that is selected in the list box. The
(default tag) tag item in the list of tags specifies settings to use when no settings exist for a tag found
during beautification.

• + Icon - Displays the Add Tag dialog. This dialog allows you to add a tag definition to the list and
specify how it will be beautified.

• X Icon - Removes selected tag.

• Content - Specify how to beautify content from the following options:

• Word wrap text - When on, text inside tag is word wrapped

• Preserve text - When on, text inside is not word wrapped.

• Preserve tags - When on, child tags are preserved.

HTML

549

• Indent Tags - When on, child tags are indented.

• End-tag - When on, the selected tag has an end tag. For example, the tag <TD> has an ending tag that
is </TD>, so End tag would be checked in this case.

• End-tag required - When on, the selected tag's ending tag is required. This means that the ending tag
is not optional. An example of a tag whose ending tag could be optional is <P>.

• Preserve tag position - When on, the position of the tag within the document is preserved. This is
especially useful with JSP/ASP tags where reindenting the tag would interrupt the flow of the script
code.

• Line breaks - Select the way lines are broken:

• Before - Specify the number of line breaks before the opening tag.

After - Specify the number of line breaks after the close tag.

Within - Specify the number of line breaks after the opening tag and before close tag.

• Parent Tag - Allows tag options to be set (inherited) from a parent tag. This is useful when many tags
have the same options as a particular tag. When you change the options in the parent tag, all child tags
are changed as well.

• Allowed Child Tags - Since HTML tags may have an optional end-tag, these settings indicate which
child tags are allowed inside the selected tag.

Case and Quoting Tab

The Case and Quoting tab of the HTML and XML Beautifier is pictured below.

HTML

550

The Case and Quoting tab contains the following settings:

• Tag case - Specifies how you want tags cased. For example, if you choose Upper, then <body
bgcolor="#ffffff"> would be beautified to <BODY bgcolor="#ffffff">.

• Attribute case - Specifies how you want attributes cased inside the body of a tag. For example, if you
choose Upper, then <td align="right"> would be beautified to <td ALIGN="right">.

• Word value case - Specifies how you want word values cased after the = of an attribute inside the
body of a tag. For example, if you choose Upper, then <td align="right"> would be beautified to <td
align=RIGHT>.

• Hex value case - Specifies how you want hex values cased after the = of an attribute inside the body of
a tag. For example, if you choose Upper, then <body bgcolor="#ffffff"> would be beautified to <body
bgcolor="#FFFFFF">.

• Quote word values - Specifies whether you want word values enclosed in double quotes after the = of
an attribute inside the body of a tag. For example, <td align=right> would be beautified to <td

HTML

551

align="right">. Select Preserve if you want word values left alone.

• Quote number values - Specifies whether you want number values enclosed in double quotes after
the = of an attribute inside the body of a tag. For example, <td width=590> would be beautified to <td
width="590">. Select Preserve if you want number values left alone.

• Quote all values - When on, all values will be quoted after the = of an attribute inside the body of a tag.
For example, <td align=right> would be beautified to <td align="right">.

When the check box to the left of the labels above is unchecked, that item is preserved. For example, if
Tag case: is unchecked, then the tag case will be preserved on beautification.

Comments & Languages Tab

The Comments & Languages tab of the HTML and XML Beautifier is pictured below.

The Comments & Languages tab contains the following options and settings:

HTML

552

• Indent code from tag - When on, indents the code from the start column of the enclosing tag. This
only effects embedded languages which don't have beautifiers.

• Tag indent follows code indent - When on, the indent of tags is affected by the brace indent of
surrounding embedded code. For the following snippet, it would control whether the …. is
indented from the foreach above it, or is left in the same column:

<?php foreach ($ents as $it) { ?>
<?= format(it, 5) ?>

<?php
}
>

• Closing tag of multi-line code on its own line - When on, for a tag like ?php where the code is inside
the angle brackets, the trailing ?> will be placed on a line by itself.

• Make closing code blocks multi-line - When on, single line right brace like "<? } ?> will be
transformed to:

<?
}
?>

• Indent column 1 comments - When on, comments which start in column 1 are indented. Otherwise,
they are left alone.

Auto Symbol Translation
Auto Symbol Translation automatically converts a character or sequence of characters to the appropriate
entity reference, saving you from having to repeatedly guess at the correct entity or look up reference
charts. This feature works automatically as you type, so you don't need to press a special key or key
sequence to trigger the translation. For example, type >>, and SlickEdit® automatically converts the >>
sequence to >, which is the entity reference for the right angle bracket (>). Typing && translates to &, the
entity reference for the ampersand symbol (&).

Auto Symbol Translation uses the alias mechanism in SlickEdit to expand escape sequences in the text
for each alias. SlickEdit comes with some predefined symbol aliases. You can view these, customize
them, and create your own by using the Symbol Translation Editor dialog. The first time Auto Symbol
Translation is triggered, a prompt appears that describes the feature and lets you open the Symbol
Translation Editor.

Enabling/Disabling Auto Symbol Translation

Auto Symbol Translation is enabled by default. The first time you type a symbol alias and automatic
translation occurs, a prompt is displayed that explains the feature and provides a button to access the

Auto Symbol Translation

553

Symbol Translation Editor. You can also choose to prevent the prompt from appearing again in the future.

To turn off Auto Symbol Translation, from the main menu, click Tools → Options. Expand Languages
and your language category, then select your language and click [Language] Formatting. Clear the Auto
symbol translation option.

Configuring Symbol Aliases

The Symbol Translation Editor dialog is used to configure symbol aliases. It can be displayed by clicking
Yes on the prompt that appears the first time a symbol translation occurs, or by clicking the Settings
button on the Formatting Options screen for your language (Tools → Options → Languages →
[Language Category] → [Language] → Formatting).

Auto Symbol Translation

554

The box on the left shows a list of symbol aliases. The edit window on the right contains the translation for
the selected alias. Click New to enter a new symbol alias, or click Delete to remove a selected alias.
Working with symbol aliases is the same as working with language-specific aliases. You can even use
escape sequences and Parameter Prompting for some interesting translation results. See Creating a
Language-Specific Alias for more information.

Outline View for XML
For XML documents, the Defs Tool Window also provides a more customizable way of representing any
XML file. This allows you to set up rules for how you want to see any type of XML node that is presented
in the tree. There are several ways that you can customize a particular element's appearance:

Outline View for XML

555

• Determining whether or not we want the element to be shown.

• Using static text, attribute values or the node's value itself to build a format string for each node type.

Formatting Rule Sets

Formatting rule sets define how each element in an XML file is displayed in the tree. Each rule in the set
represents an XML element that may be found in the XML file, and each is assigned a formatting string.
This formatting string works very similarly to formatting strings in programming; you may use static text,
and you may also include replaceable text, or aliases, for values that come from each specific node.
There are currently two aliases that are available in for a format string:

• (%attribute): This alias retrieves the value of a specific attribute on an XML node. For example, (%src)
would retrieve the "src" attribute value.

• (%\v): This alias retrieves the actual value of the node between the tags.

For instance, if we have a sect1 node like the following:

<sect1 xreflabel="Introduction">Hello world!</sect1>

and a format string defined for sect1 like this:

Section 1 (%xreflabel) : "(%\v)"

then the XML Outline View representation for this sect1 node would look like this:

Section 1 (Introduction) : "Hello world"

By controlling the way each XML element is displayed in the tree, we can create a much more readable
presentation of the XML file.

Activating the XML Outline View

To activate the XML Outline View, right click in the Defs Tool Window and select Outline View → Use
Outline View. This will only be enabled if the current document is an XML document. If you have not
used the Outline View before, and you open an XML document, you will be prompted for whether or not
you would like to use it, and whether you would like to configure a set of formatting rules for the current
document. If you don't want to see the XML Outline View anymore, you may simply right click the tree and
uncheck Outline View → Use Outline View to toggle it off.

Formatting Rule Set Configuration

The following dialog allows you to set up the formatting rule set you want to use for any specific XML
document. You may be prompted to set up formatting rules the first time you view an XML document, or

Outline View for XML

556

you may return to this dialog at any time by selecting Outline View → Edit Format Rules.

The current rule set is shown at the top of the dialog and represents the rule set you are currently editing.
In the screen shot, which shows a rule set for docbook files, there is a rule for the para element, and a
rule for the sect1 to sect5 elements.

To add a new element to the current rule set, click the New button underneath the XML element list. You
will be prompted to select the name of the element from a combo box (which is populated with unique
element names from the current document) or you can enter your own name if it's not in the list. Next, you
will enter a formatting string for the element. You may also delete the current rule by clicking the Delete
button underneath the XML element list. If an element is not in the list, it will not be represented in the
XML Outline View.

If you would like to create a new formatting rule set, you may click the New button next to the rule set
drop down. You will be prompted to enter the name of the new rule set, and then you may begin adding
rules to it. If you no longer want a rule set, you may delete it by clicking the Delete button next to the rule
set drop down.

Applying Formatting Rules to XML Files

Once you have a formatting rule set to apply to one or more of your XML files, you can make that
assignment by right clicking the tree and selecting Outline View → Select Format Rules. This will bring
up the following dialog:

Outline View for XML

557

Here, you may select the formatting rule set that you wish to use with the current file. You may also select
the scope to which it is applied. You may:

• Use the scheme for the current document.

• Use the scheme for all XML files with the same extension as the current document.

From this dialog, you may also click the Configure button to go back to the Formatting Rule Set
Configuration dialog.

Outline View for XML

558

Tools and Utilities

This chapter describes the tools and utilities provided by SlickEdit that help while coding.

559

Find and Replace
SlickEdit® provides several different ways to search and replace:

• For the fastest method of searching and replacing, use Quick Search and Quick Replace (see Quick
Search and Replace below).

• If you like non-GUI, no focus change, old school (SlickEdit/Emacs) incremental searching see
Incremental Searching below.

• Use the Mini Find and Replace dialog (see Mini Find and Replace Dialog below) if you like incremental
searching with a small GUI similar to a web browser.

• If you are more comfortable with keystrokes, you may prefer command line searching with the find and
replace commands (see Find and Replace Commands).

• Use the Find and Replace tool window if you prefer working within an interface (see Find and Replace
Tool Window).

• To search for symbols, use the Find Symbol tool window (see Find Symbol Tool Window).

Both the Find and Replace tool window and command line searching provide the same search and
replace options for single or multiple files, and for searching and replacing text, wildcards and regular
expressions, so you can choose which method works best for you.

This section also includes the topics Find and Replace with Regular Expressions, Undoing/Redoing
Replacements, and Match Highlighting.

Default Search Options
The behavior for all of the search mechanisms in SlickEdit® is controlled by the Search Options located in
the Options dialog (Tools → Options → Editing → Search). The options specified here are used each
time a search is performed, except for the Find and Replace Tool Window, which has controls to override
these settings.

The value of the settings in the Options dialog are used to initialize the corresponding controls in the Find
and Replace tool window. Once the value is changed in the tool window it is remembered and used the
next time the Find and Replace tool window is launched. So changing a value in the Search Options may
not have any effect on the Find and Replace tool window. Changing a setting in the Find and Replace tool
window will not change the settings in the Search Options. See Search Options for more information.

Quick Search and Replace

Quick Search

The fastest way to search is by using Quick Search. Quick Search looks through the current buffer for the
word or selection at the cursor. You can find the next occurrence of a search item by selecting a string in

Default Search Options

560

an existing buffer or Search Results window, then selecting Quick Search from the right-click context
menu (or by using the quick_search command). The commands find_next (Search → Next
Occurrence or Ctrl+G) and find_prev (Search → Previous Occurrence or Ctrl+Shift+G) will find the
next and previous instances of the item, respectively. Quick Search always uses the default search
options (see Search Options.).

Quick Replace

Quick Replace gets the current word or selection at the cursor, prompts for replacement text on the
command line, then highlights each occurrence of the word and prompts if you want to replace the text.
Quick Replace always uses the default search options (see Search Options).

To use Quick Replace, right-click on any word or selection and select Quick Replace (or use the
quick_replace command).

The quick_replace command has a command line alias, qr. The qr command takes the replace string as
an argument. For example, if the cursor is on the word "cat," the command qr dog will prompt you to
replace all the instances of "cat" with "dog" in the current buffer.

Incremental Searching
During incremental searching, a string is searched for as it is typed. To start a forward incremental search
using the command line, use the i_search command (Ctrl+I). To start a reverse incremental search, use
the reverse_i_search command (Ctrl+Shift+I). Incremental Search always uses the default search
options (see Search Options).

The following key combinations (based on the default CUA emulation) take on a different definition during
an incremental search:

Keys Function

Ctrl+R Search in reverse for the next occurrence of the
search string.

Ctrl+S Search forward for the next occurrence of the
search string.

Ctrl+T Toggle regular expression pattern matching on/off.
See Find Symbol Tool Window or Regular
Expressions for more information.

Ctrl+W Toggle word searching on and off. To change the
word characters for a specific language, use the
Word chars field on the language-specific General
options screen (see Language-Specific General
Options).

Incremental Searching

561

Keys Function

Ctrl+Shift+W Copy complete word at cursor to search string.

Ctrl+C Toggle case sensitivity. The key bound to the Brief
emulation command case_toggle will also toggle
the case sensitivity.

Ctrl+M Toggle searching within selection.

Ctrl+O Toggle incremental search mode.

Ctrl+Q Quote the next character typed.

Ctrl+S or F5 (Brief emulation) Search forward for the next
occurrence of the search string.

Ctrl+R or Alt+F5 (Brief emulation) Search in reverse for the next
occurrence of the search string.

Ctrl+W (GNU Emacs emulation) Copy complete word at
cursor to search string.

Ctrl+Shift+W (GNU Emacs emulation) Toggle word searching on
and off.

Incremental searching stops when you press a key that does not insert a character. You can press Esc to
terminate an incremental search (only during prompting). Press and hold Ctrl+Alt+Shift to terminate a
long search.

You can retrieve your previous search string by invoking the i_search or reverse_i_search command
and pressing Ctrl+S or Ctrl+R, respectively, before entering a search string.

Mini Find and Replace Dialog
The Mini Find and Replace dialog performs incremental searching and highlights matches as you typed.
Unlike the non-GUI incremental searching (Incremental Searching), this dialog offers many of the
advanced find and replace features found in the much larger Find and Replace tool window (see Find and
Replace Tool Window) including replace, matching based on color coding, multi-file searching, and multi-
file replace. The Find and Replace tool window has more features which are especially useful for multi-file
search/replace operations.

Perform the following steps to configure the new Mini Find/Replace dialog to work like the big Find and
Replace Tool window:

Mini Find and Replace Dialog

562

• Turn on Close on Enter Key (Tools → Options → Editing → Search)

• Display the mini Find/Replace dialog (Ctrl+F or Search → Find). click the down arrow menu button to
the right of the "< >" buttons. Uncheck Incremental Search and Search Highlighting.

Note

If you prefer your key bindings for gui_find and gui_replace (and Find/Replace menu items) to
display the Find and Replace tool window, set your Default find and replace GUI to Find and
Replace tool window (Tools → Options → Editing → Search)

The following key combinations are useful hot keys for the Mini Find and Replace dialog:

Note

Mac: The Alt hot keys can be supported on macOS but you must set "Mac Option/Alt key
behavior" to "Use as Windows-style Alt key modifier" (Tools → Options → Keyboard and
Mouse → Advanced). Keep in mind that you can't enter extended ASCII characters using the Alt
shift key once you make this change.

Keys Function

Esc Dismiss Mini Find.

Enter Find next match.

Shift+Enter Find previous match.

Alt+C, Command+E Toggle search case sensitivity on/off.

Alt+W, Command+W Toggle whole word searching on/off. To change the
word characters for a specific language, use the
Word chars field on the language-specific General
options screen (see Language-Specific General
Options)

Alt+T, Alt+U, Command+T, Command+U Toggle regular expression pattern matching on/off.
See Find Symbol Tool Window or Regular
Expressions for more information.

Ctrl+F, Command+F Collapse mind find dialog or display the Find and
Replace tool window. This is not a hard coded key
binding. When you press the key bound to the gui-
find when the Mini Find and Replace dialog has
focus, the Find and Replace tool window is

Mini Find and Replace Dialog

563

Keys Function

displayed.

Ctrl+W Copy current word at cursor to search string.

Ctrl+Shift+Space Copy (complete) more word text at cursor to search
string.

Alt+0-9, Command+0-9 Find all occurrences of the search string and output
results to corresponding search tab 0-9.

Alt+O, Command+O Toggle color coding search on/off.

Alt+Shift+O, Command+Shift+O Display color coding settings menu.

Ctrl+R, Command+N Expand mind find dialog or display Find and
Replace tool window. This is not a hard coded key
binding. When you press the key bound to the gui-
replace when the Mini Find and Replace dialog has
focus, the Find and Replace tool window is
displayed.

Alt+R, Command+R Replace next

Alt+A, Command+A Replace all occurrences

Alt+I, Command+I Preview replace all occurrences

Alt+V, Command+J Toggle preserve case replace on/off.

Alt+P, Command+P Toggle wrap search on/off.

Alt+B, Command+B Toggle backward search on/off.

Alt+H, Command+H Toggle hidden text search on/off.

Alt+L, Command+L List all occurrences using last search output tab.

Alt+Shift+L, Command+Shift+L List all occurrences using new search output tab.

Alt+Shift+I, Command+Shift+I List all occurrences using auto increment search
output tab.

Alt+G, Command+Q Highlight all matches.

Mini Find and Replace Dialog

564

Keys Function

Alt+M, Command+M Bookmark all matches.

Alt+S, Command+S Set multiple cursors.

Alt+F, Alt+Enter, Command+D Display Find tools menu.

Alt+Shift+H, Command+Shift+Q Toggle highlight replaced text

Alt+Shift+U, Command+Shift+U Toggle list replace matches

Alt+K, Command+K Set focus in Look in combo box (i.e [<Current
Buffer>]).

Alt+Shift+R, Command+Shift+R Display regex menu

Alt+Shift+K, Command+Shift+K Keep matching lines.

Alt+Shift+X, Command+Shift+X Delete matching lines.

Ctrl+\, Ctrl+Shift+\, Command+\,
Command+Shift+\

Cycle next/prev item in Look in combo box (i.e [
<Current Buffer>]).

Ctrl+/, Command+/ Toggle incremental search highlighting.

Find and Replace Commands

Find and Slash (/) Commands

The command line is available for performing searches. You can use the forward slash (/) or find
commands which provide the same functionality as the Find and Replace tool window. Press Esc to
toggle the cursor to the command line.

The syntax of the / command is:

/SearchString[/OptionCharacters]

The syntax of the find or l command is:

find /SearchString[/OptionCharacters]

l /SearchString[/OptionCharacters]

Find and Replace Commands

565

The find or l command is typically used when your search string contains a / character and you need to
change the delimiters. The first non-blank character is used as the delimiter. The example below uses $
as the delimiter:

l $SearchString[$OptionCharacters]

Note

When changing the delimiter, there must be a space between the command name (find or l) and
the delimiter. Otherwise, no space is needed

OptionCharacters is one or more of the following option characters:

Option Character(s) Description

E Exact case.

I Ignore case.

- Reverse search.

M Limit search to selection.

< If found, place cursor at beginning of word.

> If found, place cursor at end of word.

R Interpret search string as a SlickEdit® regular
expression. See Find Symbol Tool Window or
Regular Expressions for more information.

L Interpret search string as Perl regular expression.
See Find Symbol Tool Window or Regular
Expressions.

~ Interpret search string as Vim regular expression.
See Find Symbol Tool Window or Regular
Expressions.

U Interpret search string as Perl regular expression.
Unix syntax regular expressions are no longer
supported.

B Interpret string as a Perl regular expression. Brief
syntax regular expressions are no longer

Find and Replace Commands

566

Option Character(s) Description

supported.

N Do not interpret search string as a regular
expression.

P Wrap to beginning/end when string not found.

W Limit search to words. Used to search for variables.

W=SlickEdit-regular-expression Specifies the valid characters in a word. The default
value is [A-Za-z0-9_$]. To change the word
characters for a specific language, use the Word
chars field on the language-specific General
options screen (see Language-Specific General
Options).

W:P Limit search to word prefix. For example, a search
for "pre" matches "pre" and "prefix" but not
"supreme" or "supre".

W:PS Limit search to strict word prefix. For example, a
search for "pre" matches "prefix" but not "pre,"
"supreme" or "supre".

W:S Limit search to word suffix. For example, a search
for "fix" matches "fix" and "suffix" but not "fixit".

W:SS Limit search to strict word suffix. For example, a
search for "fix" matches "suffix" but not "fix" or
"fixit".

H Allow finding search string in hidden lines.

Y Binary search. This allows start positions in the
middle of a DBCS or UTF-8 character. This option
is useful when editing binary files (in SBCS/DBCS
mode) which may contain characters which look like
DBCS but are not. For example, if you search for
the character "a", it will not be found as the second
character of a DBCS sequence unless this option is
specified.

, (comma) Delimiter to separate ambiguous options.

Find and Replace Commands

567

Option Character(s) Description

X CCLetters Requires the first character of search string NOT be
one of the color coding elements specified. For
example, XCS requires that the first character not
be in a comment or string. CCLetters is a string of
one or more of the following color coding element
letters:

• O - Other

• K - Keyword

• N - Number

• S - String

• C - Comment

• P - Preprocessing

• L - Line number

• 1 - Symbol 1

• 2 - Symbol 2

• 3 - Symbol 3

• 4 - Symbol 4

• F - Function color

• V - No save line

• A - Attribute

C CCLetters Requires the first character of search string to be
one of the color coding elements specified. See
CCLetters above.

* Used with the "Search hidden text" (H) or "Highlight
matches" (#) options to find all matches and un-
hide or highlight them.

& Use Wildcard regular expression syntax (*, ?).

Highlight matched patterns with highlight color.

Find and Replace Commands

568

Option Character(s) Description

V (Replace commands only) Preserve case. When
specified, each occurrence found is checked for all
lowercase, all uppercase, first word capitalized, or
mixed case. The replace string is converted to the
same case as the occurrence found except when
the occurrence found is mixed case (possibly
multiple capitalized words). In this case, the replace
string is used without modification.

$ (Replace commands only) Replaced occurrences
are highlighted with modified color.

If you don't specify OptionCharacters when using the find, l, and / commands, the default search options
are applied. See Search Options for more information.

If the "*"option is not specified, you will be prompted with the message Yes/No/Last/Go/Quit/Suspend?
for each occurrence of the "Search for" string.

Replace and c Commands

The replace commands, replace and c, can be used in the command line. The syntax of these
commands is:

c /SearchString/ReplaceString[/OptionCharacters]

replace /SearchString/ReplaceString[/OptionCharacters]

The available OptionCharacters are the same as for the find, l, and / commands (see Find and Slash (/)
Commands above).

The first non-blank character is used as the delimiter. The example below uses $ as the delimiter:

c $SearchString$ReplaceString[$OptionCharacters]

Note

When changing the delimiter, there must be a space between the command name (c or replace)
and the delimiter. Otherwise, no space is needed

You can perform one of the following actions with the replace command (c) by pressing the
corresponding key:

Find and Replace Commands

569

Key Action

Y or Space Make change and continue searching.

N or Backspace No change and continue searching.

L or Dot Make change and stop searching.

G or ! Make change and change the rest without
prompting.

Q or Esc Exit command. By default, the cursor is NOT
restored to its original position. If you want the
cursor restored to its original position, from the main
menu click Tools → Options → Editing → Search
and set the Restore cursor after replace option to
True.

Ctrl+G Exit command and restore cursor to its original
position.

Ctrl+R Search in reverse for next occurrence of search
string.

Ctrl+S Search forward for next occurrence of search string.

Ctrl+T Toggle regular expression pattern matching on/off.
The key bound to the Brief emulation command
re_toggle will also toggle regular expression
pattern matching.

Ctrl+W Toggle word searching on/off. To change the word
characters for a specific language, use the Word
chars field on the language-specific General
options screen (see Language-Specific General
Options).

Ctrl+C Toggle case-sensitivity. The key bound to the Brief
emulation command case_toggle will also toggle
the case-sensitivity.

Ctrl+M Toggle searching within selection.

F1 or ? Display Help on Find and Replace tool window.

Find and Replace Commands

570

Replace Command Search Examples

The table below provides examples of using command line replace.

Example Description

c $/$\$ Replace occurrences of forward slashes with back
slashes.

c/x/y/m Replace occurrences of "x" in the selected area
with "y" using default search case sensitivity.

c xy$m Replace occurrences of "x" in the selected area
with "y" using default search case sensitivity. The
string delimiter "$" has been used requiring a space
character after the "c."

c/x/y/e* Replace lowercase occurrences of "x" with "y"
without prompting.

c/i/something_more_meaningful/w Replace occurrences of the variable "i" with
"something_more_meaningful."

c/i/j/w=[A-Za-z] Replace occurrences of the word "i" with "j" and
specify valid characters in a word to be alphabetic
characters.

replace/Test/TEMP/v Replace occurrences of the word "test" with the
word "temp", with the case preserved. For example:

• Occurrences of "Test" are replaced with "Temp".

• Occurrences of "test" are replaced with "temp".

• Occurrences of "tesT" are replaced with "TEMP"
(because a mixed case will retain the actual
replacement that you typed).

• Occurrences of "TEST" are replaced with
"TEMP".

Find and Replace Tool Window
You can use the Find and Replace tool window (Ctrl+F, Search → Find, or View → Tool Windows →
Find and Replace) to specify search and replace options and conduct search and replace operations on

Find and Replace Tool Window

571

selections, single files, or multiple files.

Docking the Tool Window

Like other SlickEdit® tool windows, this tool window is dockable. Docking options can be accessed by
right-clicking on the tool window's title bar. When the tool window is docked, invoking any find or replace
command will bring the window to the front focus. When it is not docked, invoking these commands will
cause the window to float display. Whether docked or floating, search and replace operations will not
close the tool window by default.

Saving Search and Replace Values

When the Find and Replace tool window is invoked, the options that were used for your last search are
displayed, providing a way to repeat the last search. Options also persist when switching between the
tabs. Pressing F7 and F8 retrieves previous and next responses, respectively.

Search and replace values can be saved as named operations. Saving preserves the values of all of the
fields in the Find and Replace tool window so that the search and/or replace operation can be repeated in
the future with the same results. To save the search/replace, right-click in the Find and Replace tool
window. Select Saved Search Expressions, then select Save Search Expression from the sub-menu.
You will be prompted to name the operation. To access a saved operation, select Saved List from the

Find and Replace Tool Window

572

sub-menu, then pick the saved operation to load.

Syntax-Driven Searching

To reduce the number of false positives in your searches, you can restrict the search based on program
syntax. Click the Color button on the Find tab of the Find and Replace tool window to specify the
syntactic elements for filtering. Each check box has three states:

• Neutral (the default) - All check boxes start in the neutral state. These elements will be used in a
search until cleared or until one or more other elements are selected. Putting a check in any check box
essentially clears all non-checked boxes.

• Selected - If the check box is selected, the search will be restricted to this element and any other
selected elements. There is no need to clear any other elements if any elements are selected. If any
elements are selected, only selected elements will be searched. For example, to search for the word
"result" only in comments, put a check only in the Comment check box. All other syntactic elements will
be ignored as part of this search.

• Cleared - If the check box is clear, these elements will not be searched. For example, if you want to
find the word "result" anywhere in your code except for in comments, clear the Comment check box.

Setting Options

Options for individual search and replace operations are located on the Find and Replace tool window.
Alternatively, you can set default options that are always used instead. To set the default options, right-
click on the background of the tool window and select Configure Options. The default search options will
always be used when the Find and Replace tool window is invoked, unless settings are changed on the
Find and Replace tool window. If you change settings on the tool window and want to use the default
options instead, right-click in the tool window and select Use Default Options. See Search Options for
more information. For information on the individual options on the Find and Replace tool window, see
Search Dialogs and Tool Windows.

Search Results Output

You can specify that multi-file search results are displayed in a new editor window or in a new Search
Results tool window.

To send the results to a new editor window, select the Find in Files tab, click the Result options button
to expand the options, then select Output to editor window.

To send the results of a multi-file search to a specific Search Results tool window, select the Find in Files
tab, click the Results optionsbutton to expand the options, then use the Search Results Window drop-
down list to select the window to be used. These are labeled starting at Search<0>. A new results tool
window can be added with the <New> option up to a pre-set limit of open Search Results windows.

If <Auto Increment> is selected from the Search Results Window drop-down list, the search results will
cycle through all of the open Search Results tabs in the Search Results tool window with each new
search. For example, if you have Search<0>, Search<1>, and Search<2> open, then for each search
operation, the results will be displayed in this order: Search<0>, Search<1>, Search<2>, Search<0>,
Search<1>, and so on. If you only have one Search Results tool window open, then all results will go into

Find and Replace Tool Window

573

the only open search windows. You can open and close search results windows by right-clicking on the
Search Results tab in the Search Results tool window.

Right-click in the Search Results window to access the following options:

• Quick Search - Finds the next occurrence of the text selected.

• Filter Search Results - Select this option to display the Filter Search Results dialog. From here, if a
match is found, you can choose to keep or delete lines with additional searches, match case, limit to
current default regular expression syntax and/or remove matches found on the same line number in the
same file (this can also be accomplished by selecting List matching lines only from the Find in Files
tab).

• Open as Editor window - Opens current search results in a new editor window.

• Go to Line - Goes to the file/line number of the current line in the Search Results window.

• Bookmark Line - Places a bookmark at the line in the file where the result was found.

• Clear Window - Clears all results in the current Search Results window.

• Align Columns - Aligns the line numbers and column numbers for all search results.

• Collapse All - Collapses all Selective Display levels. See Selective Display for more information.

• Expand All - Expands all Selective Display levels. See Selective Display for more information.

See Find in Files Tab for more information.

Find Symbol Tool Window
The Find Symbol tool window (Search → Find Symbol or gui_push_tag command) is used to locate
symbols in your code. It allows you to search for symbols by name using either a regular expression,
substring, symbol pattern, or fast prefix match.

Searching for a symbol is faster than a normal text search because it is executed against the Context
Tagging® database, rather than searching through your source files. Find Symbol also avoids false hits in
comments or string literals. Though Syntax-Driven Searching in the regular Search Dialogs and Tool
Windows provides this same capability, it cannot match the speed of Find Symbol, nor restrict it's results
just to symbol definitions and declarations.

See Find Symbol Tool Window for information about the options that are available.

Find and Replace with Regular Expressions
SlickEdit® supports three types of regular expression syntax that you can use for finding and replacing
when regular search and replace operations are too limiting:

• Perl Regular Expressions

Find Symbol Tool Window

574

• SlickEdit® Regular Expressions

• Vim Regular Expressions

• Wildcards

See Regular Expressions for more information.

Undoing/Redoing Replacements
To undo a replacement, click Edit → Undo, press Ctrl+Z, or use the undo command. To redo a
replacement, click Edit → Redo, press Ctrl+Y, or use the redo command.

To undo replacements in multiple files, click Edit → Multi-File Undo or use the mfundo command. To
redo replacements in multiple files, click Edit → Multi-File Redo or use the mfredo command.

Match Highlighting (Pro only)

Cursor on Symbol Shows All Uses in File

SlickEdit® can highlight all occurrences of the current symbol under the cursor. This makes it easy to see,
at a glance, all uses of a symbol in a file. This option can be set on a language-specific basis. To enable
it, from the main menu, click Tools → Options → Languages, expand your language category and
language, then select Context Tagging®. On the options screen, select Highlight matching symbols
under cursor.

The highlight color is controlled by the Symbol Highlight screen element (Tools → Options →
Appearance → Colors). To change the color, see Setting Colors for Screen Elements. See Language-
Specific Context Tagging® Options for information about other options on the options screen.

This feature includes two advanced options that affect all languages that have Highlight matching
symbols enabled. These can be set through configuration variables (Macro → Set Macro Variable):

• def_highlight_symbols_max_bufsize - This variable sets the maximum buffer size, in bytes, for
symbol highlighting. If the buffer size is greater than the max size, highlighting is restricted to the visible
lines.

• def_highlight_symbols_max_matches - This variable sets the maximum number of matching
occurrences for symbol highlighting.

See Setting/Changing Configuration Variables for more information.

Undoing/Redoing Replacements

575

Comparing and Merging
SlickEdit® provides several ways to compare and merge files:

• DIFFzilla®

• 3-Way Merge

• The Compare Command

DIFFzilla
DIFFzilla® provides powerful differencing capabilities that let you compare files or directories(Pro only)
and view the differences side-by-side.

(Pro only)You can make edits, merge changes, and save modified files easily within the results windows.
As edits are made, the diff view is updated as you type, so you don't have to re-run the comparison. And,
switching from a directory comparison to an individual file difference is as simple as a mouse click.

Dynamic Difference Editing (Pro only)

Unlike most diff tools, DIFFzilla® allows you to edit your code while viewing differences. Undo, copy/
paste, Syntax Expansion/indenting, SmartPaste®, Auto List Members, Auto Parameter Info and many
emulation key mappings work when editing in DIFFzilla. When you type or make any edit, lines are re-
diffed (compared again) so that you can view the new intra-line differences easily.

Source Diff (Pro only)

With Source Diff, DIFFzilla ignores whitespace and carriage returns when comparing two files. This allows
you to see real differences in the code while ignoring differences in formatting. For example, look at the
two code samples, below. They are identical, except for the brace style used. Most diff tools will tell you
that they are different. Source Diff will tell you that these two are the same.

Rectangle::Rectangle() {
}

Rectangle::Rectangle()
{
}

Using Source Diff, DIFFzilla presents the Path 2 file with it's formatting adjusted to match that of the Path
1 file. We insert stream markers to indicate whitespace that was added or removed.We make a copy of
the file specified in Path 2, so no actual changes to the file are made.

DIFFzilla

576

In this screen shot, you can see a green squiggle (highlighted in the red circle) that indicates where the
formatting was adjusted. The file on the right is actually formatted with the braces on separate lines, but
Source Diff adjusts them to match the formatting of the file on the left. These adjustments are skipped by
Next Diff and Prev Diff, allowing you to focus on meaningful differences, like the extra definition in the file
on the right.

Source Diff also has the ability to ignore specific changes at the token level. For example, if you rename
several symbols, you can set up a token mapping table to tell Source Diff to ignore those differences.
This makes it easier to focus on the significant changes in your source code. See File Compare Options
to learn how to configure this option.

Tip

For example, suppose you made the following changes, you can set up a token mapping as seen
in the table below:

Modification Left

Renamed the symbol Rect to Rectangle Rectangle

Renamed a local variable r to radius radius

Renamed a local variable d to diameter diameter

Cleaned up code to use nullptr instead of NULL nullptr

Cleaned up code to use nullptr instead of 0 nullptr

DIFFzilla

577

Modification Left

Changed several variables from int type to bool bool

Cleaned up code to use true instead of 1 for
booleans

true

Cleaned up code to use false instead of 0 for
booleans

false

Using DIFFzilla

The following sections describe how to use DIFFzilla and the differencing features in SlickEdit. For more
details on the specific options available on the DIFFzilla dialog (Tools → File Difference or diff
command), see DIFFzilla® Dialog.

• Comparing Two Files

• Comparing Two Folders

• Comparing Symbols

• Generating File Lists

• Automatic Directory Mapping

• Diffing File History

• Launching DIFFzilla from the Operating System

Launching DIFFzilla from the Operating System

DIFFzilla can be launched from the operating system using the vsdiff executable. This command actually
launches SlickEdit but in a mode where just DIFFzilla is visible. This command includes an implicit +new
option so that it will not interfere with existing instances of SlickEdit already running. For more information
see Running Multiple Instances.

Comparing Two Files

To diff two source files, complete the following steps:

1. From the main menu click Tools → File Difference, or use the diff command. The DIFFzilla® dialog
appears, as pictured below.

DIFFzilla

578

2. Under Diff Type, select the Compare Two Files option.

3. Enter the name of the first file to compare in the Path 1 text box. Enter the name of the second file in
the Path 2 text box. If the file names only differ by path, you only need to specify the path for Path 2.

4. Click OK.

Comparing Two Directories (Pro only)

You can difference two source trees to determine what files have been added or removed and generate a
list of file names. When the source tree difference is complete, click Save to generate a list file. To diff two
source trees, complete the following steps.

1. From the main menu, click Tools → File Difference, or use the diff command.

2. Mark the Recurse into subdirectories check box to compare subdirectories.

3. Enter the two directories in the Path 1 and Path 2 text boxes.

4. Fill in the Filespecs text box with the files that you want processed. Alternately, set the File list file:
text box with a list of relative filenames you want to diff

5. Click OK. The Multi-File Diff Output dialog is displayed.

DIFFzilla

579

If a file exists in one tree but not the other, a plus sign (+) is displayed in the one tree and a minus sign (-)
in the other. You can customize the files to view with the context menu. To display the context menu,
right-click in the left or right tree. If you move the mouse over the Plus or Minus bitmap next to the item in
the tool tree, a tool tip is displayed indicating what the bitmap means.

For descriptions of the buttons on the Multi-File Diff Output dialog, see Multi-File Diff Output Dialog.

Comparing Symbols (Pro only)

DIFFzilla® provides the ability to diff (compare) a selected range of lines from two files or the same file.
This is very useful for comparing a piece of code that has been moved into a different part of a different
file.

Note

You can only use the interactive dialog output style when diffing a selected range of lines.
Therefore, the option Instead of an interactive dialog, output one buffer with the differences
labeled, on the DIFFzilla dialog Options tab, will have no effect.

To compare symbols, select the Symbols option under Diff Type on the DIFFzilla dialog, and all symbols
from Path 1 will be diffed against all symbols from Path 2. If Multi-File is selected as the Diff Type, it
always allows you to diff all symbols. Be sure to be careful when diffing all symbols, as some symbol
blocks are not yet picked up correctly.

To diff a selected range of lines from two source files, complete the following steps:

1. From the main menu, click Tools → File Difference.

2. Select the Compare Two Files diff type.

3. Enter the first file in the Path 1 text box.

4. Select Compare symbols: all, in the second drop-down list.

5. Enter the second file in the Path 2 text box.

Comparing Parts of Files

To diff a selected range of lines from two source files or from a single source file, complete the following
steps:

Tip

You can compare line ranges from within a single file. This can be useful when working with XML
or data files.

1. From the main menu, click Tools → File Difference.

DIFFzilla

580

2. Select the Compare Two Files diff type.

3. Type the name of the first file in the Path 1 text box.

4. Select Compare lines: range, in the second drop-down list. The Select line range dialog will be
displayed. Specify the line range using a selection or by enter the start and end line numbers.

5. Repeat the previous steps for the second file using Path 2.

6. Click OK to begin the comparison.

Generating File Lists (Pro only)

DIFFzilla

581

DIFFzilla® can be used to find only the files that have been changed, and can generate file lists. The
Save button in the Multi-File Diff Output dialog can create a list of files that includes different files,
matching files, and files that do not exist in the other tree. Use the DIFFzilla dialog box to compare the
new source tree with the original source tree.

1. From the main menu, click Tools → File Difference, or use the diff command.

2. On the Files tab, select Multi-File.

3. Enter the first file in the Path 1 text box.

4. Enter the second file in the Path 2 text box. If the file names only differ by path, you only need to
specify the path for Path 2.

5. Click OK. The Multi-File Diff Output Dialog box opens.

6. Click Save. The Save Multi-File Output dialog box opens.

DIFFzilla

582

7. Select Save Path 1 Filelist, Include different files, and Include files not in Path2. All other check
boxes should be clear.

8. Click OK and select an output file for the list. The file you save will have the .lst extension appended
to the output file name.

9. Zip the files if you want.

Automatic Directory Mapping (Pro only)

The DIFFzilla® dialog box automatically updates the Path 2 text box with a directory, based on file paths
that you previously typed in this field. For example, if you previously typed f:\slick12\bitmaps\ into the
Path 1 text box and \\server\user\slick12\bitmaps\ into the Path 2 text box, then f:\slick12\ is
mapped to \\server\user\slick12\. The next time that you type f:\slick12\macros\ in the Path 1
text box, \\server\user\slick12\macros\ is automatically entered into the Path 2 text box.

To turn this option off, complete the following steps.

1. From the main menu, click Tools → File Difference, or use the diff command.

2. Select the Options tab.

3. Click Dialog Setup.

4. Clear the Automatic directory mapping check box.

Diffing File History

The Backup History feature is available for viewing and comparing the differences between the current

DIFFzilla

583

and previous versions of an open file. It utilizes the DIFFzilla® dialog for diffs. For more information about
this working with Backup History, see File Backups.

Launching DIFFzilla from the Operating System

DIFFzilla can be launched from the operating system using the vsdiff executable. This command actually
launches SlickEdit but in a mode where just DIFFzilla is visible. This command includes an implicit +new
option so that it will not interfere with existing instances of SlickEdit already running. For more information
see Running Multiple Instances.

The command line syntax for invoking DIFFzilla® is as follows:

vs [-r1][-r2] [-wc wildcard] [-x wildcard] FileOrPath1 FileOrPath2

If the files have the same name, you only need to give the path for FileOrPath2.

The table below shows a list of available invocation options.

Invocation Option Description

-? or -h[elp] Display this help for invocation options.

+t Recurse directories.

-t Do not recurse directories.

-wc wildcard Wildcard for multi-file diff. Multiple instances of -wc
may be specified.

-x wildcard Wildcard for multi-file diff. Multiple instances of -x
may be specified.

-filelist listfile Specifies a line delimited list of relative filenames to
be diffed in the specified directories.

-showdifferent Show different files.

-hidedifferent Hide different files.

-shownotinpath1 Show files missing from path 1

-hidenotinpath1 Hide files missing from path 1

-shownotinpath2 Show files missing from path 2

-hidenotinpath2 Hide files missing from path 2

DIFFzilla

584

Invocation Option Description

-showviewed Show files already viewed in diff

-hideviewed Hide files already viewed in diff

-sc config_path Specifies the configuration directory. This directory
will be used to find and save configuration files.

Examples:

-- Display the DIFFzilla® dialog
vsdiff

-- Diff two files
vsdiff file1 file2

-- Diff .cpp and .h files recursively in the two directories
vsdiff -wc *.cpp -wc *.h c:\path1\ c:\path2\

-- Diff all files recursively in the two directories
-- excluding files in the backup directory
vsdiff -wc *.* -x backup\ c:\path1\ c:\path2\

-- Diff .cpp and .h files non-recursively in the two directories
vsdiff -t -wc *.cpp -wc *.h c:\path1\ c:\path2\

3-Way Merge (Pro only)
The 3-Way Merge editing feature can be used after two people make a local copy of the same source file,
and each makes modifications to their local copy. The 3-Way Merge takes both sets of changes and
creates a new source file. If there are any differences, a dialog box is displayed that lets you select the
changes that you want in the output file. The output file can be viewed side-by-side or interleaved.

Performing a Three-Way Merge

To perform a three-way merge, complete the following steps:

1. From the main menu, click Tools → File Merge (or use the merge command). The 3-Way Merge
Setup dialog is displayed.

3-Way Merge (Pro only)

585

2. In the Filename text box, enter the baseline (original) file name. Click the Ellipses button to the right of
the text box to select files. Click the Bbutton to select from the open buffers.

3. Enter the other names of the files to be merged in the Revision 1 and 2 text boxes.

4. In the Output file Filename text box, enter the name of the output file, or click the Ellipses button to
select from an existing file.

5. Select any Merge style or Output style that you want.

6. Click OK. The following dialog box is displayed with the results of the 3-Way Merge:

3-Way Merge (Pro only)

586

Launching 3-Way Merge from the Operating System

The 3-Way Merge can be launched from the operating system using the vsmerge executable. This
command actually launches SlickEdit but in a mode where just 3-Way Merge is visible. This command
includes an implicit +new option so that it will not interfere with existing instances of SlickEdit already
running. For more information see Running Multiple Instances.

3-Way Merge Settings

For descriptions of the options on the 3-Way Merge Setup dialog, see Tools Dialogs and Tool Windows.

The compare Command

587

The compare Command
The compare command compares two buffers in two tiled windows starting from the current cursor
position of each window. If the current window is not one of two tiled windows, you will be prompted for
the files/buffers you want to compare and two tiled windows will be set up for you.

Tip

The functionality of the compare command has been replaced with DIFFzilla®. See DIFFzilla®
for more information.

You can perform the following steps to manually set up two tiled windows before invoking the compare
command:

1. Open (Ctrl+O) both files you wish to compare

2. Make current one of the files you wish to compare.

3. Zoom the current window by clicking on the Maximize button.

4. Use the hsplit_window command (Ctrl+H or Window → Hsplit) to create two tiled windows.

5. Use the link_window command (Window → Link Window) to display the other buffer in the newly
created window.

After a compare mismatch, you can use the resync command to adjust the cursor in both windows to the
next reasonable match. This command will be improved in the future to handle more sophisticated
mismatches.

In ISPF emulation, this command is not called when invoked from the command line. Instead,
ispf_compare is called. Note that you cannot access the compare command when in ISPF emulation
unless you bind it to a key.

Setting Compare Options

The compare_options command displays the Compare Optionsdialog box to set various compare
options. The following settings are available:

• Binary compare - When selected, a stream compare (byte-by-byte) compare is performed. Typically a
line-by-line compare is performed.

• Expand tabs before compare - When selected, tabs are expanded to the appropriate number of
spaces, before lines from each file are compared.

• Ignore leading spaces - When selected, differences in leading spaces of lines are ignored.

• Ignore trailing spaces - When selected, differences in trailing spaces at the end of lines are ignored.

• Ignore all spaces - When selected, differences in spacing between characters in lines are ignored.

The compare Command

588

• Ignore case - When selected, differences in character casing is ignored.

Version Control (Pro only)

589

Version Control (Pro only)

Overview of Version Control (Pro only)
Version control is accessed from the Tools → Version Control menu, by right-clicking within a file or
buffer, by right-clicking on an item in the Files list of the Open tool window, or by right-clicking on an item
in the Project tool window. The operations on the menu vary depending on the version control system.

The following version control systems are supported (click on linked items to go to specific information
about the version control system):

• CCC/Harvest

• ClearCase

• ComponentSoftware RCS

• CVS

• Git

• Mercurial

• MKS Source Integrity

• Perforce

• PVCS

• RCS

• Source Code Control (SCC)

• StarTeam

• Subversion

• TLIB

• Visual SourceSafe

Using Version Control (Pro only)
Version control operations can be accessed from the main menu by clicking Tools → Version Control,
and then choosing an operation. Version control operations are also accessible from the context menu of
the Project tool window. The operations on the menu vary depending on the version control system.

If you are using Perforce, Subversion, Git, CVS, or Mercurial, you will see a menu like this:

Overview of Version Control
(Pro only)

590

Only Subversion shows the Lock menu item.

Git and Mercurial have menu items for Push to Repository and Pull from Repository.

Perforce and CVS do not have the Browse Repository... menu item.

Perforce has Submit instead of Commit menu item.

CVS does not have the History Diff menu item.

Most of these menu items are obvious since they are common version control operations. Here are some
details on the less obvious menu items:

• Diff current symbol with most up to date version - This compares the symbol that the cursor is
currently in with the most up to date version. This is great when you do not want to view all the

Using Version Control (Pro only)

591

differences in the file, but you want to see the differences in the function you are currently viewing. Only
SlickEdit can offer this sort of version control feature because it uses SlickEdit's powerful context
tagging engine.

• Compare with version control - This displays a directory tree and lists files that either you modified or
someone else modified. It also lists files that are not in the version control repository so they can be
added. Modified files can be updated, committed, reverted, or resolved.

• Browser repository... - This dialog allows you to browse modules and revisions in your version control
repository. You can checkout a specific module or revision.

• List shelves... - This dialog lists shelves you have created. For more information, see Shelving

• Open shelf.. - Opens a shelf you have previously created and allows you to revert/merge some or all of
the files in the shelf with files on disk. For more information, see Shelving

If you are not using Perforce, Subversion, Git, CVS, or Mercurial, you will see a menu like this:

Use the Manager command to bring up the version control system's user interface. For many command
line systems there will not be a program to call for this.

Menu items that appear grayed out for a command line version control system are blank. For SCC
version control systems, Lock is always unavailable because the SCC interface does not make
allowances for a lock command. It is possible to receive an Operation not supported message when
running some commands if an SCC version control system does not implement an interface to that
operation.

Using Version Control (Pro only)

592

The History, Difference, Lock, and Properties commands operate on the current buffer. For SCC
version control systems, the SCC provider's function is called. For command line version control systems,
the specified command is run, and the output is displayed.

The Check In, Get, Check Out, Unlock, Add, and Remove commands show a dialog box and operate
on all files selected. This dialog will allow you to easily choose from files currently open, the files in the
current project, or files in the current workspace. The left side of each dialog box contains a list of files
determined by the options you have selected. You can click on individual files to select them, or you can
select multiple files by using Ctrl+Click or Shift+Click. The following options are available for each
operation:

• Workspace - When checked, all files that are in the current workspace are listed.

• Project - When checked, all files that are in the current project are listed.

• Buffers - When checked, all files that are currently open in the editor are listed.

• Available - When checked, all files that are available for the specified operation are listed. This option
is only available for SCC version control systems. For example, when using the Check In command,
you can click Available to view all files that can currently be checked in.

• Advanced button - Click this button to configure the specified operation's options. This button is only
available for SCC version control systems that support these options.

• Check In - To check files in to the version control system, from the main menu click Tools → Version
Control → Check In, or use the vccheckin command. Select the files in the list that you wish to check
in, then click the Checkin button.

The Check In dialog provides an additional option to Save if modified. When this option is selected,
any files that are modified are saved before check-in.

• Get Files - To retrieve files from the version control system, from the main menu click Tools →
Version Control → Get, or use the vcgetcommand. Select the files in the list that you wish to get, then
click the Get button.

• Check Out - To check files out of the version control system, from the main menu click Tools →
Version Control → Check Out, or use the vccheckoutcommand. Select the files in the list that you
wish to check out, then click the Checkout button.

• Lock - To lock files in the version control system, from the main menu click Tools → Version Control
→ Lock, or use the vclockcommand. Select the files in the list that you wish to lock, then click the
Lock button.

• Unlock - To unlock files in the version control system, from the main menu click Tools → Version
Control → Unlock, or use the vcunlockcommand. Select the files in the list that you wish to unlock,
then click the Unlock button.

• Add files - To add files to the version control system, from the main menu click Tools → Version
Control → Add, or use the vcadd command. Select the files in the list that you wish to add, then click
the Add button.

Using Version Control (Pro only)

593

The Add Files dialog provides two additional buttons:

• The Browse button will invoke a dialog box that allows you to add other files to the list, so that you
can select them to be added to the version control system.

• The Remove button will remove files from the list.

• Remove files - To remove files from the version control system, from the main menu click Tools →
Version Control → Remove, or use the vcremove command. Select the files in the list that you wish
to remove, then click the Remove button.

Version Control Status Icons

SlickEdit displays the version control status of a file on the document icon in the following tool windows:

• Projects tool window

• Files tool window

• Open tool window

A red ball will appear on the upper left side of files that are locally modified. A blue ball will appear on the
lower left side of files that need to be updated.

Note

This feature is supported only for Subversion and Perforce, currently.

You can turn this feature on/off and configure the frequency of updates on the Subversion or Perforce
options screen. Select Tools → Options → Tools → Version Control → Version Control Providers →
(Subversion or Perforce) and set the values under Show file status..

Note

If the version control system returns more than 8 megabytes of data, this feature will be turned off
for performance reasons. To change that threshold, set def_vc_max_status_output_size.

Configuring Version Control
(Pro only)

594

Configuring Version Control (Pro only)
Before using Version Control, you should configure your setup. To access these options, from the main
menu, click Tools → Version Control → Setup, or use the vcsetup command. The Options dialog is
displayed open to the Version Control Setup screen. You can also access this screen by clicking Tools
→ Options → Tools → Version Control → Version Control Setup.

Uses these options to modify the command strings for a specific version control system. Command
strings are stored in the file vcsystem.slk (UNIX: uvcsys.slk), and uservc.slk and are the same
for all projects which use the selected version control system.

For more information, see Version Control Setup Options.

Advanced Setup Options

Advanced setup options are available for each version control system that supports them. From the
Version Control Setup options screen (Tools → Options → Tools → Version Control → Version
Control Setup), select the version control system you want to set up, then click on the Setup button. This
will display the setup dialog box for the system you have selected. Click the Advanced button on this
dialog to access the advanced options. The options are similar for each version control system. See
Version Control Setup Options for a list and descriptions of the options.

Setting Up Command Line Version Control Systems

If you are on a non-Windows platform, or are using a version control system that does not support SCC,
the version control system must have a command line interface. To configure a command line version
control system for a system that is using a command line driven operating system, complete the following
steps:

1. From the main menu, click Tools → Options, expand Tools, then select Version Control Setup (or
use the vcsetup command).

2. Select the Command line systems check box.

3. Select a Version Control System. Be sure that the executable file for each version control command
is in your file path, and that the executable files that are included with the version control system can
be found in the PATH environment variable. Depending on the system you are using, you might need
to complete information in the VCS Project text box.

4. Click Setup and verify that each command matches the options that you want. (If you are not sure
what any of the %<character> macros expand to, click on the arrow to the right of the text box to view a
list.)

5. Click OK.

Specific Version Control Support (Pro only)

Source Code Control (SCC)

Specific Version Control
Support (Pro only)

595

SCC is a Source Code Control interface specification that was designed by Microsoft. This interface
allows for direct communication between a version control system and another software application.
When you are using SCC, keep in mind the following information:

• If you are using a system that supports SCC, use the SCC support because it provides tighter
integration.

• If your system does not have an SCC interface installed, contact the manufacturer to be sure that an
SCC interface is not available.

• If your version control system has an SCC interface, but does not seem to behave properly, contact
SlickEdit Product Support.

Version control systems that have support for an SCC interface are supported. If you are using PVCS,
install the SCC interface support because it does not install SCC support by default. SourceSafe
automatically installs SCC support.

The following list of version control systems have SCC interfaces. If any of these systems are not
displayed in the SCC Providers list (or the SCC Providers list does not appear) dialog box, you might
need to install the support separately:

• CCC/Harvest

• ClearCase

• ComponentSoftware RCS

• MKS Source Integrity

• Star Team

Configuring SCC

SCC version control is available for systems that are using a Windows operating system only. To
configure an SCC version control system, complete the following steps.

1. From the main menu, click Tools → Options, expand Tools, then select Version Control Setup (or
use the vcsetup command).

2. Select the version control system to be used.

3. Click Initialize Provider. This launches the SCC provider. If it is already running, this button will be
grayed out.

4. Click Open Project and complete the Open Project dialog box. This dialog differs from provider to
provider. Typically, this is where you enter things like user name, password, and information about the
server.

5. Click OK. A project name is displayed in the list of SCC Version Control Systems. This version
control system and project are now bound together.

Specific Version Control
Support (Pro only)

596

Opening an SCC Project

The SCC version control system is used to help you manage your files when you are working with
projects. SCC is available for systems that are using a Windows operating system only.

To open an SCC version control project, complete the following steps:

1. From the main menu, click Tools → Options, expand Tools, then select Version Control Setup (or
use the vcsetup command).

2. Be sure that SCC providers check box is marked. If there are no SCC providers installed, the check
box is unavailable. To activate this feature, install an SCC provider. For more information, see Specific
Version Control Support above.

3. Select the system that you want, and click Initialize Provider.

4. Click Open Project. The Open Project dialog box is displayed.

The following list contains additional information to assist you when using SCC with certain applications:

• Source Integrity - For the SI Project Filename, type the entire path for the project.vpj file. For
Sandbox Path, type the path where the files are located on the local system.

• Perforce - For Client Name, type the name of the Perforce depot (for example, "//depot"). For Local
Path, type the name of the path where the files are located on the local machine.

• StarTeam - For StarTeam Project Name, type the name of the StarTeam project. For Local Path,
type the name of the path where the files are located on the local system. You are then prompted for
additional information by StarTeam.

After you open an SCC version control project, it is bound to the currently active project. When you restart
the project, or switch to this project from another project, this version control project is automatically
activated.

Perforce

Perforce support provides a way to use the editor as a front-end to Perforce, as well as integrating
Perforce actions with your regular editor use. To use Perforce, go to Tools → Options → Tools →
Version Control → Version Control Setup and select Perforce from the list of command line systems.

Perforce Options

Perforce-specific options are provided under the Version Control Providers options (Tools → Options →
Tools → Version Control → Version Control Providers → Perforce). The available options are shown
below.

Specific Version Control
Support (Pro only)

597

The following options are available:

• Perforce executable - Specifies the path to the Perforce executable that you wish to use.

• User specifies changelist - When set to On, the user will be prompted for possible changelists when
checking out or submitting.

• Show file status - The following options relate to showing the Perforce status for a file in various tool
windows and dialogs.

• Show status on file icons - When set to On, dialogs that display file icons in the tree will show the
file's Perforce status.

• Get updates from Perforce every (m) - This option specifies, in minutes, how often the file status
updates should be retrieved from Perforce

Subversion

Subversion support provides convenient access to information about the files with which you are working,
and also a GUI checkout dialog. To get started, from the main menu, click Tools → Options, expand
Tools, then select Version Control Setup (or use the vcsetup command). Set the Command line
system to Subversion. After you activate this setting, you can diff any file with the current version on its
branch, view the history of the file, and update or commit the file. You can also click Tools → Version
Control → Compare Workspace with Subversion to compare your local workspace with the files in the
repository. The Subversion support mimics the existing SlickEdit® CVS support.

SVN History Dialog

A graphical history dialog for files checked out from SVN is also provided, similar to the CVS history
dialog. This includes displaying the current state of the file, all tags for the file and a graphical display of
the branches.

Because SVN cannot provide a full history for all branches for a file, SlickEdit uses a "version cache" to
store this information. Details of each revision are stored in this cache and can be queried for a full history
of a file, and not just that of the current branch. The first time you choose to view the history of a file in an
SVN repository, this cache must be built. This can take some time to do, and you will be prompted with
the following dialog:

Specific Version Control
Support (Pro only)

598

If you select "Yes", an SVN history will come up right away with a flat revision history for the current
branch back to the trunk. This can be seen in the following screenshot:

Specific Version Control
Support (Pro only)

599

Once the version cache has been built, the following SVN history dialog will be shown:

Specific Version Control
Support (Pro only)

600

This view includes a hierarchy of all revisions for a file, nested by the branches they exist on. All further
requests for SVN history will happen very quickly. Only the initial construction of the version cache
requires an extended period of time to create. You can use DIFFzilla from this dialog to view differences
between the current and any past version, or any two past versions, with each other (see DIFFzilla®) from
this dialog.

Subversion Options

Options specific to Subversion are provided under the Version Control Providers options (Tools →
Options → Tools → Version Control → Version Control Providers → Subversion). These options are
pictured below.

Specific Version Control
Support (Pro only)

601

The following options are available:

• Subversion executable - Specifies the path to the Subversion executable that you wish to use.

• When updating, move to next file after diff - When set to True, after the diff of one file is complete,
the next file will be shown.

• When committing, restore last comment - Controls whether the last comment used to commit a file
is restored for possible reuse.

• Show branches in version history tree - When set to True, the displayed history of the file will
include activity in all branches. When set to False, then the history of branches other than the current
one will not be displayed.

• Traverse parent branch history - When set to On, the version history tree will traverse parent
branches. When set to Off, use Subversion's--stop-on-copy option.

• Show labels in version history tree - When set to True, then label names will be displayed in the
history tree. Each label name will be included next to the revision to which it was applied. When set to
False, then the labels are not included in the history tree.

• Hide empty branches in version history tree - When set to True, only branches containing at least
one revision for the current file will be displayed in the history tree.

• Show file status - The following options relate to showing the Subversion status for a file in various
tool windows and dialogs.

• Show status on file icons - When set to True, dialogs that display file icons in the tree will show the
file's Subversion status.

• Get updates from Subversion every (m) - This option specifies, in minutes, how often the file

Specific Version Control
Support (Pro only)

602

status updates should be retrieved from Subversion.

Git

Git support provides a convenient front-end to working with Git within the editor. To use Git, go to Tools
→ Options → Tools → Version Control → Version Control Setup and select Git from the list of
command line systems.

Git Options

Git-specific options are provided under the Version Control Providers options (Tools → Options → Tools
→ Version Control → Version Control Providers → Git). The available options are shown below.

The following options are available:

• Git executable - Specifies the path to the Git executable that you wish to use.

• Push/Pull is interactive - When set to True, the command window will be shown for the Push and Pull
operations to allow entering a pass phrase.

PVCS

If you are using PVCS, there is typically no need to switch version control projects since the source files
are placed in the same directory as the archive files. In some PVCS configurations, you will want to set
some environment variables when you switch projects. To set these environment variables, complete the
following steps:

1. From the main menu, click Project → Project Properties.

2. Click the Open Command tab, and type one or more set statements to set the environment variables.

3. Close and then reopen the project for the project macro to be executed.

CVS

A graphical interface for CVS updates is provided. Before updating a directory, a dialog box is displayed
that provides the status information for each file. You can then select the files that you want to update,
commit, or add. Use DIFFzilla® to view differences between various versions of a file (see DIFFzilla®).

Specific Version Control
Support (Pro only)

603

Move the mouse pointer over the bitmap to the left of the file to display a tool tip which indicates what the
bitmap means. The File bitmap with a blue star means that the file is not up-to-date. A File bitmap with a
red star means that you have modified the file.

A graphical history dialog for files checked out from CVS is also provided. This includes displaying the
current state of the file, all tags for the file and a graphical display of the branches. You can also use
DIFFzilla to view differences between the current version and any past version, or any two past versions
with each other (see DIFFzilla®).

Commit sets are a way to group files checked out of CVS that need to be checked in at the same time.
For example, when fixing a defect you may want to group all of the files that you modified. Commit sets
allow you to do this, give a common comment for the group of files and then give an individual comment
to each file. When you are done, you can review the commit set, which allows you to easily compare each
file with the most up-to-date version using DIFFzilla (see DIFFzilla®). Then, you can commit all of the files
at one time.

CVS Options

Options specific to CVS are provided under the Version Control Providers options (Tools → Options →
Tools → Version Control → Version Control Providers → CVS). These options are pictured below.

The following options are available:

• CVS executable - Specifies the path to the CVS executable that you wish to use.

• Always pass CVSRoot to CVS commands (use cvs -d option) - When set to True, the CVS -d is
passed to all CVS commands.

• Use CVS status for file bitmaps on project tool window - When set to True, then the current CVS
status is used to show icons on the project tool window.

• When updating, move to next file after diff - When set to True, after the diff of one file is complete,
the next file will be shown.

Specific Version Control
Support (Pro only)

604

• When committing, restore last comment - Controls whether the last comment used to commit a file
is restored for possible reuse.

• When committing, restore last tag(s) - Controls whether the last tag used to commit a file is restored
for possible reuse.

• Show labels in version history tree - Specifies whether the version history tree will show labels.

• In GUI update hide folders missing in repository - When this option is set to True, empty local
directories will be hidden in the update tree.

Mercurial

Mercurial support provides a way to use the editor as a front-end to Mercurial. To use Mercurial, go to
Tools → Options → Tools → Version Control → Version Control Setup and select Mercurial from the
list of command line systems.

Mercurial Options

Mercurial-specific options are provided under the Version Control Providers options (Tools → Options →
Tools → Version Control → Version Control Providers → Mercurial). The available options are shown
below.

The following options are available:

• Mercurial executable - Specifies the path to the Mercurial executable that you wish to use.

• Push/Pull is interactive - When set to True, the command window will be shown for the Push and Pull
operations to allow entering a pass phrase.

Shelving (Pro only)

Overview of Shelving

SlickEdit’s shelving feature allows you to save modifications to a set of files that can then be reverted, and
restore the modifications at a later date. It is designed for when an interruption like a bug fix requires you
to put aside a feature you are working on.

Shelving (Pro only)

605

Shelves are zip files that store the base version of the specified files, as well as the modified versions.

Creating a shelf

To create a shelf, invoke one of the Compare with version control menu items such as Tools → Version
Control → Compare Workspace with Subversion to display the Version Control Update Directory
dialog. Then select some files and right-click with the mouse and choose Create shelf... as shown below:

Give the shelf a name

You will then be presented with the current shelf dialog. You can specify a comment for the shelf, as well
as a comment for each file:

Shelving (Pro only)

606

Adding to a shelf

To add to an existing shelf, invoke one of the Compare with version control menu items such as Tools →
Version Control → Compare Workspace with Subversion to display the Version Control Update
Directory dialog. Then select some files and right-click with the mouse and choose Add to shelf as
shown below:

Shelving (Pro only)

607

Listing Your Shelves

Use the Tools → Version Control → List shelves... menu item to see a list of your existing shelves:

Shelving (Pro only)

608

•
Unshelve - Displays Unshelve dialog. Allows you to merge shelved changes back to your source tree.

Shelving (Pro only)

609

• Check for Conflicts - Before you can unshelve a set of shelved files, you first need to check for
conflicts. This ensures that no new local changes will be overwritten by the files from the shelf.
Clicking check for conflicts will pull the files from the zip file to temp files and use the 3-way merge
engine to merge local files with shelved files and ensure no conflicts exist. This step may take a
moment to complete.

• Revolve Conflict... - If there are conflicts, you will need to resolve them before you can unshelve a
set of shelved files. It is possible to have 3-way conflicts and 2-way conflicts. 3-way conflicts occur
when there is a collision between changes in the shelved file and the current local file. 2-way conflicts
occur when a file in the shelf was new, but now a file by the same name exists locally. 3-way conflicts
are resolved by using SlickEdit’s GUI 3-way merge. The resulting file is saved to a temp file. 2-way
conflicts are resolved by using SlickEdit’s diff dialog. The resulting file is saved to a temp file.

After clicking the Check for Conflicts button, files with conflicts will appear in red and show the files

Shelving (Pro only)

610

being merged as children in the Unshelve dialog. To resolve the conflict, select that item in the tree
and click Resolve Conflict....

Shelving (Pro only)

611

• Edit - Displays current shelf dialogs which allows to change comments for your shelf or add more files.

• Delete - Allows you to delete a shelf (shelves are .zip files).

• Open... - Allows you to choose a shelf not in the list.

GUID Generator

612

GUID Generator
The GUID Generator creates a Globally Unique IDentifier for use in your programs. While they are not
guaranteed to be unique, the likelihood of generating the same identifier twice is very small.

To run the GUID Generator, select Tools → Generate GUID from the main menu.

Select the format for the new GUID using the GUID Format list. Click the New button to generate a new
GUID. Click the Copy button to copy the current GUID to the clipboard. Click the Insert button to insert
the current GUID into the current file at the cursor location.

Spell Checking

613

Spell Checking

Spell Check Operations
You can access spell checking operations from the main menu by clicking Tools → Spell Check. Select
one of the following operations:

• Check from Cursor - Check spelling on the open file starting at the cursor's location. You can also use
the spell_check command to perform this operation.

• Check Comments and Strings - Check spelling only on comments and strings within the open file.
Spell Check will start at the cursor's location. You can also use the spell_check_source command to
perform this operation.

• Check Selection - Check spelling only on text that is currently selected. The spell_check command
also works for this operation.

• Check Word at Cursor - Check spelling only for the word currently under the cursor. You can also use
the spell_check_wordcommand to perform this operation.

• Check Files - Check spelling on multiple files. You can also use the spell_check_files command to
perform this operation. This will invoke the Spell Check Files dialog, which allows you to specify the
files for checking. See Spell Checking Multiple Files.

Running Spell Check
When Spell Check is running and a word is found that is not in the dictionary, the Spelling dialog appears,
prompting you for action.

Spell Check Operations

614

The dialog shows the word not found and gives suggestions for a word replacement. Use the buttons on
the dialog to perform the following actions:

• Ignore - Disregard this word and continue spell checking.

• Ignore all - Disregard all instances of this word in the selected range and continue spell checking.

• Change - Replace this word with the text in the Change to text box and continue spell checking. You
can use the suggested word or type your own word.

• Change All - Replace all instances of this word in the selected range with the text in the Change to
text box, and continue spell checking.

• Add User 1 and 2 - Add the word not found to one of two custom dictionaries, after which spell
checking continues. The first time new words are added to these lists, SlickEdit® creates new files in
your configuration directory named userdct1.lst and userdct2.lst. See Spell Check Options for
more information on custom dictionary files.

• Undo Last - Undo the last spell checking operation. The focus is placed on the last word not found.

• Options - Displays the Options dialog open to the Spell Check Options node. Options include
specifying the default dictionary, ignoring uppercase words, and detecting repeated words. You can
also access these Spell Check Options from the menu item Tools → Spell Check → Spell Options or
by using the spell_options command. See Spell Check Options for more information.

• Skip File - When spell checking multiple files, use this button to skip checking in the current file.

Spell Checking Multiple Files

The Spell Check Files dialog is used to specify multiple files for checking, and always does a language-
sensitive spell check. For HTML, markup that is not literal text is ignored. For source languages where
color coding is provided, only comments and strings are checked for spelling. To access the Spell Check
dialog box, pictured below, from the main menu click Tools → Spell Check → Check Files (or use the
spell_check_files command).

Running Spell Check

615

In the Files text box, enter one or more files separated by spaces. Wildcards may be used (for example,
*.html or *.c). You can use the Browse button to the right of this text box to choose a directory. There
are two file options available:

• Recurse subdirectories - If checked, wildcard file specifications in the Files text box will process
subdirectories recursively.

• Include project files - If checked, all project files are checked for spelling.

The Buffers list box lists the open buffers that will be spell checked in addition to the directory specified.

Sorting Text

616

Sorting Text
SlickEdit® uses a stable quicksort algorithm to sort text. It is recommended that at least half the text be in
memory for best speed results. To sort text, from the main menu, click Tools → Sort. The Sort dialog box
is displayed, as pictured below.

The following options are available:

• Type of sort - Choose the type of sort that you prefer from the following options:

• Sort buffer - When this option is selected, the entire contents of the buffer that you are working in
are sorted.

• Sort on selection - When this option is selected, each line intersecting with the selection is sorted
based on the selected column. Sort on selection and Sort within selection have the same effect
except when sorting a block or column selection.

• Sort within selection - When this option is selected, the selected text is sorted. Text outside a block
or column selection is not moved. The Sort on selection and Sort within selection options have
the same effect except when sorting a block or column selection.

• Order - Choose Ascending or Descending. In an ascending sort, the lowest text item sorted is placed
at the top.

• Numeric sort - When this option is selected, a numeric comparison is performed.

Sorting Text

617

• Remove duplicate lines - When this option is selected, it removes adjacent lines that are identical.
This option does not fully support column selection (it always compares complete lines).

• Case sensitive - When this option is selected, the sort is case-sensitive.

Sort Commands
To use the command line for sorting, first activate the command line by pressing Esc. Sort command
syntax is in the form SortCommand OptionLetter(s). The following sort commands are available:

• sort_buffer - Sorts the current buffer.

• sort_within_selection - Sorts text within a selected area. This command supports line and block
selections only.

• sort_on_selection - To sort on a column field, press Ctrl+B to select an area of text, then invoke the
command sort_on_selection. This command supports line and block selections only.

The table below describes the OptionLetter(s) that you can use with each command.

Option Meaning

A Sort in ascending order.

D Sort in descending order.

I Case insensitive sort (ignore case).

E Case sensitive sort (exact case which is the
default).

-N Numeric sort. C-style floating point numbers with up
to 32-digit mantissa are supported.

-F File name sort.

Sort Commands

618

FTP
FTP support within SlickEdit® includes a complete FTP/SFTP client and the ability to easily open and edit
FTP files.

Working with FTP
Before you can access FTP files, you must create an FTP profile, then start that connection. FTP
operations can be accessed from FTP tool windows or by right-clicking on FTP files after a connection is
active.

FTP Tool Window

There are two tool windows available for working with FTP: FTP and FTP Client.

• The FTP tool window can be used to connect to FTP servers and open files. To access this tool
window, from the main menu, click View → Tool Windows → FTP. Right-click on files to display a
menu of FTP operations.

• The FTP Client tool window can also be used to connect to FTP servers and transfer files. As with
most FTP clients, local directories and files are displayed in the left section of the tool window, and the
FTP server directories and files are on the right. To access this tool window, from the main menu, click
View → Tool Windows → FTP Client. Right-click on files to display a menu of FTP operations.

FTP Profile Manager

To create a new FTP connection profile, complete the following steps:

1. From the main menu, click File → FTP → Profile Manager(ftpprofilemanager command).
Alternatively, you can display the FTP tool window (View → Tool Windows → FTP) and click the
button labeled Start a New Session . The FTP Profile Manager dialog box is displayed, as

pictured below.

Working with FTP

619

2. Click Add to create a new profile. The Add FTP Profile dialog box is displayed.

3. Click Edit to Edit a profile. The Edit FTP Profile dialog box is displayed.

See Setting FTP Options for information about the options on the Add or Edit FTP Profile dialogs.

Starting a Connection

To start a new connection, use the FTP or FTP Client tool windows described above, and complete the
following steps:

1. Click the FTP button to start a new session.

2. The FTP Profile Manager dialog box appears. From the Profiles list, select the profile name to connect
to.

Working with FTP

620

3. Click Connect. The FTP tool window displays the content of the remote directory.

4. Toggle the ASCII Transfer mode button to transfer text files. When in ASCII transfer mode, line ending
characters may be translated.

5. Toggle the Binary Transfer mode button

to transfer images and executables.

6. To stop the current operation, click the Stoplight button .

Stopping a Connection

To stop a connection, use the FTP or FTP Client tool windows, and complete the following steps:

1. Select the connection that you want from the drop-down list at the top of the tool window.

2. Click the Disconnect Current Session button .

Opening FTP Files

Before you can open FTP files, you need to start a connection. See Starting a Connection above for more
information. After your connection starts, from the FTP or FTP Client tool window, right-click on selected
files to open them, to change the directory, or to access more options.

Setting FTP Options
There are two types of settings available for working with FTP:

• FTP connection profile options - These options are used to add or edit new FTP connection profiles.
The Add/Edit FTP Profile dialog box is used. To access this dialog, open the FTP Profile Manager, then
select New or Edit to edit an existing selected profile. See Add/Edit FTP Profile Dialog for a complete
list of available options.

• Default FTP options - These are the general default FTP settings. To access these options, from the
main menu, click Tools → Options, expand Network & Internet Options and select FTP Default
Options. See FTP Default Options for more information.

Setting FTP Options

621

Using the Calculator and Math Commands

The Calculator
To access the calculator, click Tools → Calculator, or use the calculator command.

You can use the calculator in various ways. Type in mathematical expressions from the keyboard or by
clicking buttons, including parentheses. Almost all the editing keys including undo, next word, and
previous word are supported. The calculator uses a slightly enhanced C expression syntax. The
calculator supports specifying binary numbers and allows just an x prefix when specifying hexadecimal
numbers.

For example, to add the decimal numbers 135 and 288, type 135+288=. Press the = character to evaluate
the expression and place the result on the next line. To see the result in a different base, click Hex, Dec,
Oct, or Bin.

Calculating Expressions with Mixed Bases

To add hex FF with octal 77 with binary 111 with decimal 99, complete the following steps:

1. Click Hex then type or click FF.

The Calculator

622

2. Click +.

3. Click Octal, and type or click 77.

4. Click +.

5. Click Bin, and type or click 111 .

6. Click +.

7. Click Dec, and type or click 99.

8. Select the output base by clicking one of the base buttons and type or click =to compute the result.

Math Commands
Evaluate mathematical expressions by selecting expressions in a buffer and executing the add command
or by executing one of the math commands on the command line followed by an expression.

These commands support the same expression input. The syntax of the math command is:

math [expression]

The math command evaluates the Slick-C® language expression given and places the results in the
message line. You can specify octal numbers by prefixing the number with a zero and specify binary
numbers by prefixing the number with the character b. If no operator is specified between two unary
expressions, addition is assumed. The characters $ and comma (,) are stripped from the expression
before it is evaluated. The mathx, matho, and mathb commands evaluate the Slick-C language
expression given and places the result in the message line in hexadecimal, octal, and binary respectively.
The expression can have the following unary operators:

• ~ bitwise complement

• - negation

• + no change

The available binary operators are listed below, from lowest to highest precedence. A comma after the
operator indicates that the next operator is of the same precedence.

Operator Meaning

&, | bitwise AND, bitwise OR

^ xor

+, blank(s), - addition, implied addition, subtraction

Math Commands

623

*, /, % multiplication, division, remainder

** power

Hexadecimal numbers are prefixed with the characters 0x or just x. Octal numbers are prefixed with the
character O or digit 0.

Note

Not all Slick-C language operators are supported.

Math Command Examples

The following table shows some examples of math commands:

Example Description

math 2.5*2 Multiplies 2.5 times 2

math 5/2 Divides 5 by 2

mathx 255 Converts 255 to hexadecimal

math xFF Converts hexadecimal FF to decimal

math o77 Converts octal 77 to decimal

matho 255 Converts 255 to octal

math 077+0xff+10 Adds octal 77, hex FF, and 10

Overflow/Underflow

If overflow or underflow occurs, the message Numeric overflow or underflow is displayed on the
message line. Floating point numbers may have up to a 32-digit mantissa and a 9-digit exponent.

Document Math

Type mathematical expressions into a buffer and evaluate them with the add command. This feature is
called document math. The add command adds selected text and inserts the result below the last line of
the selection. If no operator exists between two adjacent numbers on the same line, addition is assumed.
The result of each adjacent line is added.

Math Commands

624

Prime Numbers

Prime numbers are often useful for sizing hash tables. The isprime command (used from the command
line) takes a decimal number as an argument and tells you if it is prime, and if not, its first divisor. The
nextprime command takes a decimal number as an argument and finds the next greater prime number.

OS File Browser

625

OS File Browser
SlickEdit® provides a way to display the operating system's (OS) file manager/browser. For example,
Windows Explorer is displayed on Windows, Finder on macOS, Konquerer on Linux KDE desktop, etc.

To display the OS file browser, click Tools → OS File Browser, or use the explore or finder command
(the finder command is the same as the explore command).

If you are editing a document, the file manager will be rooted in that file's directory, otherwise it will default
to the current working directory. Using the - option after the command (for example, explore -) will ignore
any file directory or working directory and go to the system root.

Interactive tool window (Pro
only)

626

Interactive tool window (Pro only)

Overview
Interactive shells are great for learning a language or testing small pieces of code. Select some text and
press Ctrl+Alt+Enter to load the selected code in an interactive shell. The interactive shell will be
automatically started if necessary.

Interactive shells are preconfigured for many languages including Clojure, CoffeeScript, C#, Groovy,
Haskell, Lua, PHP, Perl, PowerShell, Python, R, Ruby, and Scala.

To open the Interactive tool window, select it from the tool window list View → Tool Windows. When the
Interactive tool window is opened, it will display a list of interactive shell profiles for various languages.
Double click on a profile to start that specific interactive shell. To open another interactive shell, right click
on the interactive shell tab and select a different interactive shell profile.

Configuring Interactive Profiles
Go to Document → [Language] Options → Interactive Profiles to change or add interactive shell
profiles for a specific language.

Note

Interactive profiles are stored in the configuration directory in user.cfg.xml.

• Edit... - Displays the Interactive Profile Settings dialog for the selected profile.

Overview

627

• New... - Creates a new profile.

• Copy... - Copies the settings from the selected profile.

• Delete - Deletes the selected profile. System profiles can't be deleted.

Configuring Interactive Profiles

628

Regular Expressions Regular
ExpressionsAn Overview

searchingRegular Expressions
replacingRegular Expressions Regular

Expressions

Regular expressions are patterns of text used to match and manipulate strings in your code. These
patterns are expressed with combinations of characters defined by the regular expression syntax being
used. A regular expression is sometimes referred to as a "regex".

Use regular expressions in your search and replace operations when you find normal search/replace too
limiting. For example, with regular expressions, you can:

• Find quoted strings.

• Find blank lines.

629

• Find words starting at the beginning of lines.

• Find two words separated by any number of spaces or other text.

SlickEdit® supports several types of regular expression syntax:

• Perl Regular Expressions

• SlickEdit® Regular Expressions

• Vim Regular Expressions

• Wildcards

SlickEdit also provides a Regex Evaluator that you can use to interactively create, save, and re-use tests
of regular expressions. See The Regex Evaluator for more information.

Unicode regular expression categories and character blocks are also supported. See Unicode Categories
and Character Blocks for more information.

Note

• This documentation is not meant to be an exhaustive resource on regular expressions. Rather,
we will present basic information, syntax charts, and examples. For novice users, there are
many books and Web sites that go into more detail about this topic.

Using Regular Expressions in
SlickEdit®

630

Using Regular Expressions in SlickEdit®

Specifying the Syntax to Use
All search and replace commands, the Find and Replace tool window, and incremental search support
regular expressions. For search and replace commands and the tool window, you can specify the regular
expression syntax to use through specific options. A global option is available to specify the default syntax
to use when you invoke these features or when you use incremental search.

For example:

• Search and replace commands - When using the search commands / (slash) and find, or the replace
commands c and replace, you can use the following options to specify regular expression syntax:

• Use R to interpret the string as a SlickEdit regular expression.

• Use the Loption to interpret the string as a Perl regular expression.

• Use the ~option to interpret the string as a Vim regular expression.

• Find and Replace tool window - When using the tool window, select Use in the Search options box,
and then pick the syntax to use from the drop-down list.

• Incremental search - When using incremental search, press Ctrl+T to toggle regular expression
searching on and off. The syntax that will be used is based on the global syntax setting.

To set the global option, from the main menu, click Tools → Options, expand Editing and select Search.
Set the Regular expression option to True and select the syntax you want to use from the Expression
type drop-down list.

Minimal versus Maximal Matching
If you are using tagged expressions or regular expressions to perform a search and replace, it is
important to understand the difference between the minimal and maximal operators.

Take, for example, a line of text which contains a DOS file name: \path1\path2\path3\name.ext.

Based on the syntax, the following regular expressions match the string \path1\:

Syntax Expression

Perl ^\\.*?\\

SlickEdit ^\\?*\\

Vim ^\\.\{-}\\

Specifying the Syntax to Use

631

Syntax Expression

The following regular expressions, which use the maximal operator, match the string \path\path2\path3\:

Syntax Expression

Perl ^\\.*\\

SlickEdit ^\\?@\\

Vim ^\\.*\\

As a rule of thumb, the following minimal matching operators are generally used after a less-specific
regular expression such as ? in SlickEdit, . in Perl, or . in Vim

Syntax Operators

Perl *? and +?

SlickEdit * and +

Vim \{-} and \{-1,}

Use the maximal matching operators after a regular expression which matches something more specific.
For example, to search for a string of digits and prefix each matched string with the character $, specify
the following expressions:

Syntax Expression

Perl Search for:([0-9]+)

Replace with:$\1

SlickEdit Search for: {[0-9]#}

Replace with: $#0

Vim Search for:\([0-9]\+\)

Replace with:$\1

If the minimal matching operator (+? in Perl, + in SlickEdit syntax) was used in the search string instead

Minimal versus Maximal
Matching

632

of the maximal matching operator (+ in Perl, # in SlickEdit), the above search and replace would prefix
each digit in the entire file with a $ character.

Using Perl Tagged Expressions
When you use regular expressions to search for a string, you will often want the replace string to depend
on what was found. Use tagged expressions to insert parts of what is found into the replace string.

Tagged Expressions in Perl Search String

Perl Regex Definition

(X) Matches subexpression X and generates a tagged
expression. The first tagged expression index is 1.
No more tagged expressions are defined once an
explicit tagged expression number is specified
using (?dd).

(? dd X) Matches subexpression X and adds tagged
expression at the 1 or 2 digit index specified (01 is
the same as 1). No more tagged expressions are
automatically generated by the subexpression
syntax (X) once this subexpression syntax is used.
This is an extension to Perl syntax and will not work
in a Perl script.

(?<name>X), (?'name'X), (?{name}X),
(?P<name>X)

Matches subexpression X and specifies a tagged
expression identified by name. A non-numeric
tagged expression name must start with a letter
[a-zA-Z] and be followed by the characters
[a-zA-Z0-9_]. name may also be a numeric index
[0-9]+ but this is an extension to Perl syntax and
will not work in a Perl script. The first valid index is
1.

\k<name>, \k'name', \k{name}, \g<name>,
\g'name', \g{name},

Matches tagged expression which was previously
set. name may be a non-numeric tagged
expression name or a numeric index. Using a
numeric index for name will not work in a Perl
script. \g<name>, and \g'name' are extensions to
Perl syntax and will not work in a Perl script.

\gdigits Matches tagged expression at index specified by
digits.

\digits Matches tagged expression at index specified by
digits or specifies a 2-3 digit octal number. If the

Using Perl Tagged Expressions

633

Perl Regex Definition

tagged expression was not defined, \digits specifies
a 2-3 digit octal number.

\g-digits \k<-digits>, \k'-digits', \k{-digits}, Matches relative tagged expression which was
previously defined. -1 is the previous tagged
expressions, -2 is the previous before that, etc. \k<-
digits>, \k'-digits', and \k{-digits} are extensions to
Perl syntax and will not work in a Perl script.

Tagged Expressions in Perl Replace String

Perl Regex Definition

$digits Specifies a tagged expression by index from search
string. The first index is 1. Replaced with empty
string if tagged expression was not set.

\digits Specifies a tagged expression by index from search
string. If the tagged expression was not defined,
\digits specifies a 2-3 digit octal number.

$+{name} Specifies a tagged expression from search string.
name may be a non-numeric tagged expression
name or a numeric index. Using a numeric index for
name will not work in a Perl script. Replaced with
empty string if tagged expression was not set.

\k<name>, \k'name', \k{name} Specifies a tagged expression from search string.
name may be a non-numeric tagged expression
name or a numeric index. Using a numeric index for
name will not work in a Perl script. Replaced with
empty string if tagged expression was not set.
These are extensions to Perl syntax and will not
work in a Perl script

$& Specifies the entire search string that was matched

$(<exp1>X1 | <exp2>X2 ... | <expN>XN | Xdefault) Insert X corresponding to the first match group
expression which evaluates to true. If no match
group expression is true, insert Xdefault. The
default clause is optional. exp specifies one or more
tagged expression names or indexes separated
with & (logical AND operator) or | (logical OR
operator). For example, <1&2> evaluates to true if

Using Perl Tagged Expressions

634

Perl Regex Definition

tagged expression index 1 and tagged expression
index 2 matched something. The match group
expression <1|2> evaluates to true if tagged
expression index 1 or tagged expression index 2
matched something. There is no operator
precedence. Instead, the operator farthest to the
right has the highest precedence.

Tagged Expressions Perl Examples

Search For Replace With Description

(if|while) x$1y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".

(if|while) x\1y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".

(?4if|while) x\k<4>y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".
This is an extension to Perl syntax
and will not work in a Perl script.

(?<n1>if|while) x\k<n1>y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".

(?<n1>if|while) x$+{n1}y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".

(?<n>if|while) x$1y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".

(a)|(b)|(c) $(<1>x|<2>y|<3>z) Replace occurrences of "a" with
"x", "b" with "y", and "c" with "z".

(a)|(b)|c|d $(<1>x|<2>y|z) Replace occurrences of "a" with
"x", "b" with "y", "c" with "z", and
"d" with "z".

(?:(a)|(b))(?:(c)|(d)) $(<1&3>AC|<2&4>BD|DD) Replace occurrences of "ac" with
"AC", "bd" with "BD", "ad" with
"DD", and "bc" with "DD.

Using Perl Tagged Expressions

635

Search For Replace With Description

^(.*?),(.*)$ $2,$1 Reverse text on lines containing a
coma. Lines with "abc,def" will be
changed to "def,abc". Notice that
the Perl regular expression
search string uses a *? minimal
matching operator, so the comma
matches the first comma in the
line and not the last.

(a)(b)(c)\g1 x$1y Replace occurrences of "abca"
with "xay".

(a)(b)(c)\g-3 x$1y Replace occurrences of "abca"
with "xay".

Using SlickEdit® Tagged Expressions
When you use regular expressions to search for a string, you will often want the replace string to depend
on what was found. Use tagged expressions to insert parts of what is found into the replace string.

Tagged Expressions in SlickEdit® Search String

SlickEdit Regex Definition

{X} Matches subexpression X and generates a tagged
expression.The first tagged expression index is 0.
No more tagged expressions are defined once an
explicit tagged expression number is specified
using (#dd) or {#ddX}.

(#ddX), {#ddX} Matches subexpression X and specifies a 1 or 2
digit tagged expression number index to use (01 is
the same as 1). The expression (#0if)|(#0while) is
the same as (#|(if)|(while)).

(#<name>X), (#'name'X), (#{name}X),
(#P<name>X)

Matches subexpression X and specifies a tagged
expression identified by name. name may be a non-
numeric tagged expression name (start with a letter
[a-zA-Z] and be followed by the characters
[a-zA-Z0-9_]) or a numeric index ([0-9]+). The first
valid index is 0.

Using SlickEdit® Tagged
Expressions

636

SlickEdit Regex Definition

\k<name>, \k'name', \k{name}, \g<name>,
\g'name', \g{name},

Matches tagged expression which was previously
set. name may be a non-numeric tagged
expression name or a numeric index.

\gdigits Matches tagged expression at index specified by
digits.

\g-digits \k<-digits>, \k'-digits', \k{-digits}, Matches relative tagged expression which was
previously defined. -1 is the previous tagged
expressions, -2 is the previous before that, etc.

Tagged Expressions in SlickEdit® Replace String

SlickEdit Regex Definition

#digits Specifies a tagged expression by index from search
string. The first index is 0. Replaced with empty
string if tagged expression was not set.

\k<name>, \k'name', \k{name} Specifies a tagged expression from search string.
name may be a non-numeric tagged expression
name or a numeric index. Replaced with empty
string if tagged expression was not set.

#& Specifies the entire search string that was matched

#(<exp1>X1 | <exp2>X2 ... | <expN>XN | Xdefault) Insert X corresponding to the first match group
expression which evaluates to true. If no match
group expression is true, insert Xdefault. The
default clause is optional. exp specifies one or more
tagged expression names or indexes separated
with & (logical AND operator) or | (logical OR
operator). For example, <1&2> evaluates to true if
tagged expression index 1 and tagged expression
index 2 matched something. The match group
expression <1|2> evaluates to true if tagged
expression index 1 or tagged expression index 2
matched something. There is no operator
precedence. Instead, the operator farthest to the
right has the highest precedence.

Tagged Expressions SlickEdit® Examples

Using SlickEdit® Tagged
Expressions

637

Search For Replace With Description

{if|while} x#0y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".

(#4if|while) x\k<4>y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".

(#<n1>if|while) x\k<n1>y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".

(#<n>if|while) x#0y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".

{a}|{b}|{c} #(<0>x|<1>y|<2>z) Replace occurrences of "a" with
"x", "b" with "y", and "c" with "z".

({a}|{b})({c}|{d}) #(<0&2>AC|<1&3>BD|DD) Replace occurrences of "ac" with
"AC", "bd" with "BD", "ad" with
"DD", and "bc" with "DD.

{a}|{b}|c|d #(<0>x|<1>y|z) Replace occurrences of "a" with
"x", "b" with "y", "c" with "z", and
"d" with "z".

^{?*},{?*}$ #1,#0 Reverse text on lines containing a
coma. Lines with "abc,def" will be
changed to "def,abc". Notice that
the SlickEdit regular expression
search string uses a * minimal
matching operator, so the comma
matches the first comma in the
line and not the last.

{a}{b}{c}\g0 x#0y Replace occurrences of "abca"
with "xay".

{a}{b}{c}\g-3 x#0y Replace occurrences of "abca"
with "xay".

Using Vim Tagged Expressions
When you use regular expressions to search for a string, you will often want the replace string to depend
on what was found. Use tagged expressions to insert parts of what is found into the replace string.

Using Vim Tagged Expressions

638

Tagged Expressions in Vim Search String

Vim Regex Definition

\(X\) Matches subexpression X and generates a tagged
expression. The first tagged expression index is 1.
No more tagged expressions are defined once an
explicit tagged expression number is specified
using (?dd).

\(\? dd X\) Matches subexpression X and adds tagged
expression at the 1 or 2 digit index specified (01 is
the same as 1). No more tagged expressions are
automatically generated by the subexpression
syntax \(X\) once this subexpression syntax is used.
This is an extension to Vim syntax and will not work
in Vim

\(\?<name>X\), \(\?'name'X\), \(\?{name}X\),
\(\?P<name>X\)

Matches subexpression X and specifies a tagged
expression identified by name. A non-numeric
tagged expression name must start with a letter
[a-zA-Z] and be followed by the characters
[a-zA-Z0-9_]. name may also be a numeric index
[0-9]+. The first valid index is 1. These are
extensions to Vim syntax and will not work in Vim.

\g<name>, \g'name', Matches tagged expression which was previously
set. name may be a non-numeric tagged
expression name or a numeric index. These are
extensions to Vim syntax and will not work in Vim.

\digit Matches tagged expression at index specified by
digit. \digit specifies a 1 digit number (1..9). Use \g
to specify a larger index.

\g<-digits>, \g'-digits', Matches relative tagged expression which was
previously defined. -1 is the previous tagged
expressions, -2 is the previous before that, etc.
These are extensions to Vim syntax and will not
work in Vim.

Tagged Expressions in Vim Replace String

Vim Regex Definition

Using Vim Tagged Expressions

639

Vim Regex Definition

\digit Specifies a tagged expression by index from search
string. \digit specifies a 1 digit number (1..9). Use \g
to specify a larger index.

\g<name>, \g'name', Specifies a tagged expression from search string.
name may be a non-numeric tagged expression
name or a numeric index. Replaced with empty
string if tagged expression was not set. These are
extensions to Vim syntax and will not work in Vim

&, \0 Specifies the entire search string that was matched

~ Specifies previous replace string. This is only
supported by the EX substitute command (i.e.
s:/a/~/)

Tagged Expressions Vim Examples

Search For Replace With Description

\(if\|while\) x\1y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".

\(if\|while\) x\g<1>y Replace occurrences of "if" and
"while" with "xify" and
"xwhiley".This is an extension to
Vim syntax and will not work in
Vim.

\(\?4if\|while\) x\g<4>y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".
This is an extension to Vim syntax
and will not work in Vim.

\(\?<n1>if\|while\) x\g<n1>y Replace occurrences of "if" and
"while" with "xify" and "xwhiley".
This is an extension to Vim syntax
and will not work in Vim.

^\(.*\?\),\(.*\)$ \2,\1 Reverse text on lines containing a
coma. Lines with "abc,def" will be
changed to "def,abc". Notice that
the Vim regular expression search

Using Vim Tagged Expressions

640

Search For Replace With Description

string uses a *? minimal matching
operator, so the comma matches
the first comma in the line and not
the last.

(a)(b)(c)\g<1> x\1y Replace occurrences of "abca"
with "xay".

(a)(b)(c)\g<-3> x\1y Replace occurrences of "abca"
with "xay".

Replacing with Regular Expressions
When using regular expressions, some characters have a different meaning when used in the replace
string, depending on the syntax:

• Perl - A backslash in the replace string has the same meaning as in the search string except for \g and
a few others which make no sense (i.e. \oc, \u, \o:char etc.). A dollar sign ($) must be escaped (\$)
when replacing a literal $.

• SlickEdit® - The pound sign character (#) and backslash (\) have special meaning in the replace string.
A backslash in the replace string has the same meaning as in the search string except \g and a few
others which make no sense(\c, \u, :char etc.)

• Vim - A backslash in the replace string has the same meaning as in the search string except for those
which make no sense (i.e. \<, \>, \k etc.).

See Regular Expressions for a complete list of regular expression syntax. See Using Perl Tagged
Expressions or Using SlickEdit® Tagged Expressions for information on specifying tagged expressions in
the replace string.

Case Modification in Replace

When used in a replace operation, the expressions in the following table can be used to modify the
character casing of matched expressions. These work in Perl and SlickEdit syntaxes.

Expression Description

\l Convert next character to lowercase.

\u Convert next character to uppercase.

\L Convert all characters lowercase until \E.

Replacing with Regular
Expressions

641

Expression Description

\U Convert all characters uppercase until \E.

\Q Replace all characters literally until \E.

\E End all case modification or \Q.

Examples of Replacing with Regular Expressions

The table below contains some examples of replace operations using regular expressions.

Operation Expression

Search for occurrences "if" or "while" and replace
with "IFIf" or "WHILEWhile".

Perl

Search for: (if|while)

Replace with: \U$1\E\u$1

SlickEdit

Search for: {if|while}

Replace with: \U#0\E\u#0

Search for occurrences of the string "hat" that occur
at the end of a line and replace it with "cat".

Perl or SlickEdit

Search for: hat$

Replace with: cat

Delete blank lines. Perl or SlickEdit

Search for: ^\R

Replace with: (leave blank)

SlickEdit

Search for: ^\n

Replace with: (leave blank)

Replace occurrences of two consecutive blank lines
with one.

Perl or SlickEdit:

Search for: ^\R\R

Replacing with Regular
Expressions

642

Operation Expression

Replace with: \R

SlickEdit:

Search for: ^\n\n

Replace with:\n

Search for lines containing "a" and replace the "a"
with a formfeed character.

Perl:

Search for:^a+$

Replace with:\o#{12}

SlickEdit:

Search for:^a+$

Replace with:\12

Select occurrences of "Title:" at the beginning of a
line and capitalize the text following "Title:".

Perl

Search for: ^Title: (.*)

Replace with: Title: \U\1

SlickEdit:

Search for: ^Title\: {?@}

Replace with: Title: \U#0

The Regex Evaluator

643

The Regex Evaluator
Regular expressions are used to express text patterns for searching. The Regex Evaluator provides the
capability to interactively create, save, and re-use tests of regular expressions.

To access the Regex Evaluator, click Tools → Regex Evaluator (or use the activate_regex_evaluator
command). Like other tool windows in SlickEdit®, this tool window is dockable. Docking options can be
accessed by right-clicking on the tool window's title bar.

Type some samples of the text you are trying to match in the top portion of the tool window labeled Test
Cases. Enter your regular expression pattern in the bottom field. The Regex Evaluator will highlight
matched portions of your sample text and identify groups.

Entering Test Cases
Type your test cases in the Test Cases text box. These test cases will be evaluated as you type your
regular expression in the bottom field. A wavy underline will indicate the ranges of text that match the
entire expression. Matches are also marked with a yellow arrow that appears in the gutter to the left of the
test case. You can hover your mouse on this arrow to see a tool tip which displays the matched
expression details. When groups (tagged expressions) are used in your regular expression pattern, the

Entering Test Cases

644

groups will be boxed and highlighted in yellow in the Test Cases section.

Entering a Regular Expression
Enter the regular expression to test in the text field. Use the radio buttons to select the expression syntax
that you wish to use: Perl, SlickEdit®, or Vim. Click the arrow to the right of the regular expression field to
pick from a menu of common syntax and operators.

Regex Evaluator Options
The following options and buttons are available on the Regex Evaluator tool window:

• Multiline mode - If Multiline mode is selected, rather than searching through the test cases line-
by-line, regular expressions will be searched on all lines at once. This is useful for test cases that wrap
to the next line. This works just as if you had entered \om on the SlickEdit® command line.

• Case sensitive - If Case sensitive is selected, the regular expression search will be case sensitive.
This option is on by default.

• New expression button - To clear the tool window of all entries in order to start a new evaluation, click
the button at the top of the tool window labeled New expression.

• Open a saved expression button - To open an expression that you have already saved, click the
folder button at the top of the tool window labeled Open a saved expression.

• Save the current expression button - To save the current expression, click the diskette button at the
top of the tool window labeled Save the current expression. Both the expression and the test cases
will be saved to a file. The default extension is .regx.

• Save as button - To save the current expression with a different file name than what has previously
been saved, click the button at the top of the tool window labeled Save the current expression as.

Entering a Regular Expression

645

Perl Regular Expressions
Note

The intent of this Perl regular expression implementation is to be very compatible with the latest
version of Perl. See Compatibility Issues With Perl Regular Expressions for known differences.
There are a few extensions which are noted in the table below. See Compatibility Issues Between
Old and New Perl Regular Expressions for a list of differences between the old and new
implementation of Perl regular expressions.

Perl regular expressions are defined in the following table.

Perl Regular Expression Definition

^ Matches beginning of line.

$ Matches end of line.

. Matches any character except newline unless in
single line mode (also called match any character
mode).

X+ Maximal match of one or more occurrences of X.
See Minimal versus Maximal Matching.

X* Maximal match of zero or more occurrences of X.

X? Maximal match of zero or one occurrences of X.

X{n1} Match exactly n1 occurrences of X.

X{n1,} Maximal match of at least n1 occurrences of X.

X{n1,n2} Maximal match of at least n1 occurrences but not
more than n2 occurrences of X.

X+? Minimal match of one or more occurrences of X.

X*? Minimal match of zero or more occurrences of X.

X?? Minimal match of zero or one occurrences of X.

X{n1}? Matches exactly n1 occurrences of X.

X{n1,}? Minimal match of at least n1 occurrences of X.

Perl Regular Expressions

646

Perl Regular Expression Definition

X{,n2}? Minimal match of at least zero occurrences but not
more than n2 occurrences of X.

X{n1,n2}? Minimal match of at least n1 occurrences but not
more than n2 occurrences of X.

(?!X) Search fails if expression X is matched. The
expression ^(?!if) matches the beginning of all lines
that do not start with if.

(?=X) Assert, positive look ahead. Searches for
subexpression X, but X is not returned as part of
the match. For example, to match words ending in
"ed" while excluding "ed" as part of the match, use
\b[a-z]+(?=ed\b). See also (?!X).

(?<=X) Assert, positive look behind. Matches
subexpression X before the current position, but X
is not returned as part of the match. For example, to
match words starting with "ed" while excluding "ed"
as part of the match, use (?<=\bed)[a-z]+\b.
Variable length look behind is supported. For
example, to match words that start with "a" or "ed"
while excluding "a" or "ed" as part of the match, use
(?<=\b(a|ed))[a-z]+. Variable length look behind will
not work in a Perl script.

(?<!X) Assert, negative look behind. Matches "not"
subexpression X before the current position, but X
is not returned as part of the match. For example, to
match occurrences of "bar" not preceded by "foo",
use (?<!foo)bar. Variable length look behind is
supported. For example, to match occurrences of
"bar" not preceded by "a" or "foo", use
(?<!(a|foo))bar. Variable length look behind will not
work in a Perl script.

(?>X) Matches expression X. Prohibit backtracking (give
nothing back). It can be used to prevent the
subexpression X from backtracking when using
maximal (greedy) matching.

X*+ Maximal match of zero or more occurrences.
Prohibit backtracking (give nothing back). It can be

Perl Regular Expressions

647

Perl Regular Expression Definition

used to prevent the subexpression X from
backtracking when using maximal (greedy)
matching.

X++ Maximal match of one or more occurrences.
Prohibit backtracking (give nothing back). It can be
used to prevent the subexpression X from
backtracking when using maximal (greedy)
matching.

?+ Maximal match of zero or one occurrences. Prohibit
backtracking (give nothing back).

X{n1}+ Match exactly n1 occurrences of X. Prohibit
backtracking (give nothing back).

X{n1,}+ Maximal match of at least n1 occurrences of X.
Prohibit backtracking (give nothing back).

X{n1,n2}+ Maximal match of at least n1 occurrences but not
more than n2 occurrences of X. Prohibit
backtracking (give nothing back).

(?(condition)yes-pattern|no-pattern),
(?(condition)yes-pattern)

Matches yes-pattern if condition is true. Otherwise
matches no-pattern if one was given. The no-
pattern always matches if not given. Condition is
one of the following:

• (digits), (<name>), ('name')

Checks if tagged expression has matched
something. For example, (?:this|(that))(?(1)a|b)
matches "thisb" and "thata".

• (?=X)

True if X is a match. For example,
(?(?=a)abc|def) matches "abc" or "def".

• (?!X)

True if X is not a match

• (?<=X)

True if X matches before the current position.

Perl Regular Expressions

648

Perl Regular Expression Definition

• (?<!X)

True if X is not matched before the current
position.

• (R), (Rdigits), (R&name)

Checks if tagged expression specified is in a
recursive call. (R) specifies the whole search
string. (Rdigits) specifies a tagged expression
index. (R&name) specifies a named tagged
expression. For example,
(?(R)b|a)(?R)?(?(R)c|d) matches "abcd" and
"abbccd".
(?<foo>(?(R&foo)b|a)(?&foo)?(?(R&foo)c|d))
matches "abcd" and "abbccd".

(?(DEFINE)X) Allows you to defined subroutines in tagged
expression syntax. No code is generated (i.e
nothing is matched). This is useful for reusing a
regular expression multiple times. For example,
(?(DEFINE)(a))(?1)(?1) matches "aa". Since this
subroutine was defined inside this construct, the
tagged expression at index 1 is not set even though
it was called. Since it's not set, it will return nothing
when referenced as a backrefernece or in a replace
string. Tagged expressions nested inside the
subroutine do get set. Here's an example of how to
give a subroutine a name using tagged expression
syntax: (?(DEFINE)(?'s1'a))(?&s1)

(?R), (?0) (?digits), (?-digits), (?+digits), (?&digits),
(?&-digits), (?&+digits), (?&name),

Calls tagged expression specified like it's a
subroutine. (?R) or (?0) specifies the whole search
string. (?digits) or (?&digits) specifies a tagged
expression index. (?-1) or (?&-1) specifies the
previous tagged expression, (?-2) or (?&-2)
specifies the previous before that, etc. (?+1) or
(?&+1) specifies the next tagged expression, (?+2)
or (?&+2) specifies the next after that, etc.
(?&name) specifies a named tagged expression.
For example, a(?R)?b matches "ab" and "aaabbb".
([ab])(?1) matches "aa", "ab", "bb", and "ba".
(?1)(a) matches "aa". (?<foo>a)(?&foo) matches
"aa". (?&digits), (?&-digits), and (?&+digits) are
extensions to Perl syntax and will not work in a Perl
script.

Perl Regular Expressions

649

Perl Regular Expression Definition

(?#text) Comment. No text is matched in this expression; it
is used for comment and documentation only.

(?OptionLetters :X), (?OptionLetters - OptionLetters
:X),

Matches subexpression X using the options
specified by OptionLetters. Option letters after the
minus ('-') are turned off (or flipped). For example,
(?-i:X) sets case sensitive matching. The form
(?^OptionLetters:X) is only partially supported
since the d option letter is not supported (see Perl
documentation). OptionLetters is zero or more of
the following option letters:

• i - Case insensitive matching

• m - Multi line mode. When on, ^ an $ match
beginning and end of each line. When off, ^ and $
match beginning and end of string/file.

• n - Disabled automatic generation of numeric
tagged expression with (X).

• s - Single line mode. When on, . matches all
characters including \x0d and 0x0a. Has no
effect on $, ^ or \N.

• x - Skip whitespace mode. Used for commenting
and/or making a regular expression more
readable. When on, whitespace is ignored.

(?OptionLetters), (? OptionLetters - OptionLetters) Sets options specified by OptionLetters for outer
subexpression. Option letters after the - are turned
off (or flipped). For example ((?-i)A) matches A
case sensitive. The form (?^OptionLetters) is only
partially supported since the d option letter is not
supported (see Perl documentation). See meaning
of OptionLetters above.

(X) Matches subexpression X and specifies a numeric
tagged expression. The first tagged expression is 1.
Count left parenthesis from left to right to determine
the the tagged expression number. No more tagged
expressions are defined once an explicit tagged
expression number is specified as shown below.
For more information, see Using Perl Tagged
Expressions.

Perl Regular Expressions

650

Perl Regular Expression Definition

(?:X) Matches subexpression X but does not define a
numeric tagged expression.

(? dd X) Matches subexpression X and specifies a 1 or 2
digit tagged expression index to use (01 is the
same as 1). No more numeric tagged expressions
are automatically generated by the subexpression
syntax (X) once this subexpression syntax is used.
This is an extension to Perl syntax and will not work
in a Perl script. The expression (?1if)|(?1while) is
the same as (?|(if)|(while)). For more information,
see Using Perl Tagged Expressions.

(?|X) Matches subexpression X and restores tagged
expression numbering for each or branch ('|'). For
example, the tagged expressions inside the or
branch expression (?|(if)|(while)) will both have the
number 1.

(?<name>X), (?'name'X), (?{name}X),
(?P<name>X)

Matches subexpression X and specifies a tagged
expression identified by name. A non-numeric
tagged expression name must start with a letter
[a-zA-Z] and be followed by the characters
[a-zA-Z0-9_]. name may also be a numeric index
[0-9]+ but this is an extension to Perl syntax and
will not work in a Perl script. For more information,
see Using Perl Tagged Expressions.

\k<name>, \k'name', \k{name}, \g<name>,
\g'name', \g{name},

Matches tagged expression which was previously
set. \g<name>, and \g'name' are extensions to Perl
syntax and will not work in a Perl script. For
example, (?<n>a)\k<n> matches "aa". For more
information, see Using Perl Tagged Expressions.

\gdigits Matches tagged expression index specified by
digits which was previously set. For example, (a)\g1
matches "aa". For more information, see Using Perl
Tagged Expressions.

\digits Matches tagged expression index specified by
digits or specifies a 2-3 digit octal number. If the
tagged expression was not defined, \digits specifies
a 2-3 digit octal number.

Perl Regular Expressions

651

Perl Regular Expression Definition

\g-digits \k<-digits>, \k'-digits', \k{-digits}, Matches relative tagged expression which was
previously defined. -1 is the previous tagged
expression, -2 is the previous before that, etc. For
example, (a)(b)\g-2 matches "aba". \k<-digits>, \k'-
digits', and \k{-digits} are extensions to Perl syntax
and will not work in a Perl script. For more
information, see Using Perl Tagged Expressions.

X|Y Matches X or Y.

[charset] Matches any one of the characters specified by
charset. A dash (-) character may be used to
specify ranges. The expression [A-Z] matches any
uppercase letter. Any backslash sequence which
works outside brackets will work inside brackets if it
specifies a character or set of characters. For
example, \- specifies a literal dash character. The
expression [\x00-\x1B] matches ASCII character
codes 0..27. The expression \pL matches a unicode
letter. The expression []] matches a right bracket.
The expression [\]] also matches a right bracket.
The expression [^] matches a caret (^) character.
[\^] matches a caret (^) character.

[^charset] Matches any character not specified by charset. A
dash (-) character may be used to specify ranges.

(?[extended-charset-expression]) BNF for extended-charset-expression is as follows:

extended-charset-expression:
unary-charset-expression
[binary-operator
extended-charset-expression]
binary-operator: + | - & ^ -->
Corresponds to OR(+) OR(|)
SUBSTRACT(-) AND(&) XOR(^)
unary-charset-expression: escape
--> \d, \xhh, \x{hhhh}, \N{...}, etc.

| [charset] -->
Like regular character set but white
space is ignored.

|
!unary-charset-expression --> Not
the character set.

Perl Regular Expressions

652

Perl Regular Expression Definition
|

(extended-charset-expression)
|

[:POSIX-character-class:]

White space is ignored before and after unary-
charset-expression, unary not (!), binary-operators,
and parenthesis around unary-charset-expression.
Examples:

• (?[[:digit:] + [a-z A-Z] - [0]]) - Match
[A-Za-z1-9] (space not included here)

• (?[\x20 + [:digit:]]) - Match [0-9] (space
included here)

• (?[[ab] & [ac]]) - Match [a]

• (?[! ([ab] & [ac])]) - Match [^a]

• (?[[ab] ^ [ac]]) - Match [bc]

• (?[[ab] - [ac]]) - Match [b]

• (?[ab]) - Not valid (error!)

[:POSIX-character-class:] Matches POSIX-character-class specified. Only
valid inside character set (i.e [[:alpha:]]). POSIX-
character-class is one of the following:

• alpha - [A-Za-z]

• alnum - [A-Za-z0-9]

• ascii - Any alphabetical character [A-Za-z0-9]

• blank - [\x20\t]

• cntrl - [\x0-\1f\x7f]

• digit - [0-9]

• graph - [\x21-\x7e]

• lower - [a-z]

Perl Regular Expressions

653

Perl Regular Expression Definition

• print - [\x20-\x7e]

• upper - [A-Z]

• word - [A-Za-z0-9_]

• xdigit - [0-9a-fA-F]

\char Declares character after slash to be literal. For
example, * represents the star character. You may
not escape the letters [a-zA-Z].

\a Matches bell character (ASCII 7).

\A Matches beginning of string/file.

\b Matches at word boundary. For example, \bre
matches all occurrences of "re" that only occur at
the beginning of a word.

\B Matches all except at word boundary. For example,
\Bre matches all occurrences of "re" as long as it is
not at the start of a word.

\cx Control character (ASCII values 0-31) '@' <=x<='_'

\d Equivalent to \p{Nd}. Can also be used inside a
character class.

\D Equivalent to \P{Nd}. Can also be used inside a
character class.

\e Matches escape character (ASCII 27).

\E Terminates \Q. See \Q.

\f Matches formfeed character (ASCII 12).

\h Matches horizontal whitespace character. Same as
[\t\x{20}\x{a0}\x{1680}\x{180e}\x{2000}\x{2001}\x{
2002}\x{2003}\x{2004}
\x{2005}\x{2006}\x{2007}\x{2008}\x{2009}\x{200a
}\x{202f}\x{205f}\x{3000}].

\H Matches non-horizontal whitespace character.

Perl Regular Expressions

654

Perl Regular Expression Definition

Same as
[^\t\x{20}\x{a0}\x{1680}\x{180e}\x{2000}\x{2001}\
x{2002}\x{2003}\x{2004}
\x{2005}\x{2006}\x{2007}\x{2008}\x{2009}\x{200a
}\x{202f}\x{205f}\x{3000}].

\n Matches newline character (ASCII 10). This escape
will not match DOS <CR><LF>. Use \R to match
newline sequence defined by current buffer.

\N Matches any character except \n (ASCII 10). Not
effected by single line mode.

\N{U+hhhh} Matches up to 31-bit Unicode hexadecimal
character specified by hhhh.

\N{UnicodeCharacterName} Matches up UnicodeCharName specified. A
complete list of character names is available on-line
from the Unicode Consortium,
http://www.unicode.org/charts/charindex.html

\o< Match beginning of word.

\o> Match end of word.

\oc Case-sensitive match. Turns on case-sensitive
matching in the pattern, overriding the global case
setting. This modifier is localized inside the current
grouping level, after which case matching is
restored to the previous case match setting. Note
that this is equivalent to (?-i:X). See also \oi. This is
an extension to Perl syntax and is not supported in
a Perl script.

\od Matches any 2-byte DBCS character. This escape
is only valid in a match set ([...\od...]). [^\od]
matches any single byte character excluding end-
of-line characters. When used to search Unicode
text, this escape does nothing. This is an extension
to Perl syntax and is not supported in a Perl script.

\oi Ignore case. Turns off case-sensitive matching in
the pattern, overriding the global case setting. This
modifier is localized inside the current grouping

Perl Regular Expressions

655

Perl Regular Expression Definition

level, after which case matching is restored to the
previous case match setting. Note that this is the
equivalent to the Perl syntax (?i:X). See also \oc.
This is an extension to Perl syntax and is not
supported in a Perl script.

\ol Turns off match any character mode (default). You
can still use \R to create regular expressions which
match one or more lines. However, expressions like
.+ will not match multiple lines. This is much safer
and usually faster than using the \om option. This is
an extension to Perl syntax and is not supported in
a Perl script. This is equivalent to (?-s:X)

\om Turns on match any character mode. This
enhances match any character (.) to support
matching end-of-line characters. For example,
\om.+ matches the rest of the buffer. This is an
extension to Perl syntax and is not supported in a
Perl script. This is equivalent to (?s:X)

\oz Specifies cursor position if match is found. If the
expression ab\ozc is found, the cursor is placed
after the ab. This is an extension to Perl syntax and
is not supported in a Perl script.

\o#{digits} Matches up to 31-bit Unicode character specified by
decimal digits. This is an extension to Perl syntax
and is not supported in a Perl script.

\o{ooo} Matches up to 31-bit Unicode character specified by
octal number ooo.

\o: char This is an extension to Perl syntax and is not
supported in a Perl script. Matches predefined
expression corresponding to char. The pre-defined
expressions are:

• \o:a [A-Za-z0-9] - Matches an alphanumeric
character.

• \o:c [A-Za-z] - Matches an alphabetic character.

• \o:b (?:[\t]+) - Matches one or more space or tab
characters.

Perl Regular Expressions

656

Perl Regular Expression Definition

• \o:d [0-9] - Matches a digit.

• \o:f (?:[^\[\]\:\\/<>|;, \t"']+) - Windows: Matches a
file name part.

• \o:f (?:[^/ \t"']+) - UNIX: Matches a file name
part.

• \o:h (?:[0-9A-Fa-f]+) - Matches a hex number.

• \o:i (?:[0-9]+) - Matches an integer.

• \o:n
(?:(?:[0-9]+(?:\.[0-9]+|)|\.[0-9]+)(?:[Ee](?:\+|-|)[0-
9]+|)) - Matches a floating number.

• \o:p
(?:(?:[A-Za-z0-9]\:|\\\\|)(?:\\|/|)(?:\o:f(\\|/))*\o:f) -
Windows: Matches a path.

• \o:p (?:(?:/|)?:(?::f(/))*\:f) - UNIX: Matches a
path.

• \o:q (?:\"[^\"]*\"|'[^']*') - Matches a quoted
string.

• \o:v (?:[A-Za-z_$][A-Za-z0-9_$]*) - Matches a C
variable.

• \o:w (?:[A-Za-z]+) - Matches a word.

Warning

\o:f and \o:p

Windows - this regular expression should
not be used to validate an operating system
filename. The intent with this predefined
regular expression is to make it useful in
practice for handling filenames output from
compilers and filenames in source files. For
example, space characters in filenames are
not allowed.

Unix - this regular expression should not be
used to validate an operating system
filename. The intent with this predefined

Perl Regular Expressions

657

Perl Regular Expression Definition

regular expression is to make it useful in
practice for handling filenames output from
compilers and filenames in source files. For
example, space, :, “, and " characters in
filenames are not allowed even though the
OS allows them. In the future, we may add
< and > to the list of characters not allowed
in a filename.

\p{UnicodeCategorySpec} Matches characters in UnicodeCategorySpec.
Where UnicodeCategorySpec uses the standard
general categories specified by the Unicode
consortium. For example, [\p{L}] matches all
letters. [\p{Lu}] matches all uppercase letters. The
Perl documentation page
http://perldoc.perl.org/perluniprops.html lists all
supported properties.

\P{UnicodeCategorySpec} Matches characters not in UnicodeCategorySpec.
For example, [\P{L}] matches all characters that
are not letters. This is equivalent to [^\p{L}].
[\P{Lu}] matches all characters that are not
uppercase letters. The Perl documentation page
http://perldoc.perl.org/perluniprops.html lists all
supported properties.

\p{UnicodeIsBlockSpec} Matches characters in UnicodeIsBlockSpec. Where
UnicodeIsBlockSpec one of the standard character
blocks specified by the Unicode consortium. For
example, [\p{isGreek}] matches Unicode
characters in the Greek block. The Perl
documentation page
http://perldoc.perl.org/perluniprops.html lists all
supported properties.

\P{UnicodeIsBlockSpec} Matches characters not in UnicodeIsBlockSpec. For
example, [\P{isGreek}] matches all characters that
are not in the Unicode Greek block. This is
equivalent to [^\p{isGreek}]. The Perl
documentation page
http://perldoc.perl.org/perluniprops.html lists all
supported properties.

\Q and \E \Q matches all characters as literals until \E. This is

Perl Regular Expressions

658

Perl Regular Expression Definition

useful for longer sequences of characters without
the need for the escape character. \Q does not
require termination with \E, as it will continue to
match characters literally until the end of the search
string. \E returns to using special character tokens
for matching.

\r Matches carriage return (ASCII 13).

\R Matches newline character sequence. For an edit
buffer, what this matches depends on whether the
buffer is a DOS (ASCII 13,10 or just ASCII 10),
UNIX/Mac (ASCII 10), Classic Mac (ASCII 13), or
user-defined ASCII file. Use \x0a or if you want to
match an ASCII 10 character. For a string, this
matches (\x0d\x0a|\x0a|0x0d).

\s Equivalent to [\f\n\r\t\v\x85\p{Z}]. Can also be used
inside a character class.

\S Equivalent to [^\f\n\r\t\v\x85\p{Z}]. Can also be
used inside a character class.

\t Matches tab character (ASCII 9).

\v Matches vertical whitespace character. Same as
[\x{0a}\x{0b}\x{0c}\x{0d}\x{85}\x{2028}\x{2029}].

\V Matches non-vertical whitespace character. Same
as
[^\x{0a}\x{0b}\x{0c}\x{0d}\x{85}\x{2028}\x{2029}].

\w Equivalent to [a-zA-Z0-9_]. Can also be used inside
a character class.

\W Equivalent to [^a-zA-Z0-9_]. Can also be used
inside a character class.

\x hh Matches hexadecimal character hh where
0<=hh<=0xff.

\x{hhhh} Matches up to 31-bit Unicode hexadecimal
character specified by hhhh.

\z Matches end of string/file.

Perl Regular Expressions

659

Perl Regular Expression Definition

\Z Matches end of string/file or last newline sequence.
Even if the last line ends with a newline sequence,
this will match end of string/file

The precedence of operators, from highest to lowest, is as follows:

• +, *, ?, {}, +?, *?, ??, {}? (These operators have the same precedence.)

• concatenation

• |

Perl Regular Expression Examples
The table below shows examples of Perl regular expressions.

Perl Regular Expression Example Description

^defproc Matches lines that begin with the word defproc.

^definit$ Matches lines that only contain the word definit.

^*name Matches lines that begin with the string *name.
Notice that the backslash must prefix the special
character *.

[\t] Matches tab and space characters.

[\x9\x20] Matches tab and space characters.

[\o#{9}\o#{32}] Matches tab and space characters.

p.t Matches any three-letter string starting with the
letter p and ending with the letter t. Two possible
matches are pot and pat.

s.*?t Matches the letter s followed by any number of
characters followed by the nearest letter t. Two
possible matches are seat and st.

for|while Matches the strings for or while.

Perl Regular Expression
Examples

660

Perl Regular Expression Example Description

^\o:p Matches lines beginning with a file name.

xy+z Matches x followed by one or more occurrences of
y followed by z.

[a-z-[qw]] Character set subtraction. Matches all English
lowercase letters except q and w.

[\p{isGreek}&[\p{L}]] Character set intersection. Matches all Unicode
letters in the Greek block.

\x{6587} Matches Unicode character with hexadecimal value
6587.

[\p{L}-[qw]] Matches all Unicode letters except q and w.

[\p{L}] Matches all Unicode letters.

[\p{Lul}] Matches all Unicode uppercase and lowercase
letters.

[\P{L}] Matches all Unicode characters that are not letters.

[\p{isGreek}] Matches all Unicode characters in the Greek block.

\x0d\x0a\x01\x02 Matches a sequence of hex binary characters.

\o#{13}\o#{10}\o#{1}\o#{2} Matches a sequence of decimal binary characters.

SlickEdit Regular Expressions

661

SlickEdit Regular Expressions
Note

The SlickEdit regular expression engine has been completely rewritten and has a number of new
features. In oder to add the new features in a way that made sense, a small number of constructs
were changed which could cause macros you've written to break. See Compatibility Issues
Between Old and New SlickEdit® Regular Expressions for a list of known compatibility issues
between the old and new syntax.

SlickEdit regular expressions are defined in the following table.

SlickEdit Regular Expression Definition

^ Matches beginning of line.

$ Matches end of line.

? Matches any character except newline unless in
single line mode (also called match any character
mode).

X+ Minimal match of one or more occurrences of X.
See Minimal versus Maximal Matching for more
information.

X# Maximal match of one or more occurrences of X.

X* Minimal match of zero or more occurrences of X.

X@ Maximal match of zero or more occurrences of X.

X:n1 Matches exactly n1 occurrences of X. Use () to
avoid ambiguous expressions. For example a:9()1
searches for nine instance of the letter a followed
by a 1.

X:n1, Maximal match of at least n1 occurrences of X.

X:n1,n2 Maximal match of at least n1 occurrences but not
more than n2 occurrences of X.

X:*n1, Minimal match of at least n1 occurrences of X.

X:*n1,n2 Minimal match of at least n1 occurrences but not

SlickEdit Regular Expressions

662

SlickEdit Regular Expression Definition

more than n2 occurrences of X.

(#!X) Search fails if expression X is matched. The
expression ^(#!if) matches the beginning of all lines
that do not start with if.

(#=X) Assert, positive look ahead. Searches for
subexpression X, but X is not returned as part of
the match. For example, to match words ending in
"ed" while excluding "ed" as part of the match, use
\b[a-z]#(#=ed\b). See also (#!X).

(#<=X) Assert, positive look behind. Matches
subexpression X before the current position, but X
is not returned as part of the match. For example, to
match words starting with "ed" while excluding "ed"
as part of the match, use (#<=\bed)[a-z]+\b.
Variable length look behind is supported. For
example, to match words that start with "a" or "ed"
while excluding "a" or "ed" as part of the match, use
(#<=\b(a|ed))[a-z]+\b.

(#<!X) Assert, negative look behind. Matches "not"
subexpression X before the current position, but X
is not returned as part of the match. For example, to
match occurrences of "bar" not preceded by "foo",
use (#<!foo)bar. Variable length look behind is
supported. For example, to match occurrences of
"bar" not preceded by "a" or "foo", use
(#<!(a|foo))bar.

(#>X) Matches expression X. Prohibit backtracking (give
nothing back). It can be used to prevent the
subexpression X from backtracking when using
maximal (greedy) matching.

X@+ Maximal match of zero or more occurrences.
Prohibit backtracking (give nothing back). It can be
used to prevent the subexpression X from
backtracking when using maximal (greedy)
matching.

X#+ Maximal match of one or more occurrences.
Prohibit backtracking (give nothing back). It can be
used to prevent the subexpression X from

SlickEdit Regular Expressions

663

SlickEdit Regular Expression Definition

backtracking when using maximal (greedy)
matching.

X:+n1 Match exactly n1 occurrences of X. Prohibit
backtracking (give nothing back).

X:+n1, Maximal match of at least n1 occurrences of X.
Prohibit backtracking (give nothing back).

X:+n1,n2 Maximal match of at least n1 occurrences but not
more than n2 occurrences of X. Prohibit
backtracking (give nothing back).

(#(condition)yes-pattern|no-pattern),
(#(condition)yes-pattern)

Matches yes-pattern if condition is true. Otherwise
matches no-pattern if one was given. The no-
pattern always matches if not given. Condition is
one of the following:

• (digits), (<name>), ('name')

Checks if tagged expression has matched
something. For example, (#:this|(that))(#(0)a|b)
matches "thisb" and "thata".

• (#=X)

True if X is a match. For example,
(#(#=a)abc|def) matches "abc" or "def".

• (#!X)

True if X is not a match

• (#<=X)

True if X matches before the current position.

• (#<!X)

True if X is not matched before the current
position.

• (R), (Rdigits), (R&name)

Checks if tagged expression specified is in a
recursive call. (R) specifies the whole search
string. (Rdigits) specifies a tagged expression

SlickEdit Regular Expressions

664

SlickEdit Regular Expression Definition

index. (R&name) specifies a named tagged
expression. For example,
(#(R)b|a)((#R)|)(#(R)c|d) matches "abcd" and
"abbccd".
(#<foo>(#(R&foo)b|a)((#&foo)|)(#(R&foo)c|d))
matches "abcd" and "abbccd".

(#(DEFINE)X) Allows you to defined subroutines in tagged
expression syntax. No code is generated (i.e
nothing is matched). This is useful for reusing a
regular expression multiple times. For example,
(#(DEFINE){a})(#&0)(#&0) matches "aa". Since this
subroutine was defined inside this construct, the
tagged expression at index 0 is not set even though
it was called. Since it's not set, it will return nothing
when referenced as a backrefernece or in a replace
string. Tagged expressions nested inside the
subroutine do get set. Here's an example of how to
give a subroutine a name using tagged expression
syntax: (#(DEFINE)(#'s1'a))(#&s1)

(#R), (#&digits), (#&-digits), (#&+digits), (#&name), Calls tagged expression specified like it's a
subroutine. (#R) specifies the whole search string.
(#&digits) specifies a tagged expression index.
(#&-1) specifies the previous tagged expression,
(#&-2) specifies the previous before that, etc.
(#&+1) specifies the next tagged expression,
(#&+2) specifies the next after that, etc. (#&name)
specifies a named tagged expression. For example,
a((#R)|)b matches "ab" and "aaabbb". {[ab]}(#&0)
matches "aa", "ab", "bb", and "ba". (#&0){a}
matches "aa". (#<foo>a)(#&foo) matches "aa".

(##text) Comment. No text is matched in this expression; it
is used for comment and documentation only.

~X Search fails if expression X is matched. The
expression ^~(if) matches the beginning of all lines
that do not start with if.

(#OptionLetters :X), (#OptionLetters - OptionLetters
:X),

Matches subexpression X using the options
specified by OptionLetters. Option letters after the
minus ('-') are turned off (or flipped). For example,
(#-i:X) sets case sensitive matching. The form
(#^OptionLetters:X) is only partially supported since

SlickEdit Regular Expressions

665

SlickEdit Regular Expression Definition

the d option letter is not supported (see Perl
documentation). OptionLetters is zero or more of
the following option letters:

• i - Case insensitive matching

• m - Multi line mode. When on, ^ an $ match
beginning and end of each line. When off, ^ and $
match beginning and end of string/file.

• n - Disabled automatic generation of numeric
tagged expression with (X).

• s - Single line mode. When on, ? matches all
characters including \x0d and \x0a. Has no effect
on $, ^ or \N.

• x - Skip whitespace mode. Used for commenting
and/or making a regular expression more
readable. When on, whitespace is ignored.

(#OptionLetters), (# OptionLetters - OptionLetters) Sets options specified by OptionLetters for outer
subexpression. Option letters after the - are turned
off (or flipped). For example ((#-i)A) matches A
case sensitive. The form (#^OptionLetters) is only
partially supported since the d option letter is not
supported (see Perl documentation). See meaning
of OptionLetters above.

(X) Matches subexpression X.

{X} Matches subexpression X and specifies a numeric
tagged expression. The first tagged expression is 0.
Count left parenthesis from left to right to determine
the the tagged expression number. No more tagged
expressions are defined once an explicit tagged
expression number is specified as shown below.
For more information, see Using SlickEdit® Tagged
Expressions.

(#ddX), {#ddX} Matches subexpression X and specifies a 1 or 2
digit tagged expression number index to use (01 is
the same as 1). The expression (#0if)|(#0while) is
the same as (#|(if)|(while)). For more information,
see Using SlickEdit® Tagged Expressions.

SlickEdit Regular Expressions

666

SlickEdit Regular Expression Definition

(#|X) Matches subexpression X and restores tagged
expression numbering for each or branch ('|'). For
example, the tagged expressions inside the or
branch expression (#|(if)|(while)) will both have the
number 0.

(#<name>X), (#'name'X), (#{name}X),
(#P<name>X)

Matches subexpression X and specifies a tagged
expression identified by name. name may be a non-
numeric tagged expression name (start with a letter
[a-zA-Z] and be followed by the characters
[a-zA-Z0-9_]) or a numeric index ([0-9]+). The first
valid index is 0. For more information, see Using
SlickEdit® Tagged Expressions.

\k<name>, \k'name', \k{name}, \g<name>,
\g'name', \g{name},

Matches tagged expression which was previously
set. name may be a non-numeric tagged
expression name or a numeric index. For example,
(?<n>a)\k<n> matches "aa". For more information,
see Using SlickEdit® Tagged Expressions.

\gdigits Matches numeric tagged expression which was
previously set. For example, {a}\g0 matches "aa".
For more information, see Using SlickEdit® Tagged
Expressions.

\g-digits \k<-digits>, \k'-digits', \k{-digits}, Matches relative tagged expression which was
previously defined. -1 is the previous tagged
expression, -2 is the previous before that, etc. For
example, {a}{b}\g-2 matches "aba". For more
information, see Using SlickEdit® Tagged
Expressions.

X|Y Matches X or Y.

[charset] Matches any one of the characters specified by
charset. A dash (-) character may be used to
specify ranges. The expression [A-Z] matches any
uppercase letter. Any backslash sequence which
works outside brackets will work inside brackets if it
specifies a character or set of characters. For
example, \- specifies a literal dash character. The
expression [\0-\27] matches ASCII character codes
0..27. The expression \pL matches a unicode letter.
The expression [] matches no characters. The
expression [\]] matches a right bracket. The

SlickEdit Regular Expressions

667

SlickEdit Regular Expression Definition

expression [\^] matches a caret (^) character.

[~charset], [^charset] Matches any character not specified by charset. A
dash (-) character may be used to specify ranges.
The expression [~A-Z] matches all characters
except uppercase letters.

(#[extended-charset-expression]) BNF for extended-charset-expression is as follows:

extended-charset-expression:
unary-charset-expression
[binary-operator
extended-charset-expression]
binary-operator: + | - & ^ -->
Corresponds to OR(+) OR(|)
SUBSTRACT(-) AND(&) XOR(^)
unary-charset-expression: escape
--> \d, \xhh, \x{hhhh}, \N{...}, etc.

| [charset] -->
Like regular character set but white
space is ignored.

|
!unary-charset-expression --> Not
the character set.

|
(extended-charset-expression)

|
[:POSIX-character-class:]

White space is ignored before and after unary-
charset-expression, unary not (!), binary-operators,
and parenthesis around unary-charset-expression.
Examples:

• (#[[:digit:] + [a-z A-Z] - [0]]) - Match
[A-Za-z1-9] (space not included here)

• (#[\x20 + [:digit:]]) - Match [0-9] (space
included here)

• (#[[ab] & [ac]]) - Match [a]

• (#[! ([ab] & [ac])]) - Match [^a]

SlickEdit Regular Expressions

668

SlickEdit Regular Expression Definition

• (#[[ab] ^ [ac]]) - Match [bc]

• (#[[ab] - [ac]]) - Match [b]

• (#[ab]) - Not valid (error!)

[:POSIX-character-class:] Matches POSIX-character-class specified. Only
valid inside character set (i.e [[:alpha:]]). POSIX-
character-class is one of the following:

• alpha - [A-Za-z]

• alnum - [A-Za-z0-9]

• ascii - Any alphabetical character [A-Za-z0-9]

• blank - [\x20\t]

• cntrl - [\x0-\1f\x7f]

• digit - [0-9]

• graph - [\x21-\x7e]

• lower - [a-z]

• print - [\x20-\x7e]

• upper - [A-Z]

• word - [A-Za-z0-9_]

• xdigit - [0-9a-fA-F]

\ddd Matches decimal character ddd where
0<=ddd<=255.

\ char Declares character after slash to be literal. For
example, \: represents the colon character.

\a Matches bell character (7).

\A Matches beginning of string or file.

\b Matches at word boundary. For example, \bre
matches all occurrences of "re" that only occur at
the beginning of a word.

SlickEdit Regular Expressions

669

SlickEdit Regular Expression Definition

\B Matches all except at word boundary. For example,
\Bre matches all occurrences of "re" as long as it is
not at the start of a word.

\c Specifies cursor position if match is found. If the
expression xyz\c is found, the cursor is placed after
the z.

\d Equivalent to \p{Nd}. Can also be used inside a
character class.

\D Equivalent to \P{Nd}. Can also be used inside a
character class.

\e Matches escape character (ASCII 27).

\E Terminates \Q. See \Q.

\f Matches formfeed character (ASCII 12).

\h Matches horizontal whitespace character. Same as
[\t\x{20}\x{a0}\x{1680}\x{180e}\x{2000}\x{2001}\x{
2002}\x{2003}\x{2004}
\x{2005}\x{2006}\x{2007}\x{2008}\x{2009}\x{200a
}\x{202f}\x{205f}\x{3000}].

\H Matches non-horizontal whitespace character.
Same as
[^\t\x{20}\x{a0}\x{1680}\x{180e}\x{2000}\x{2001}\
x{2002}\x{2003}\x{2004}
\x{2005}\x{2006}\x{2007}\x{2008}\x{2009}\x{200a
}\x{202f}\x{205f}\x{3000}].

\n Matches newline character sequence. Useful for
matching multi-line search strings. What this
matches depends on whether the buffer is a DOS
(ASCII 13,10 or just ASCII 10), UNIX (ASCII 10),
Macintosh (ASCII 13), or user-defined ASCII file.
Use \x0a if you want to match an ASCII 10
character.

\n Matches newline character (ASCII 10). This escape
will not match DOS <CR><LF>. Use \R to match
newline sequence defined by current buffer.

SlickEdit Regular Expressions

670

SlickEdit Regular Expression Definition

\N Matches any character except \n (ASCII 10). Not
effected by single line mode.

\N{U+hhhh} Matches up to 31-bit Unicode hexadecimal
character specified by hhhh.

\N{UnicodeCharacterName} Matches up UnicodeCharName specified. A
complete list of character names is available on-line
from the Unicode Consortium,
http://www.unicode.org/charts/charindex.html

\o< Match beginning of word.

\o> Match end of word.

\oc Case-sensitive match. Turns on case-sensitive
matching in the pattern, overriding the global case
setting. This modifier is localized inside the current
grouping level, after which case matching is
restored to the previous case match setting. Note
that this is equivalent to (#-i:X). See also \oi

\od Matches any 2-byte DBCS character. This escape
is only valid in a match set ([...\od...]). [^\od]
matches any single byte character excluding end-
of-line characters. When used to search Unicode
text, this escape does nothing.

\oi Ignore case. Turns off case-sensitive matching in
the pattern, overriding the global case setting. This
modifier is localized inside the current grouping
level, after which case matching is restored to the
previous case match setting. This is the equivalent
to (#i:X). See also \oc

\ol Turns off match any character mode (default). You
can still use \R to create regular expressions which
match one or more lines. However, expressions like
?+ will not match multiple lines. This is much safer
and usually faster than using the \om option. This is
equivalent to (#-s:X)

\om Turns on match any character mode. This
enhances match any character (?) to support

SlickEdit Regular Expressions

671

SlickEdit Regular Expression Definition

matching end-of-line characters. Note that this is
equivalent to (#s:X) For example, \om.+ matches
the rest of the buffer.

\oz Specifies cursor position if match is found. If the
expression ab\ozc is found, the cursor is placed
after the ab.

\o#{digits} Matches up to 31-bit Unicode character specified by
decimal digits.

\o{ooo} Matches up to 31-bit Unicode character specified by
octal number ooo.

\o: char Same as :char. See :char below.

\p{UnicodeCategorySpec} Matches characters in UnicodeCategorySpec.
Where UnicodeCategorySpec uses the standard
general categories specified by the Unicode
consortium. For example, [\p{L}] matches all
letters. [\p{Lu}] matches all uppercase letters. The
Perl documentation page
http://perldoc.perl.org/perluniprops.html lists all
supported properties.

\P{UnicodeCategorySpec} Matches characters not in UnicodeCategorySpec.
For example, [\P{L}] matches all characters that
are not letters. This is equivalent to [^\p{L}].
[\P{Lu}] matches all characters that are not
uppercase letters. The Perl documentation page
http://perldoc.perl.org/perluniprops.html lists all
supported properties.

\p{UnicodeIsBlockSpec} Matches characters in UnicodeIsBlockSpec. Where
UnicodeIsBlockSpec one of the standard character
blocks specified by the Unicode consortium. For
example, [\p{isGreek}] matches Unicode
characters in the Greek block. The Perl
documentation page
http://perldoc.perl.org/perluniprops.html lists all
supported properties.

\P{UnicodeIsBlockSpec} Matches characters not in UnicodeIsBlockSpec. For
example, [\P{isGreek}] matches all characters that
are not in the Unicode Greek block. This is

SlickEdit Regular Expressions

672

SlickEdit Regular Expression Definition

equivalent to [^\p{isGreek}]. The Perl
documentation page
http://perldoc.perl.org/perluniprops.html lists all
supported properties.

\Q and \E \Q matches all characters as literals until \E. This is
useful for longer sequences of characters without
the need for the escape character. \Q does not
require termination with \E, as it will continue to
match characters literally until the end of the search
string. \E returns to using special character tokens
for matching.

\r Matches carriage return (ASCII 13).

\R Matches newline character sequence. For an edit
buffer, what this matches depends on whether the
buffer is a DOS (ASCII 13,10 or just ASCII 10),
UNIX/Mac (ASCII 10), Classic Mac (ASCII 13), or
user-defined ASCII file. Use \x0a or if you want to
match an ASCII 10 character. For a string, this
matches (\x0d\x0a|\x0a|0x0d).

\s Equivalent to [\f\n\r\t\v\x85\p{Z}]. Can also be used
inside a character class.

\S Equivalent to [^\f\n\r\t\v\x85\p{Z}]. Can also be
used inside a character class.

\t Matches tab character (ASCII 9).

\v Matches vertical whitespace character. Same as
[\x{0a}\x{0b}\x{0c}\x{0d}\x{85}\x{2028}\x{2029}].

\V Matches non-vertical whitespace character. Same
as
[^\x{0a}\x{0b}\x{0c}\x{0d}\x{85}\x{2028}\x{2029}].

\w Equivalent to [a-zA-Z0-9_]. Can also be used inside
a character class.

\W Equivalent to [^a-zA-Z0-9_]. Can also be used
inside a character class.

\x hh Matches hexadecimal character hh where

SlickEdit Regular Expressions

673

SlickEdit Regular Expression Definition

<=0xff.

\x{hhhh} Matches up to 31-bit Unicode hexadecimal
character specified by hhhh.

\z Matches end of string/file.

\Z Matches end of string/file or last newline sequence.
Even if the last line ends with a newline sequence,
this will match end of string/file

: char Matches predefined expression corresponding to
char. The predefined expressions are:

• :a [A-Za-z0-9] - Matches an alphanumeric
character.

• :b ([\t]#\) - Matches one or more space or tab
characters - note that :b is not like the Perl/.NET
\s.

• :c [A-Za-z] - Matches an alphabetic character.

• :d [0-9] - Matches a digit.

• :f ([~\[\]\:\\/<>|;, \t"']#) - Windows: Matches a file
name part.

• :f ([~/ \t"']#) - UNIX: Matches a file name part.

• :h ([0-9A-Fa-f]#) - Matches a hex number.

• :i ([0-9]#) - Matches an integer.

• :n (([0-9]#(.[0-9]#|)|.[0-9]#)([Ee](\+|-|)[0-9]#|)) -
Matches a floating number.

• :p (([A-Za-z0-9]\:|\\\\|)(\\|/|)(:f(\\|/))@:f) -
Windows: Matches a path.

• :p ((/|)(:f(/))@:f) - UNIX: Matches a path.

• :q (\"[~\"]@\"|'[~']@') - Matches a quoted string.

• :v ([A-Za-z_$][A-Za-z0-9_$]@) - Matches a C
variable.

• :w ([A-Za-z]#) - Matches a word.

SlickEdit Regular Expressions

674

SlickEdit Regular Expression Definition

Warning

:f and :p

Windows - this regular expression should
not be used to validate an operating system
filename. The intent with this predefined
regular expression is to make it useful in
practice for handling filenames output from
compilers and filenames in source files. For
example, space characters in filenames are
not allowed.

Unix - this regular expression should not be
used to validate an operating system
filename. The intent with this predefined
regular expression is to make it useful in
practice for handling filenames output from
compilers and filenames in source files. For
example, space, :, “, and " characters in
filenames are not allowed even though the
OS allows them. In the future, we may add
< and > to the list of characters not allowed
in a filename.

The precedence of operators, from highest to lowest, is as follows:

• +, #, *, @, :, :* (These operators have the same precedence.)

• concatenation

• |

SlickEdit Regular Expression Examples
The table below shows examples of SlickEdit regular expressions.

SlickEdit Regular Expression Example Description

^defproc Matches lines that begin with the word defproc.

^definit$ Matches lines that only contain the word definit.

SlickEdit Regular Expression
Examples

675

SlickEdit Regular Expression Example Description

^\:name Matches lines that begin with the string :name.
Notice that the backslash must prefix the colon
character (:).

[\t] Matches tab and space characters.

[\9\32] Matches tab and space characters.

[\x9\x20] Matches tab and space characters.

p?t Matches any three-letter string starting with the
letter p and ending with the letter t. Two possible
matches are pot and pat.

s?*t Matches the letter s followed by any number of
characters followed by the nearest letter t. Two
possible matches are seat and st.

for|while Matches the strings for or while.

^:p Matches lines beginning with a file name.

xy+z Matches x followed by one or more occurrences of
y followed by z.

\x0d\x0a\x01\x02 Matches a sequence of hex binary characters.

\13\10\1\2 Matches a sequence of decimal binary characters.

Vim Regular Expressions

676

Vim Regular Expressions
Note

The intent of this Vim regular expression implementation is to be very compatible with the latest
version of Vim. See Differences Between SlickEdit Vim and gvim for known differences. There
are a few extensions which are noted in the table below. This implementation of Vim regular
expressions does support the various syntax modes \v, \m, \M, and \V but this documentation is
for \m mode. Due to the fact that SlickEdit converts Vim regular expression into Perl syntax, some
error messages may be confusing.

Vim regular expressions are defined in the following table.

Vim Regular Expression Definition

^ Matches beginning of line or literal charcter '^'. To
always match beginning of line, use _^ (or \v^). To
always match the literal character '^', use \^.

$ Matches end of line or literal charcter '$'. To always
match beginning of line, use _$ (or \v$. To always
match the literal character '$', use \$.

. Matches any character except newline unless in
single line mode (also called match any character
mode).

X\+ Maximal match of one or more occurrences of X.
See Minimal versus Maximal Matching.

X* Maximal match of zero or more occurrences of X or
the literal character '*'. To always maximal match
zero or more occurrences, use \{,}. To always
match the literal character '*', use *.

X\?, X\= Maximal match of zero or one occurrences of X.

X\{n1} Match exactly n1 occurrences of X.

X\{n1,} Maximal match of at least n1 occurrences of X.

X\{,n2} Maximal match of at most n2 occurrences of X.

X\{,}, X\{} Maximal match of zero or more occurrences of X.

Vim Regular Expressions

677

Vim Regular Expression Definition

X\{n1,n2} Maximal match of at least n1 occurrences but not
more than n2 occurrences of X.

X\{-n1} Matches exactly n1 occurrences of X.

X\{-n1,} Minimal match of at least n1 occurrences of X.

X\{-,n2} Minimal match of at least zero occurrences but not
more than n2 occurrences of X.

X\{-,n2} Minimal match of at most n2 occurrences of X.

X\{-,}, X\{-}, Minimal match of zero or more occurrences of X.

X\{-n1,n2} Minimal match of at least n1 occurrences but not
more than n2 occurrences of X.

X\@! Search fails if expression X is matched. The
expression ^\(if\)\@! matches the beginning of all
lines that do not start with if.

X\@= Assert, positive look ahead. Searches for
subexpression X, but X is not returned as part of
the match. For example, to match words ending in
"ed" while excluding "ed" as part of the match, use
\<[a-z]\+\(ed\>\)\@=. See also X\@!.

X\@<= Assert, positive look behind. Matches
subexpression X before the current position, but X
is not returned as part of the match. For example, to
match words starting with "ed" while excluding "ed"
as part of the match, use \(\<ed\)\@<=[a-z]\+\>.
Variable length look behind is supported. For
example, to match words that start with "a" or "ed"
while excluding "a" or "ed" as part of the match, use
\(\<\(a\|ed\)\)\@<[a-z]\+\>. Variable length look
behind will not work in Vim.

X\@<! Assert, negative look behind. Matches "not"
subexpression X before the current position, but X
is not returned as part of the match. For example, to
match occurrences of "bar" not preceded by "foo",
use \(foo\)\@<!bar. Variable length look behind is
supported. For example, to match occurrences of

Vim Regular Expressions

678

Vim Regular Expression Definition

"bar" not preceded by "a" or "foo", use
\(\(a\|foo\)\)\@<!bar. Variable length look behind
will not work in Vim.

X\@> Matches expression X. Prohibit backtracking (give
nothing back). It can be used to prevent the
subexpression X from backtracking when using
maximal (greedy) matching.

X\{n1}\+ Match exactly n1 occurrences of X. Prohibit
backtracking (give nothing back). This is an
extension to Vim syntax and will not work in Vim.

X\{n1,}\+ Maximal match of at least n1 occurrences of X.
Prohibit backtracking (give nothing back). This is an
extension to Vim syntax and will not work in Vim.

X\{,n2}\+ Maximal match of at most n2 occurrences of X.
Prohibit backtracking (give nothing back). This is an
extension to Vim syntax and will not work in Vim.

X\{,}\+ Maximal match of zero or more occurrences of X.
Prohibit backtracking (give nothing back). This is an
extension to Vim syntax and will not work in Vim.

X{n1,n2}+ Maximal match of at least n1 occurrences but not
more than n2 occurrences of X. Prohibit
backtracking (give nothing back). This is an
extension to Vim syntax and will not work in Vim.

\(\?\(condition\)yes-pattern\|no-pattern\),
\(\?\(condition\)yes-pattern\)

Matches yes-pattern if condition is true. Otherwise
matches no-pattern if one was given. The no-
pattern always matches if not given. Condition is
one of the following:

• \(digits\), \(<name>\), \('name'\)

Checks if tagged expression has matched
something. For example,
\(\?:this\|\(that\)\)\(\?\(1\)a\|b\) matches "thisb"
and "thata".

• \(\?=X\)

True if X is a match. For example,

Vim Regular Expressions

679

Vim Regular Expression Definition

\(\?\(\?=a\)abc\|def\) matches "abc" or "def".

• \(\?!X\)

True if X is not a match

• \(\?<=X\)

True if X matches before the current position.

• \(\?<!X\)

True if X is not matched before the current
position.

• \(R\), \(Rdigits\), \(R&name\)

Checks if tagged expression specified is in a
recursive call. \(R\) specifies the whole search
string. \(Rdigits\) specifies a tagged expression
index. \(R&name\) specifies a named tagged
expression. For example,
\(\?\(R\)b\|a\)\(\?R\)\?\(\?\(R\)c\|d\) matches
"abcd" and "abbccd".
\(\?<foo>\(\?\(R&foo\)b\|a\)\(\?&foo\)\?\(\?\(R&f
oo\)c\|d\)\) matches "abcd" and "abbccd". These
are extensions to Vim syntax and will not work in
Vim.

\(\?\(DEFINE\)X\) Allows you to defined subroutines in tagged
expression syntax. No code is generated (i.e
nothing is matched). This is useful for reusing a
regular expression multiple times. For example,
\(\?\(DEFINE\)\(a\)\)\(\?1\)\(\?1\) matches "aa".
Since this subroutine was defined inside this
construct, the tagged expression at index 1 is not
set even though it was called. Since it's not set, it
will return nothing when referenced as a
backrefernece or in a replace string. Tagged
expressions nested inside the subroutine do get
set. Here's an example of how to give a subroutine
a name using tagged expression syntax:
\(\?\(DEFINE\)\(\?'s1'a\)\)\(\?&s1\)This is an
extension to Vim syntax and will not work in Vim.

\(\?R\), \(\?0\) \(\?digits\), \(\?-digits\), \(\?+digits\),
\(\?&digits\), \(\?&-digits\), \(\?&+digits\),

Calls tagged expression specified like it's a
subroutine. \(\?R\) or \(\?0\) specifies the whole

Vim Regular Expressions

680

Vim Regular Expression Definition

\), search string. \(\?digits\) or \(\?&digits\) specifies a
tagged expression index. \(\?-1\) or \(\?&-1\)
specifies the previous tagged expression, \(\?-2\) or
\(\?&-2\) specifies the previous before that, etc.
\(\?+1\) or \(\?&+1\) specifies the next tagged
expression, \(\?+2\) or \(\?&+2\) specifies the next
after that, etc. \(\?&name\) specifies a named
tagged expression. For example, \a\(\?R\)\?b
matches "ab" and "aaabbb". \([ab]\)\(\?1\) matches
"aa", "ab", "bb", and "ba". \(\?1\)\(a\) matches "aa".
\(\?<foo>a\)\(\?&foo\) matches "aa". These are
extensions to Vim syntax and will not work in Vim.

\(\?OptionLetters :X\), \(\?OptionLetters -
OptionLetters :X\),

Matches subexpression X using the options
specified by OptionLetters. Option letters after the
minus ('-') are turned off (or flipped). For example,
\(\?-i:X\) sets case sensitive matching.
OptionLetters is zero or more of the following option
letters:

• i - Case insensitive matching

• m - Multi line mode. When on, ^ an $ match
beginning and end of each line. When off, ^ and $
match beginning and end of string/file.

• n - Disabled automatic generation of numeric
tagged expression with \(X\).

• s - Single line mode. When on, . matches all
characters including \x0d and 0x0a. Has no
effect on $, ^ or \R.

• x - This Perl style regex option is not supported.

These are extensions to Vim syntax and will not
work in Vim.

\(\?OptionLetters\), \(\? OptionLetters -
OptionLetters\)

Sets options specified by OptionLetters for outer
subexpression. Option letters after the - are turned
off (or flipped). For example \(\(?-i\)A\) matches A
case sensitive. See meaning of OptionLetters
above. These are extensions to Vim syntax and will
not work in Vim.

\(X\) Matches subexpression X and specifies a numeric

Vim Regular Expressions

681

Vim Regular Expression Definition

tagged expression. The first tagged expression is 1.
Count left parenthesis from left to right to determine
the the tagged expression number. No more tagged
expressions are defined once an explicit tagged
expression number is specified as shown below.
For more information, see Using Vim Tagged
Expressions.

\%(X\) Matches subexpression X but does not define a
numeric tagged expression.

\(\? dd X\) Matches subexpression X and specifies a 1 or 2
digit tagged expression index to use (01 is the
same as 1). No more numeric tagged expressions
are automatically generated by the subexpression
syntax \(X\) once this subexpression syntax is used.
This is an extension to Vim syntax and will not work
in Vim. The expression \(\?1if\)\|\(\?1while\) is the
same as \(\?\|\(if\)\|\(while\)\). This is an extension
to Vim syntax and will not work in Vim. For more
information, see Using Vim Tagged Expressions.

\(\?\|X\) Matches subexpression X and restores tagged
expression numbering for each or branch ('\|'). For
example, the tagged expressions inside the or
branch expression \(\?\|\(if\)\|\(while\)\) will both
have the number 1. This is an extension to Vim
syntax and will not work in Vim.

\(\?<name>X\), \(\?'name'X\), \(\?P<name>X\) Matches subexpression X and specifies a tagged
expression identified by name. A non-numeric
tagged expression name must start with a letter
[a-zA-Z] and be followed by the characters
[a-zA-Z0-9_]. name may also be a numeric index
[0-9]\+. These are extensions to Vim syntax and will
not work in Vim. For more information, see Using
Vim Tagged Expressions.

\g<name>, \g'name', Matches tagged expression which was previously
set. These are extensions to Vim syntax and will not
work in Vim. For example, (?<n>a)\g<n> matches
"aa". These are extensions to Vim syntax and will
not work in Vim. For more information, see Using
Vim Tagged Expressions.

Vim Regular Expressions

682

Vim Regular Expression Definition

\digit Matches tagged expression index specified by digit
(1..9).

\g<-digits>, \g'-digits' Matches relative tagged expression which was
previously defined. -1 is the previous tagged
expression, -2 is the previous before that, etc. For
example, (a)(b)\g'-2' matches "aba". These are
extensions to Vim syntax and will not work in Vim.
For more information, see Using Vim Tagged
Expressions.

X\|Y Matches X or Y.

[charset] Matches any one of the characters specified by
charset. A dash (-) character may be used to
specify ranges. The expression [A-Z] matches any
uppercase letter. The following backslash
sequences have the same meaning inside or
outside of brackets: \b, \e, \t, \r, \n, \R (extension), \\,
and \char. When inside brackets, \xHH, \dDDDD,
\oOOO, \uHHHH, and \UHHHHHHHH have the
same mean respectively as \%xHH, \%dDDDD,
\%oOOO, \%uHHHH, and \%UHHHHHHHH. For
example, \- specifies a literal dash character. The
expression [\x00-\x1B] matches ASCII character
codes 0..27. The expression []] matches a right
bracket. The expression [\]] also matches a right
bracket. The expression [] matches the text string
"[]" and does not generate a character set match.
The expression [^] matches the text string "[^]". [\^]
matches a caret (^) character.

[^charset] Matches any character not specified by charset. A
dash (-) character may be used to specify ranges.

[:POSIX-character-class:] Matches POSIX-character-class specified. Only
valid inside character set (i.e [[:alpha:]]). POSIX-
character-class is one of the following:

• alpha - [A-Za-z]

• alnum - [A-Za-z0-9]

• ascii - Any alphabetical character [A-Za-z0-9]

Vim Regular Expressions

683

Vim Regular Expression Definition

• blank - [\x20\t]

• cntrl - [\x0-\1f\x7f]

• digit - [0-9]

• graph - [\x21-\x7e]

• lower - [a-z]

• print - [\x20-\x7e]

• upper - [A-Z]

• word - [A-Za-z0-9_]

• xdigit - [0-9a-fA-F]

• return - \x0d

• tab - \x09

• escape - \x1b

• backspace - \x08

\char Declares character after slash to be literal except
for \+, \{, \?, \), \(, \%(, \digit, or \letter. For example,
* represents the star character. You may not
escape the letters [a-zA-Z].

\%^ Matches beginning of string/file.

\%$ Matches end of string/file.

\%xHH Matches 1-2 digit character specified by
hexadecimal digits.

\%ddigits Matches up to 31-bit Unicode character specified by
decimal digits.

\%oOOO Matches 1-3 digit character specified by octal digits
OOO.

\%uHHHH Matches 1-4 digit Unicode character specified by
hexadecimal digits HHHH.

Vim Regular Expressions

684

Vim Regular Expression Definition

\%UHHHHHHHH Matches 1-8 digit Unicode character specified by
hexadecimal digits HHHHHHHH.

_^, _$, _., _[These force a particular style of operation
independent of syntax mode (magic mode). _^
always matches beginning of line. _$ always
matches end of line. _. always matches any
character, _[always matches the literal characters
'['.

_char Specifies the corresponding \char character set with
end-of-line characters (\%x0a and \%x0d) added for
the following 'i', 'I', 'k', 'K', 'f', 'F', 'p', 'P', 's', 'S', 'd', 'D',
'x', 'X, 'o', 'O', 'w', 'W', 'h', 'H', 'a', 'A', 'l', 'L', 'u', and
'U'. For example, _a matches [a-zA-Z\r\n] and \a
only matches [a-zA-Z]

\a Matches [a-zA-Z].

\A Matches [^a-zA-Z].

\b Matches \x08 byte.

\B: char These are extensions to Vim syntax and is not
supported in Vim. Matches predefined expression
corresponding to char. The pre-defined expressions
are:

• \B:a [A-Za-z0-9] - Matches an alphanumeric
character.

• \B:c [A-Za-z] - Matches an alphabetic character.

• \B:b \(\?:[\t]\+\) - Matches one or more space or
tab characters.

• \B:d [0-9] - Matches a digit.

• \B:f \(\?:[^\[\]\:\\/<>|;, \t"']\+\) - Windows:
Matches a file name part.

• \B:f \(\?:[^/ \r\n\t"']\+\) - UNIX: Matches a file
name part.

• \B:h \(\?:[0-9A-Fa-f]\+) - Matches a hex number.

Vim Regular Expressions

685

Vim Regular Expression Definition

• \B:i \(\?:[0-9]\+\) - Matches an integer.

• \B:n
\(\?:\(\?:[0-9]\+\(\?:\.[0-9]\+\|\)\|\.[0-9]\+\)\(\?:[Ee]\
(\?:\+\|-\|\)[0-9]\+\|\)\) - Matches a floating
number.

• \B:p
\(\?:\(\?:[A-Za-z0-9]\:\|\\\\\|\)\(\?:\\\|/\|\)\(\?:\B:f\(\\\|
/\)\)*\B:f) - Windows: Matches a path.

• \B:p \(\?:\(\?:/\|\)\?:\(\?::f\(/\)\)*\:f\) - UNIX:
Matches a path.

• \B:q \(\?:\"[^\r\n\"]*\"\|'[^\r\n']*'\) - Matches a
quoted string.

• \B:v \(\?:[A-Za-z_$][A-Za-z0-9_$]*\) - Matches a
C variable.

• \B:w \(\?:[A-Za-z]\+\) - Matches a word.

Warning

\B:f and \B:p

Windows - this regular expression should
not be used to validate an operating system
filename. The intent with this predefined
regular expression is to make it useful in
practice for handling filenames output from
compilers and filenames in source files. For
example, space characters in filenames are
not allowed.

Unix - this regular expression should not be
used to validate an operating system
filename. The intent with this predefined
regular expression is to make it useful in
practice for handling filenames output from
compilers and filenames in source files. For
example, space, :, “, and " characters in
filenames are not allowed even though the
OS allows them. In the future, we may add
< and > to the list of characters not allowed
in a filename.

Vim Regular Expressions

686

Vim Regular Expression Definition

\B< Match beginning of word. This is an extension to
Vim syntax and will not work in Vim.

\B> Match end of word. This is an extension to Vim
syntax and will not work in Vim.

\Bc Case-sensitive match. Turns on case-sensitive
matching in the pattern, overriding the global case
setting. This modifier is localized inside the current
grouping level, after which case matching is
restored to the previous case match setting. See
also \Bi. This is an extension to Vim syntax and is
not supported in Vim.

\Bd Matches any 2-byte DBCS character. This escape
is only valid in a match set ([...\Bd...]). [^\Bd]
matches any single byte character excluding end-
of-line characters. When used to search Unicode
text, this escape does nothing. This is an extension
to Vim syntax and is not supported in Vim.

\Bi Ignore case. Turns off case-sensitive matching in
the pattern, overriding the global case setting. This
modifier is localized inside the current grouping
level, after which case matching is restored to the
previous case match setting. Note that this is the
equivalent to the \(\?i:X\). See also \Bc. This is an
extension to Vim syntax and is not supported in
Vim.

\Bl Turns off match any character mode (default). You
can still use \R to create regular expressions which
match one or more lines. However, expressions like
.\+ will not match multiple lines. This is much safer
and usually faster than using the \Bm option. This is
equivalent to \(\?-s:X\). This is an extension to Vim
syntax and will not work in Vim.

\Bm Turns on match any character mode. This
enhances match any character (.) to support
matching end-of-line characters. For example,
\Bm.\+ matches the rest of the buffer. This is
equivalent to \(\?s:X\). This is an extension to Vim
syntax and will not work in Vim.

Vim Regular Expressions

687

Vim Regular Expression Definition

\Bz Specifies cursor position if match is found (same as
\zs). If the expression ab\Bzc is found, the cursor is
placed after the ab. This is an extension to Vim
syntax and is not supported in Vim.

\B#{digits} Matches up to 31-bit Unicode character specified by
decimal digits. This is an extension to Vim syntax
and is not supported in Vim.

\B{ooo} Matches up to 31-bit Unicode character specified by
octal number ooo. This is an extension to Vim
syntax and will not work in Vim.

\c Set case sensitivity to ignore case for the entire
search string.

\C Set case sensitivity to match case for the entire
search string.

\d Equivalent to [0-9].

\D Equivalent to [^0-9].

\e Matches escape character (ASCII 27).

\f Equivalent to [#$%+,\\-./0-9=A-Z_a-z~].

\F Equivalent to [#$%+,\\-./=A-Z_a-z~].

\h Equivalent to [a-zA-Z_].

\H Equivalent to [^a-zA-Z_].

\i Equivalent to [0-9A-Z_a-z].

\I Equivalent to [A-Z_a-z].

\k Equivalent to [0-9A-Z_a-z].

\K Equivalent to [a-zA-Z_].

\l Equivalent to [a-z].

Vim Regular Expressions

688

Vim Regular Expression Definition

Equivalent to [^a-z].

\m Set syntax mode to "magic" which is the default
setting.

\M Set syntax mode to "no magic" which makes more
characters like '.' and '*' require escaping to get a
regular expression-like effect.

\n Matches newline character sequence. For an edit
buffer, what this matches depends on whether the
buffer is a DOS (ASCII 13,10 or just ASCII 10),
UNIX/Mac (ASCII 10), Classic Mac (ASCII 13), or
user-defined ASCII file. Use \%x0a if you want to
match an ASCII 10 character. For a string, this
matches \(\%x0d\%x0a\|\%x0a\|\%x0d\). Note that
when \n is used in the replace string, it specifies an
ASCII 0. Use \r in the replace string to insert the
appropriate new-line sequence for your edit buffer.

\o Equivalent to [0-9].

\O Equivalent to [^0-9].

\p Equivalent to [\\x20-\\x7e].

\P Equivalent to [\\x20-\x2F\x3a-\\x7e].

\r Matches carriage return (ASCII 13). Note that when
\r is used in the replace string, the appropriate new-
line sequence for the edit buffer is inserted.

\R Matches newline character sequence. For an edit
buffer, what this matches depends on whether the
buffer is a DOS (ASCII 13,10 or just ASCII 10),
UNIX/Mac (ASCII 10), Classic Mac (ASCII 13), or
user-defined ASCII file. Use \%x0a if you want to
match an ASCII 10 character. For a string, this
matches \(\%x0d\%x0a\|\%x0a\|\%x0d\). This is an
extension to Vim syntax and is not supported in
Vim.

\s Equivalent to [\\t].

Vim Regular Expressions

689

Vim Regular Expression Definition

\S Equivalent to [^ \\t]. Can also be used inside a
character class.

\t Matches tab character (ASCII 9).

\u Equivalent to [A-Z].

\U Equivalent to [^A-Z].

\v Set syntax mode to "very magic" which makes
characters like '+', '?', '=', '<', '>', and more no longer
require escaping to get their regular expression
meaning. For example .+ matches 1 or more
characters.

\V Matches non-vertical whitespace character. Same
as
[^\x{0a}\x{0b}\x{0c}\x{0d}\x{85}\x{2028}\x{2029}].

\V Set syntax mode to "very no magic" which makes
more characters like '.', '*', '$', and '^' require
escaping to get a regular expression-like effect. In
this mode, the only character with special meaning
is backslash. All other characters are considered
literal.

\w Equivalent to [0-9a-zA-Z_].

\W Equivalent to [^0-9a-zA-Z_].

\x Equivalent to [0-9A-Fa-f].

\x Equivalent to [^0-9A-Fa-f].

\zs Specifies cursor position if match is found (same as
\zs). If the expression ab\Bzc is found, the cursor is
placed after the ab. This is an extension to Vim
syntax and is not supported in Vim.

Vim Regular Expression Examples
The table below shows examples of Vim regular expressions.

Vim Regular Expression
Examples

690

Vim Regular Expression Example Description

^defproc Matches lines that begin with the word defproc.

^definit$ Matches lines that only contain the word definit.

^*name Matches lines that begin with the string *name.
Notice that the backslash must prefix the special
character *.

[\t] Matches tab and space characters.

[\x9\x20] Matches tab and space characters.

p.t Matches any three-letter string starting with the
letter p and ending with the letter t. Two possible
matches are pot and pat.

s.\{-}t Matches the letter s followed by any number of
characters followed by the nearest letter t. Two
possible matches are seat and st.

for|while Matches the strings for or while.

^\B:p Matches lines beginning with a file name. This is an
extension to Vim syntax and will not work in Vim.

xy\+z Matches x followed by one or more occurrences of
y followed by z.

\%U00006587 Matches Unicode character with hexadecimal value
6587.

\%x0d\%x0a\%x01\%x02 Matches a sequence of hex binary characters.

Wildcard Expressions

691

Wildcard Expressions
SlickEdit® supports *, ?, and # wildcards:

• The asterisk (*) matches zero or more characters. For example, search for a*b to find any string that
contains a lowercase letter "a" followed by a lowercase letter "b" allowing for text in between.

• The question mark (?) matches any single character. Use multiple question marks in succession to
represent that number of characters. For example, search for a???b to find any string that contains a
lowercase letter "a" followed by any three characters, followed by a lowercase letter "b".

• The pound sign (#) matches any single digit, 0-9. Use multiple pound signs in succession to represent
that number of digits. For example, use ##:## to search for four-digit time-of-day values.

Brief Regular Expressions

692

Brief Regular Expressions
Support for Brief regular expressions has been removed. Use Perl Regular Expressions, Vim Regular
Expressions, SlickEdit® Regular Expressions, or Wildcards)

UNIX Regular Expressions

693

UNIX Regular Expressions
Support for UNIX regular expressions has been removed. Use Perl Regular Expressions, Vim Regular
Expressions, SlickEdit® Regular Expressions, or Wildcards)

Compatibility Issues With Perl
Regular Expressions

694

Compatibility Issues With Perl Regular Expressions
The following is a list of compatibility issues between this implementation of Perl regular expressions and
Perl

• <CR><LF> is handled differently than perl for better DOS line ending support.

• . - Difference in multi-line mode only. Does not match <CR> for DOS <CR><LF> files or string if
<LF> follows

• $ - Difference in multi-line mode only. Does not match <LF> for DOS <CR><LF> files or strings if
<CR> precedes the <LF>.

• \R - Does not match <LF> if the previous character is <CR> for DOS <CR><LF> files or string. In
other words \R will only match a complete new-line sequence and not a partial new-line sequence.

• There are some extensions to Perl syntax like (?dd X), \o#{ddd}, \o:char, \o<, and \o>.

• Case insensitive matching of Unicode characters is not the same as Perl or done according to the
Unicode consortium standards

• \X, \K, \C, \G, \F - Not supported.

• c, a, d, l, u - These option letters are not supported in option letter expressions like (?imsxn-imsxn:X).

• (?{code}), (??{code}) - Not supported.

Compatibility Issues Between
Old and New Perl Regular

695

Compatibility Issues Between Old and New Perl
Regular Expressions
The following is a list of compatibility issues between the old and new Perl Regular Expressions

• \n, \N - Previously matched new-line sequence defined for the file/buffer (for a string search with pos()
there's no difference). Now matches a single character \n (ASCII 10). Use \R to match the new-line
sequence defined for the file/buffer.

• \z - Previously place cursor. Now use \oz. \z now matches end of file/string - Previously place cursor.
Now use \oz. \z now mathces end of file/string

• \#ddd - Previously matched decimal character. Now use \o#{ddd}.

• \R - Previously matched \r (ASCII 13). Now use \r instead. All escape are case sensitive.

• \q, \e - Previously these were case insensitive. Now these escapes are case sensitive so these
lowercase versions will not be interpreted the same. Use \Q and \E instead.

• [charset1-[charset2]], [charset1&[charset2]] - Removed for better and more complete expression
syntax. Use (#[[charset1]-[charset2]]) and (#[[charset1]&[charset2]]) respectively. See (?[
extended-charset-expression]) for more information.

• [^charset] - This will match \r or \n (ASCII 13 or ASCII 10) like Perl. Previously this did not match \r and
\n. Change your expression to [^charset\r\n]

• Tagged expression in replace string can be two digits.

Search For:(1)234567890ab
Replace With: $11bar
(New Perl Regex) Translates "1234567890ab" to "bar"
(Old Perl Regex) Translates "1234567890ab" to "11bar"

Search For:(1)(2)(3)(4)(5)(6)(7)(8)(9)(0)(a)(b)
Replace With: $11bar
(New Perl Regex) Translates "1234567890ab" to "abar"
(Old Perl Regex) Translated "1234567890ab" to "11bar"

Use \k<1> to work around this issue. This is an extension to Perl syntax and will not work in a Perl
script.

Compatibility Issues Between
Old and New SlickEdit® Regular

696

Compatibility Issues Between Old and New SlickEdit®
Regular Expressions
The following is a list of compatibility issues between the old and new SlickEdit® Regular Expressions

• :char - Previously was case insensitive. Now char is case sensitive. :I is an error and :i matches an
integer.

• \C, \F, \Gd, \Xhh, \R, \N, \T - Previously were case insensitive. Now all escape are case sensitive so
these uppercase versions will not be interpreted the same.

• \q, \e - Previously these were case insensitive. Now these escapes are case sensitive so these
lowercase versions will not be interpreted the same.

• [charset1-[charset2]], [charset1&[charset2]] - Removed for better and more complete expression
syntax. Use (#[[charset1]-[charset2]]) and (#[[charset1]&[charset2]]) respectively. See (#[
extended-charset-expression]) for more information.

• Tagged expression in replace string can be two digits.

Search For:{1}234567890ab
Replace With: #11bar
(New SlickEdit Regex) Translates "1234567890ab" to "bar"
(Old SlickEdit Regex) Translates "1234567890ab" to "1bar"

Search For:{1}{2}{3}{4}{5}{6}{7}{8}{9}{0}{a}{b}
Replace With: #11bar
(New SlickEdit Regex) Translates "1234567890ab" to "bbar"
(Old SlickEdit Regex) Translated "1234567890ab" to "21bar"

Use \k<1>; to work around this issue.

Expressions

697

Unicode Categories and Character Blocks

Unicode Category Specifications for Regular Expressions
The Unicode consortium standard regular expression categories are supported. The syntax for specifying
categories is:

\p{MainCategoryLetter Subcategories}

The above syntax matches the categories specified. The following syntax matches all characters not in
the categories specified:

\P{MainCategoryLetter Subcategories}

The \p and \P notations can only be used inside a character set specification. MainCategoryLetter can be
L, M, N, P, S, Z, or C. The valid Subcategories depend on the MainCategoryLetter specified. If no
Subcategories are specified, all are assumed. For example:

• [\p{L}] matches all Unicode letters.

• [\p{Lul}] matches all uppercase and lowercase letters.

• [\P{L}] matches all characters that are not letters.

The following table lists the valid subcategories for a specific main category. These character tables were
generated using the file UnicodeData-3.1.0.txt found on the Unicode Consortium Web site
(http://unicode.org).

Subcategory Description

Lu Letter, Uppercase

Ll Letter, Lowercase

Lt Letter, Titlecase

Lo Letter, Other

Mn Mark, Non-Spacing

Mc Mark, Spacing Combining

Me Mark, Enclosing

Nd Number, Decimal Digit

Expressions

698

Subcategory Description

Nl Number, Letter

No Number, Other

Pc Punctuation, Connector

Pd Punctuation, Dash

Ps Punctuation, Open

Pe Punctuation, Close

Pi Punctuation, Initial quote (may behave like Ps or Pe
depending on usage)

Pf Punctuation, Final quote (may behave like Ps or Pe
depending on usage)

Po Punctuation, Other

Sm Symbol, Math

Sc Symbol, Currency

Sk Symbol, Modifier

So Symbol, Other

Zs Separator, Space

Zl Separator, Line

Zp Separator, Paragraph

Cc Other, Control

Cf Other, Format

Cs Other, Surrogate

Co Other, Private Use

Cn Other, Not Assigned (no characters in the file have

Unicode Category Specifications
for Regular Expressions

699

Subcategory Description

this property)

Unicode Category Specifications
for Regular Expressions

700

Macros and Macro Programming

This chapter describes how to use macros with SlickEdit.

There are two types of macros in SlickEdit®:

• Recorded Macros - A recorded macro is a series of SlickEdit operations that you can save and run as
one operation any time. Recorded macros are useful for automating repetitive tasks. Because recording
a macro generates Slick-C® code for the action being recorded, recorded macros provide a good
starting point for learning the Slick-C macro programming language.

• Programmable Macros - Slick-C lets you take editor customization to the next level. With Slick-C, you
have more control over modifying or adding new functionality. "Programmable macros" is a term we
use to describe Slick-C modules, Slick-C batch macros, and Slick-C variables. In other words, Slick-C
code that you write yourself.

701

Recorded Macros
You can automate repetitive tasks by recording a series of SlickEdit® operations in a macro. After you
create a macro, you can run it, save it, bind it to a key sequence, and/or modify the macro's source code.

Recording a macro generates Slick-C® code for performing the action being recorded. Therefore,
recording a macro is also a useful way to discover and implement Slick-C code that controls the behavior
of SlickEdit.

Topics in this section are:

• Recorded Macros

• Recording a Macro

• Binding Recorded Macros to Keys

• Running a Recorded Macro

• Saving and Editing Recorded Macros

• Deleting Recorded Macros

• Using Macros to Discover and Control Options

Common Macro Operations
Macros can be recorded, executed, and saved from the Macro menu, or you can use commands or
predefined key bindings to perform macro operations:

• To start or end macro recording, from the main menu, click Macro → Record Macro or Macro → Stop
Recording Macro, respectively. Alternately, you can toggle recording on and off with one of the
following methods:

• Click the recording indicator REC, located along the bottom edge of the editor. When a macro is
being recorded, the recording indicator is active (not dimmed).

• In CUA emulation, press Ctrl+F11 (the key binding associated with the record_macro_toggle
command).

• On the SlickEdit command line, type record_macro_toggle.

See Recording a Macro for more information.

• To run the last macro that you recorded, click Macro → Execute last-macro, press Ctrl+F12, or use
the record_macro_end_execute command. See Running a Recorded Macro for more information.

• To display a list of your recorded macros, from which you can edit, run, delete, or bind to a key
sequence, click Macro → List Macros, or use the list_macros command.

Common Macro Operations

702

Note

List Macros only shows your "saved" macros, not your last recorded macro or macros created
using execute_last_macro_key.

Recording a Macro
To record a macro, simply start the recording, enter the keystrokes you want to record, then end the
recording. The instructions below outline the steps.

1. From the main menu, click Macro → Record Macro (or use one of the toggle methods to start
recording, as described under Recorded Macros above).

2. Enter the keystrokes that you want to record. For example, to record a macro of the cursor moving
three spaces to the right, press the right arrow key three times. You can also change a configuration
option, view settings, or expand a code template during macro recording.

3. When you have finished recording the macro, end recording by clicking Macro → Stop Recording
Macro (or the same toggle you used in Step 1). The Save Macro Dialog is displayed.

Tip

• For recorded macros you don't need to track, perhaps for immediate or one-time use, SlickEdit
provides a way to stop macro recording and instantly bind the macro to a key sequence. This
allows you to keep a set of recent, unnamed macro recordings instead of having just one "last
recorded macro". See Binding Macros Using execute_last_macro_key for more information.

• If you're recording the macro to discover Slick-C® code (see Using Macros to Discover and
Control Options), click Edit (or press Alt+E) at this time to view the source code. If you choose
to view/edit the source code now, you will need to save it by using Macro → Save last-macro
prior to recording a new macro or exiting the editor. See Saving and Editing Recorded Macros
for more details.

4. Specify the name for the macro in the Macro Name text box.

5. Select any desired options. Leave the default settings if you aren't sure what to select. See Save
Macro Dialog for more information on these advanced options.

6. If you plan to use the macro frequently, we recommend creating a key binding for it. To create the key
binding, click Save and Bind to Key, then see Binding Recorded Macros to Keys for more information.

Alternately, click Save. The List Macros Dialog is displayed, from which you can run the macro, edit the
source, delete it, or bind it to a key sequence.

Recording a Macro

703

Binding Recorded Macros to Keys
To use recorded macros most effectively, create key bindings for them so they can be executed quickly
when you want to use them. Macros can be bound through the Key Bindings option screen (see Binding
Macros Using the Key Bindings Option Screen), or by using the instant "stop recording and bind" method
associated with the execute_last_macro_key command (see Binding Macros Using
execute_last_macro_key).

Binding Macros Using the Key Bindings Option Screen

To create a key binding for a recorded macro, you can either click the Save and Bind to Key button on
the Save Macro dialog that appears automatically after you end recording, or at any time you can use the
Bind to Key button on the List Macros Dialog (Macro → List Macros or list_macros command).
Clicking either button displays the Key Bindings option screen with the macro selected, so you can add a
key binding.

Note

You can also display the Key Bindings option screen by clicking Tools → Options → Keyboard
and Mouse → Key Bindings, or by using the gui_keybindings command. However, if you
display the screen in this manner, it will show a list of all commands and user-recorded
macros. To view your recorded macros, click on the Recorded column header to sort and
display items with a "Yes" (which indicates these are recorded macros). A more
convenient method is to use the Bind to Key button on the List Macros dialog to only show
recorded macros on the Key Bindings option screen.

Creating bindings for recorded macros works the same as creating bindings for SlickEdit commands.
Click Add to initiate the binding, then specify the key sequence or mouse event to use. See Managing
Bindings for more information about creating, editing, and removing bindings.

Binding Macros Using execute_last_macro_key

The execute_last_macro_key command provides functionality to stop macro recording and instantly
bind the macro to a key sequence. This feature is convenient for recorded macros you want to use
perhaps immediately or one-time only, and don't need to track. It allows you to keep a set of recent,
unnamed macro recordings instead of having just one "last recorded macro", similar to a feature provided
by early text editors that supported macro recording, such as the EVE and Edt editors on the Vax (VMS).

Unlike other SlickEdit commands that we document, execute_last_macro_key is not intended to be
used on the command line®instead, you use a key binding that is automatically assigned when you press
it to stop macro recording.

To bind a macro to a key sequence using this method, start recording the macro and enter the keystrokes
you want to record. Then press Ctrl+Shift+F12,key where key stands for keys 0 through 9, A-Z, or
F1-F12, to stop recording the macro and instantly bind it to the key sequence you just pressed.

Note

Binding Recorded Macros to
Keys

704

The prefix key sequence Ctrl+Shift+F12 works in all emulations except SlickEdit text mode
edition. In that emulation, the prefix key sequence is Ctrl+Shift+T.

Each macro that you record and bind using this feature is saved to a new file named lastmac<key>.e,
located in your configuration directory, where <key> matches the key you used when creating the binding
(keys 0-9, A-Z, or F1-F12). These files can be helpful for determining what was recorded, because if you
use this method to bind a recorded macro, you will not have an opportunity to name the macro or see a
list of macros created with this method (they will not appear in the List Macros dialog or Key Bindings
option screen).

Running a Recorded Macro
If you have saved the macro and created a key binding for it, the easiest way to run it is to simply press
the associated key sequence. You can also run it by:

• Typing the name of the macro in the SlickEdit® command line then pressing Enter.

• Using the List Macros Dialog (Macro → List Macrosor list_macros command)'select the macro and
click Run.

You can run the last macro that you recorded, whether it was saved or not, by clicking Macro → Execute
last-macro (Ctrl+F12 or execute_last_macro command).

Saving and Editing Recorded Macros
When a recorded macro is saved, the source code of the macro is appended to the vusrmacs.e user
macros file located in your configuration directory.

To edit a macro that has previously been recorded and saved, from the main menu, click Macro → List
Macros (or use the list_macros command) to display the List Macros Dialog. The list box on the left
displays a list of your recorded macros. Select the macro you want to edit, then click Edit. The
vusrmacs.e file opens in the editor. Save the file when you're done making edits.

If you are using recorded macros to discover Slick-C® code (see Using Macros to Discover and Control
Options), you can view/edit the source of a macro that you have just recorded but have not yet saved.
After creating a new recorded macro, you are prompted with the Save Macro Dialog. Instead of naming
the macro and saving it, click Edit (or press Alt+E) to view the source. Aneweditor window named
lastmac.e, which is the name of the file that contains the source of the last macro that was recorded, is
opened showing the macro's source code. If you make edits, you will need to save the changes by
clicking Macros → Save last-macro. The Save Macro dialog is displayed again so you can name the
macro and then click Save, which appends the new code to the user macros file (vusrmacs.e). Or click
Save and Bind to Key to save and create a key binding for the macro (see Binding Macros Using the
Key Bindings Option Screen).

Each macro recorded and bound using execute_last_macro_key is saved in a file named
lastmac<key>.e, and the corresponding compiled byte code is saved in lastmac<key>.ex, where

Running a Recorded Macro

705

<key> matches the key you used when creating the binding (keys 0-9, A-Z, or F1-F12). Both files are
located in your configuration directory. To edit a macro bound using this method, open the .e file for the
macro you want to edit, make and save the changes, then from the main menu, click Macro → Load
Module (F12 or gui_load command). Find and select the .e file you just edited and click Open. The
message Module(s) loaded appears on the message line, and SlickEdit will now honor the changes you
made to the .e file when you use the corresponding key sequence.

Deleting Recorded Macros
To delete a macro that has been recorded and saved, from the main menu, click Macro → List Macros
(or use the list_macros command). Select the macro you want to delete, and click Delete.

To delete a macro that you recorded and bound to a key sequence using execute_last_macro_key,
browse to your configuration directory and delete lastmac<key>.e and its corresponding
lastmac<key>.ex file, where <key> matches the key you used when creating the binding (keys 0-9,
A-Z, or F1-F12).

Using Macros to Discover and Control Options
Recording macros provides a good starting point for discovering variables in Slick-C® code that control
the behavior of SlickEdit®.

Since responses to dialog boxes (such as when you select/clear options) are recorded as Slick-C source,
you can use recorded macros to discover and change these variables quickly. For example, perhaps you
frequently switch line insert styles. The Line insert style option is located on the General Editing options
page. Instead of every time clicking Tools → Options → Editing → General, then selecting the option,
you can record those steps as a macro and bind it to a key sequence. Now you have an easy way to
toggle a feature on and off.

You can also view the source of a recorded macro without naming or saving it, if you just want to see the
code. See Saving and Editing Recorded Macros for more information.

Deleting Recorded Macros

706

Programmable Macros
Note

Many of the Slick-C macro programming features described here are only available in the Pro
edition and not the Standard or Community editions. The Standard and Community editions have
very limited macro programming capabilities. These editions have Limited macro recording and
some configuration batch macros (like vusrdefs.e (UNIX: vunxdefs.e)) but not much else. If you
want to do significant macro programming such as writing dialog boxes or sophisticated macros
you can share with others, you need the Pro edition. Dialog boxes written in Slick-C will run on all
platforms SlickEdit supports.

The Slick-C® macro programming language is behind most of the actions performed in SlickEdit®. Slick-
C functions are mapped to menus, buttons, and keys, and perform the action behind an event. You can
use Slick-C to extend the editor's functionality. With Slick-C, you can manipulate buffers; parse strings;
navigate buffers and source code; and create and modify menus, dialogs, toolbars, and tool windows.

For documentation purposes, "programmable macros" is a term used to encompass Slick-C modules,
variables, and batch macros. These items are described in detail below.

This section contains the following topics:

• Slick-C® Modules

• Slick-C® Variables (Config Variables)

• Slick-C® Batch Macros

• State File

• Slick-C® Header Files and More Resources

Slick-C® Modules
A Slick-C module is a file with the extension .e that contains Slick-C code. Slick-C modules are the most
typical use of Slick-C, used to define functionality that you want to keep loaded, such as user-defined
commands. You must compile and load a Slick-C module into the State File before it can be utilized.
When a module is compiled, the Slick-C translator converts the file into byte code, which is saved in a
corresponding file with the extension .ex. To compile and load the module, use the menu item Macro →
Load Module. See Loading and Unloading Slick-C Modules for more information.

Tip

Slick-C modules that are included with SlickEdit are located in the
[SlickEditInstallDir]/macros subdirectory. You can store the macros you write in any

Slick-C® Modules

707

directory you like. It is best not to store your macros in the macros subdirectory, however.

Loading and Unloading Slick-C® Modules

To compile and load a Slick-C module into the State File, from the main menu, click Macro → Load
Module. You can also press F12 or use the gui_load command on the SlickEdit® command line. The
Open dialog is displayed, prompting you for the file to load.

Note

The dialog used to open a file depends on whether you are using Smart Open. With Smart Open,
you use the Open tool window to browse files and open them. With that off, a standard file
browser dialog is displayed. For more information see Opening Files.

To unload a Slick-C module from the State File, from the main menu, click Macro → Unload Module, or
use the gui_unload command.

Caution

• Use caution when unloading modules that are shipped with SlickEdit. Unloading a base module
could cause the editor to behave unpredictably.

• Base modules are identified by file name. If you load a module with a name that matches a
base SlickEdit module, it will replace the module, which (like unloading a base module), could
potentially cause problems.

Slick-C® Variables (Config Variables)
Slick-C variables are global variables that are persistently stored in the State File. Because these typically
contain user configuration settings, Slick-C variables are also called "configuration variables". Config
variables start with the prefix def_. See Configuration Variables for more information.

Slick-C® Batch Macros
A Slick-C batch macro is a .e file that contains a defmain() function. This file cannot be loaded - you
must compile and run it from the SlickEdit® command line. Slick-C batch macros are useful for infrequent
tasks that do not involve a persistent state. They are different from recorded macros in that they usually
perform specific tasks and cannot be bound to a key. An example of a Slick-C batch macro is a file called
autotag.e. This batch macro launches the Create Tag Files for Run-Time Libraries dialog that appears
when you run SlickEdit for the first time. See Creating Tag Files for Compiler-Specific Libraries for more
information.

Slick-C® Variables (Config
Variables)

708

State File
SlickEdit® ships with a system state file that contains default settings. The system state file is only
changed or updated when you upgrade. As you make changes to the configuration of the editor or apply
customizations, the changes are saved to a user state file, which is a copy of the system state file with
user customizations.

The user state file (vslick.sta) is located in your User Configuration Directory.

The state file is a binary file that stores the following information:

• Loadable Slick-C® Modules.

• Slick-C settings such as global options, language-specific options, etc.

• Slick-C resources such as event tables, dialogs, toolbars, tool windows, menus, bitmaps, and icons.

• DLL-exported function linkage.

The state file does not include DLLs themselves or Slick-C® Batch Macros.

Slick-C® Header Files and More Resources
Slick-C header files use the .sh extension. All Slick-C source files #include slick.sh.

To learn more about Slick-C functions, from the main menu, click Help → Macro Functions by
Category. This will display the Help dialog, with a list of all macro functions organized into categories.

For information about writing Slick-C, see the Slick-C Macro Programming Guide, which is included in the
SlickEdit® Help system and also available as a stand-alone PDF in the docs installation subdirectory.

Slick-C® Header Files and More
Resources

709

710

Menus, Dialogs, and Tool Windows

This chapter contains a comprehensive description of the menus and dialogs available in SlickEdit. For a
general overview, see User Interface.

711

File
This section describes items on the File menu and associated dialogs and tool windows. See the chapter
Workspaces, Projects, and Files for more details about file operations.

File Menu
The table below describes items on the File menu.

File Menu Item Description Command

New Displays the New dialog, which
allows you to create an empty file
to edit. This dialog also lets you
create new projects and
workspaces. See File Dialogs and
Tool Windows.

new

New Item from Template Displays the Add New Item
dialog, which allows you to create
a new file from a template. See
Code Templates.

add_item

Open Displays the Open dialog, which
allows you to open a file for
editing. See Standard Open
Dialog.

gui_open

Open URL Displays the Open URL dialog,
allowing you to open an HTTP
file. See Open URL Dialog.

open_url

Close Closes the current file. quit

Close All Closes all files. close_all

Save Saves the current file. save

Save As Displays the Save As dialog,
which allows you to save the
current file under a different
name. See Save As Dialog.

gui_save_as

Save Copy As Displays the Save Copy As
dialog, which allows you to save a

gui_save_copy

File Menu

712

File Menu Item Description Command

copy the current file under a
different name without changing
the name of the current file in the
editor. See Save Copy As Dialog.

Save All Saves all modified files. save_all

Refresh/Revert Refreshes or reverts the current
file based on it's modify status. If
the buffer has been modified, then
it is reverted. If the file has not
been modified, but has an earlier
time stamp than the file on disk,
then the file is refreshed.

revert_or_refresh

Reload with Encoding... Displays a 'Reload with..' dialog,
allowing you to reload the current
document with a different
encoding. The user-selected
encoding will be remembered the
next time the file is opened. See
Reload With Encoding Dialog.

reload-with-encoding

Change Directory Displays the Change Directory
dialog, which lets you change the
current working directory. See
Change Directory Dialog.

gui_cd

Backup History for Displays the Backup History
dialog, which allows you to quickly
diff against previous versions.
See Backup History.

activate_deltasave

Backup History Browser... Displays the Backup History
Browser dialog, which displays
your save history. Deleted files
can be restored here. See Backup
History.

backup_history_browser

FTP Displays menu of FTP
commands. See File Menu.

N/A

Print Displays the Print dialog which
contains options to print the
current file or selection and

gui_print

File Menu

713

File Menu Item Description Command

provides setup options. See Print
Dialog.

Insert a File Displays the Insert File dialog,
which lets you insert a selected
file at the cursor location. See
Inserting Files.

gui_insert_file

Write Selection Displays the Write Selection
dialog, which lets you write or
append selected text to a file you
choose. See Using Write
Selection.

gui_write_selection

Template Manager Create, edit, and delete your
templates. See Code Templates.

template_manager

Export to HTML Write file to HTML format. export_html

File Manager Displays menu of file manager
commands. See File Manager
Menu.

N/A

More Files Displays menu of files that were
recently opened, saved, or
closed. The number of files
displayed is configurable. See
History Options.

N/A

Exit Prompts you to save files if
necessary and exits the editor.
See Exiting the Program.

safe_exit

File FTP Menu

The File → FTP menu is available for performing FTP operations and changing FTP options. See FTP for
more information about working with these features.

FTP Menu Item Description Command

Start New Connection Activates FTP tool window and
starts a new connection.

ftpOpen 1

File Menu

714

FTP Menu Item Description Command

Activate FTP Activates FTP tool window. activate_ftp

Upload Uploads the current FTP file. ftpUpload

Client Activates FTP Client toolbar. ftpClient

Profile Manager Display FTP Profile Manager
dialog box. See Add/Edit FTP
Profile Dialog.

ftpProfileManager

Default Options Displays the default FTP options.
See FTP Default Options.

show _ftpOptions_form

File Manager Menu

The File → File Manager menu contains options for working with the SlickEdit® File Manager, which
offers a rich set of file listing, selecting, and operating capabilities. See The SlickEdit® File Manager for
detailed information about this feature.

File Manager Menu Item Description Command

New File List Displays a directory of files you
choose.

fileman

Append File List Appends files to current list. fileman append

Sort Sorts file list. fsort

Backup Copies selected files and
preserves directory structure.

fileman_backup

Copy Copies selected files to a
directory you choose.

fileman_copy

Move Moves selected files to a directory
you choose.

fileman_move

Delete Delete selected files. fileman_delete

Edit Edits selected files. fileman_edit

Select Displays menu of file manager
select commands. See File

N/A

File Menu

715

File Manager Menu Item Description Command

Manager Select Menu.

Files Displays menu of file manager
listing commands. See File
Manager Files Menu.

N/A

Attribute Sets the Read Only, Hidden,
System, and Archive attributes of
the selected files.

fileman_attr

Repeat Command Runs internal or external
command on selected files.

for_select

Global Replace Performs search and replace on
selected files.

fileman_replace

Global Find Performs search on selected files. fileman_find

File Manager Select Menu

The File → File Manager → Select menu contains File Manager selection operations.

File Manager Select Menu Item Description Command

All Selects all files. fileman_select_all

Deselect All Deselects all files. deselect_all

Invert Select Selects files which are not
selected and deselects files which
are selected.

select_reverse

Attribute Selects files based on file
attribute.

select_attr

Extension Selects files based on file
extension.

gui_select_ext

Highlight Selects files which are
highlighted.

select_mark

Deselect Highlight Deselects files which are
highlighted.

deselect_mark

File Menu

716

File Manager Files Menu

The File → File Manager → Files menu contains operations for working with files in the File Manager.
Note that commands in this menu do NOT delete files on disk.

File Manager Files Menu Item Description Command

Unlist All Removes all files from the list. unlist_all

Unlist Select Removes selected files from the
list.

unlist_select

Unlist Extension Removes files with a specific
extension from the list.

gui_unlist_ext

Unlist Attribute Removes files with a specific
attribute from the list.

unlist_attr

Unlist Search Removes lines which contain a
particular search string.

unlist_search

Read List Appends a list of files contained in
a file.

read_list

Write List Writes a file containing the
currently selected files.

write_list

File Dialogs and Tool Windows
This section describes the dialogs and tool windows that are associated with File menu items.

New Dialog

The New dialog is used to create new files, projects, and workspaces. The dialog consists of three tabs:

• New Dialog

• Project Tab

• Workspace Tab

File Tab

This tab on the File Dialogs and Tool Windows is used to create new files. It is displayed when you click
File → New or use the new command. See Creating Files for more information.

File Dialogs and Tool Windows

717

The fields and options on the File tab are described as follows:

• Document Mode - Specifies the language editing mode for the new file. The language editing mode
determines the options and features that will be available for this file (see Language Editing Mode).
Double-click on a mode to instantly create an empty, untitled buffer set to that mode. Recently used
language modes appear at the top of the list. You can control the number of recently used items that
appear with the option Number of recent modes to store on Tools → Options → File Options →
History.

When you select the Automatic mode, the language mode is picked based on the file extension of the
file you name. If your extension doesn't match a mode, you'll be asked if you want to create it as plain
text. Double-clicking Automatic creates an untitled plain text file.

• Add to Project - When selected, the new file will be added to the selected project in the current
workspace. Use the drop-down list to select the project. This option is set automatically if a project is
open. This option is disabled if you have not typed in a file name yet.

• Filename - Specifies the name (without path) of the file to create. If you type a path in the Filename
field, the Location field will be filled in automatically. Leave this field blank and hit OK to create an new,

File Dialogs and Tool Windows

718

untitled buffer.

• Location - Specifies the directory in which the file should be created. By default, this is set to the
current working directory (see The Working Directory). Click the Browse button to the right of this field
to browse for a location. You can also type a path and if the directory does not exist, you will be
prompted to create it after you click OK.

• Encoding - The encoding indicates whether to convert a file to either SBCS/DBCS for the active code
page or Unicode (more specifically UTF-8) data. By default, XML and Unicode files with signatures
(UTF-16, UTF-32, and UTF-8) are automatically loaded as Unicode UTF-8 data, while other more
common program source files like .c, .java, and .cs source files are loaded as SBCS/DBCS active
code page data. To provide better support for editing Unicode and non-Unicode files, two modes of
editing exist: Unicode and SBCS/DBCS mode. Files that contain Unicode, XML, or code page data not
compatible with the active code page should be opened as Unicode files. See Encoding for more
information.

Project Tab

The Project tab on the New dialog is used to create new projects. It is displayed when you click Project
→ New or use the workspace_new command. The fields and options on the Project tab are described
below. See Creating Projects for step-by-step instructions and Managing Projects more information about
choosing the correct project type.

The fields and options on the Project tab are described as follows:

• Project type - (Pro only) Specifies the type of project that you want to create (see Managing Projects
for more information). Expand your language in the tree to see all types for that language. It is very
important to select the correct type of project at this stage, because it is not possible to change it after
the project has been created. Recently used project types appear at the top of the list. You can control
the number of recently used items that appear with the option Number of recent types to store found
on Tools → Options → File Options → History

• Customize - (Pro only) Displays the Customize Project Types dialog, which allows you to create, edit,
and delete project packages from the Project type list. System-defined project types are stored in

File Dialogs and Tool Windows

719

prjtemplates.vpt. User-modified or additional project types are stored in
usrprjtemplates.vpt. See Creating Custom Project Types for more information.

• Project name - Specifies the name of the new project.

• Create project directory from project name - When selected, the name you specify for the project is
used as the name for the new directory in which the project will be created. The new directory will be
created as a subdirectory under the specified Location. When this option is not selected (cleared), the
project will be created inside the Location directory. The area below the Location field shows where
the project files will reside based on this option and other Project tab settings. For example, if the
project is named "TestProject", this option is selected, and the location is set to C:\dev\, files for this
project will reside at C:\dev\TestProject. If the option is not selected, files for the project will reside
at C:\dev.

• Location - Specifies the directory in which the project should be created. By default, this is set to the
current working directory (see The Working Directory). Click the Browse button to the right of this field
to select a different location. You can also type a path and if the directory does not exist, you will be
prompted to create it after you click OK. The area below this field shows where the project files will
reside based on this field and other Project tab settings.

• Files will be located at - Shows the path where the project files will reside, based on the information
you have specified on the tab.

• Executable name - Specifies the name of the executable or output file.

• Create new workspace - Specifies that the project should be created in a new workspace. This option
and Add to current workspace are mutually exclusive.

• Add to current workspace - Specifies that the project should be created inside the current workspace.
For example, if the current workspace is named "OrderChart" located in C:\dev\OrderChart, the
name of the new project is "TestProject", and this option is selected, files for the new project will reside
at C:\dev\OrderChart\TestProject. This option and Create new workspace are mutually
exclusive.

• Dependency of - (Pro only) When Add to current workspace is selected, this option specifies that
the new project should be a dependency of an existing project in the current workspace. Use the
drop-down to select the existing project on which you want the new project to depend. See Defining
Project Dependencies for more information.

When SlickEdit is invoked with a directory or a directory is drag/dropped on SlickEdit, additional controls
from the Add Tree dialog are displayed such as Include filespecs, Exclude filespecs, Recursive, etc.
See Add Tree Dialog for information on these options.

Workspace Tab

This tab on the File Dialogs and Tool Windows is used to create a new workspace. To access it, click
Project → New or use the workspace_new command. See Creating Workspaces for more information.

File Dialogs and Tool Windows

720

• Blank Workspace - Select this only if you want to create an empty workspace to which you can
add projects.

• Workspace name - Specify the name of the new workspace.

• Location - Specify the directory location of the new workspace. If the directory does not exist, you will
be prompted to create it when you click OK.

The data for each workspace, solution, or project is stored in a text file with the .vpw extension.

Open Tool Window

The Open tool window is for to browsing and opening files. Like other tool windows, it can be docked in
any location within SlickEdit or left floating. You can type part of a file name to filter the list. Once a
pattern is typed, this window also will display files from the current workspace, list of open files, and file
history, depending on your settings.

Note

File Dialogs and Tool Windows

721

The Community edition does not support Smart Open or features which search for filename
patterns in the workspace or project.

By default, patterns typed into the File name field will be used to find matching files in the current
workspace, the list of open files, and the file history. This makes it faster to locate files by name
with less concern about where they come from. See Open Tool Window Options [1033] for
information on how to change this behavior.

The File name field box supports ant-like wildcards (wildcards in path parts and use of **).
Depending on what you've typed and the options you've specified (click Options link), an ant-like
wildcard specification is generated and used to match files. For example, if you specify path-
part/name-part, the generated wildcard is **/path-part**/*name-part*. There are Options for
how to handle certain name-part specifications. For example, if name-part is *.ext, no leading *
is prepended to name-part, and no trailing * is appended to name-part.. There are options for
this and other name-part specifications.

File Dialogs and Tool Windows

722

At the top of window, the File name field is used to filter the list of files and directories displayed in the
pane, below it. By default, the string is matched anywhere in the file name. If you prefer, you can set your

File Dialogs and Tool Windows

723

options to do a prefix match. See Open Tool Window Options [1033] for more information.

You can also filter the list to show only files of certain types, using the Files of type field at the bottom of
the tool window.

Next to the File name field are three icons. Use the first button to quickly clear the File name filter field.
The next button is for creating a new file using the name in the File name field. Newly created files are
not saved but are opened for editing. The ellipsis icon brings up the standard file browser to open a file.

Below the File name field is the list of files and directories. The file list is divided into two columns: Name
and Path. The Path column is useful to distinguish files pulled in outside of the selected directory. This list
is not sortable. If you right-click in the file list, a number of operations are available, including Open,
Execute, Print, and Refresh. You can also a open file by double-clicking it or by selecting it and pressing
Enter.

Below the file list is a tree that displays the folder hierarchy for the current directory. It also displays
systems drives, a Network entry, and a Favorites node. You can use this to navigate to a different
directory. If you don't want this action to change the current directory in SlickEdit, change the options to
set Sync current directory to False.

You can add folders to your list of favorites by selecting one in the file list and picking Add to Favorites
from the context menu. Remove a favorite by selecting it and pressing the Del key. On Windows, the list
of Favorites is automatically populated with Documents and Desktop. On Linux/UNIX we added an entry
for Home.

Filtering and Matching

The File Name field is used both to filter the list of files and directories and to match files and directories
from the current workspace, file history, or open files. Patterns can be matched at the beginning of a
name or anywhere in the name, depending on your setting for Prefix match in the Open Tool Window
options. You can use a "*" to match 0 or more characters.

You can use a slash to match against the final directory in the path along with a part of the file name. The
pattern "foo\bar" matches files with "foo" somewhere in the final directory name and "bar" somewhere in
the file name, controlled by your setting for Prefix match. This is useful to match files in a particular
directory. Patterns without a slash will match against any files and directories displayed in the list below
the File name field, but they will only be used to match file names in your workspace, open files, or file
history.

Here are some sample patterns and what they will match:

Pattern Matches

foo Files that begin with or contain "foo".

foo* This produces the same result as typing "foo". So,
you never need to add a star at the end of a
pattern.

*foo This produces the same result as typing "foo" if you

File Dialogs and Tool Windows

724

Pattern Matches

have Prefix match set to False. If you have Prefix
match set to True, then a star at the front will allow
you to match items with "foo" anywhere in the
name.

foo*bar Items that contain "foo", followed by zero or more
characters, followed by "bar".

docs\ Matches files that have "docs" in the final directory
name, but not directory names earlier in the path.
This will match "C:\src\docs\foo.txt" and
"C:\src\MyDocs\foo.txt" depending on your
setting for Prefix match. This will not match
"C:\docs\current\foo.txt".

*docs\ This produces the same result as typing "docs\" if
you have Prefix match set to False. If you have
Prefix match set to True, then a star at the front
will allow you to match items with "docs" anywhere
in the name.

docs\foo Matches files with "docs" in the final directory of the
path and "foo" somewhere in the file name:
"C:\src\docs\food.txt". Will not match
"C:\docs\src\food.txt".

Completions

Completions can be used to speed the entry of file names and paths in the File name field. After typing a
few characters of a name, press the spacebar to fill in the rest of the name. If no matches are available,
then a space will be entered in this field.

Hotkeys for Open Tool Window

The following sequences can by used when the cursor is in the File name field:

• Shift +Enter - creates a new file with the name in the filter.

• Ctrl +Enter - if the text in the File name field is a filespec (i.e. *.ext), then that filespec is added to the
Files of type combo box at the bottom of the screen and selects that filter.

The following key sequences are support when the focus is anywhere in the Open tool window:

• Alt +E - changes the focus to the File name field.

File Dialogs and Tool Windows

725

• Alt +N - creates a new file using the name in the File name field.

• Alt +D - changes the focus to the explorer tree at the bottom of the tool window.

• Alt +F - changes the focus to the list of files and directories under the File name field.

• Alt +T - changes the focus to the Files of type combo box at the bottom of the tool window.

Open Tool Window Options

You can set options for the Open tool window in either of two ways:

• Right-click in the file list portion of the tool window and select Options.

• Using the SlickEdit Options dialog, select Tools → Options → File Options → Open.

See Open Tool Window Options [1033] for information on the Open tool window options.

Standard Open Dialog

On Windows, this is the standard dialog used to browse and open files. It is displayed when you click File
→ Open or use the gui_open command if you have turned Smart Open off (see Opening Files).

Windows 7 and Windows Vista Open Dialog:

File Dialogs and Tool Windows

726

Windows XP Open Dialog:

File Dialogs and Tool Windows

727

• Files list - Specify the directory for which to display files. Select multiple files with Ctrl+Click. Press
Ctrl+A to select all files.

• File name - The name of the file you wish to edit is typed into the File name text box. Click the OK
button to open the selected files. This text box supports alias expansion. Type the alias name and
press Ctrl+Space to expand an alias. Aliases save time typing in long path names and wasting time
clicking through the Directories list box. See Directory Aliases for more information.

• Files of type - This combo box lets you display files of particular extensions. Select a different file filter
from this combo's list box to change the file list.

You can change the file specifications that appear in theFiles of type combo box at the bottom left of
the Open, Save Copy As, and Save As dialog boxes. From the main menu, click Tools → Options →
File Options, then select File Filters. The first wildcard pattern(s) specified is used to initialize the
Open dialog box. The default is to list all files. You may want an initially smaller list which displays the

File Dialogs and Tool Windows

728

source files you typically edit. See Files of Type Filter Options for more information.

• Open as read-only - When opening a file, check this box if you wish to open a file but do not want to
accidentally modify the file. Files are automatically opened with the read-only attribute set as read-only,
regardless of the setting of this check box.

• Encoding - The encoding specifies whether to convert a file to either SBCS/DBCS for the active code
page or Unicode (more specifically UTF-8) data. By default, XML and Unicode files with signatures
(UTF-16, UTF-32, and UTF-8) files are automatically loaded as Unicode UTF-8 data, while other more
common program source files like .c, .java, and .cs source files are loaded as SBCS/DBCS active
code page data.

To provide better support for editing Unicode and non-Unicode files, two modes of editing exist:
Unicode and SBCS/DBCS mode. Files that contain Unicode, XML, or code page data not compatible
with the active code page should be opened as Unicode files. See Encoding for more information on
the available encodings.

• Expand tabs - When this option is checked, tabs found in opened files are expanded to spaces in
increments of eight.

• Preload file - This check box is used to force the entire contents of opened files to be read into
memory (may spill to disk), count the number of lines in the file, and truncate the file when an EOF
character is found.

• Change dir - (Not always present) Check this box if you want the current directory to be changed to the
path where this file is located. To set the default value of this check box to always enabled, from the
main menu click Tools → Options → Appearance → General, and set the Change directory option
to True.

• Line format - This option specifies the type of line ending to be used. Select Windows/DOS(CRLF),
Unix/macOS(LF), or Classic Mac(CR) line endings, or select Automatic to use the line endings
already in the current file.

• Line separator char (decimal) - This text box allows you to specify a decimal character which the
editor will use as a single line separator character.

• Record width - This text box allows you to specify a decimal line width. Use this option to open ASCII
record files or binary files.

Open URL Dialog

This dialog is used to specify an HTTP file to open. It is displayed when you click File > Open URL or use
the open_url command.

File Dialogs and Tool Windows

729

• URL - Enter a URL to open in this field. You may use forward or backward slashes. The prefix "http://"
is not required.

• Include header - If this option is selected, all of the URL header data is displayed. If the URL specified
is already open, this option has no effect.

• Use cache - If this option is selected, and the URL being opened already exists in the cache, the
cached version is opened. This option is intended to save time required to download remote files. If the
URL specified is already open, this option has no effect.

• Clear cache - Click on this link to clear some or all of the files from the URL cache.

Reload With Encoding Dialog

This dialog is displayed when selecting the File > Reload with Encoding... menu item or invoking the
reload-with-encoding or rwe commands. The combo box at the top can be used to search within the list
of available encodings.

File Dialogs and Tool Windows

730

• Line Endings - This button will prompt you to specify a line ending format. The default is 'Automatic'.

Save As Dialog

This dialog is used to save the current file under a different name. It is displayed when you click File →
Save As or use the gui_save_as command. By default, the standard Save As dialog is displayed. This
dialog is described below.

File Dialogs and Tool Windows

731

• Save as type - This option filters the list of files displayed based on file extension. Changing this value
will not change the extension of the file, unless the extension is not specified in the File name field.

• Encoding - The encoding specifies whether to convert a file to either SBCS/DBCS for the active code
page or Unicode (more specifically UTF-8) data. By default, XML and Unicode files with signatures
(UTF-16, UTF-32, and UTF-8) files are automatically loaded as Unicode UTF-8 data, while other more
common program source files like .c, .java, and .cs source files are loaded as SBCS/DBCS active
code page data. See Encoding for more information.

• Line format - This option specifies the type of line ending to be used. Select Windows/DOS(CRLF),
Unix/macOS(LF), or Classic Mac(CR) line endings, or select Current line format to use the line
endings already in the current file.

• Change dir - Check this box if you want the current directory to be changed to the path where this file
is saved. To set the default value of this check box, from the main menu, click Tools → Options →
Appearance → General, and set the Change directory option.

• Show hidden files - (UNIX only) Dot files (files with names beginning with a dot character) are hidden
in the Save As dialog by default. To view dot files, select this option. The default state of this option is
controlled by the option Show files beginning with a dot (Tools → Options → Appearance →
General). Show files beginning with a dot can be also set using the def_filelist_show_dotfiles
configuration variable.

File Dialogs and Tool Windows

732

• Keep old file - When checked, the file is saved under the name you specify but the buffer name is not
changed. This check box is not always displayed.

• Add to project - When checked, the saved file will be added to the project that is currently open in the
workspace. If no project is open, this option is unavailable. To set the default value of this check box,
from the main menu click Tools → Options → File Options → Save, and change the option Add file
to project upon Save As.

Tip

This option is also available from the command line by using the option letter +P with the
save_as command. For example, save_as +P /path/to/file.cpp will add file.cpp to the current
project. Similarly, save +P will save the current file and add it to the current project.

Save Copy As Dialog

This dialog is used to save a copy of the current file under a different name without changing the name of
the current file in the editor. It is displayed when you click File → Save Copy As or use the
gui_save_copy command. By default, the standard Save Copy As dialog is displayed. This dialog is
described below.

Note

The typical use-case for Save Copy As is to make a backup copy of a file. Thus, unlike the Save
As dialog, the Save Copy As dialog does not have the option to add the saved file to the project.

File Dialogs and Tool Windows

733

• Save as type - This option filters the list of files displayed based on file extension. Changing this value
will not change the extension of the file, unless the extension is not specified in the File name field.

• Encoding - The encoding specifies whether to convert a file to either SBCS/DBCS for the active code
page or Unicode (more specifically UTF-8) data. By default, XML and Unicode files with signatures
(UTF-16, UTF-32, and UTF-8) files are automatically loaded as Unicode UTF-8 data, while other more
common program source files like .c, .java, and .cs source files are loaded as SBCS/DBCS active
code page data. See Encoding for more information.

• Line format - This option specifies the type of line ending to be used. Select Windows/DOS(CRLF),
Unix/macOS(LF), or Classic Mac(CR) line endings, or select Current line format to use the line
endings already in the current file.

• Change dir - Check this box if you want the current directory to be changed to the path where this file
is saved. To set the default value of this check box, from the main menu, click Tools → Options →
Appearance → General, and set the Change directory option.

• Show hidden files - (UNIX only) Dot files (files with names beginning with a dot character) are hidden
in the Save Copy As dialog by default. To view dot files, select this option. The default state of this
option is controlled by the option Show files beginning with a dot (Tools → Options → Appearance
→ General). Show files beginning with a dot can be also set using the def_filelist_show_dotfiles
configuration variable.

File Dialogs and Tool Windows

734

Save Failed Dialog

This dialog appears automatically when a Save operation has failed. The following options are available:

• Save as read only - (UNIX only) This check box is automatically selected if your file does not have any
write permissions (no "w" letter). Turn this option on to have SlickEdit® temporarily change the
permissions on the file to read/write. The resulting file will not have any write permissions (no "w"
letter).

• Save without creating a backup - This check box is automatically selected if SlickEdit was unable to
create a backup file when trying to save your file. This can happen when you do not have permissions
to create the backup directory or when you are out of disk space. If you are editing files on a network
drive, you may not have access rights for creating a backup directory on that drive.

• Configure local backup directory - (Non-UNIX only) If you are editing files on a network drive, you
may not have access rights for creating a backup directory on that drive. Configuring a local backup
directory guarantees that you always have write access. If the directory you specify does not exist,
SlickEdit will create one for you.

Exiting with Modified Buffers Dialog

If files have not been saved or closed upon exit, this dialog appears so you can save or discard any
changes.

The buffer names in the list box are buffers which have not been saved.

• Save All - Saves all buffers. If a buffer does not have a name, you are prompted to give a file name.

• Save Selected - Saves only the buffers that are selected. Use Ctrl+Click to select more than one

File Dialogs and Tool Windows

735

buffer.

• Invert - Reverses the selection status for all buffers. When no buffers are selected, this selects all
buffers.

• Save None - Selects to save no buffers. Beware, if you are exiting the editor you will not be given
another chance to save your files.

File Tabs

If you want to see a document tab per buffer (probably because you are using "Multiple files share
window"), you might want to use the File Tabs tool window. You can toggle display of this tool window, by
selecting View → Tool Windows → File Tabs from the main menu, or by using the toggle_filetabs
command. The maximum number of file tabs that can be displayed is 255. By default, the file tabs are
sorted alphabetically. For information on changing the sort order, see File Tab Sort Order [738].

The File Tabs tool window is shown below:

The File Tabs tool window displays a single row of file tabs. If there isn't enough space for all of the file
tabs to be displayed, a left and right arrow icon is drawn in the tool window, allowing you to scroll the tabs.
A down-arrow icon is always visible, allowing you to select a file from a list of the open files. This is a
convenient way to select a file when you have a lot of files open and some tabs aren't visible.

Tip

You may also find that using the Files tool window provides a convenient way to view a list of
open buffers and select one for editing (see Document Dialogs and Tool Windows).

When a buffer is modified (changed and not yet saved), the text of the file tab turns red by default. You
can change the color of modified file tabs with the Modified file tab(s) screen element (Tools → Options
→ Appearance → Colors).

Some file tabs, like those for search results buffers, build output, and File Manager operations, display a
picture by default. You can further save space in the file tabs area by turning pictures off. To turn pictures
on and off for all file tabs, right-click in the File Tabs tool window and select Show pictures from the
context menu.

When you create a new, unnamed "scratchpad" buffer, it is indicated by the text "Untitled" in the file tab
along with a number that indicates the internal ID. You can create a scratchpad buffer by using the menu
item File → New and not naming the file.

If you prefer to keep your hands on the keyboard for buffer/file navigation, two commands are available:
next_buff_tab and prev_buff_tab. Use these commands to navigate through the file tabs in the order
they are displayed. Both circle around to the other end when you are on the last item. These commands
are not bound to keys by default. To create key bindings for these commands, see Creating Bindings.

File Dialogs and Tool Windows

736

File Tab Context Menu

The right-click context menu in the File Tabs tool window provides operations for saving files, closing
files, splitting windows, and controlling the appearance of the file tabs.

Note

You get a different menu if you right-click on the background of the File Tabs tool window than if
you right-click on a file tab. Right-clicking on the background lists the set of available tool
windows and toolbars to display. Right-clicking on a file tab lists operations specific to that file or
the tabs.

The right-click context menu for the file tabs tool window is shown below.

The items available in the right-click context menu are outlined below. Some items apply to the file
specified by the file tab underneath the mouse. Others apply to the file tabs tool window as a whole.

File Dialogs and Tool Windows

737

• Save <file> - Saves the file specified by the file tab under the mouse.

• Close <file> - Closes the file specified by the file tab under the mouse.

• Diff <file> - Diffs the file specified by the file tab under the mouse with the version in source control.
Only available when the file is modified.

• Add <file> to project... - Adds the file to a project in the workspace. You are prompted to choose
which project.

• Save All - Saves all modified files.

• Close All - Closes all open files.

• Close Others - Closes all open files except for the one specified by the file tab under the mouse.

• List Open Files... - Shows the Files tool window See Files Tool Window for more information.

• Split Horizontal - If the file tab under the mouse refers to the current file in the editor, then you are
given the option to split that window horizontally. If the file is not the current file, then this creates a
horizontal split, with the current file on the top and the file under the mouse on the bottom.

• Split Vertical - If the file tab under the mouse refers to the current file in the editor, then you are given
the option to split that window vertically. If the file is not the current file, then this creates a horizontal
split, with the current file on the left and the file under the mouse on the right.

• Copy Full Path to Clipboard - Copies the full path of the file on the file tab under the mouse to the
clipboard.

• File tab sort order - The default order for the file or document tabs is alphabetic. This makes it easy to
predict where a file tab will be based on the file name. You can also change this value by going to
Tools → Options → Editing → Editor Windows. This option has several possible values:
Alphabetical, Most recently opened, Most recently viewed, or Manual. For more information see
File Tab Sort Order Options.

• New file tab position - Sets whether new tabs are inserted at the right or left end of the file tabs. This
option is only available when File tab sort order is set to Most recently opened or Manual.

• Toggle file tab orientation - This item changes whether the file tabs are coming down from the top of
the tool window or the bottom. This does not affect where the tool window is positioned.

•
Abbreviate similar files - When the file or document tabs are sorted alphabetically, by default, the tabs
do not show the complete name of the file when adjacent files differ only by file extension. This saves
space and provides better visibility for associated files. For file names to be abbreviated in this style,
their paths and base file name must match exactly. For example,
C:\rectangles\BorderRectangle.cpp would not abbreviate with
C:\src\include\BorderRectangle.h. You can also set this option by going to Tools → Options
→ Editing → Editor Windows.

• Show pictures - Controls whether or not icons are shown for special windows, such as Build Window,
Search Results, or File Manager windows.

File Dialogs and Tool Windows

738

• Show close buttons - Sets whether to show a close button on each individual tab to make it easier to
close tabs. You can also close individual files by clicking on them with the middle mouse button.

Change Directory Dialog

This dialog is used to change the current working directory. It is displayed when you click File → Change
Directory or use the gui_cd command.

• Directory name - Name of directory to change to make active.

• Expand alias - Check this box if you want to specify directory aliases in the Directory name text box.
See Directory Aliases for more information.

• Change directory in Build Window - Check this box if you want the current directory in the Build tool

File Dialogs and Tool Windows

739

window to be changed in addition to the editor's current directory.

• Save Settings - Save the settings of the Expand alias and Change directory in Build Window check
box values. The next time this dialog box appears, these check boxes are set to the values last saved.
In addition, these check box settings affect the cd command which is used to change directory using
the command line.

Print Dialog

This dialog is used to configure print options and print text files. It is displayed when you click File → Print
or use the gui_print command.

Note

The printing facility supports embedded formfeed characters. The formfeed character must be the
only character on the line. To insert a formfeed into the current buffer, press Ctrl+Q (quote_key
command), and Ctrl+L. Alternatively, you can use the Insert Literal dialog box (Edit → Insert
Literal or insert_literal command) to insert a formfeed or any other character (see Inserting
Literal Characters).

File Dialogs and Tool Windows

740

The general settings on the Print dialog for Windows are described below.

• Print - Sends the selection or active buffer to the printer specified in the Print Setup dialog (print
command).

• Font - Displays the Fonts option screen, which allows you to specify the font for the printed text. See
Font Options for more information.

• Setup - Displays the Print Setup dialog, which allows you to specify the printer to use (printer_setup
command). The Print Setup dialog box is built into the operating system, and its contents might vary
depending on the print driver that you are using.

• Preview - Displays a preview of what the printed file will look like (print_preview command).

• Files - Expands the Print dialog to allow you to pick another file or multiple files for printing (as opposed
to the active file).

File Dialogs and Tool Windows

741

The remaining options are categorized into the following tabs:

• General Tab

• Header/Footer Tab

• Margins Tab

• Profiles Tab

General Tab

This tab on the Print Dialog is used to set general print options.

• Selection only - When this option is selected, only the selection is printed. To print the selection
immediately using the default configuration, use the print_selection command.

• Visible lines only y - When this option is selected, only visible lines are printed. This option allows you
to print selective display.

• Print color coding - When this option is selected, language-specific color coding is printed using the
same font attributes (bold, italic, underline).

• Print color - When this option is selected, language-specific color coding is printed using the same

File Dialogs and Tool Windows

742

colors.

• Print hex - When this option is selected, printed output is displayed as if it were the hex display mode.

• Two up - When this option is selected, it specifies two columns where one page is printed in the left
column and the next page is printed in the right column. This is useful when printing in landscape
mode, especially when you are using a small font.

• Orientation - Specifies whether text is printed top to bottom (portrait) or left to right (landscape).

• Space between - This text specifies the width between columns, in inches. This text box is unavailable
unless the Two Up check box is marked.

• Number lines every - When the value is not zero, lines at intervals of this value are printed with line
numbers.

• Number of copies - This value specifies the number of copies to print.

Header/Footer Tab

This tab on the Print Dialog is used to configure header/footer printing options.

Type directly into the text boxes to specify text for the top left, center, and right headers and bottom left,
center, and right footers. Click the arrow to the right of each text box pick from a list of escape sequences

File Dialogs and Tool Windows

743

to be inserted. Escape sequences are values that are replaced with real data, such as %f (which will be
replaced with the file name) and %d (which will be replaced with the date).

Margins Tab

This tab on the Print Dialog is used to configure print margins.

• After header/Before footer - Specifies the amount of spacing to come between the header and the
first line on a page, and the amount of spacing to come between the last line on a page and the footer.

• Margins - The Top, Bottom, Left, and Right margin fields specifies the amount of spacing in inches to
come between the outer edge of the paper and the printed text. To print the maximum amount of text,
specify "0" for all margins.

Profiles Tab

This tab on the Print Dialog lets you to save the current printer settings as a profile

• Save... - Allows you to specify a profile name to save the print settings to.

• Delete... - Allows you to deleted a profile

• Rename... - Allows you to rename a profile

File Dialogs and Tool Windows

744

Add/Edit FTP Profile Dialog

This dialog is used to create or edit profiles for FTP connections. It is displayed when you click File →
FTP → Profile Manager, then click Add or Edit. The title of the dialog box changes based on whether
you are adding a profile or editing an existing profile, but the interface is the same. The dialog consists of
two tabs: General Tab and Advanced Tab.

General Tab

This tab on the Add/Edit FTP Profile Dialog is used to configure general FTP profile settings.

• Profile name - Name displayed in connection combo box.

• Host name - Host name of the FTP server.

• Server type - If you are connecting to an FTP server, select FTP. If you are connecting to a Secure
Shell (SSH) server that supports the SFTP subsystem, select SFTP/SSH.

• Host type - If the file listing is blank after connecting, select the host type from the list. Otherwise, leave
it set to Auto. If the server type is SFTP/SSH, then this type is ignored.

• User ID - Logon user ID.

• Password - Logon password.

• Anonymous login - Specifies whether the FTP login uses the anonymous user ID.

• Save password - Specifies whether to save a password.

• Transfer type - Specifies the default file transfer method. Select ASCII if you want line breaks
translated. Otherwise, specify Binary.

File Dialogs and Tool Windows

745

• Initial directory - Specifies the initial remote and local directories after login.

• Filters - Specifies the initial remote and local file filters after login.

Advanced Tab

This tab on the Add/Edit FTP Profile Dialog is used to configure advanced FTP profile settings.

• Timeout - The value that you type in this field specifies the amount of time that the application should
wait for a reply from the FTP server.

• Port - FTP or SFTP/SSH port. By default, this is 21 for FTP server type, and 22 for SFTP/SSH.

• Keep alive - Keeps a connection alive even when idle. Unavailable for SFTP/SSH server type.

• Resolve links - Resolves symbolic links on the remote host. Unavailable for SFTP/SSH server type.

• Auto refresh - Determines whether the host directory listing is updated after an operation. Turn this off
if the host is slow. Use the context menu (right mouse button) to temporarily turn Auto refresh on/off or
force the directory list to be updated.

• Use firewall/proxy - This option is not available until a firewall is set up and activated.

• Upload filename case - Indicates what file case should be used for the remote file name based on the
local file name.

• Remote to local directory mapping - This specifies how a remote path maps to a local path and vice
versa. For example, if Remote root is /usr/ftp/www-slickedit and Local root is
c:\web\slickedit\, then the remote path /usr/ftp/www-slickedit/products/index.html
is mapped to the local path c:\web\slickedit\products\index.html. This option only affects
the FTP tool windows.

Edit

746

Edit
This section describes items on the Edit menu and associated dialogs and tool windows. See Basic
Editing for more details about editing operations.

Edit Menu
The table below describes items on the Edit menu.

Edit Menu Item Description Command

Undo Undoes the last edit operation. undo

Redo Undoes an undo operation. redo

Multi-file Undo Undoes the last multi-file
operation (i.e.: Find and Replace
in all files).

mfundo

Multi-file Redo Undoes an multi-file undo
operation.

mfredo

Cut Deletes the selected text and
copies it to the clipboard.

cut

Copy Copies the selected text to the
clipboard.

copy_to_clipboard

Paste Inserts the clipboard into the
current file.

paste

List Clipboards Displays the Clipboards tool
window, which allows you to view
and insert the selected clipboard.
See Clipboards and also Edit
Dialogs and Tool Windows.

list_clipboards

Copy Word Copies the current word to the
clipboard.

copy_word

Append to Clipboard Appends the selected text to the
clipboard.

append_to_clipboard

Append Cut Deletes the selected text and
appends it to the clipboard.

append_cut

Edit Menu

747

Edit Menu Item Description Command

Insert Literal Displays the Insert Literal dialog,
which allows you to insert a
specified character code. See
Inserting Literal Characters.

insert_literal

Select Displays menu for selecting and
deselecting text. See Edit Select
Menu.

N/A

Delete Displays menu for deleting text.
See Edit Delete Menu.

N/A

Complete Previous Word Retrieves previous word or
variable matching word prefix at
cursor.

complete_prev

Complete Next Word Retrieves next word or variable
matching word prefix at cursor.

complete_next

Fill Displays the Fill Selection dialog,
which lets you fill the selected text
with a character you choose.

gui_fill_selection

Indent Indents the selected text based
on the tabs or indent for each
level.

indent_selection

Unindent Unindents the selected text based
on the tabs or indent for each
level.

unindent_selection

Other Displays menu containing more
edit-related commands. See Edit
Other Menu.

N/A

Edit Select Menu

The Edit → Select menu contains selection operations. See Selections for more information.

Edit Select Menu Item Description Command

Char Starts or ends a character/stream
selection.

select_char

Edit Menu

748

Edit Select Menu Item Description Command

Block Starts or ends a block/column
selection.

select_block

Line Starts or ends a line selection. select_line

Word Selects the word under cursor. select_whole_word

Code Block Selects text in current code block
(if/loop/switch block etc.).

select_code_block

Procedure Selects text in current function
including function heading.

select_proc

Deselect Unhighlights selected text. deselect

All Selects all text in current buffer. select_all

Edit Delete Menu

The Edit → Delete menu contains text deletion operations. See Cutting and Deleting Text for more
information.

Edit Delete Menu Item Description Command

Word Deletes text from the cursor to the
end of the current word and
copies it to the clipboard.

cut_word

Line Deletes the current line and
copies it to the clipboard.

cut_line

To End of Line Deletes text from the cursor to the
end of the line and copies it to the
clipboard.

cut_end_line

Selection Deletes the selected text. delete_selection

All Delete all text in current buffer. delete_all

Edit Other Menu

Edit Menu

749

The Edit → Othermenu contains miscellaneous editing operations.

Edit Other Menu Item Description Command

Lowcase Translates the characters in the
selected text to lowercase.

lowcase_selection

Upcase Translates the characters in the
selected text to uppercase.

upcase_selection

Capitalize Capitalizes the first character of
the current word.

cap_selection

Shift Left Deletes the first column of text in
each line of the selected text.

shift_selection_left

Shift Right Inserts a space at the first column
of each line of the selected text.

shift_selection_right

Overlay Block Overwrites selected block/column
of text at the cursor.

overlay_block_selection

Adjust Block Overlays the selected text at the
cursor and fills the original
selected text with spaces.

adjust_block_selection

Copy to Cursor Copies the selection to the cursor
without using the clipboard

copy_to_cursor

Enumerate Displays the Enumerate dialog,
which allows you to add
incrementing numbers to a
selection. See Enumerate Dialog.

gui_enumerate

Filter Selection Displays a Command dialog,
which allows you to filter selected
text through an external
command. See Filter Selection:
Command Dialog.

filter_selection

Copy UCN As Unicode Copies selected UCN to the
clipboard as Unicode. See Using
Unicode.

copy_ucn_as_unicode

Copy Unicode As Displays menu containing
commands for copying Unicode
as UCN. See Copy Unicode As

N/A

Edit Menu

750

Edit Other Menu Item Description Command

Menu.

Tabs to Spaces Converts tabs to appropriate
number of spaces. If there is no
selection the entire buffer is
converted.

convert_tabs2spaces

Spaces to Tabs Converts leading spaces to tabs.
If there is no selection the entire
buffer is converted.

convert_spaces2tabs

Remove Trailing Whitespace Removes trailing whitespace
characters from the ends of lines.

remove_trailing_spaces

Check Line Endings Check for inconsistent line
endings and optionally change
line endings.

check_line_endings

Check Line Endings Check for inconsistent line
endings and optionally change
line endings.

check_line_endings

Block Insert Mode Allows you to insert/delete text for
an entire block/column selection.

block_insert_mode

Copy Unicode As Menu

The Edit → Other → Copy Unicode As menu contains operations for copying Unicode characters. See
Using Unicode for more information.

Copy Unicode As Menu Item Description Command

C++ (UTF-16 \xHHHH) Copies Unicode characters in
selection as C++ UTF-16 \xHHHH
notation.

copy_unicode_as_c

Regex (UTF-32 \x{HHHH}) Copies Unicode characters in
selection as Regex UTF-32
\x{HHHH} notation.

copy_unicode_as_regex

Java/C# (UTF-16 \uHHHH) Copies Unicode characters in
selection as Java/C# UTF-16
\uHHHH notation.

copy_unicode_as_java

Edit Menu

751

Copy Unicode As Menu Item Description Command

UCN (UTF-32 \uHHHH and
\UHHHHHHHH)

Copies Unicode characters in
selection as UCN UTF-32
\uHHHH and

\UHHHHHHHH notation.

copy_unicode_as_ucn

SGML/XML hexadecimal
(UTF-32 &xHHHH;)

Copies Unicode characters in
selection as SGML/XML
hexadecimal

UTF-32 &xHHHH; notation.

copy_unicode_as_xml

SGML/XML decimal (UTF-32
&xDDDD;)

Copies Unicode characters in
selection as SGML/XML decimal

UTF-32 &xDDDD; notation.

copy_unicode_as_xmldec

Edit Dialogs and Tool Windows
This section describes the dialogs and tool windows that are associated with text editing.

Select Text to Paste Dialog

This is a modal dialog available for viewing and inserting recently used SlickEdit® clipboards (not the
same as the operating system clipboard). To display the dialog, you can use either the
old_list_clipboards command or the list_clipboards_modal command. These commands are identical.
If there are no clipboards, the message line states No clipboards. See Clipboards for more information.

Tip

You can also use the Clipboards tool window to view and insert clipboards (Edit → List
Clipboards or list_clipboards command). It provides the same information as the Select Text to
Paste dialog, except it includes a Preview area to view color-coded clipboard contents and
provides some additional functionality. See Clipboards for more information.

Edit Dialogs and Tool Windows

752

The dialog shows a list of clipboards. To insert a clipboard at the current cursor location, double-click on
the clipboard to insert, or, select the clipboard to insert and press Enter or click OK.

To see the entire contents of a condensed clipboard, click the View button. The View Clipboard dialog
opens showing the color-coded contents in an edit window. From here, you can copy all or part of the
contents to the operating system clipboard.

The dialog shows the following information:

• Clipboard name/number - This is the number of the clipboard or the name, if using Named
Clipboards. Clipboards are numbered with the most recent clipboard first, which always appears at the
top of the list. You can use this value with the paste command to insert the specified clipboard. For
example, type paste 2 on the command line to insert clipboard 2 at the cursor location.

• Clipboard type - The clipboard type can be CHAR, LINE, or BLOCK. A CHAR type clipboard is
inserted before the current character. A LINE type clipboard is inserted after the current line by default.
If you want LINE type clipboards inserted before the current line, change the line insert style (Tools →
Options → Editing → General). A BLOCK type clipboard is inserted before the current character and
pushes over all text intersecting with the block. No lines are inserted.

• Line count - The number following the clipboard type indicates the number of complete or partial lines
of text in the clipboard.

• Clipboard contents/summary - This area shows all or a portion of the clipboard contents. If the
contents exceed the viewing area, they are condensed.

Enumerate Dialog

This dialog contains options for adding incrementing numbers to a selection. It is displayed when you click
Edit → Other → Enumerate or use the gui_enumerate command. Alternatively, you can add
incrementing numbers to a selection using the enumerate command with options on the command line.
See the Help system for command syntax.

Edit Dialogs and Tool Windows

753

• Start - C syntax expression which evaluates to the number used for first line of selection. However,
when the Hexadecimal flags output style is selected, the start must be an integer bit position or the
first hexadecimal number with which to start.

• Increment - C syntax expression which evaluates to the amount to increment for each line in the
selection. However, when the Hexadecimal flags output style is selected, this specifies the number of
bit positions by which to increment.

• Padding - Pad width specifies the width for each number. Number is padded with the Pad char
specified either on the left or right depending on the Pad left/Pad right radio button setting.

• Number prefix - Additional text to place before the optionally padded number.

• Number suffix - Additional text to place after the optionally padded number.

• Output - Both the Hexadecimal and Hexadecimal flags options specify hexadecimal syntax output
based on the buffers extension. We determine the hexadecimal syntax based on the color coding which
supports 0xhhhh (C syntax), &Hdddd (Basic), hhhhH (Intel assembler), and $hhhh (Motorola
assembler). If the buffer's extension has no color coding, the hex numbers are prefixed with 0x.

Edit Dialogs and Tool Windows

754

Filter Selection: Command Dialog

The Command dialog is used to specify a command to run against the selected text. It is displayed when
you click Edit → Other → Filter Selection or use the filter_selection command.

Enter the command in the Command text box. The selected text will be used as input to the command,
and the output from the command will replace the selected text. Use the drop-down arrow to the right of
the Command text box to select from a history of previously entered commands.

Search

755

Search
This section describes items associated with searching and replacing. For more information about using
search and replace operations, see Find and Replace.

Search Menu
The Search menu contains items pertaining to search and replace, navigation, and bookmarks.

Search Menu Item Description Command

Find Displays the Find and Replace
tool window, open to the Find tab,
which allows you to search for a
specified string. See Search
Dialogs and Tool Windows.

gui_find

Find in Files Displays the Find and Replace
tool window open to the Find in
Files tab, which lets you search
for a string in files. See Find in
Files Tab.

find_in_files

Next Occurrence Searches for the next occurrence
of the last string you searched for.

find_next

Previous Occurrence Searches for the previous
occurrence of the last string you
searched for.

find_prev

Replace Displays the Find and Replace
tool window, open to the Replace
tab, which allows you to search
for a string and replace it with
another string. See Replace Tab.

gui_replace

Replace in Files Displays the Find and Replace
tool window, open to the Replace
in Files tab, which allows you to
search for a string and replace it
with another string in files. See
Replace in Files Tab.

replace_in_files

Incremental Search Searches for match incrementally.
See Incremental Searching.

i_search

Search Menu

756

Search Menu Item Description Command

Find File Displays the Find File dialog,
which lets you search for files on
disk.

find_file

Find Symbol (Pro only) Searches Context
Tagging® databases for a symbol
you specify. See Find Symbol
Tool Window.

activate_find_symbol

Go to Line Places the cursor on a line you
specify. See Navigating to a
Specific Line.

gui_goto_line

Go to Column Places the cursor in a column you
specify on the current line.

gui_goto_col

Go to Offset Places the cursor on a byte/
character offset in the current file.
See Navigating to an Offset.

gui_seek

Go to Matching Parenthesis Finds the matching parenthesis or
begin/end structure pair. See
Begin/End Structure Matching.

find_matching_paren

Go to Definition of (Pro only) Pushes a bookmark at
the cursor and navigates to the
definition of the current symbol.
See Symbol Navigation.

gui_push_tag

Go to Reference of (Pro only) Searches for
references to the symbol under
the cursor. See Symbol
Navigation.

push_ref

Bookmarks Displays bookmarks menu. See
Search Bookmarks Menu.

N/A

Last Find/Grep List Displays list of Files/Buffers
generated by Find commands.

grep_last

Search Bookmarks Menu

Search Menu

757

Bookmarks Menu Item Description Command

Push Bookmark Pushes a bookmark at the cursor.
See Bookmarks.

push_bookmark

Pop Bookmark Pops the last bookmark. See
Bookmarks.

pop_bookmark

Bookmark Stack Displays the Bookmark Stack tool
window. See Bookmark Stack
Dialog.

pop_bookmark

Set Bookmarks Sets a persistent bookmark on the
current line. See Bookmarks.

set_bookmark

Go to Bookmark Displays the Go to Bookmark
dialog from which you can select
a bookmark to navigate to. See
Navigating Named Bookmarks.

goto_bookmark

Toggle Bookmark Toggles setting a bookmark on
the current line. See Bookmarks.

toggle_bookmark

Bookmarks Tool Window Lists bookmarks and allows you
to add and delete bookmarks.
See Bookmarks.

activate_bookmarks

Next Bookmark Go to next bookmark. See
Bookmarks.

next_bookmark

Previous Bookmark Go to previous bookmark. See
Bookmarks.

prev_bookmark

Search Dialogs and Tool Windows
This section describes the dialogs and tool windows that are associated with searching and replacing.
Note that default search options are also available (Tools → Options → Editing → Search). See Search
Options for a description of these settings.

Find and Replace Tool Window

This tool window is displayed when you click one of the find or replace items on the Search menu, or
when you click Search → Find. See Find and Replace for information about searching and replacing in
SlickEdit®.

Search Dialogs and Tool
Windows

758

The Find and Replace tool window contains a right-click context menu and five tabs: the Find Tab, the
Find in Files Tab, the Replace Tab, the Replace in Files Tab, and the Files Tab.

Find and Replace Tool Window: Context Menu

Right-click in the background of the Find and Replace tool window to access the following items:

• Saved Search Expressions - See Saving Search and Replace Values.

• Current Word at Cursor - Sets Find and Replace tool window Search for textbox with current word at
cursor.

• Current Selection - Sets Find and Replace tool window Search for textbox with current selection.

• Configure Options - Displays the Search Options screen, from which you can set the default search
options that the tool window should use.

• Use Default Options - If selected, the options specified in the Search Options are used instead of the
options selected in the Find and Replace tool window. See Default Search Options.

• Clear All Options - Clears all options that are selected in the Find and Replace tool window.

Search Dialogs and Tool
Windows

759

• Set Current Options as Default - If selected, the options that are selected on the tool window replace
the settings in the Search Options.

• Hide/Show Tabs - Toggles the display of the tabs on the Find and Replace tool window.

• Clear Highlights - Removes all highlighting from text that was highlighted during a search or replace
operation.

• Switch to Mini Find - Change to using Mini Find with current options.

Find Tab

This tab on the Find and Replace tool window provides fields and options for searching and finding text.

• Search for - Enter the string you want to search for here. You can retrieve previous search strings by
clicking the drop-down list button. Strings may be text or regular expressions and can include wildcards.
Note that ISPF search expressions cannot be used here.

Click the right-pointing arrow button to the right of the Search for field to display a menu containing
specific search syntax options such as Character in Range, Beginning of Line, and Decimal Digit.

• Look in - This field allows you to specify a range for your search to the current selection, current

Search Dialogs and Tool
Windows

760

procedure, current buffer or all buffers.

• Search options - Click this button to expand or contract the search options section of the tool window.
When contracted, the options that are selected are summarized in this area.

• Match case - If selected, a case-sensitive search is performed.

• Match whole word - If selected, a word search is performed. Before a search is considered successful,
the characters to the left and right of the occurrence of the search string found are checked to be non-
word characters.

The default word characters are [A-Za-z0-9_$] and can be changed. To change these, from the main
menu click Tools → Options → Languages → [Language Category] → [Language] → General.
Enter your desired characters in the Word chars field.

• Use - Set this option to select one of the following types of search syntax from the drop-down list:

• Regular expression (SlickEdit®)

• Regular expression (Perl)

• Regular expression (Vim)

• Wildcards (*,?)

See Using Regular Expressions in SlickEdit® for more information.

• Match color - Enables color coding search. To configure color coding search, use the button next to
the option to display Color Coding Search Options. This dialog lets you pick various syntactic elements
to filter a search. These are the same elements used by the Color Coding engine. Using these filters
helps to reduce the number of false positives you find in a search. Each check box has three states:

• Neutral (the default) - All check boxes start in the neutral state. These elements will be used in a
search until cleared or until one or more other elements are selected. Putting a check in any check
box essentially clears all non-checked boxes.

• Selected - If the check box is selected, the search will be restricted to this element and any other
selected elements. There is no need to clear any other elements if any elements are selected. If any
elements are selected, only selected elements will be searched. For example, to search for the word
"result" only in comments, put a check only in the Comment check box. All other syntactic elements
will be ignored as part of this search.

• Cleared - If the check box is clear, these elements will not be searched. For example, if you want to
find the word "result" anywhere in your code except for in comments, clear the Comment check box.

Click the Reset button to mark all items as neutral.

Note

Not all languages have all color coding elements defined. For example, dBase and Pascal do not

Search Dialogs and Tool
Windows

761

have preprocessing. Only C++ and Java have function color defined. Only HTML has attributes
(i.e.).

• Wrap at beginning/end - If selected, the search will always be performed on the entire buffer, starting
from the cursor when the range is the current buffer.

• Place cursor at end - If selected, the cursor is placed at the end of the occurrence found.

• Search backward - Select this option to have the search performed from the end to the beginning.

• Search hidden text - Select this option to search for text hidden by Selective Display. Matches found
that were set to be hidden by Selective Display will be revealed. To set Selective Display options, from
the main menu click View → Selective Display. See Selective Display for more information.

• List all occurrences - Select this option to see a list of all instances of the search string in the file. The
Find tab expands to show the Results options, where you can specify the output destination. These
options are similar to the Results options on the Find in Files tab. See Find in Files Tab for more
information.

• Highlight matches - Select this option to highlight all matched patterns in the current search range.
Highlight colors for these matches are customizable. To set this color, from the main menu, click Tools
→ Options → Appearance → Colors and select Highlight from the Screen element list. Choose your
desired color settings and click OK. See Colors for more information.

To clear all highlighted text in all buffers, clear the Highlight matches option or simply close the Find
and Replace tool window.

• Bookmark matches - Select this option to bookmark lines with matching patterns and display the
Bookmarks tool window when a match is bookmarked.

• Set multiple cursors - Select this option to add a cursor to all matched patterns in current search
range. See Multiple Cursors and Selections for more information on multiple cursors.

• Incremental search - Select this option to search incrementally on patterns being typed into the
Search for field, showing the location of the match at the cursor. See Incremental Searching for more
information on this method of searching.

• Find button - Click this button when you have entered all desired search options and are ready to
initiate a search. If no matches are found, the Search for field will turn red, and the text String not
found will be displayed in the status area of the editor.

Find in Files Tab

This tab on the Find and Replace Tool Window provides the same functionality as the Find Tab, with the
added ability to conduct multi-file searches. Additional options are described below.

Search Dialogs and Tool
Windows

762

Search Dialogs and Tool
Windows

763

• Look in - This field allows you to specify one or more wildcard filespecs to search separated with
semicolons.

Click the right-pointing arrow button to the right of the Look in field to display a menu containing more
specific range options such as Directory, Project, and All Buffers. From this sub-menu, you may also
select Append and choose an item for which to have the search results appended.

In addition to directories, a file list can be specified as the source for searches. A file list is a simple text
file with a filename on each line. Additionally, a file list can be auto generated from an existing Search
Results tab, that only searches files with matches in the current set of Search Results.

In all SlickEdit internal dialogs, SlickEdit can treat a .zip or .jar file like a file system. To search through
a .zip file append a trailing file separator (ex. "filename.zip/") .

• File types - Specifies one or more file types (extensions) to search for. Type in this field or use the
drop-down list to select the extensions desired. When a file title is specified in the Look in field, the file
types wildcards are ignored. Click the ... button to the right of the File types field to edit the list of file
type filters that appear in this list.

• Exclude - Paths, files, file types, or language modes can be excluded from a multi-file search by
specifying ant-like wildcards. To specify multiple patterns, separate them with semicolons. No files are
searched in a path that is excluded, including any files in sub-directories beneath. The Excludes combo
box list allows you to choose <Default Excludes> or <Binary Files>. When <Binary Files> is chosen (or
<Default Excludes> which contains <Binary Files> by default), files that appear to have binary data are
excluded from the search. This is useful when searching files with a * or *.* wildcard. For example,
search Unix shell scripts with no file extensions while excluding executables. You can configure the
excludes specified by <Default Excludes> at Tools → Options → Editing → Search → Default
Excludes. See examples of exclude patterns, below.

Example Description

math.cpp Exclude any .cpp with "math" in the file name.

readme.txt Exclude all files named readme.txt.

*.a Exclude any file with extension .a.

.png;.ico;*.jpg Exclude any file with extension .png, .ico, or
.jpg.

.svn\ Exclude any files in paths named ".svn".

C*\ Exclude any files in paths that start with "C".

/b*/debug//backup/ Exclude all files in this path name.

demo Exclude any file (not directory) with "demo" in the
name.

Search Dialogs and Tool
Windows

764

Example Description

<Binary Files> Exclude Binary files. All extensions defined by the
Binary language are excluded. Also, unknown files
which appear to contain binary data use the Binary
language.

• Look in subfolders - Select this option to expand the search to sub-directories of the folder specified
in the Look in field.

• Look in zip/word/excel files - Select this option to search the files contained in .zip, .jar, .xlsx, .docx,
.jmod, .tar, .gz, .Z, .xz, .bz2, .cpio, .cpgz, and .rpm files. files. Keep in mind that a .xlsx and .docx file
(word or excel file) is not a single file. These are zip files containing many XML files. When searching
for text in a word document you probably want to specify "document.xml" (or "*.xml") for File types:.
When searching for text in a excel document you probably want to specify "sharedStrings.xml" (or
"*.xml") for File types:. This option only supports recursive subdirectory specifications and not project
files which happen to be zip, tar, gz, or other compressed files.

• Advanced Filtering - Enable and configure advanced file stats filtering options. Additional filtering
options include setting a maximum file size for searches and selecting files by last modified time. Use
the button next to the option to configure advanced file stats. Optionally specify the maximum
searchable file size in kilobytes (Max File Size). Optionally specify a last modified date range (File
Modified Time). Date range options include:

• Date Only - Only search files modified on selected date.

• Before - Only search files modified before selected date and time.

• After - Only search files modified after selected date and time.

• Range - Only search files modified in selected starting and ending date/time.

• Not in Range - Only search files modified either before selected starting date/time or after date/time.

Date and time options use local file time. Date setting uses YYYY-MM-DD (Year-Month-Date) format.
Time uses hh:mm:ss format (Hour:Minutes:Seconds), seconds optional. Ctrl+Space or Shift+Space can
be used to quickly set to current Date or current Time. Menu option button next to the date range drop
down include actions to preset the dates to: Today, Last Week, Last Month, Last 3 Months, Last Year.

• Results options - Click this button to expand or contract the Results options section of the tool
window. When contracted, the options that are set are summarized in this area.

• Search Results window - This field allows you to send the search results to a specific Search Results
window. The window to be used can be selected from the drop-down list, and these are labeled starting
at Search<0>. A new results window can be added with the <New> option up to a pre-set limit of open
Search Results windows. If <Auto Increment> is selected, the search results will cycle through all of
the open Search Results tabs in the Search Results tool window with each new search. See Search
Results Output for more information.

Search Dialogs and Tool
Windows

765

Right-click in the Search Results window to access the following options:

• Quick Search - Finds the next occurrence of the text selected.

• Filter Search Results - Select this option to display the Filter Search Results dialog. There are two
filter tabs: Filter Text and Filter Files. With Filter Text, you can search for other text in the search
results. If a match is found, you can choose to keep or delete lines with additional searches, match
case, limit to current default regular expression syntax and/or remove matches found on the same
line number in the same file (this can also be accomplished by selecting List matching lines only
from the Find in Files tab). With Filter Files, you can additionally filter by filename. The Include and
Exclude options allow you to specify with files to include or exclude using ant-like wildcard syntax.
Behaves identically to how File Types/Exclude options are used in Find in Files options.

• Find in Files using Search Results - Configure Find in Files to search file list of only files found in
the current Search Results tab.

• Open as Editor window - Opens current search results in a new editor window.

• Go to Line - Goes to the file/line number of the current line in the Search Results window.

• Bookmark Line - Places a bookmark at the line in the file where the result was found.

• Generate File List - Create new file with list of filenames of matching files in the current Search
Results tab.

• Clear Window - Clears all results in the current Search Results window.

• Align Columns - Aligns the line numbers and column numbers for all search results.

• Collapse All - Collapses all Selective Display levels. See Selective Display for more information.

• Expand All - Expands all Selective Display levels. See Selective Display for more information.

• Output to editor window - If selected, search results are sent to an editor window.

• Append to output - Select this option to append search results to the search results window that is in
focus.

• List matching lines once only - Selecting this option will display only one line in the search results
window for each line containing one or more matching patterns on the same line, and will highlight all
matching patterns.

• List matches only - If selected, only the matching expression is displayed in search output, instead of
the line the match occurs.

• List current context - If selected and context tagging is supported for the file, include current context
with matches.

• List filenames only - If selected, only file names and not occurrences are listed in the search output.

• List lines before/after - If selected, include lines before and/or after a matching line in Search Results.
Use button next to options to configure how many lines to include before/after matching line.

Search Dialogs and Tool
Windows

766

• Foreground search - If selected, activates the three range options listed below. This option offers
slightly better performance than a background search, but prevents you from continuing to work while
the search is being performed. The default search for SlickEdit® is background searching unless this
option is selected.

• Prompted - When this option is selected, you are prompted whether to continue searching when an
occurrence is found.

• Single - When this option is selected, your cursor is placed on the first occurrence found, but the
remaining files are not searched.

• Global - When this option is selected, all files are searched for occurrences without prompting.

• Stop button - Click Stop to terminate a multi-file, background search. Press Esc to terminate a long
foreground search.

Replace Tab

This tab on the Find and Replace Tool Window provides options for searching and replacing text. The
same search options from the Find Tab are provided, as well as the additional replace options described
below.

Search Dialogs and Tool
Windows

767

• Replace with - Enter the text or regular expression for which to replace the item that is searched. You
can retrieve previous replacement text or regular expressions by clicking the drop-down list button.

Click the right-pointing arrow button to the right of the Replace with field to display a menu containing
tagged expressions. See Using Perl Tagged Expressions for more information.

• Preserve case - When specified, each occurrence found is checked for all lowercase, all uppercase,
first word capitalized, or mixed case. The replace string is converted to the same case as the
occurrence found except when the occurrence found is mixed case (possibly multiple capitalized
words). In this case, the replace string is used without modification.

• Highlight replaced text - Select this option to highlight all instances of the text that was replaced.

• Replace button - Click to replace the first instance of the item.

• Replace All button - Click to replace every instance of the item.

• Preview All button - Click to show a side-by-side comparison of the original file and the file with

Search Dialogs and Tool
Windows

768

replacements made. This lets you see the changes and confirm them before committing the changes to
the file.

Tip

You can use the menu items Edit → Undo and Edit → Redo to undo/redo replacements.

Replace in Files Tab

This tab on the Find and Replace Tool Window provides the same functionality as the Replace Tab, with
the added ability to conduct multi-file replacements. It contains one additional option, described below.

Search Dialogs and Tool
Windows

769

Search Dialogs and Tool
Windows

770

• Leave modified files open - Select this option to open all of the files on which a replace has been
performed.

The Results options are the same as those on the Find in Files Tab.

Tip

You can use the menu items Edit → Multi-File Undo and Edit → Multi-File Redo to undo/redo
replacements in multiple files.

Files Tab

This tab on the Find and Replace Tool Window is used to search for files that you may wish to open.

• Look in - This field allows you to specify one or more wildcard filespecs to search separated with
semicolons.

Click the right-pointing arrow button to the right of the Look in field to display a menu containing more
specific range options such as Directory, Project, and All Buffers. From this sub-menu, you may also

Search Dialogs and Tool
Windows

771

select Append and choose an item for which to have the search results appended.

In all SlickEdit internal dialogs, SlickEdit can treat a .zip or .jar file like a file system. To search through
a .zip file append a trailing file separator (ex. "filename.zip/") .

• File types - Specifies one or more file types (extensions) to search for. Type in this field or use the
drop-down list to select the extensions desired. When a file title is specified in the Look in field, the file
types wildcards are ignored. Click the ... button to the right of the File types field to edit the list of file
type filters that appear in this list.

• Exclude - Paths, files, file types, or language modes can be excluded from a multi-file search by
specifying ant-like wildcards. To specify multiple patterns, separate them with semicolons. No files are
searched in a path that is excluded, including any files in sub-directories beneath. The Excludes combo
box list allows you to choose <Default Excludes> or <Binary Files>. When <Binary Files> is chosen (or
<Default Excludes> which contains <Binary Files> by default), files that appear to have binary data are
excluded from the search. This is useful when searching files with a * or *.* wildcard. For example,
search Unix shell scripts with no file extensions while excluding executables. You can configure the
excludes specified by <Default Excludes> at Tools → Options → Editing → Search → Default
Excludes. See examples of exclude patterns, below.

Example Description

math.cpp Exclude any .cpp with "math" in the file name.

readme.txt Exclude all files named readme.txt.

*.a Exclude any file with extension .a.

.png;.ico;*.jpg Exclude any file with extension .png, .ico, or
.jpg.

.svn\ Exclude any files in paths named ".svn".

C*\ Exclude any files in paths that start with "C".

/b*/debug//backup/ Exclude all files in this path name.

demo Exclude any file (not directory) with "demo" in the
name.

• Look in subfolders - Select this option to expand the search to sub-directories of the folder specified
in the Look in field.

• Look in zip/word/excel files - Select this option to search the files contained in .zip, .jar, .xlsx, and
.docx files. Keep in mind that a .xlsx and .docx file (word or excel file) is not a single file. These are zip
files containing many XML files. When searching for text in a word document you probably want to
specify "document.xml" (or "*.xml") for File types:. When searching for text in a excel document you

Search Dialogs and Tool
Windows

772

probably want to specify "sharedStrings.xml" (or "*.xml") for File types:. This option only supports
recursive subdirectory specifications and not project files which happen to contain some zip files.

• Advanced Filtering - Enable and configure advanced file stats filtering options. Additional filtering
options include setting a maximum file size for searches and selecting files by last modified time. Use
the button next to the option to configure advanced file stats. With Max File Size enabled, allows set the
maximum searchable file size in kilobytes. With File Modified Time enabled, configure what files are
searchable by last modified time by date (time optional). Options include:

• Date Only - Only search files modified on selected date only.

• Before - Only search files modified before selected date and time.

• After - Only search files modified after selected date and time.

• Range - Only search files modified in selected starting and ending date/time.

• Not in Range - Only search files modified either before selected starting date/time or after date/time.

• Results options - Click this button to expand or contract the Results options section of the tool
window. When contracted, the options that are set are summarized in this area.

• Search Results window - This field allows you to send the search results to a specific Search Results
window. The window to be used can be selected from the drop-down list, and these are labeled starting
at Search<0>. A new results window can be added with the <New> option up to a pre-set limit of open
Search Results windows. If <Auto Increment> is selected, the search results will cycle through all of
the open Search Results tabs in the Search Results tool window with each new search. See Search
Results Output for more information.

Right-click in the Search Results window to access the following options:

• Quick Search - Finds the next occurrence of the text selected.

• Filter Search Results - Select this option to display the Filter Search Results dialog. There are two
filter tabs: Filter Text and Filter Files. With Filter Text, you can search for other text in the search
results. If a match is found, you can choose to keep or delete lines with additional searches, match
case, limit to current default regular expression syntax and/or remove matches found on the same
line number in the same file (this can also be accomplished by selecting List matching lines only
from the Find in Files tab). With Filter Files, you can additionally filter by filename. The Include and
Exclude options allow you to specify with files to include or exclude using ant-like wildcard syntax.
Behaves identically to how File Types/Exclude options are used in Find in Files options.

• Find in Files using Search Results - Configure Find in Files to search file list of only files found in
the current Search Results tab.

• Open as Editor window - Opens current search results in a new editor window.

• Go to Line - Goes to the file/line number of the current line in the Search Results window.

• Bookmark Line - Places a bookmark at the line in the file where the result was found.

• Generate File List - Create new file with list of filenames of matching files in the current Search

Search Dialogs and Tool
Windows

773

Results tab.

• Send to References - Send the current search results to the References tool window.

• Clear Window - Clears all results in the current Search Results window.

• Align Columns - Aligns the line numbers and column numbers for all search results.

• Collapse All - Collapses all Selective Display levels. See Selective Display for more information.

• Expand All - Expands all Selective Display levels. See Selective Display for more information.

• Output to editor window - If selected, search results are sent to an editor window.

• Append to output - Select this option to append search results to the search results window that is in
focus.

Find Symbol Tool Window (Pro only)

The Find Symbol tool window is used to locate symbols in your code. It allows you to search for symbols
by name using either a regular expression, symbol matching pattern, substring, or fast prefix match. The
tool window is displayed when you click Search → Find Symbol or View → Tool Windows → Find
Symbol, or when you use the gui_push_tag command.

See Find Symbol Tool Window under the Symbol Browsing topic for more information.

Search Dialogs and Tool
Windows

774

• Search for - Enter the name of the symbol to find. If you select the option Use pattern, you can enter
regular expressions or wildcards in the search field. If you specify <Use Context Tagging®> for the
Look in field, then you can enter language-specific expressions, such as "this->get" to find getters in
your current class. SlickEdit® displays a progress bar at the top of this tool window while a search is in
progress.

Clicking on the red stop button will stop a long-running search. Changing the Search for: expression

Search Dialogs and Tool
Windows

775

will restart the search, as will changing any other Find Symbol search options. Also, clicking away from
the Find Symbol tool window will cancel the search.

Incremental matches are displayed with each character you type, and the first element in the list is
selected. Press Tab to put focus into the list of matches. Press Enter to navigate to the first match.
Press Down to select the next match. Press Escape to stop the search.

• Symbol List - The list of search results are refreshed as you type the search string. They include the
symbol name, it's package/class scope, the file that contains it, and the line number. You can sort by
any of the five columns.

The selected match is highlighted and is displayed in the Preview tool window. Single-click or use the
arrow keys to select a match. Double-click or press Enter to navigate to that match.

• Look in - Use this control to specify the scope of the symbol search. The options are:

• <Use Context Tagging®> - This is the default setting. It uses Context Tagging to intelligently
determine which tag files to search based on your current workspace and current language mode.

• <Current File> - Select this setting to only search the tags in the current file, including local variables
in the current function scope.

• <Current Project> - Select this setting to only search in files that are in the current project.

• <Projects Containing Current File> - Select this setting to only search in files that are in projects
that contain the current file.

• <Current Workspace> - Select this setting to only search in files that are in the current workspace.

• < Language Tag Files> - Select this setting to search all language-specific tag files for the indicated
extension. This may also include your workspace tag file.

• Specific tag files - Select one of the specific tag files listed to limit search to that file.

• <All Tag Files> - Select this setting to search all tag files for all languages.

• Search Options - The search options can be expanded or collapsed to save space.

• Match case - When selected, SlickEdit uses a case-sensitive search to find symbol matches. When
this option is not selected, SlickEdit uses a case-insensitive search. When this option is in the neutral
(mixed) state, SlickEdit first searches for case-sensitive matches, and if none are found, attempts to
perform a case-insensitive search. Note that for case-insensitive languages, this may have no effect.

• Match package/class and name (slower) - When selected, instead of just matching the search
expression against the symbol name, the search expression is matched against the symbol name
prefixed with the name of the class scope that it belongs to. You can use either "." or "::" to represent
package/class name separators. Note that this feature is not generally compatible with searching
using regular expression patterns, because the package/class name separators can overlap with
special characters needed in regular expressions. Selecting this option causes the search to execute
more slowly.

• Match substring (slower) - When selected, SlickEdit searches for the specified string within the

Search Dialogs and Tool
Windows

776

available symbols. For example, finding all symbols containing the word "order," not just those that
begin with "order." Selecting this option causes the search to execute more slowly.

• Use pattern (slower) - When selected, SlickEdit interprets the search string as a regular expression,
wildcard expression, or symbol pattern matching expression. This can result in slower search times,
since SlickEdit must test every symbol in the tag file against the given expression. See Regular
Expressions for more information about regular expressions. See Wildcard Expressions for more
information about wildcard expressions. See Subword matching for more information about symbol
pattern matching.

• Filters - Use filters to restrict the search to certain types of symbols. The filters are the same the
ones available on the Definitions tool window. See Defs Tool Window for more information.

• Buttons - The following buttons are located at the bottom of the tool window:

• Go to definition - Navigates to the definition of this symbol in the editor window. If the programming
language allows for separate declaration and definition, you can control which is selected by using
the language-specific Context Tagging® options screen (Tools → Options → Languages →
[Language Category] → [Language] → Context Tagging): Select either Go to Definition
navigates to symbol definition (proc) or Go to Definition navigates to symbol declaration
(proto). See Code Navigation for more information.

• Go to reference - Displays a list of references for the selected symbol in the References Tool
Window and, optionally, navigates to the first reference. Click Tools → Options → Editing →
Context Tagging and uncheck the option Jump to first item when finding references if you just
want to build the list of references. See Code Navigation for more information.

• Show in symbol browser - Displays the selected symbol in the Symbols Tool Window. Note that
this feature does not work for local variables or symbols from the current file that are not in a tag file.

• Manage tag files - Displays the Context Tagging - Tag Files Dialog, which can be used to update
your tag files.

Right-click on a symbol or file in the left pane of the Find Symbols window to display the following options:

• Go to reference to ... - Displays a list of references for the selected symbol in the References Tool
Window and, optionally, navigates to the first reference. See Code Navigation for more information.

• Show in symbol browser - Displays the selected symbol in the Symbols Tool Window. Note that this
feature does not work for local variables or symbols from the current file that are not in a tag file.

• Contents - Displays the following menu of save and print operations for the references browser tree:

• Save - Writes the items displayed in the references browser to a text file, prompting you for a file
name and directory location. The text file will then be displayed in the editor.

• Print - Displays the Print dialog, where you can configure options for printing the tree.

• Save Subtree and Print Subtree - These options function similarly to the above except they apply to
the selected subtree.

Search Dialogs and Tool
Windows

777

• Send to Search Results - Send the list of symbols found to the Search Results tool window.

• Send to References - Send the list of symbols found to the References tool window.

• Quick filters, Scope, Functions, Variables, Data Types, Statements, and Others - All of these items
are for filtering the data displayed in the References tool window.

Bookmarks Tool Window

The Bookmarks tool window is used to create and manage Named Bookmarks. To display the tool
window, from the main menu, click Search → Bookmarks → Bookmarks Tool Window. You can also
press Ctrl+Shift+N or use the activate_bookmarks command to display the window.

Note

The Bookmarks tool window does not work with Pushed Bookmarks. To view a list of pushed
bookmarks, use the Bookmark Stack Dialog.

See Toolbars and Tool Windows for information about working with tool windows. See Tabular Lists for
information about resizing columns and other layout information.

Tip

• Global named bookmarks are shown in the Bookmarks tool window, unless the option Use
workspace bookmarks is enabled (Tools → Options → Editing → Bookmarks). In this
case, only bookmarks for the current workspace are shown. See Using Workspace Bookmarks
for more information.

• If you activate the Bookmarks tool window and start typing the name of a bookmark, SlickEdit
attempts to match it. This provides a fast and easy way to jump to a named bookmark. Using
the preceding screen shot as an example, you could press Ctrl+Shift+N to activate the tool
window, type "i" to select the bookmark named "inventory.css:65", then press Enter to quickly
go to the bookmark's location in your code.

Search Dialogs and Tool
Windows

778

The Bookmarks tool window can be used to perform the following operations:

• Jump to bookmark - To go to the line in your source code that contains a bookmark, double-click on a
bookmark in the tool window. Alternately, select the bookmark to jump to, then select Go to Bookmark
from the right-click context menu or press the Enter key. See Navigating Named Bookmarks for more
navigation methods.

• Create new bookmark - To create a new, named bookmark on the current line, click the Create New
Bookmark button, or select this operation from the window's right-click context menu. You can also
press the Insert key (with the focus in the tool window). A dialog is displayed where you can specify a
name for the bookmark or allow automatic naming (see Setting a Bookmark With an Automatic Name).
Each new bookmark is placed at the top of the list in the Bookmarks tool window.

• Delete all bookmarks - To delete all named bookmarks, click the Delete All Bookmarks button, or
select this operation from the window's right-click context menu. You can also press Shift+Delete to
delete all bookmarks. A confirmation prompt is displayed prior to deletion. See also Deleting Named
Bookmarks.

• Delete selected bookmark - This operation is also available as a button on the tool window and on the
window's right-click context menu. You can also press the Delete key to delete the selected bookmark.
See also Deleting Named Bookmarks.

• Go to previous bookmark and Go to next bookmark - Use these two buttons to navigate to the
previous and next bookmark in your source code, respectively. The order of navigation matches the
order in which the bookmarks were created, regardless of any selection in the tool window. See
Navigating Named Bookmarks for more information.

Go to Bookmark Dialog

The Go to Bookmark dialog appears automatically when you use the gb or goto_bookmark command
without arguments. It can be used to view, navigate to, and delete Named Bookmarks.

Note

The Go to Bookmark dialog does not work with Pushed Bookmarks. To view a list of pushed
bookmarks, use the Bookmark Stack Dialog.

Search Dialogs and Tool
Windows

779

See Tabular Lists for information about resizing columns and other layout information.

The Go to Bookmark dialog displays the same information as the Bookmarks Tool Window, except it does
not provide a way to create bookmarks.

Tip

Global named bookmarks are shown in the Go to Bookmark dialog, unless the option Use
workspace bookmarks is enabled (Tools → Options → Editing → Bookmarks). In this case,
only bookmarks for the current workspace are shown. See Using Workspace Bookmarks for more
information.

The following operations are available:

• To go to the line in your source code that contains a bookmark, double-click on the bookmark in the
dialog. Or, select the bookmark to jump to and press the Enter key or click OK. The Go to Bookmark
dialog is dismissed after this operation.

Prior to jumping to the bookmark, SlickEdit® automatically creates a pushed bookmark at the current
location in your source code, so you can return to the current location easily by popping the bookmark
with Ctrl+Comma. See Pushed Bookmarks for more information.

• To delete a bookmark, select it and press the Delete key or click Delete. See also Deleting Named
Bookmarks.

Bookmark Stack Dialog

The Bookmark Stack dialog can be used to view, navigate to, and delete Pushed Bookmarks. To display
it, from the main menu, click Search → Bookmarks → Bookmark Stack, or use the bookmark_stack
command.

Search Dialogs and Tool
Windows

780

See Tabular Lists for information about resizing columns and other layout information.

The first column in the Bookmark Stack dialog (labeled No.), indicates the numerical order of each
bookmark in the stack, according to when the bookmark was pushed. New pushed bookmarks are always
placed at the top of the stack, so you can pop them off one by one with Ctrl+Comma as you make your
way back through the code. See Pushing and Popping Bookmarks for more information.

Popping bookmarks is the best way to navigate through your pushed bookmarks, deleting them in the
process. However, you can also use the Bookmark Stack dialog to navigate to pushed bookmarks or
delete a pushed bookmark:

• To go to the line in your source code that contains a pushed bookmark, double-click on the bookmark in
the dialog. Or, select the bookmark to jump to and press the Enter key or click OK. The Bookmark
Stack dialog is dismissed after this operation. Prior to jumping to the bookmark, SlickEdit®
automatically creates a new pushed bookmark at the current location and places it on top of the stack.

• To delete a pushed bookmark, select it and press the Delete key or click Delete. The order of the stack
is still maintained, indicated by the numbers in the No. column.

Bookmarks Dialog

The Bookmarks dialog can be used to set Named Bookmarks. It appears when you click Search →
Bookmarks → Set Bookmark from the main menu, or use the set_bookmark (or sb) command without
arguments. See Setting Named Bookmarks for more information.

Search Dialogs and Tool
Windows

781

Tip

Global named bookmarks are shown in the Bookmarks dialog, unless the option Use workspace
bookmarks is enabled (Tools → Options → Editing → Bookmarks). In this case, only
bookmarks for the current workspace are shown. See Using Workspace Bookmarks for more
information.

When the dialog appears, the name field is prepopulated with an automatic name (see Setting a
Bookmark With an Automatic Name). You can use the automatic name, or type over it to name the
bookmark yourself. Use the drop-down list to select a previously used name. Click Add to set the new
bookmark.

The box below the bookmark name field shows a list of your current named bookmarks. It shows the
name, path and file name, line number, and the text of the bookmarked line. Use your keyboard
navigation keys to move up and down in the bookmark list. Press Enter to jump to the selected
bookmark.

The buttons on the Bookmarks dialog are described as follows:

• Add - Used to set a new bookmark. The Add button changes to a Replace button if you select a
bookmark in the list. When you click Replace, a new bookmark is set with the name of the selected
bookmark, so you can have multiple bookmarks with the same name but at different locations in your
code.

• Close - Cancels the operation and closes the dialog.

• Go To - Navigates to the selected bookmark in the source code.

• Delete - Deletes the selected bookmark.

Search Dialogs and Tool
Windows

782

Select Symbol Dialog (Pro only)

The Select Symbol dialog is automatically displayed when you use the Go to Definition feature (by
pressing Ctrl+Dot, clicking Search → Go to Definition from the main menu, or using the push_tag
command), when multiple code locations match the symbol under the cursor. See Symbol Navigation for
more information about this feature.

The dialog displays all tagged instances of the symbol in your project, including definitions and
declarations. The name of the symbol and the file path and line number are shown.

To go to a symbol, select it and click OK or double-click on it. Like other selection dialogs, you can also
start to type the name of the symbol and as you type, SlickEdit auto-selects the matched item in the list.

The options on this dialog set the behavior of Go to Definition going forward. The first three options match
the Go to Definition options found at Tools → Options → Languages → [Language Category] →
[Language] → Context Tagging (see Language-Specific Context Tagging® Options). When you make a
setting on the Select Symbol dialog, the settings on the Options dialog are updated to match.

When the option Do not show these options again is selected, the Select Symbol dialog does not show
these options when/if it is displayed in the future. This option is automatically checked when you select
one of the Prioritize navigation to... options. Note that if you have navigation priority set to prompt with
both definitions and declarations, then the Go to Declaration command, invoked by pressing
Ctrl+Alt+Dot, will continue to display these options on the Select Symbol dialog. This is intentional
because to fully utilize Go to Declaration, it is best if symbol navigation prioritizes definitions or
declarations.

To reset the default behavior so this dialog with options appears again when applicable, go to the
language-specific Go to Definition options and uncheck both of the Prioritize navigation to... options.

The item selected in the Select Symbol dialog will be shown in the Preview tool window. If you wish to
scroll the previewed text use the following keyboard shortcuts.

Search Dialogs and Tool
Windows

783

• Ctrl+Down -- Scroll down one line.

• Ctrl+Up -- Scroll up one line.

• Ctrl+Page Down -- Scroll down one page.

• Ctrl+Page Up -- Scroll down one page.

View

784

View
This section describes items related to viewing and displaying within the editor. For more information, see
Viewing and Displaying.

View Menu
The View menu contains options that pertain to viewing and displaying special characters, code, and
comments. It also allows you to control the visibility of tool windows and toolbars.

View Menu Item Description Command

Hex Toggles hex/ASCII display. See
Hex Mode Editing.

hex

Line Hex Toggles line hex/ASCII display.
See Hex Mode Editing.

linehex

Special Chars Toggles viewing of tabs, spaces,
and new line character(s) on/off.
See Viewing Special Characters.

view_specialchars_toggle

New Line Chars Toggles viewing of new line
character(s) on/off. See Viewing
Special Characters.

view_nlchars_toggle

Tab Chars Toggles viewing of tab
character(s) on/off. See Viewing
Special Characters.

view_tabs_toggle

Spaces Toggles viewing of space
character(s) on/off. See Viewing
Special Characters.

view_spaces_toggle

Other Ctrl Characters Toggles viewing of control
character(s) on/off. See Viewing
Special Characters.

view_other_ctrl_chars_toggle

Line Numbers Toggles the display of line
numbers on/off for the current
document. See Viewing Line
Numbers.

view_line_numbers_toggle

Soft Wrap Toggles wrapping of long lines to
window width.

softwrap_toggle

View Menu

785

View Menu Item Description Command

Symbol Coloring (Pro only) Displays Symbol
Coloring menu. See Symbol
Coloring Menu.

N/A

Language View Options Displays View options for the
language in the current buffer.
This is the same as if you had
selected Tools → Options →
Languages → Application
Languages → C/C++ → View
from the main menu. See
Language-Specific View Options.

setupext -view

Toolbars Show, hide, or customize a
toolbar . See Customizing
Toolbars.

toolbars

Tool Windows Show, hide, or customize a tool
window. See Customizing Tool
Windows.

customize_tool_windows

Fullscreen Toggles full screen editing mode.
See Full Screen Mode.

fullscreen

Selective Display Displays the Selective Display
dialog, which allows you to hide
lines and create an outline. See
Selective Display.

selective_display

Hide All Comments Hides all lines that only contain a
comment.

hide_all_comments

Hide Code Block Hides lines inside current code
block. See Expanding/Collapsing
Code Blocks.

hide_code_block

Hide Selection Hides selected lines. hide_selection

Hide #region Blocks Hides .NET #region blocks. hide_dotnet_regions

Function Headings Collapses all function code blocks
in the current file. See Selective
Display.

show_procs

View Menu

786

View Menu Item Description Command

Expand/Collapse Block Toggles between hiding and
showing the code block under the
cursor. See Expanding/Collapsing
Code Blocks.

plusminus

Copy Visible Copies text not hidden by
Selective Display. See Selective
Display.

copy_selective_display

Show All Ends selective display. All lines
are displayed and outline bitmaps
are removed. See Selective
Display.

show_all

Symbol Coloring Menu (Pro only)

The table, below, describes each item on the View → Symbol Coloring menu and its corresponding
command. For more information see Symbol Coloring.

Symbol Coloring Menu Item Description Command

Customize Opens the Symbol Coloring
options screen.

config Symbol Coloring

Enable Symbol Coloring Turns Symbol Coloring on/off for
this file.

symbol_coloring_toggle

Highlight Unidentified Symbols Turns on/off highlighting of
symbols that are unidentified by
the Symbol Coloring engine..

symbol_coloring_errors_toggle

All symbols - Default Selects the default, All symbols
profile.

symbol_coloring_set_scheme
All symbols - Default

Global Variables Selects the Global Variables
profile.

symbol_coloring_set_scheme
Global Variables

Protected and Private Selects the Protected and
Private profile.

symbol_coloring_set_scheme
Protected and Private

Unidentified Symbols Only Selects the Unidentified
Symbols Only profile.

symbol_coloring_set_scheme
Unidentified Symbols Only

View Dialogs and Tool Windows

787

View Dialogs and Tool Windows
This section describes the dialogs and tool windows that are associated with View menu items.

Selective Display Dialog

The Selective Display dialog (View → Selective Display or selective_display command) allows you to
activate Selective Display and choose the regions in your code that you want to display or hide. The
dialog also contains static options for expanding. See Selective Display for more information about
working with this feature.

Search Text

View Dialogs and Tool Windows

788

Select Search text to specify a search string and display lines containing the search string specified or
lines not containing the search string specified. Click the right-pointing arrow button to the right of the field
to display a menu containing specific search syntax options such as Character in Range, Beginning of
Line, and Decimal Digit. The following settings are available:

• Match case - When checked, a case sensitive search is performed.

• Match whole word - When checked, a word search is performed. Before a search is considered
successful, the characters to the left and right of the occurrence of the search string found are checked
to be non-word characters. The default word characters are [A-Za-z0-9_$] and may be changed by
using the Word chars field on the language-specific General options screen (see Language-Specific
General Options).

• Regular expression - When checked, a regular expression search is performed. See Find and
Replace with Regular Expressions for more information.

• Show all matched lines - When checked, all lines are made visible and Plus and/or Minus bitmaps
are removed before the search is performed, then all lines that do not contain the search expression
are hidden.

• Hide all matched lines - When checked, all lines are made visible and Plus and/or Minus bitmaps are
removed before the search is performed, then all lines that contain the search expression are hidden.

• Show more matched lines - When selected, all hidden lines that contain the search expression are
un-hidden. Any lines that were previously shown, remain shown.

• Hide more matched lines - When selected, all lines that contain the search expression are hidden.
Any lines that were previously hidden, remain hidden.

• Hide more unmatched lines - When selected, all lines that do not contain the search expression are
hidden. Any lines that were previously hidden, remain hidden.

Function Headers

Select Function headers to display only function headings and optional function heading comments.
Check Show all symbol headers (not just functions) to display heading for all symbols in the file, not
just functions.

The following settings affect how comments before function headings are handled:

View Dialogs and Tool Windows

789

• Show - When checked, comments above function headings are displayed as if they were part of the
function heading.

• Collapse - When checked, comments above function headings are visible but multi-line comments will
require that you expand them to see the entire comment.

• Hide - When checked, comments above function headings are not visible.

Note: using the Hide setting, selected comments will not be visible at all, making it difficult to copy or
move functions and comments.

• Documentation comments - When checked, apply the Show, Collapse, or Hide option to
documentation comments, such as JavaDoc, XMLDoc, or Doxygen formatted comments.

View Dialogs and Tool Windows

790

• Other comments - When checked, apply the Show, Collapse, or Hide option to all other comments,
excluding documentation comments.

• Show blank lines - When checked, blank lines between function headings will not be hidden.

The following settings affect how function bodies are handled:

• Show - When checked, function bodies are displayed as an already expanded selective display region,
as if they were part of the function heading.

• Collapse - When checked, function bodies are displayed as a collapsed selective display region.

• Hide - When checked, function bodies are not visible. This is the default behavior.

Preprocessor Directives

Select Preprocessor directives to display a source file as if it were preprocessed according to the define
values you specify. If you do not remember your defines, use the Scan for Defines button. The following
settings are available:

• Defines - Specifies defines and optional values used when you select the Preprocessor Directives
option on the Selective Display dialog box. The syntax is:

name1 [=value1] name2 [=value2]

For example:

WIN32S VERSION=4

• Warning if Not Defined - If on when you preprocess your source, a message box is displayed for each
define found in an expression which does not have a value.

• Scan for Defines - Searches for define variables in the current source file and lets you specify values.
Resulting values are placed in the Defines combo box.

Multi-Level

Select Multi-level outline to set multiple levels of selective display based on braces or indent. The
following settings are available:

View Dialogs and Tool Windows

791

• Symbols - When on, multiple levels of selective display are set to correspond to all symbol definitions
and declarations found in the file. This option is disabled for languages which do not support tagging.

• Statements - When on, multiple levels of selective display are set to correspond to all symbol
definitions, declarations, and statements in the file. This option is disabled for languages which do not
support statement level tagging.

• Braces - When on, multiple levels of selective display are set to correspond to curly brace nesting
levels.

• Indentation - When on, multiple levels of selective display are set to correspond to line indentation
levels.

• Limit nesting to level: - When too many nested levels of selective display get confusing, place a limit

View Dialogs and Tool Windows

792

on the maximum number of nested levels. Nesting deeper than this specified level is ignored.

• Collapse items below level: - Specifies that items deeper than the specified level of nesting should be
collapsed. All items at higher levels will remain expanded. This is useful, for example, in Java, to
specify that classes (level 1) should be expanded, and methods (level 2) should be collapsed.

• Hide documentation comments: - In addition to the multi-level outlining, collapse documentation
comments, such as JavaDoc, XMLDoc, or Doxygen formatted comments.

• Hide other comments: - In addition to the multi-level outlining, hide all other comments (except for
documentation comments).

Comments

Select Comments to collapse multi-line comment blocks to just display the first line of each comment.
The following settings are available:

• Hide documentation comments - When on, documentation comments, such as JavaDoc, XMLDoc, or
Doxygen formatted comments will be collapsed to display only the first line of the comment.

• Hide other comments - When on, all other comments, excluding JavaDoc, XMLDoc, or Doxygen
formatted comments will be collapsed to display only the first line of the comment.

Paragraphs

Select Paragraphs to display the first line of each paragraph. A paragraph is defined by a group of lines
followed by one or more blank lines.

Hide Selection

Select Hide selection to hide the lines in the current selection.

Expansion Options

The following expansion options can be applied for each region:

• Expand sub-levels - When on, expanding hidden lines expands all nested hidden lines.

• Collapse sub-levels - When on, expanding hidden lines collapses all nesting hidden lines.

• Remember sub-levels - When on, expanding hidden lines displays nested hidden lines the way they
were last displayed.

Toolbar Control Properties Dialog

To change a button's command binding, on the actual toolbar or tool window, right-click on any control
and select Properties. This will display the Toolbar Control Properties dialog, shown below. Note that the
Properties option is only available for controls that can be modified.

View Dialogs and Tool Windows

793

The following options are available:

• Command - Specifies the command that the button is bound to. Use the drop-down arrow to pick from
a list of commands. Use the right-pointing arrow to insert special escape sequences for a file name, line
number, or word.

• Message - Use this text box to enter the tool tip message that should appear when hovering the mouse
over the button.

• Bitmap - Specifies the bitmap that will be used for the button. Click the drop-down arrow to display an
Open dialog in order to specify an alternate bitmap. This option is only available for graphical controls.

• Caption - Specifies the text that appears on the button for text-only controls (like the Sample Button).

• Auto Enable - Displays the Auto Enable Properties dialog, which allows you to enable/disable
predefined attributes. See Auto Enable Properties Dialog for more information.

• Bind to Key - Displays the Key Binding Options so that you can create a key binding for this command.

Project

794

Project
This section describes items on the Project menu and associated dialogs and tool windows. For more
information, see Workspaces and Projects.

Project Menu
The Project menu contains operations and options for working with projects and workspaces. The table
below contains a summary of these items.

Project Menu Item Description Command

New Allows you to create a workspace
and/or project.

workspace_new

Open Workspace Opens a workspace. workspace_open

Open Other Workspace Displays menu for open projects,
workspaces, or makefiles from
other tools. See Project Menu.

N/A

Close Workspace Closes the current workspace. workspace_close

Organize All Workspaces Allows you to organize your
workspaces which appear in the
All Workspaces menu. See
Organizing Workspaces.

workspace_organize

Workspace Properties Displays the Workspace
Properties dialog, which allows
you to add/remove projects from
the current workspace. See
Project Dialogs and Tool
Windows.

workspace_properties

Retag Workspace (Pro only) Updates the tag file for
the current workspace.

workspace_retag

Retag Project (Pro only) Updates the tag file for
the current project.

project_retag

Refreshes current workspace,
project files, and tag files(Pro
only)

workspace_refresh

Project Menu

795

Project Menu Item Description Command

Add New Item from Template Adds new template file to the
existing project.

project_add_item

Open Files from Project Allows you to open files from the
current project. See Document
Dialogs and Tool Windows.

project_load -p

Open Files from Workspace Allows you to open files from the
current workspace. See
Document Dialogs and Tool
Windows.

project_load

Insert Project into Workspace Adds an existing project to the
current workspace. Use the
Workspace Properties dialog box
to remove a project from the
current workspace.

workspace_insert

Dependencies (Pro only) Displays the Project
Properties dialog open to the
Dependencies tab, which lets
you set the dependencies for the
active project. See Dependencies
Tab.

workspace_dependencies

Set Active Project Allows you to set the active
project

projecttbSetCurProject

Project Properties Displays the Project Properties
dialog, which is used to edit
settings for the current project.
See Project Properties Dialog

project_edit

All Workspaces Displays menu of recently opened
workspaces and (optionally)
recent active projects. The
number of items displayed is
configurable. See History Options.
The most recently used
workspaces are displayed under
the Project menu. The items
under the All Workspaces
submenu are sorted by
workspace name, directory, and
project name.

project_edit

Project Menu

796

Project Menu Item Description Command

Open Other Workspace Menu

The Project → Open Other Workspace menu contains options for opening projects, workspaces, or
makefiles from other tools. The table below contains a summary of these items.

Open Other Workspace Menu
Item

Description Command

Visual Studio .NET Solution Open a Visual Studio .NET
Solution.

workspace_open_visualstudio

Visual C++ Workspace Open a Visual C++ Workspace. workspace_open_visualcpp

Visual C++ Embedded
Workspace

Open a Visual C++ Embedded
Workspace.

workspace_open_visualcppem
bedded

Tornado Workspace Open a Tornado Workspace. workspace_open_tornado

Ant XML Build File Open an Ant XML Build File. workspace_open_ant

Maven Project File Open a Maven project file. workspace_open_maven

Makefile Open a Makefile. See Open
Makefile as Workspace Dialog.

workspace_open_makefile

NAnt .build file Open a NAnt .build file. workspace_open_nant

JBuilder Project Open a JBuilder® Project. workspace_open_jbuilder

Xcode Project Open a Xcode Project. workspace_open_xcode

Flash Project Open a Flash Project. workspace_open_flash

Workspace from CVS Checkout and open a workspace
from CVS.

cvs_open_workspace

Convert CodeWright
Workspace

Convert a CodeWright workspace
and projects to SlickEdit
workspace and projects.

cwprojconv.e

Project Dialogs and Tool
Windows

797

Project Dialogs and Tool Windows
This section describes the dialogs and tool windows that are associated with the Project menu items.

Workspace Properties Dialog

To list projects in the current workspace, add or remove projects from the current workspace, or to set the
active project, use the Workspace Properties dialog box. The dialog, pictured below, can be accessed
from the main menu by clicking Project → Workspace Properties.

The following options are available:

• Project Properties - Displays project properties for the selected project.

• Dependencies - (Pro only) Displays project dependencies for the selected project.

• New Project - Allows you to add a new project to the current workspace.

• Add Project - Allows you to add an existing project to the current workspace.

• Remove Project - Removes the selected project from the workspace.

• Set Active - Sets the selected project active.

• Move Up - Moves the selected project up. By default, this button is always disabled because project
files are sorted. Uncheck "Sort Projects" from the Projects tool window workspace context menu.

• Move Down - Moves the selected project down. By default, this button is always disabled because
project files are sorted. Uncheck "Sort Projects" from the Projects tool window workspace context
menu.

• Environment - (Pro only) Displays the Workspace Environment Options dialog box, allowing you to set
environment variables. For more information on setting environment variables, see Environment
Variables.

Project Dialogs and Tool
Windows

798

• C/C++ Preprocessing - (Pro only) Displays the Workspace C/C++ Preprocessing options dialog box,
allowing you to define preprocessing symbols specific to the corresponding workspace. For more
information about the C/C++ Preprocessing dialog, see C/C++ Preprocessing.

• Tag Files Directory - (Pro only) Displays a directory chooser dialog where you can select a directory
for workspace tag files (and project tag files) to be placed. This option is useful when you have
workspaces that are on network drives or if you have a high-speed drive that you prefer to store your
workspace and project tag files on for performance.

This option is also useful to avoid cluttering your workspace directory with tag files (in the case where
you have several project-specific tag files or auto-updated tag files in your workspace).

In addition, this option can be useful in order to avoid conflicts with other users when working with a
workspace that is in a shared directory. By setting the workspace tagging directory to a location under
your home directory or your SlickEdit configuration directory using an environment variable such as
%(HOME) or %(SLICKEDITCONFIG), you can insure that each user has a private copy of all the
workspace tag files and the workspace history file.

• Tag Files - (Pro only) Displays the Context Tagging® - Tag Files dialog, shown below, to manage all
your workspace and project-specific tag files. For more information, see Context Tagging - Tag Files
Dialog. For more information about tag files, see Building and Managing Tag Files.

Project Dialogs and Tool
Windows

799

Project Properties Dialog

The Project Properties dialog, shown below, is used to manage and edit many settings for the current
project. To access this dialog, click Project → Project Properties or use the project_edit command.
You can also right-click within the Projects tool window and select Project Properties.

Note

By default SlickEdit displays the Project Properties dialog with All Configurations selected. To
invoke the Project Properties dialog with the current active configuration, use Project
Properties for Config found on the Build menu.

Project Dialogs and Tool
Windows

800

Click and drag the dialog box's edges to resize it. Both the size and position of the dialog are remembered
between editing sessions. The buttons on the Project Properties dialog are described below (see Project
Properties Dialog - General Options). Other options are categorized into the following tabs. Click on an
item to go to that section in the documentation.

• Files Tab

• Directories Tab

• Tools Tab

• Build Tab

• Compile/Link Tab

• Dependencies Tab

• Open Tab

• Live Errors Tab

Project Properties Dialog - General Options

The following options are available at the top of the dialog:

• Settings for - (Pro only) Allows you to select which configuration to modify. The All Configurations
option allows you to change the settings for all the configurations. All settings in the Project Properties
dialog are per configuration except the working directory, open command, and filters.

• Configurations - (Pro only) Click this button to view, add, or delete configurations. See Project
Configurations for more information.

Files Tab

The Files tab of the Project Properties dialog (Project → Project Properties) is shown below, and
displays a list of the files in the current project and also allows you to remove files from projects.

Project Dialogs and Tool
Windows

801

The following buttons are available:

• Add Files - Adds one or more existing files from a single directory to the project.

• Add Tree - Prompts for one or more wildcard file specifications separated with semicolons and
searches through a directory tree adding the files that are found to the project. To search directories
recursively, select the Recursive option. You can also specify to add the pattern as a wildcard,
meaning that the tree will be repeatedly traversed to pick up any new files that were added. For more
information, see Add Tree Dialog.

Note

(Close the any modal dialog like the Project Properties dialog first) You can drag/drop a directory
from your operating system file explorer onto SlickEdit to perform an Add Tree to the active
project. If no workspace/project is open, you will be prompted to create one.

• Invert - Inverts the selected items in the Project files list box.

• Remove - Removes selected items from the project.

• Remove All - Removes all files from the project.

• Refresh - Provides an easy way to remove files that do not exist from the project.

• Properties - Only available when the current file has wildcard characters. Displays various supported
options for a wildcard specification.

• Import - Allows you to specify a file which contains files or directories to be added to the current
project. For more information, see Importing Files.

(Pro only) To specify how the files in the project are to be tagged, the combo box below the file list has
the following options:

Project Dialogs and Tool
Windows

802

• Tag files using workspace tag file - Specifies that the files should be part of the workspace tag file.
For more information, see Tag File Categories.

• Tag files with project-specific tag file - Specifies that this project should have it's own dedicated tag
file. For more information, see Tag File Categories.

• Tag files with project-specific tag file, without references - Specifies that this project should have
it's own dedicated tag file. References are not generated for this tag file, so types and functions from
the project will be visible, but reference searches will not include other symbols from the project when
doing a references search. This is useful for tagging libraries you depend on where you are mainly
interested in the API for the library, and not its implementation details. For more information, see Tag
File Categories.

• Do not tag files - specifies that the files should not be tagged at all. This is useful if you have a project
which contains XML or other data files, test programs, or other non-essential files that you do not need
to have tagged. Using this option can help reduce the time required to build (and access) the
workspace tag file, as well as avoid cluttering the workspace with unwanted symbols.

Directories Tab

The Directories tab of the Project Properties dialog box (Project → Project Properties), shown below,
allows you to set the working directory, references file, and include file search directories for the current
project.

The following information describes the available fields and settings:

• Working directory - When a project is set active, the current directory is set to the working directory (if
specified). This information is stored per project and not per configuration. Click the button to the right
of this field to browse for and specify an alternate working directory.

• References file - (Pro only) You only need to complete this text box if you are using Microsoft Visual

Project Dialogs and Tool
Windows

803

C++ and you prefer to use a Visual C++ .bsc database file instead of the Context Tagging® database
when viewing references. If you open a Visual C++ v5.0 or later workspace and you have configured
Visual C++ to generate a .bsc database file, this field is automatically configured.

• Includes - Specifies the directories the cursor_error (Alt+1) and next_error (Ctrl+Shift+Down)
commands will search when trying to open a file. For COBOL and High Level Assembler, this list of
directories is used to find copy books or macros. You might want to add some of your own include
directories here before the compiler's include directories. You can specify environment variables with
the syntax %(EnvVarName) (see Environment Variables). Click the button to the right of this field to
browse for an include directory to specify. Use the up and down arrows to move the includes up or
down in the list.

Tools Tab (Pro only)

The Tools tab of the Project Properties dialog box (Project → Project Properties) is used to change
project commands and their properties.

Project Dialogs and Tool
Windows

804

The following options are available:

• Tool name - Contains a list of the tools/commands that can be used for projects in SlickEdit®. You can
have different tools for different projects. The options on the Tools tab vary, depending on the tool
name that is selected in the Tool name text box.

Use the Up and Down arrows to move the tools up and down in the list. This order corresponds to the
order in which the tool appears on the Build menu. Click the Delete button (displayed as a red "X") to
remove a user-defined tool (default tools cannot be deleted).

• New - Click the New button to add a tool. This will launch the New Project Tool Wizard.

Project Dialogs and Tool
Windows

805

• Advanced - Click the Advanced button to change environment variables (see Environment Variables).

• Options - Displays an Options dialog box specific to the language with which you are currently working.
This button is only available for selected tools that support the language-specific options. For more
information, see Language Options.

• Command line - Defines the command line that is set to be executed for the selected tool in the Tool
name combo box. This text box is only available (and visible) for selected tools that support a command
line execution. Click the buttons to the right of this text box to insert files and escape sequences (such
as %f which inserts the current buffer name) that you can use to build your command line. See Escape
Sequences for Build Commands for a full list of available escape sequences.

• Run from dir - Specifies the directory from which to run selected tool command. By default, all of the
tools are run from the working directory that is specified using the %rw or %rp escape sequences,
which indicate the working directory or project directory, respectively. When running programs like ant
or make, this is typically set to the directory containing the makefile.

• Capture output - Captures and processes the output of the command with SlickEdit's built-in error
message processing facility. When the output is captured, the commands next_error
(Ctrl+Shift+Down or Build → Next Error) and prev_error (Ctrl+Shift+Up or Build → Previous
Error) are used to go to the next and previous compilation error positions respectively.

Note

(UNIX only) Output of text mode programs that are executed using xterm cannot be captured. To
see the output, uncheck the Output options Capture output and Output to build window, then
prefix the program name in the Command line field with xterm -e or dos -w (this waits for a key
press).

• Output to build window - Specifies that the output of the command be run in the concurrent build
window. The concurrent build window has the following limitations:

• You cannot run graphical applications in the concurrent build window.

• Only programs that use standard in and standard out to read and write data can run in the concurrent
build window. This is true for most compilers.

• Some programs which use standard in and standard out will not run properly in the concurrent build
window because they use ANSI escape sequences or do not flush standard output data before
prompting for input.

• For Windows 2000, alternate command shells are not supported. Only cmd.exe is supported.

• Clear build window - Clears the build window output before the command is executed. The Output
tool window displays the results of the processes that are run.

• Verbose output - Specifies that the vsbuild utility is used to build the projects (see Using Build and
Compile Operations). Detailed information about the commands that are executed will be output during
the build.

Project Dialogs and Tool
Windows

806

• Time build - Specifies that the vsbuild utility is used to build the projects (see Using Build and Compile
Operations). The time required to perform the build operation will be reported after the build is
complete.

• Save combo box - Specifies whether to save any files before running the current tool. Choose from the
following options:

• Save none - Saves no files before the command is executed.

• Save current file - Saves the current file before the command is executed.

• Save all files - Saves all files before the command is executed.

• List modified files - Displays a selection list of modified files, which allows you to choose files to
save before the command is executed.

• Save workspace files - Saves modified workspace files before the command is executed.

• Show combo box - This setting determines when your command is shown on the Build menu. The
following options are available:

• Always show on menu - Always shows the command on the Build menu.

• Hide if no command line - Hides the menu item if the command line is blank. This is useful for
saving space on the Build menu for blank command lines.

• Never show on menu - Never shows the command on the Build menu.

• Application type - Used to indicate the type of application as which a Java project should be executed.
This primarily affects the Execute and Debug commands for Java applets and j2me projects.

• Menu caption - Defines the menu item text which appears on the Build menu. Prefix the selection
character with an ampersand (&) to choose the selection character. If you have run out of selection
letters, try using numbers. For example, "&1MyTool" picks "1" as the selection character.

• Build first - Executes the build command before the selected tool/command. If the build completes with
a non-zero return code, this command is not executed. This option requires the use of the vsbuild
utility (see Using Build and Compile Operations) and will not work for build commands that do not return
a valid return code. If the build command returns a zero return code, the command is executed even if
the build actually failed.

Note

• Windows: For commands which will not execute in the concurrent build window, prefix the
command with start (for example: start debug\myprogram.exe).

• UNIX: If the build command is a shell script, make sure it returns a zero return code for a
successful build and a non-zero return code for an unsuccessful build. For commands which
will not execute in the concurrent build window, prefix the command with xterm ®e (for

Project Dialogs and Tool
Windows

807

example: xterm ®e debug/myprogram).

• Command is Slick-C macro - Specifies that the command line is a Slick-C® macro as opposed to an
external program.

• Beep on completion - Specifies that the vsbuild utility is used to build the projects and to sound a
status beep upon completion (see Using Build and Compile Operations). A single beep indicates a
successful build. Two beeps indicate an error occurred.

• Run in an X terminal - (UNIX only) Runs the command in an X terminal. This is useful for running
programs which are full screen console applications such as vi.

• Thread project dependencies - Enabled only if the vsbuild utility is used to build the project (see
Using Build and Compile Operations). Specifies that vsbuild should build dependent projects using
multiple threads.

• Thread compiles - Enabled only if the vsbuild utility is used to build the project (see Using Build and
Compile Operations). Specifies that vsbuild should using multiple threads to invoke commands to
compile source files.

Build Tab (Pro only)

The Build tab of the Project Properties dialog (Project → Project Properties), pictured below, allows you
to run programs and/or execute commands before or after a build. You can run different programs and
commands for different projects as the information is stored per-configuration. The contents of this tab are
unavailable for extension-based projects.

Project Dialogs and Tool
Windows

808

The list below describes the settings that are available. For more in-depth information, see Build System
Options.

• Pre- and Post-Build Commands - Each line can contain a program to execute a command. For
example, the set command could be used to set environment variables. Double-click on the text as
indicated in the text boxes to add commands. Use the Up and Down arrows to the right of the text
boxes to move the commands up and down in the list. The order corresponds to the order in which the
command will be run.

• Stop on error - When this option is checked and the current project depends on other projects, the
vsbuild utility (see Using Build and Compile Operations) will be used to build the projects and check for

Project Dialogs and Tool
Windows

809

error codes. When the vsbuild program detects an error, it does not continue building other
dependencies.

Note

(Windows only) vsbuild cannot detect error codes returned from a batch program.

• Build Output Options - These options allow you to configure where object files are placed by the
build, as well as the name of the output file being created.

• Object directory - This is the directory where object files and the executable are placed by the build
process. When building using a user-defined command or a custom makefile, set this to the directory
where you expect the build process to place the object files and executable. When building using
SlickEdit's build system or an auto-generated Makefile, this is the directory where object files will be
placed. This setting is referenced elsewhere in the Project Properties dialog using the %bd project
escape sequence.

If the Object directory is not specified, the default is to use a subdirectory matching the
configuration name under the project directory.

• Executable name - This is the name of the item created by this build process. For a program, this is
typically the name of the executable. For a library, this is the name of the library, including the library
suffix (for example, .dll, .so, .a, .lib, .dylib).

This setting can be either an absolute path or just a file name or path relative to the Object
directory. This setting is referenced elsewhere in the Project Properties dialog using the %o (output
file name) project escape sequence, as well as the related escape sequences %on (output file name
only), %oe (output file extension), and %op (output file path).

• Build System Options - These build methods apply to C/C++ projects only and affect all
configurations. With these options, you will not need to convert the current build methods to use the
GNU debugger; you can select one of these methods when you create a new GNU C/C++ Wizard
project.

• Build without a makefile (dependencies automatically checked) - Automatically checks
dependencies and does not generate a makefile. Instead, the vsbuild utility (see Using Build and
Compile Operations) determines what should be compiled dynamically. This option is useful when
you are not concerned with how the build gets done. Make sure the project include directories are set
up correctly (Project → Project Properties, select the Directories Tab) so include files may be
found.

• Build with a user-maintained makefile or custom build command - Sets the build command to
make and does not generate a makefile. The build command can be changed from the Tools tab of
the Project Properties dialog box (see Tools Tab). Select this option when you already have your own
method for building the source.

• Build with an auto-generated, auto-maintained makefile - Automatically generates a makefile and
updates when files are added to the project. This option is useful when you need a makefile and do
not want to use the built-in vsbuild utility (see Using Build and Compile Operations). Make sure the

Project Dialogs and Tool
Windows

810

project include directories are set up correctly (Project → Project Properties, select the Directories
Tab) so include files may be found.

• Makefile - Specify the path to the makefile in the Makefile field. Make sure the project include
directories are set up correctly (Project → Project Properties, select the Directories Tab) so
include files may be found.

• Run jobs simultaneously - For projects using GNU makefiles, you can enable this in order to
invoke make with the -j argument in order to specify how many threads to use for building makefile
targets in parallel.

To start a build from outside the application, execute the following command where make is the name
of the make program, Makefile is the name of the makefile, and ConfigName is the name of the
configuration: make -f Makefile CFG=ConfigName.

Compile/Link Tab (Pro only)

The Compile/Link tab of the Project Properties dialog (Project → Project Properties), shown below, is
used to specify project compilation and linking options.

Project Dialogs and Tool
Windows

811

The following settings are available:

• Compiler - By default, the compiler configuration is set to the active compiler tag file based on the
active project. To change the compiler or its configuration and properties, click the arrows to the right of
the Compiler field. Select None to specify that a project should not use a compiler tag file. See C/C++
Compiler Settings for more information.

• Defines - Defines listed here can be used in build commands as %defs. Double-click as indicated to
add a define. Click the /D button to enter a macro. Click the /U button to undefine a macro. Defines that
are set in an associated project are listed in bold and can not be modified here.

• Libraries/Objects - Libraries and objects listed here can be used in build commands as %libs. To add
libraries and objects, click the button to the right of this field. This displays the Link Order dialog box.
The <ProjectObjects> marker indicates where all remaining object files produced by the project will

Project Dialogs and Tool
Windows

812

appear in the list of libraries and objects. Use the arrows to the right of the text box to move the
libraries/objects up and down in the list, or use the red X button to remove a library or object.

Run/Debug Tab

The Run/Debug tab of the Project Properties dialog (Project → Project Properties), shown below, is
used to specify project execution and debugging options.

The following settings are available:

• Program to Run - Specifies the full path to the program to execute when Execute is invoked from the

Project Dialogs and Tool
Windows

813

Build menu, as well as the program to be debugged when Start is invoked from the Debug menu.

• Program Arguments - Specifies the command line arguments to be passed to the program when it is
executed.

• Run from dir - Specifies the directory to run the program from. Typically, this will be set to "%rw" to
indicate the project directory.

• Debugger - Specifies which integrated debugging tool is appropriate to use for this project. Select Use
External Debugger to select an external or command line debugging tool to run. Depending on the tool
specified, you may need to fine tune the settings for the Debug target on the Tools tab of the Project
Properties dialog.

• Other options - Specifies additional command line options to pass to the debugger. For example, to
pass the path to the program you wish to debug here.

Dependencies Tab (Pro only)

The Dependencies tab on the Project Properties dialog (Tools → Project Properties), pictured below,
allows you to define a relationship between two projects, causing the dependent project to be built after
the projects it depends on. This ensures that elements in a depended-on project are up-to-date prior to
building the dependent project. See Defining Project Dependencies for more information.

Project Dialogs and Tool
Windows

814

Live Errors Tab (Pro only)

The Live Errors tab on the Project Properties Dialog (Tools → Project Properties) allows you to
override the active Live Errors profiles that are used when this project is active. See Live Errors for more
details on the Live Errors system.

Project Dialogs and Tool
Windows

815

• The main list shows any existing overrides for the project. In the example image above, Live Errors will
use the "Pylint3" profile for any Python files while the project is active.

• New... - Creates a new override.

• Edit... - Edits the currently selected profile override.

• Delete - Deletes the currently selected profile override.

New/Edit Profile Override Dialog

Project Dialogs and Tool
Windows

816

• Language - Selects the language mode the override will be active for. Only languages that have Live
Errors profiles that aren't already overridden will be available for selection.

• Uses profile - Live Errors profile that will be used for files with the associated Language document
mode.

Open Tab (Pro only)

The Open tab of the Project Properties dialog (Project → Project Properties) lets you enter commands
that are executed when the project is activated. This information is stored per project, not per
configuration. This tab is unavailable for extension-based projects. For instructions on entering
commands on this tab, see Specifying Open Commands.

Open Makefile as Workspace Dialog

The Open Makefile as Workspace dialog is used to import makefiles. To display it, from the main menu,
click Project → Open Other Workspace → Makefile (or use the workspace_open_makefile
command). See Importing Makefiles for more information about using this feature.

Project Dialogs and Tool
Windows

817

The dialog contains the following:

• Makefile - Specifies the makefile. Use the Browse button to browse for the makefile.

• Scan for recursive makefile calls - When selected, SlickEdit scans the makefile for invocations of
make on other makefiles and includes the referenced files in the new project.

• Make recursive makefile calls separate projects - When this option is selected, if Scan for
recursive makefile calls is enabled, and if the makefile contains invocations of make on other
makefiles, a new, separate project is created for each of the referenced makefiles. When this option
is cleared, SlickEdit creates only one project that includes all of the files found in all of referenced
makefiles.

• File types - Specifies the file types to include. Use the drop-down arrow to populate this field or type a
list of file types separated with semicolons.

• Exclude - Specifies the file types to exclude. Use the drop-down arrow to populate this field or type a
list of file types separated with semicolons.

New Project Tool Wizard

The New Project Tool Wizard is used to set up new build tools for a project. Build tools appear in the
Build menu when a project is active. For information about editing existing build tools, see Tools Tab of
the Project Properties dialog.

The New Project Tool Wizard can be accessed in two ways: by clicking the New button on the Tools tab
of the Project Properties dialog or by going to Build → Add new build tool.... In addition to your own
source code projects, you can add build tools to Project Templates (see Project Types) and extension-
specific projects (see Defining Language-Specific Projects).

Project Dialogs and Tool
Windows

818

New Project Tool

The first page of the New Project Tool Wizard allows you to fill in basic information about your new build
tool.

The following fields are available:

• Menu Caption - the caption that will appear on the Build menu and can be used to launch your new
tool.

• Executable - the executable to be launched when this tool is selected. Use the button to the right of
this field to browse to and select the specific file.

• Arguments - the arguments sent to the executable. Use the menu launched from the button to the right
of this field to send common project-related arguments.

Configurations

The second part of the New Project Tool Wizard is the Configurations page, where you select which
configurations of your project will allow access to the new tool. You must select at least one configuration
for your tool. For more information, see Project Configurations.

Project Dialogs and Tool
Windows

819

Note

When creating a tool for a language-specific project, this step is skipped.

Advanced Tool Options

You can set more advanced options for your new project tool on the third page.

Project Dialogs and Tool
Windows

820

The following fields are available on this page:

• Run from directory - The directory that the command will be run from. Use the buttons to the right of
this field to browse to a directory or to specify an escape sequence symbolizing a project-related
directory.

• Save option - Specifies which, if any, files to save before launching the tool. Choose from the following
choices:

• Save none - Saves no files before the command is executed.

• Save current file - Saves the current file before the command is executed.

• Save all files - Saves all files before the command is executed.

• List modified files - Displays a selection list of modified files, which allows you to choose files to
save before the command is executed.

• Save workspace files - Saves modified workspace files before the command is executed.

• Capture output - Captures and processes the output of the command with SlickEdit's built-in error
message processing facility. When the output is captured, the commands next_error
(Ctrl+Shift+Down or Build → Next Error) and prev_error (Ctrl+Shift+Up or Build → Previous

Project Dialogs and Tool
Windows

821

) are used to go to the next and previous compilation error positions respectively.

• Output to build window - Specifies that the output of the command be run in the concurrent build
window.

Finish Wizard

The final page of the wizard lets you know that your new build tool is completed and ready to use. To edit
this or other project tools, simply visit the Tools tab of the Project Properties dialog.

If you are adding a tool to a source code project, you will have the opportunity to add this same tool to all
future projects of that type. Existing projects of the same type will not have the tool.

Build (Pro only)

822

Build (Pro only)
This section describes items on the Build menu. Currently, the section Building and Compiling contains
all of the information about building and the dialogs and options that are available.

Build Menu (Pro only)
The Build menu is language-specific and can have alternate options depending on the language in which
the project is written.

Build Menu Item Description Command

Compile Compiles the current file. project_compile

Build Builds the active project, typically
compiling only the files that have
changed.

project_build

Rebuild Rebuilds the active project,
typically compiling all files in the
project.

project_rebuild

Execute Executes the built program
associated with the active project.

project_execute

Add new build tool... Launches the New Project Tool
Wizard.

project_tool_wizard

Next Error Processes the next compiler error
message.

next_error

Previous Error Processes the previous compiler
error message.

prev_error

Go to Error or Include Parses the error message or file
name at the cursor and places
cursor in file.

cursor_error

Clear All Error Markers Removes all error markers in all
files.

clear_all_error_markers

Configure Error Parsing Configures regular expressions
used to search for compiler
messages. See Parsing Errors
with Regular Expressions.

configure_error_regex

Build Menu (Pro only)

823

Build Menu Item Description Command

Stop Build Sends break signal to the Build
tool window.

stop_process

Show Build Starts or activates the Build tool
window.

start_process

Set Active Configuration Submenu used to select which
project build configuration is
currently active.

project_config_set_active

Project Properties for Config Displays the Project Properties
dialog, which is used to edit
settings for the current project
with the current active
configuration selected. See
Project Properties Dialog

project_edit_config

Build Automatically on Save When enabled, the project is built
each time the workspace is
saved.

project_toggle_auto_build

Debug (Pro only)

824

Debug (Pro only)
This section describes items on the Debug menu and associated dialogs and tool windows. For more
information about debugging, see Running and Debugging.

Debug Menu (Pro only)
The Debug menu contains debugging-related operations and options. The table below summarizes these
items.

Debug Menu Item Description Command

Windows Displays debug window tool
windows. See Debug Windows
Menu.

N/A

Start Starts debugger. project_debug

Suspend Suspends execution. debug_suspend

Stop Debugging Stops debugging the program. debug_stop

Restart Restarts the program. debug_restart

Start with arguments Starts debugger current project
with user-specified command line
arguments and working directory.

debug_run_with_arguments

Attach Debugger. See Attach
Debugger Menu.

Attach debugger to a process or
remote server.

N/A

Detach Detach from target process and
allow application to continue
running.

debug_detach

Debugger Information Displays the Debugger
Information dialog.

debug_props

Step Into Steps into the next statement. debug_step_into

Step Over Steps over the next statement. debug_step_over

Step Out Steps out of the current function. debug_step_out

Step Instruction Steps one instruction at a time. debug_step_instr

Debug Menu (Pro only)

825

Debug Menu Item Description Command

Run to Cursor Runs the program to the line
containing the cursor.

debug_run_to_cursor

Show Next Statement Displays the source line for the
instruction pointer.

debug_show_next_statement

Set Instruction Pointer Set the instruction pointer to the
current line.

debug_set_instruction_pointer

Show Disassembly Toggle display of disassembly. debug_toggle_disassembly

Toggle Breakpoint Toggles a breakpoint at the
current line.

debug_toggle_breakpoint

Delete All Breakpoints Deletes all debugger breakpoints. debug_clear_all_breakpoints

Disable All Breakpoints Disables all debugger
breakpoints.

debug_disable_all_breakpoints

Add Watch Add a watch on the variable under
the cursor.

debug_add_watch

Set Watchpoint Set a watchpoint on the variable
under the cursor.

debug_add_watchpoint

Debugger Options Displays the Debugger Options
dialog. See Viewing Debugger
Info and Setting Options for
detailed information.

debugger_options

Debug Windows Menu

The Debug → Windows menu items activate the debugging tool windows. The table below summarizes
these items. See also Debugger Tool Windows for more information.

Debug Windows Menu Item Description Command

Call Stack Activates the Call Stack window. activate_call_stack

Locals Activates the Locals window. activate_locals

Members Activates the window which activate_members

Debug Menu (Pro only)

826

Debug Windows Menu Item Description Command

displays member variables.

Autos Activates the Autos window. activate_autos

Watch Activates the Watch window. activate_watch

Threads Activates the Threads window. activate_threads

Breakpoints Activates the Breakpoints window. activate_breakpoints

Registers Activates the Registers window. activate_registers

Memory Activates the Memory window. activate_memory

Loaded Classes Activates the Loaded Classes
window.

activate_classes

Attach Debugger Menu

The Debug → Attach Debugger menu items are summarized in the table below. See Multiple Session
Debugging for more information. At this time, the LLDB related options are only available on macOS and
64-bit Linux. The WinDBG related options are only available on Microsoft Windows.

Attach Debugger Menu Item Description Command

Attach to Running Process
(LLDB)

Attach debugger to a running
process using LLDB.

debug_attach_lldb

Analyze Core File (LLDB) Load crash dump information
from a Unix core file and analyze
it using the integrated LLDB
debugger.

debug_corefile_lldb

Attach to Remote Process
(LLDB)

Attach debugger to a remote
LLDB server or executable with
GDB stub.

debug_remote_lldb

Debug Executable (LLDB) Step into a program using LLDB debug_executable_lldb

Attach to Running Process
(GDB)

Attach debugger to a running
process using GDB.

debug_attach_gdb

Analyze Core File (GDB) Load crash dump information debug_corefile_gdb

Debug Menu (Pro only)

827

Attach Debugger Menu Item Description Command

from a Unix core file and analyze
it using the integrated GDB
debugger.

Attach to Remote Process
(GDB)

Attach debugger to a remote GDB
server or executable with GDB
stub.

debug_remote_gdb

Attach to Android Application
Process (GDB)

Attach debugger to an Android
application running on hardware
device or emulator.

debug_remote android

Debug Executable (GDB) Step into a program using GDB debug_executable_gdb

Attach to Process (WinDBG) Attach debugger to a running
process using WinDBG

debug_attach_windbg

Debug Executable (WinDBG) Step into a program using
WinDBG

debug_executable_windbg

Open Dump File (WinDBG) Attach debugger to a dump file debug_corefile_windbg

Attach to Java Virtual Machine Attach to a Java virtual machine
executing remotely.

debug_attach_jdwp

Debug Executable (Java) Step into a program using the
Java debugger

debug_executable_java

Attach to Mono Virtual Machine Attach to a Mono virtual machine
executing remotely.

debug_attach_mono

Debug Executable (Mono) Step into a program using the
Mono debugger

debug_executable_mono

Attach to Xdebug Attach to a PHP session using
Xdebug.

debug_remote xdebug

Attach to Python (PTVSD) Attach to a Python debugger
session.

debug_remote dap

Attach to perl5db Attach to a Perl 5 debugger
session.

debug_remote perl5db

Attach to rdbgp Attach to a Ruby debugger debug_remote rdbgp

Debug Menu (Pro only)

828

Attach Debugger Menu Item Description Command

session.

Document

829

Document
This section describes items on the Document menu and associated dialogs and tool windows.

Document Menu
The Document menu contains items pertaining to editor windows and the current document. The table
below lists a summary of these items.

Document Menu Item Description Command

Next Buffer Switches to the next buffer. See
Files, Buffers, and Editor
Windows.

next_buffer

Previous Buffer Switches to the previous buffer.
See Files, Buffers, and Editor
Windows.

prev_buffer

Close Buffer Closes the current buffer. See
Files, Buffers, and Editor
Windows.

close_buffer

List Open Files Displays the Files tool window,
which lists all buffers and allows
you to activate one. See
Document Dialogs and Tool
Windows.

list_buffers

Edit Associated File Switch to header or source file
associated with the current file.

edit_associated_file

Select Mode List all modes and lets you select
one. See Language Editing Mode.

select_mode

Language Options Displays the Options dialog open
to the language-specific General
options screen for the language in
the current buffer. See Language
Options.

setupext

Tabs Sets tab stops. gui_tabs

Margins Sets word wrap margins. gui_margins

Document Menu

830

Document Menu Item Description Command

Reflow Paragraph Reflows the text in the current
paragraph according to the
margins.

reflow_paragraph

Reflow Selection Reflows the selected text
according to the margins.

reflow_selection

Format Columns Format columns according to
words.

format_columns

Edit Doc Comment Edits document comments for the
current source file.

edit_doc_comment

Comment Block Converts selected text into block
comment using box comment
setup characters. See
Commenting.

box

Comment Lines Converts selected lines into line
comments using the line comment
setup. See Commenting.

comment

Uncomment Lines Uncomments any commented
lines and ignores any that isn't
commented. See Commenting.

comment_erase

Reflow Comment Reflows and reformats the current
block comment. See Reflow
Comment Dialog.

gui_reflow_comment

Comment Setup Displays the language-specific
Comment options screen, which
contains settings for box and line
comments. See Language-
Specific Comment Options.

comment_setup

Comment Wrap Toggles comment wrap on/off. comment_wrap_toggle

Beautify while typing (Pro only) Toggles Beautify while
typing on/off. See Beautify while
typing.

indent_with_tabs_toggle

Indent with Tabs Toggles indenting with tabs on/off.
See Syntax Indent.

indent_with_tabs_toggle

Document Menu

831

Document Menu Item Description Command

Spell Check While Typing Toggles spell check while typing
on/off.

spell_check_while_typing_togg
le

Word Wrap While Typing Toggles word wrap while typing
on/off.

word_wrap_toggle

Justify Sets/displays word wrap
justification style.

gui_justify

Read Only Mode Toggles read-only mode on/off. read_only_mode_toggle.

Adaptive Formatting Toggles Adaptive Formatting on/
off. See Adaptive Formatting.

adaptive_format_toggle

Document Dialogs and Tool Windows
This section describes the dialogs and tool windows that are associated with the Document menu items.

Files Tool Window

The Files tool window contains three tabs that allow you to view open files, project files, and workspace
files. The files can be sorted by file name or path. It includes a filter to narrow the list of files shown in the
list, as well as shortcuts for basic file operations (Open, Save, etc.).

Note

For documentation purposes, the word "files" generally includes both files and buffers.

Accessing the Tool Window

There are several ways to access the Files tool window:

• Click Document → List Open Files, press Ctrl+Shift+B, or use the list_buffers command.

• Use the activate_files command.

• Toggle display of the tool window by clicking View → Tool Windows → Files, or by using the
toggle_files command.

Document Dialogs and Tool
Windows

832

When the Files tool window is not docked, it can be dismissed by opening a file for editing or by pressing
Esc. To make this dialog behave like other tool windows, right-click inside the Files list area and uncheck
Dismiss on select.

Tip

By docking this tool window, you have quick access for switching between files or opening other
files.

List Views

The Files tool window presents three available views with a tab to select each:

• Buffers - Shows the list of files that are being edited. Useful for selecting the file to edit when working
on multiple files.

• Project - (Not in Community edition) Shows the files in the active project.

• Workspace - (Not in Community edition) Shows the files in this workspace.

Working with the Files List

The bottom part of the tool window shows the Files list. The Name column displays, in alphabetical order,
a list of file names or untitled buffers based on the selected view setting. The Path column displays the
associated paths for the files listed. Click on either column header to sort by that column. When you click
to sort, an arrow on the right side of the column header shows the ascending or descending order.

Document Dialogs and Tool
Windows

833

The Filter text box can be used to display matching file names. Files are removed from the list that do not
contain the specified text. For example, if you type "ml," the Files list is filtered to only show file names
that contain the letters "ml," as they appear in that order, anywhere in the file name.

Note

The Filter text box supports ant-like wildcards (wildcards in path parts and use of **). Depending
on what you've typed and the options you've specified (see context menu options), an ant-like
wildcard specification is generated and used to match files. For example, if you specify path-
part/name-part, the generated wildcard is **/path-part**/*name-part*. The context menu has
some options for how to handle certain name-part specifications. For example, if name-part is
*.ext, no leading * is prepended to name-part, and no trailing * is appended to name-part.. The
context menu has an option for this.

To allow Fast Prefix Matching inside the Filter text box, right-click inside the Files list area and select
Prefix match. When prefix matching is on, matching starts at the beginning of the word. For example, if
you type "d," the Files list is filtered to only show file names that begin with the letter "d."

When the focus is not in the Filter text box, you can incrementally search the list of file names by typing
the first few characters of the name. If you pause for a few seconds, the search is reset, and you can
search for a different file name just by typing the first few characters again. You do not need to press
Backspace, or reselect the first item in the list. Regardless of which item is selected, incremental search
starts at the top of the list. For example, if items are sorted in descending alphabetical order, the
incremental search starts at the top of the list, which would be the file that would appear last, if sorted in
ascending alphabetical order.

Opening Files for Editing

The name of the file that has current focus in the editor is displayed in a bold font style. The tool window
provides several ways to a file for editing:

• Press Enter or Alt+E.

• Double-click on the file to be opened.

• Right-click and select Open.

Tip

If there is no selection when you invoke an Open operation, the Open dialog is displayed from
which you can specify a file to open.

Saving Modified Files

Modified files are listed in a red font, and when selected, they have a red highlight. A Disk bitmap to the
left of the file name acts as another visual indicator for modified files and allows for a quick save.

Document Dialogs and Tool
Windows

834

Note

The Project and Workspace views do not display modified file indicators.

The Files tool window provides several ways to save modified files:

• Press Ctrl+S, Alt+S, or Alt+W.

• Click the Disk icon to the right of the Filter field.

• Right-click and select Save.

Tip

• When you invoke a Save operation, if a file is selected, it is simply saved. If an untitled buffer is
selected, the Save As dialog is displayed from which you can save it with a specified name. If
both a file and an untitled buffer are selected, the file will be saved, and the Save As dialog is
displayed in order to save the untitled buffer.

• The red highlight color for modified files can be changed by specifying a different background
color for the Modified File screen element (Tools → Options → Appearance → Colors).
Note that this is the same element that specifies coloring in tree controls such as DIFFzilla®, so
change with caution. See Setting Colors for Screen Elements for more information.

Closing Files

When you close a file, all windows displaying the buffer are closed as well (if the Files per window option
One file per window is enabled at Tools → Options → Editing → Editor Windows). You are also
prompted to save modified buffers.

The Files tool window provides several ways to close files:

• Press Delete, Alt+C, orAlt+D.

• Right-click and select Close.

• Click the Close Selected File(s) icon.

Diffing Files

In the Buffers view, you can select a modified file and compare it against the version on disk by doing one
of the following:

• Right-click and select Diff .

• Click the Diff Selected File(s) icon.

Document Dialogs and Tool
Windows

835

Files Tool Window Interface

The elements on the Files tool window are described as follows, from left to right and top to bottom:

• Buffers tab - displays all files and buffers that are currently open in the editor.

• Project tab - displays all files in the current project, regardless of whether they are open or not. This
view does not show an indicator for modified files. Further, it does not provide icons to Save, Close, or
Diff a file. See Workspaces and Projects for more information about working with projects.

• Workspace tab - displays the set of all files in the current workspace. This view does not show an
indicator for modified files. Further, it does not provide icons to Save, Close, or Diff a file. See
Workspaces and Projects for information about workspaces.

• Save Selected File(s) icon - if a file is selected, it is simply saved. If an untitled buffer is selected, the
Save As dialog is displayed from which you can save it with a specified name. If both a file and an
untitled buffer are selected, the file will be saved, and the Save As dialog is displayed in order to save
the untitled buffer. This operation can also be specified by using the right-click context menu inside the
Files list. This icon is only displayed when the Buffers tab is selected.

• Close Selected File(s) icon - closes the selected file(s) in the editor,which in turn, removes the names
from the Files window. If you are using the option One file per window (on by default), all windows
displaying the buffer are closed as well. You are prompted to save modified buffers. This operation can
also be specified by using the right-click context menu inside the Files list. This icon is only displayed
when the Buffers tab is selected.

• Diff Selected File(s) icon - compares the selected file(s) against the version on disk. This icon is only
displayed when the Buffers tab is selected.

• Filter - used to display matching file names. Right-click inside the Files list area to allow Prefix match
inside the Filter text box. When the focus is not in the Filter text box, you can incrementally search the
list of file names by typing the first few characters of the name.

• Files list - the Files list is divided into two columns:

• Name column - displays a list of file names or untitled buffers based on the selected view setting.
Items are listed in alphabetical order. Click on the Name column header to sort by this column. When
you click to sort, an arrow on the right side of the column header shows the ascending/descending
order. The name of the file that has current focus in the editor is displayed in a bold font style.
Modified files are listed in a red font, and when selected, they have a red highlight. A Disk bitmap to
the left of the file name acts as another visual indicator for modified files and allows for a quick save.

• Path column - displays the corresponding paths to the files/buffers listed. Click on the Path column
header to sort by this column. When you click to sort, an arrow on the right side of the column header
shows the ascending/descending order.

• Context menu - right click in the files list to see the available operations:

• Open - select this option to open the selected file.

• Open in Current Window - select this option to open the selected file in the current window. This is

Document Dialogs and Tool
Windows

836

useful if you do not have the One file per window option on (see Files, Buffers, and Editor
Windows).

• Save - saves the selected file. This is only available when the Buffers tab is selected.

• Close - closes the selected file. This is only available when the Buffers tab is selected.

• Diff - compares the selected file against the version on disk. This does nothing if the selected file is
not modified.

• Dismiss on select - this option dismisses the Files tool window after you select a file. This is useful
when you use the Files tool window undocked.

• Prefix match - select this option to perform a prefix match instead of matching anywhere in the
filename.

• Refresh - refreshes the file list.

Tabs Dialog

The Tabs dialog (Document → Tabs), is used to specify tab stops. Note that configuring the tabs does
not necessarily effect where the Tab and Shift+Tab keys move the cursor. You may need to configure
your syntax indent. See Language-Specific Formatting Options. Setting the tab stops always effects how
text is displayed. Tab characters are expanded to spaces when displayed on the screen.

• Tabs - Set tabs in increments of a specific value or at specific column positions. To specify an
increment of three, enter +3 in the text box. To specify columns, for example, enter 1 8 27 44, to specify
tab stops that are not an increment of a specific value.

Margins Dialog

The Margins dialog (Document → Margins), is used to configure the word wrap margin options. This
word wrap feature is intended only for plain text only.

• Automatic Left Margin - If selected, the left margin is determined by the first non blank in the line. The
right margin may be specified as follows:

• Fixed right column - If selected, lines will break before the specified column.

• Fixed width - If selected, specifies the maximum amount of non blank text allowed on each line.

• Fixed left column - If selected, allows you to specify the left margin, right margin, and new paragraph
columns.

• Partial word wrap - When on and word wrap while typing is on, a more conservative word wrap
approach is taken. This option provides word wrap similar to previous versions of SlickEdit. You may
prefer this style of word wrapping if you leave word wrap while typing on for source files. This option
only effects word wrap while typing characters, pressing Backspace, or pressing Del.

Document Dialogs and Tool
Windows

837

Justification Dialog

The Justification dialog (Document → Justify), is used to configure the justify style used when you word
wrap paragraphs. The word wrap as you type features of Word Wrap do not support full justification.

• Left and respace - Left justification with space character reformatting. One space is placed between
words except after the punctuation characters period, ?, and !, which get two spaces. To have only one
space after the period, question mark, and exclamation point punctuation characters, turn on 1 space
after period.

• Left - Left justification with respect for space characters between words. This setting requires the Save
options to be set such that trailing spaces are not stripped when a buffer is saved. See Save File
Options for more information.

• Justified - Full justification. Left and right edges of text will align exactly at margins.

Reflow Comment Dialog

The Reflow Comment dialog (Document → Reflow Comment), shown below, is used to reflow block
comments, paragraphs, or a selection of the current file.

Document Dialogs and Tool
Windows

838

The following options are available:

• Entire block comment - If selected, reflows an entire block comment based on the current width and
border settings for the block comment.

• Match block comment border settings - If selected, forces the borders to conform to the comment
settings (Document → Comment Setup- see Language-Specific Comment Options).

• Current paragraph - If selected, reflows the current paragraph within the block comment.

• Selection - If selected, reflows a selection within a block comment paragraph based on current
settings.

• Comment width - Select one of the width options to reflow a block comment to the margins or the
width that you specify in these fields. See Language-Specific Comment Wrap Options for information.

For more information about comments, see Commenting.

Macro

839

Macro
This section describes items related to macros.

Macro Menu
The table below describes each item on the Macro menu and its corresponding command. For more
information about working with macros, see Recorded Macros, Programmable Macros, and the Slick-C®
Macro Programming Guide.

Macro Menu Item Description Command

Load Module Loads a macro source module. gui_load

Unload Module Unloads a Slick-C macro file from
the state file.

gui_unload

List User-Loaded Macros (Pro only) Lists user-loaded Slick-
C modules. See Macro Dialogs
and Tool Windows.

gui_list_macfiles

Record Macro Starts recording a Slick-C
language macro.

record_macro_toggle

Stop Recording Macro Stops recording a Slick-C
language macro.

record_macro_toggle

Execute last-macro Runs last recorded macro. record_macro_end_execute

Save last-macro Saves the last recorded macro
under a name you specify. See
Save Macro Dialog.

gui_save_macro

List Macros Lists saved, recorded macros.
See List Macros Dialog.

list_macros

Set Macro Variable Allows you to set global macro
variables. See Set Variable Dialog
and Variable Editor Dialog.

gui_set_var

Start Slick-C Debugger (Pro only) Activates the Slick-C
debugger window. See "Slick-C
Debugger" in the Help → Index.

slickc_debug_start

Go to Slick-C Definition Opens a macro source file and gui_find_proc

Macro Menu

840

Macro Menu Item Description Command

places your cursor on the
definition of a macro symbol.

Find Slick-C Error Places your cursor on the macro
source line which caused the last
interpreter run-time error.

find_error

New Form (Pro only) Opens a new form for
editing with the Dialog editor.

new_form

Open Form (Pro only) Opens an existing or
new form for editing with the
Dialog editor.

open_form

Selected Form (Pro only) Displays edited form
window currently selected.

show_selected

Load and Run Form (Pro only) Loads form, loads
Slick-C code, and runs the
currently selected/edited form.

run_selected

Grid (Pro only) Sets form grid settings.
This affects the distance
displayed between the dots on a
form that is being edited. See Grid
Settings Dialog.

gui_grid

Menus Lists all menus and allows you to
edit, create, delete, or show
menus. Provides access to the
Menu Editor dialog box. See
Menu Editor Dialog.

open_menu

Insert Form or Menu Source Inserts source code into current
file for a form or menu you
specify.

insert_object

Macro Dialogs and Tool Windows
This section describes the dialogs and tool windows that are associated with the Macro menu items.

User-Loaded Modules Dialog (Pro only)

Macro Dialogs and Tool
Windows

841

The User-Loaded Modules dialog is used to view a list of Slick-C® modules that you have loaded. It also
lets you add, delete, and re-order modules. See Slick-C® Modules for more information.

To display the dialog, from the main menu, click Macro → List User-Loaded Modules, or, use the
gui_list_macfiles command on the SlickEdit® command line.

To add a module to the list, double-click where indicated or click the Add button. To remove a module
from the list, select it, then click the Delete button. Use the arrow buttons to rearrange the order, moving
the selected module up and down in the list. This is the order in which modules are re-loaded when you
upgrade to a newer version of SlickEdit.

When you add a module to the list, SlickEdit prompts to load the module in the editor. When you delete a
module from the list, SlickEdit prompts to also unload the module. See Loading and Unloading Slick-C
Modules for more information.

Save Macro Dialog

The Save Macro dialog appears automatically when you end macro recording, or when you click Macro
→ Save last-macro. You can also display the dialog by using the gui_save_macro command.

Macro Dialogs and Tool
Windows

842

The dialog contains the following elements:

• Macro Name - Specifies the name for the recorded macro. If you attempt to give the macro a name
that is already taken, a message is displayed asking if you want to overwrite the existing macro.

• Macro list - The box under the Macro Name field shows a list of all macros you have recorded (if any
exist).

• Requires editor control - When selected, the macro only operates if the target is an editor control.

• Allow in read only mode - When selected, the macro is permitted to operate even in read-only mode.
Select this option if your macro does not modify the current buffer.

• Allow when window is iconized - When selected, the macro is permitted to operate even when the
edit window is iconized. If the macro modifies the current buffer, you may prefer to leave this option off.

• Allow in non-MDI editor control - When selected, the macro is permitted to operate even in a non-
MDI editor control. This is typical for commands which require an editor control but do not open or close
editor windows/buffers.

• Save and Bind to Key - Saves the recorded macro by appending the source code of the macro to the
vusrmacs.e user macros file located in your configuration directory, then displays the Key Bindings
option screen so you can create a keyboard shortcut for the macro. See Binding Recorded Macros to

Macro Dialogs and Tool
Windows

843

Keys for more information.

• Save - Saves the recorded macro by appending the source code of the macro to the vusrmacs.e user
macros file located in your configuration directory.

• Edit - (Alt+E) Displays the macro source code in a new editor window (to save it, click Macros → Save
last-macroorto bind the macro to a key, use the menu item Macro → List Macros). Note that this
button is disabled for existing macros because with the Save Macro dialog, you can only edit the macro
you have just recorded prior to saving it. To edit a macro that has been previously recorded and saved,
use the List Macros dialog. See Saving and Editing Recorded Macros for more information.

• Delete - Deletes the selected macro.

List Macros Dialog

The List Macros dialog is used to view and work with a list of macros you have recorded. It is accessed by
clicking Macro → List Macros on the main menu, or by using the list_macros command on the
SlickEdit® command line.

The dialog shows a list of all macros you have recorded. Use the buttons to perform the following
operations:

• Run - Runs the selected macro. See Running a Recorded Macro for more information.

• Cancel - Closes the dialog.

• Edit - Opens the macro source for editing. See Saving and Editing Recorded Macros for more
information.

Macro Dialogs and Tool
Windows

844

• Delete - Deletes the selected macro. See Deleting Recorded Macros for more information.

• Bind to Key - Displays the Key Bindings option screen so you can assign a key or mouse shortcut to
the macro. See Binding Recorded Macros to Keys for more information.

Set Variable Dialog

You can set Slick-C® variables to specific values using the Set Variable dialog box (Macro → Set Macro
Variable or gui_set_var command).

Enter the name of Slick-C variable in the Variable text field. You may use the spacebar and "?"
(completion) to assist you in entering the name. Click the drop-down arrow to select a variable from the
list. Enter the new value of the variable in the Value text box and click OK, or click Edit to display the
Variable Editor Dialog, used for editing complex variables such as arrays, hash tables, structures, and
unions.

Variable Editor Dialog

The Variable Editor dialog, shown below, is used to edit complex variables for macros. For more
information about working with these programmable macros, see Programmable Macros. To access the
Variable Editor, click Macro → Set Macro Variable, or use the gui_set_var command, select a variable
to edit from the list, then click the Edit button.

Macro Dialogs and Tool
Windows

845

The data structure of the variable is displayed in the list box at the top of the dialog, and the value for
each entry is displayed in the Value text box.

The following buttons are available:

• Expand Curr - Expands current item which has a Plus (+) bitmap.

• Delete - Deletes current item.

• Format - Allows you to change the type of the current item.

• Insert - Inserts a new hash table or array element.

• Expand All - Expands all items so you can see the entire data structure.

• Collapse All - Display first level of variable with nothing expanded.

• Update - Sets the contents of the variable to what is currently displayed in the Variable Editor.

Macro Dialogs and Tool
Windows

846

• Refresh - Cancels changes and displays current value of variable which is not necessarily the same as
when this dialog box was originally displayed.

• Squish - Deletes array items which have the value _notinit.

Grid Settings Dialog (Pro only)

The Grid Settings dialog (Macro → Grid or gui_grid command) is used to set the width and height of grid
dots displayed on forms when you use the Dialog Editor. These settings affect the distance between the
dots on a form that is being edited.

The width and height parameters are in twips (1440 twips equal one inch on the display).

Menu Editor Dialog

The Menu Editor dialog, shown below, contains options for editing menus. To access this dialog, click
Macro → Menus, select the menu to edit from the list, then click Open.

Macro Dialogs and Tool
Windows

847

The following fields and settings are available:

• Menu name - Name of the current menu resource. You can define your own menu resource which is
used instead of our menu bar WITHOUT changing the name of our default menu bar _mdi_menu. Use
the -m invocation option (for example, -m mymenu) or set the def_mdi_menu macro variable to your
menu name (see Setting/Changing Configuration Variables).

• Caption - Title displayed for the menu item. For menu items, set the caption to "-" to specify a line
separator.

• Short Cut - Key binding shortcut for the menu item.

• Command - Macro command executed when the menu item is selected. This may be an internal
macro command or a command line for running an external program.

• Alias - Displays the Menu Item Alias dialog box to set an alias for the menu item. See Defining Menu
Item Aliases.

• Help Cmd - Macro command executed when F1 is pressed when the menu item is selected. Usually it
is a help or popup_imessage command. For example, if you specified gui_open as the menu item
command, specify "help open dialog box" as the Help item. If you do not know the name of the dialog

Macro Dialogs and Tool
Windows

848

box displayed, search for Help on the command. The Help for each command should indicate the name
of the dialog box displayed. Some commands do not display dialog boxes. For these commands,
specify helpcommand where command is name of the command this menu item executes or help xxxx
menu where xxxx is the name of the drop-down menu this command is on.

• Message - Message text to be displayed when selection cursor is on this menu item. This message is
currently only used when the menu is used as the SlickEdit® menu bar.

• Submenu - Check this box if you want to create a menu which contains other menu items.

• Auto Enable - Displays the Auto Enable Properties dialog box to set the properties for the menu item
that should be automatically enabled. See Enabling/Disabling Menu Items and Auto Enable Properties
Dialog .

• Up - Moves the selected menu item above the previous menu item.

• Down - Moves the selected menu item below the next menu item.

• Next - Selects the menu item after the currently selected menu for editing. Use this button to insert a
blank menu item after the last menu item in the list.

• Insert - Inserts a blank menu item before the selected menu item.

• Delete - Deletes the selected menu item.

Auto Enable Properties Dialog

This dialog is used to set the auto-enable properties for a menu item. For example, the screen capture
below shows the Auto Enable Properties dialog for cut on the _textbox_menu. For more information, see
Enabling/Disabling Menu Items. To access this dialog, click the Auto Enable button on the Menu Editor
dialog.

Macro Dialogs and Tool
Windows

849

The following settings are available:

• Requires editor control - Indicates that this command should be enabled only if operating on an editor
control.

• Allow in read only mode - Indicates that this command should be enabled if the editor control is in
strict read only mode.

• Allow when window is iconized - Indicates that this command should be enabled if the editor control
is an editor window which is iconized.

• Requires selection in active buffer - Indicates that this command should be disabled if there is no
selection in the active buffer.

• Requires Context Tagging® - Indicates that this command should be disabled if Context Tagging
does not support the current buffer language type.

• Requires fileman mode - Indicates that this command should be disabled if the current buffer is not in
Fileman mode.

• Requires unicode buffer - Indicates that this command should be disabled if the current buffer is not
Unicode.

• Allow in non-MDI editor control - Indicates that this command should be allowed in a non-MDI editor
control.

• Requires block selection - Indicates that this command should be disabled if there is no selection or
the current selection is not a type of block or column.

Macro Dialogs and Tool
Windows

850

• Requires a clipboard - Indicates that this command should be disabled if there is no editor control
clipboard available.

• Requires a selection - Indicates that this command should be disabled if there is no selection.

Tools

851

Tools
This section describes items on the Tools menu and associated dialogs and tool windows.

Tools Menu
The table below describes each item on the Tools menu and its corresponding command.

Tools Menu Item Description Command

Options Displays the Options dialog. See
Options.

config

Quick Start Configuration Displays the Quick Start
Configuration Wizard. See Quick
Start Configuration Wizard.

quick_start

Regex Evaluator Shows the Regex Evaluator tool
window. See The Regex
Evaluator.

activate_regex_evaluator

OS Shell Runs operating system command
shell (DOS).

dos

OS File Browser Runs operating system file
system browser. See OS File
Browser.

explore or finder

Calculator Displays the Calculator, which
allows you to evaluate
mathematical expressions. See
Using the Calculator and Math
Commands.

calculator

Add Selected Expr Adds the result of evaluating each
line in a selected area of text.

add

ASCII Table Opens ASCII table file. ascii_table

Generate GUID Generates a Globally Unique
IDentifier. See GUID Generator.

gui_insert_guid

Version Control (Pro only) Displays Version
Control menu. See Version
Control Menu.

N/A

Tools Menu

852

Tools Menu Item Description Command

Quick Refactoring (Pro only) Displays Quick
Refactoring menu. See Quick
Refactoring Menu.

N/A

Imports (Pro only) Displays Imports
refactoring menu. See Imports
Menu.

N/A

Generate Debug Statement for (Pro only) Generates debug code
for symbol under the cursor.

generate_debug

Sort Sorts current buffer or selected
text. See Sorting Text .

gui_sort

Beautify (Pro only) Displays Beautify
menu. See Beautify Menu.

N/A

File Merge (Pro only) Displays the 3-Way
Merge Setup dialog, which
provides settings for merging two
sets of changes made to a file.
See 3-Way Merge and Tools
Dialogs and Tool Windows.

merge

File Difference Displays the DIFFzilla® dialog,
which allows you to view and edit
differences between files. See
DIFFzilla® and DIFFzilla® Dialog.

diff

Spell Check Displays menu of spell checking
commands. See Spell Check
Menu.

N/A

Tag Files (Pro only) Displays a dialog which
allows you to build tag files for
use by the Symbols tool window
and other Context Tagging®
features. See Creating Language-
Specific Tag Files and Context
Tagging - Tag Files Dialog.

gui_make_tags

Version Control Menu (Pro only)

Tools Menu

853

The table below describes each item on the Tools → Version Control menu and its corresponding
command. For more information about working with Version Control, see Version Control.

Version Control Menu Item Description Command

Check In Checks in current file. vccheckin

Get Checks out current file read only. vcget

Check Out Checks out current file. vccheckout

Lock Locks the current file without
checking out the file.

vclock

Unlock Unlocks the current file without
checking in the file.

vcunlock

Add Adds current file to version
control.

vcadd

Remove Removes current file from version
control.

vcremove

History Views history for current file. vchistory

Difference Views differences of current file. vcdiff

Properties Views properties of current file. vcproperties

Manager Executes Version Control
Manager.

vcmanager

Setup Displays the Version Control
Setup options screen, which
allows you to choose and
configure a Version Control
System interface. See Version
Control Setup Options.

vcsetup

Quick Refactoring Menu (Pro only)

TheTools → Quick Refactoring menu contains the Quick Refactorings that can be used for C++, C#,
Java, and Slick-C®. These are summarized in the table below. For more information about working with
these refactorings, see Quick Refactoring.

Tools Menu

854

Quick Refactoring Menu Item Description Command

Rename Rename symbol. refactor_quick_rename

Extract Method Extract the selected code block
into a new function.

refactor_quick_extract_method

Modify Parameter List Modify the parameter list of a
method.

refactor_quick_modify_params

Encapsulate Field Encapsulate field using Context
Tagging®.

refactor_quick_encapsulate_fie
ld

Replace Literal with Constant Replace literal value with a
declared constant.

refactor_quick_replace_literal

Imports Menu (Pro only)

The Tools → Imports menu contains options for organizing Java imports. For more information, see
Organize Java Imports.

Imports Menu Item Description Command

Organize Imports Organize import statements in a
Java or C# file.

refactor_organize_imports

Add Import Add import statement for symbol
under cursor.

refactor_add_import

Go to Import Jump to the import statement for
symbol under cursor.

refactor_goto_import

Options Displays the Options dialog open
to Organize Imports node. See
Organize Java Imports and
Organize C# Imports.

refactor_organize_imports_opti
ons

Beautify Menu (Pro only)

TheTools → Beautify menu items are summarized in the table below. For more information about
working with beautifiers, see Beautifying Code.

Tools Menu

855

Beautify Menu Item Description Command

Beautify Beautifies the current buffer with
the current beautifier settings.

beautify

Beautify With (Certain languages only)
Submenu that allows you to
beautify the current buffer with
any of the known beautifier
profiles. One caveat: your buffer
always keeps the tab settings
from your default profile, so if you
use this menu item with a profile
that has different tab settings, the
indents may look off.

N/A

Edit Current Profile (Certain languages only) Brings
up the profile editor for the default
beautifier profile for the buffer's
language. When started from this
menu, the profile editor also
allows you to beautify the buffer
as you're making changes to the
profile.

beautifier_edit_current_profile

Options Brings up the Beautifier options
for the language in the current
buffer.

beautifier_options

Beautifier Profile Overrides Displays the beautifier profile
overrides for the current buffer.
Also, allows add/remove
beautifier profiles to be used for
files beneath a specific directory
which will override the default
beautifier profile.

beautifier_edit_seeditorconfig

Spell Check Menu

The Tools → Spell Check menu contains spell checking operations and access to options. For more
information about working with Spell Check, see Spell Checking. The table below contains a summary of
the Spell Check menu items.

Spell Check Menu Item Description Command

Tools Menu

856

Spell Check Menu Item Description Command

Check from Cursor Spell check starting from cursor. spell_check

Check Comments and Strings Spell check comments and strings
starting from cursor.

spell_check_source

Check Selection Spell check words in selection. spell_check_selection

Check Word at Cursor Spell check word at cursor. spell_check_word

Check Files Spell check multiple source files. spell_check_files

Spell Options Display/modify spell checker
options.

spell_options

Tools Dialogs and Tool Windows
This section describes the dialogs and tool windows that are associated with the Tools menu items.

3-Way Merge Dialog (Pro only)

The 3-Way Merge dialog (Tools > File Merge), shown below, is used for merging file differences.

Tools Dialogs and Tool
Windows

857

The Ellipses buttons to the right of the text boxes are used to select files. The Bbuttons to the right of the
text boxes are used to select from the open buffers.

The list below describes the remaining fields and settings:

• Base file - Specifies the file/buffer name of the original source file before any changes are made.

• Revision 1 and2 - Specifies the file/buffer names of the modified versions of the base file.

• Output file - Specifies the output file name.

• Merge style - The following merge styles are available:

• Auto merge - If selected, if a change does not cause a conflict, the change is automatically applied
to the output file and no indication is made that the change was already applied.

• Show changes - If selected, if a change does not cause a conflict, the change is automatically
applied to the output file and the change IS indicated, so that using the Next Conflict button will

Tools Dialogs and Tool
Windows

858

show you the change.

• Output style - Output style has no effect if there are no conflicts. The following output styles are
available:

• Interactive - Provides a friendly side-by-side dialog box which lets you pick the change you want in
the output file. It also lets you edit.

• Interleaved buffer - Creates an editor buffer which you must edit to resolve conflicts.

• Use smart merge - If selected, the number of conflicts found is reduced.

• Ignore spaces - If selected, leading and trailing spaces are ignored. The side-by-side output allows
you to easily select the change that you want.

DIFFzilla

The DIFFzilla® dialog (Tools → File Difference) is used to configure a file differencing operation and
begin the diff. The left side of the dialog contains a tree that shows recent diff sessions and sessions you
have saved under an assigned name.

The Sessions tree records your last several diff sessions, and they are at the top of the tree. You can re-
fill the dialog with the information from a previous session by clicking on it. You can save a session with a
name by clicking the Save As button at the bottom of the dialog. If you have selected a named session
from the bottom of the tree, you can save changes to it by clicking the Save button at the bottom of the
dialog.

The dialog contains two tabs:

• DIFFzilla® Files Tab - used to select the items to compare.

• DIFFzilla Options Tab - used to specify options to control how the diff is performed and control the
setup of the diff dialog.

Tools Dialogs and Tool
Windows

859

DIFFzilla® Files Tab

Use this tab to specify the items to compare and the manner in which the comparison is performed. After
filling in the needed information, click OK to start the diff.

Items to Compare

The dialog contains two areas used to specify the items to compare: Path 1 and Path 2. Items specified in
the Path 1 section will appear on the left side of the diff output window. Items specified in the path 2
section will appear on the right side. For each you can specify the following items:

• Path 1, Path 2 - When comparing files, set Path 1 and Path 2 to file names. When comparing folders,
set Path 1 and Path 2 to directory names. If the file names only differ by path, you only need to specify
a directory for Path 2.

Tip

By default, SlickEdit will automatically set the Diff Type based on whether the values for Path 1
and Path 2 contain directory names or file names.

You can use the drop-down list to select a previously used item to compare. To browse for a file or
directory, click the Ellipses button. Click the B button to select an open buffer.

Tools Dialogs and Tool
Windows

860

• Compare type - The second drop-down list lets you select the type of comparison to run. Select one of
the following:

• Compare lines: all - This is the default comparison type, comparing all of the lines in the specified
files.

• Compare lines: range - This option allows you to select a subset of the lines to compare, using the
dialog, below.

• Compare symbols: all - (Pro only) This compares the symbols from the two files, ignoring
differences in order. For example, if a function was declared higher up in the file in one version than
the other, selecting this option would ignore that difference.

Tools Dialogs and Tool
Windows

861

DIFFzilla Icons

In the center of the DIFFzilla dialog are icons that help to configure a comparison:

• Toggle automatic directory mapping - When on, Path 2 is calculated based on other Path 2

directories used with the current Path 1 directory. The icon contains a little, red 'x' when off.

• Copy path - Copies the path from Path 1 to Path 2 or vice versa. The direction of the copy is

indicated by the arrow in the icon. When the arrow is pointing down, it will copy from Path 1 to Path 2.
The direction is controlled by the location of the cursor, which designates the origin of the copy.

• Swap paths - Click on this button to swap the paths from Path 1 to Path 2.

• Toggle Source Diff - (Pro only) Turns Source Diff on or off. When Source Diff is off, the icon

contains a small, red 'x'. Source Diff is on by default.

• Toggle compare contents - Turns compare contents on or off. When compare contents is off,

the icon contains a small, red 'x'. Compare contents is on by default. Only the filenames are compared
when compare contents is off. This is useful for checking whether files exist or don't exist.

Folder options

For multi-file diff (diffing two directories), you can set specific file types to compare or to exclude:

• File wildcards - Enter a semicolon-delimited list of wildcard file specifications to difference. For
example, enter "*.c;*.cpp;*.h" to difference all files with .c, .cpp, and .h extensions.

• Exclude files - Enter a semicolon-delimited list of ant-like wildcard file specifications to be excluded
from the differencing. For example, enter junk*;test* to exclude all files with names beginning with
the words "junk" or "test". To exclude a specific directory, provide a relative path to path1 and path2. To
exclude any subdirectory with a particular name, put a slash at the end of the name. For example, enter
".svn/" to exclude all subdirectories named ".svn" wherever they occur. A more advanced ant-like
wildcard can be used like "c*/" to exclude any directory that starts with "c". For more examples, see
Exclusion Examples

• File list file - (Pro only) File containing relative filenames on separate lines to difference.

DIFFzilla Options Tab

Use this tab to set up file comparison options and options that affect the interactive Diff dialog. Click Save
to save the options and close this dialog without running DIFFzilla. There are two types of options
available: File Compare Options and Dialog Setup Options.

File Compare Options

Tools Dialogs and Tool
Windows

862

The file compare options, shown above, are described as follows:

• Expand tabs into spaces before comparing - When selected, tabs are expanded to the appropriate
number of spaces before lines from each file that is compared.

• Ignore leading spaces before text on each line - When selected, differences in leading spaces of
lines are ignored.

• Ignore trailing spaces after text on each line - When selected, differences in trailing spaces at the
end of lines are ignored.

• Ignore all spaces in file - When selected, differences in spacing between characters in lines are
ignored.

• Compare files case insensitive - When selected, differences in character casing are ignored.

• Do not compare newline characters - When selected, differences in end-of-line characters are
ignored. This is useful when comparing UNIX-formatted files with DOS-formatted files.

• Skip comments at the beginning of the file - When selected, leading comments are ignored. This is
useful if you are using a version control system that automatically inserts comment file headers.

• Source Diff - (Pro only) Determines whether Source Diff is used. Source Diff compares the code
temporarily reformatting the code from Path 2 to match the format in Path 1. This is very useful when
one version has been both beautified and contains other meaningful changes. Source Diff can also be

Tools Dialogs and Tool
Windows

863

toggled by an icon on the diff dialog.

• Skip all comments - (Pro only) When selected, all comments are ignored.

• Skip line numbers - (Pro only) When selected, line numbers are ignored (as in Cobol or Fortran).

• Use token mapping - (Pro only) When selected, use the current token exclusion mapping rules with
Source Diff (for example, to ignore changes from renaming a symbol). See example below.

• Edit token mapping - (Pro only) Edit the set of token mapping rules. Each rule is a pair consisting of
the new token text (how it appears in the source file corresponding to Path 1, and the original token
text on the right-hand-side of the Diff dialog (how it appears in the source file corresponding to Path
2). See Source Diff for more information and an example.

• Intra-line diff length limit - If lines are shorter than this limit, perform intra-line diff.

• Diff timeout - Stop diff if it takes longer than this amount of seconds.

• Date and Size Optimization - (Pro only) These options control how DIFFzilla analyzes multi-file diffs.

• Always compare files - When selected, the two files are always compared. This was how SlickEdit
performed multi-file diffs in SlickEdit 2008 and earlier.

• Assume match if date and size match - When selected, the two files are assumed to be the same
if the date and size are the same. This will significantly speed multi-file diffs.

• Assume mismatch if date different and size matches - Defines how to handle the case when the
size is the same but the date differs.

Dialog Setup Options

Tools Dialogs and Tool
Windows

864

Setup options for the DIFFzilla® dialog are described as follows:

• Show gauge during diff - When selected, a gauge control will show various processing statistics while
you wait for the differences output to complete.

• Jump to next diff after copy block - When selected, the cursor is moved to the next difference when
you apply changes from one file to the other. For example, after clicking Block on the Diff dialog box,
the tab moves to the next difference. This option has no effect on interleaved output.

• Automatic directory mapping - When selected, the Path 2 text box is automatically updated when
you type a directory in the Path 1 text box.

• Put buttons at top of diff dialog - When selected, the buttons that control operations such as Next
Diff, Prev Diff, and Block, are displayed at the top of the Diff dialog box.

• Show current context combo boxes - When selected, the show combo boxes at the top of the dialog
which show the current symbol under the cursor and allow to jump to another symbol quickly. When
unselected, these combo boxes are hidden to save space.

• During multi-file diff, automatically close after last difference - When selected, clicking Next Diffon
the Diff dialog box when there are no more differences, triggers the Close button on that dialog box.

• When closing multi-file diff, do not prompt to save results - suppresses the prompt to save results
after a multi-file diff.

Tools Dialogs and Tool
Windows

865

• Launch multi-file diffs in a separate process - When selected, source trees are diffed in a separate
process so you can continue working.

• Show copy buttons in margins - When this is on, arrows are displayed in the diff editor margins to
allow you to transfer changes from right to left or left to right. If this is distracting, you can turn this off.
Note that source diff only displays arrows on the right because the right side is read-only.

• Number of sessions automatically saved - Determines the number of sessions automatically saved
under Recent Sessionsin the Sessions tree. The default value is 10.

• Starting position - Determines whether to place the cursor at the top of the file or at the first difference
when the Diff dialog box is displayed. This option has no effect on interleaved output.

• Dialog initialization - Determines whether the DIFFzilla dialog box restores previous dialog settings
(history) or just places the current buffer name into the Path 1 text box. Press F7/ F8 to restore the
previous next dialog settings, respectively.

DIFFzilla Diff Dialog

The Diff dialog is used to display the results of a file comparison. It displays the file from Path 1 on the left
and the file from Path 2 on the right. Colored markers are used to indicate differences between the two
files. Unlike most diff tools, the two panes are editable and support many of the same operations as the
main editor windows, including syntax expansion and completions.

Imaginary Buffer Lines are inserted any time a line exists in only one file. This ensures that lines that
are considered to be the same line (even if they contain changes) are displayed next to each other. This
aids in viewing the differences.

Tools Dialogs and Tool
Windows

866

A contiguous set of the same type of differences (inserted lines or modified lines) is called a block. A
block can be a whole line or several lines. If a particular code change to a file consists of three modified
lines followed by three inserted lines, that comprises two blocks of three lines each. Operations you
perform will act upon a block, a line, or the whole file.

The following buttons are displayed below each code pane in the Diff dialog. These are used to move
changes from one side to the other or save the modified contents of the pane.

• Del Block - (Pro only) This button only appears when one side contains code that is not present on the
other side. Click this button to delete the block.

• Block - (Pro only) Click this button to move the current block of differences from one side to the other.

• Line - (Pro only) Use this button to move the contents of the current line from one side to the other.

• Merge All - (Pro only) Merges all changes from the selected side to the other.

• Save File - (Pro only) Saves the file, including all changes made during the diff session.

• Read only - (Pro only) Lets you change the read-only status of the file.

The bottom of the Diff dialog contains the following buttons:

• Close - Close the Diff dialog. You will be prompted to save any unsaved changes.

• Next Diff - Moves to the next block of differences in the file.

• Prev Diff - Moves to the previous block of differences in the file.

• Re-Diff - Diffs the contents of the files again. This is typically used after some edits have been made
where a re-diff will better align the source files.

• Find - Performs a search in the two files.

• Undo - (Pro only) Undo the last change. This includes changes made by editing and those made using
the Block, Line, and Merge buttons.

• Help - Brings up Help on the Diff dialog.

• Source Diff/Line Diff - (Pro only) Switches from Source Diff to Line Diff. The button changes based
on the kind of diff that was performed. If you did a Code Diff, the button will say Line Diff and vice
versa.

To change the colors used, select Tools → Options → Appearance → Colors. The items to change are
listed under the Modifications node in the list of elements. Set the following colors used by the Diff
dialog:

• Inserted Line - Sets the color for lines that exist in one file but not the other. This color is displayed in
the margin of the file that contains the inserted line. The other file will contain an Imaginary Buffer
Line, to make sure that identical lines are always present next to each other.

• Modified Line - Sets the color lines that exist in both files but are different. Again, the color is rendered

Tools Dialogs and Tool
Windows

867

in the margin of the file.

• Modified Whitespace - Sets the color used for whitespace adjustments created by Source Diff. The
Code Diff capability adjusts the formatting of the Path 2 file to match that of the Path 1 file. Inserted or
removed whitespace is shown with this color. For more information, see Source Diff.

• No Save Line - Sets the color used for Imaginary Buffer Lines. These are inserted into the buffer to
make sure that lines that are believed to be the same line (even if one has changed) are drawn next to
each other. This helps when viewing and understanding differences.

Caution

These colors are not used exclusively by the Diff dialog. They are used wherever that same
information needs to be conveyed. For example, the Modified Line color is also used for margin
markers when you enable the viewing of modified lines in the editor window.

For more information on setting colors see Colors.

Multi-File Diff Output Dialog (Pro only)

When using DIFFzilla® to perform a directory comparison (Multi-File diff type), the results are presented
in the Multi-File Diff Output dialog.

The Multi-File Diff Output dialog box contains the following elements:

• Diff - Shows current files in the difference editor when the selected files differ.

Tools Dialogs and Tool
Windows

868

• Del File - Deletes the selected file(s). Hold Ctrl+Click to multi-select in either tree. The X bitmap is
displayed.

• View - Shows current files in the difference editor when the selected files match.

• Copy File/Copy Tree - Copy File is displayed when the selected files differ or when the selected file
only exists in the current source tree. The Plus bitmap is displayed. Copy Tree is displayed when the
selected item is a directory that only exists in the current source tree. When you click Copy Tree, you
are prompted as to whether you want to copy the directory source tree recursively.

• Next - Moves the cursor to the next set of mismatched files in both source trees.

• Prev - Moves the cursor to the previous set of mismatched files in both source trees.

• Save - Lets you save a diff state file (.dif) that you can load later with thePrevious diff button on the
DIFFzilla® dialog box. This is especially useful when you have not completed merging files and you
want to continue at a later time. Also, you can generate a file list.

• Refresh - Rediffs modified files or all files.

• Options - Displays the DIFFzilla Options Tab. Options include ignoring spaces, skipping leading
comments, and expanding tabs.

• Report - Displays a report of the operations you performed in this dialog including file copies, file
deletes, and diffs where changes were saved. In addition, you can save the report.

Context Tagging - Tag Files Dialog (Pro only)

The Context Tagging® - Tag Files dialog, shown below, is used to manage all your tag files. For more
information on tagging in general, see Context Tagging Features. For more information about tag files,
see Building and Managing Tag Files. To access the Context Tagging® - Tag Files dialog, click Tools →
Tag Files.

Tools Dialogs and Tool
Windows

869

The left section of the dialog lists all of your tag files, separated into categories. A tag file having a File
bitmap with blue arrows indicates the tag file is built with support for cross-referencing. The right section
of the dialog lists all the source files indexed by the currently selected tag file.

For descriptions of the Tag File categories, listed on the left side of the dialog, see Tag File Categories.

The following buttons are available on the Context Tagging® - Tag Files dialog. They are divided into two
columns, one for managing tag files, and one for managing the set of files in the currently selected tag
file.

The following buttons are used for managing a list of tag files:

• Plus - Add new or existing ag file - Displays the Add Tag File dialog box, which allows you to choose
from a list of languages for which to insert the tag file. For descriptions of the Add Tag File dialog box,
see Add Tag File dialog.

To automatically create tag files for C++, Java, and .NET, you can instead use the Create Tag Files for
Compiler Libraries dialog (see Creating Tag Files for Compiler-Specific Libraries) or click on the auto-
tag button to build compiler-specific or automatically generated language-specific tag files.

• Refresh - Rebuild selected tag file - Displays the Rebuild Tag File dialog box containing options for
rebuilding the selected tag file. See Rebuilding Tag Files.

• Up - Moves the selected tag file higher in the search order. This only applies to language-specific tag
files (see Creating Language-Specific Tag Files) and workspace auto-updated tag files (see Workspace
Auto-Updated Tag Files).

• Down - Moves the selected tag file lower in the search order. This only applies to language-specific tag
files (see Creating Language-Specific Tag Files) and workspace auto-updated tag files (see Workspace
Auto-Updated Tag Files).

Tools Dialogs and Tool
Windows

870

• Delete - Remove selected tag file - Deletes the currently selected tag file. You will be prompted
whether or not to delete the tag file from the list, and then whether or not to permanently delete the tag
file from disk. Note that some language-specific tag files are automatically generated, and thus will be
automatically regenerated if you delete them. This button will be unavailable for workspace and project
tag files, as well as auto-updated tag files.

• Auto Tag - Displays the Create Tag Files for Compiler Libraries dialog box used to automatically
create run-time library tag files for C++, Java, and .NET (see Creating Tag Files for Compiler-Specific
Libraries).

The following buttons are used for managing the list of files in the currently selected tag file:

• Add Files - Displays the Add Source Files dialog box, from which you can add a set of files to the
currently selected tag file. This button will be unavailable for read-only tag files, workspace and project
tag files, and auto-updated tag files.

Note

By default, the Add Source Files dialog will not list files in the directory being viewed that are
already included in the project. This makes it easier to locate files to add that are not yet part of
the project. This feature can be turned off by changing the Open File Options.

• Add Folder - Displays the Add Tree dialog box, from which you can recursively add a directory of files
to the currently selected tag file. This button will be unavailable for read-only tag files, workspace and
project tag files, and auto-updated tag files.

• Retag File(s) - Updates the Context Tagging information for the selected files in the currently selected
tag file. If no files are selected, you will be prompted whether or not to retag all source files. This button
will be unavailable for read-only tag files.

• Remove File(s) - Removes the selected files from the currently selected tag file. If no files are selected,
you will be prompted whether or not to remove all source files from the tag file. This button will be
unavailable for read-only tag files, workspace and project tag files, and auto-updated tag files.

• Options - Displays the Context Tagging® Options screen for you to configure Context Tagging®
options. See Context Tagging® Options for more information.

When invoked outside of the language-specific Tag Files options page, the Tag Files dialog will also have
a Done button which saves tag file settings and closes the dialog box.

Note

Note that managing tag files is generally an active process, where you are creating and deleting
tag files, adding and removing files, or rebuilding tag files concurrently as the dialog is active, so
most modifications made in the Tag Files dialog can not be cancelled or undone.

In addition to the operations described above, the following menu options are available on the right-click
context menu on the Context Tagging® - Tag Files dialog:

Tools Dialogs and Tool
Windows

871

• Edit Description - Displays a dialog box where you can enter a text description for the currently
selected tag file. This description will be shown in parenthesis in the list of tag files in the Tag Files
dialog and the Symbols tool window.

• Generate References - This option will be checked if the currently selected tag file is built with symbol
cross-referencing enabled. Unchecking the option will remove the symbol cross-referencing data.
Likewise, checking the option will cause the tag file to be rebuilt with symbol cross-referencing enabled.

• Set Workspace Tag Files Dir. - Displays a directory chooser dialog where you can select a directory
for workspace tag files (and project tag files) to be placed. This option is useful when you have
workspaces that are on network drives or if you have a high-speed drive that you prefer to store your
workspace and project tag files on for performance.

This option is also useful to avoid cluttering your workspace directory with tag files (in the case where
you have several project-specific tag files or auto-updated tag files in your workspace).

In addition, this option can be useful in order to avoid conflicts with other users when working with a
workspace that is in a shared directory. By setting the workspace tagging directory to a location under
your home directory or your SlickEdit configuration directory using an environment variable such as
%(HOME) or %(SLICKEDITCONFIG), you can insure that each user has a private copy of all the
workspace tag files and the workspace history file.

Add Tree Dialog

The Add Tree dialog is used to add files in a directory or directory tree to a tag file or a project. It also
gives you the ability to use wildcards so that you can add only files with certain extensions.

This dialog is displayed when you click the Add Tree button on the Context Tagging - Tag Files Dialog or
the Files Tab of the Project Properties dialog.

Tools Dialogs and Tool
Windows

872

The dialog contains the following elements:

• Path - The Path text box lets you type out the path to the directory from which to include files. As you
type, the first matching item is selected and expanded in the directory list.

• Directory list - The directory list box lets you pick the directory from which to add files.

• Include filespecs - The Include Filespecs combo box lets you select from predefined wildcard
specifications or you can type your own. Each file spec should be separated with semicolons. For
example, to include only Java files, select *.java from the predefined list. To include all files in a
directory, type the wildcard *. To customize the items in this list, see the Files of Type Filter Options.

• Exclude - Use this combo box to exclude paths, files, or file types from the specified directory using
ant-like wildcards. To specify multiple patterns, separate them with semicolons. No files are searched in
a path that is excluded, including any files in sub-directories beneath. For examples, see Exclusion

Tools Dialogs and Tool
Windows

873

Examples below.

• Recursive - If checked, the selected directory will be searched recursively.

• Show subfolders - If checked, project folders are created for each child directory when recursing files.
Project folders are seen in the Project tool window when the project is in Custom View.

• Add as wildcard - When this box is unchecked, then the file tree will be traversed once and all files
found at that time will be added as individual files. When this box is checked, then a wildcard
specification is added instead, and any time a new file is added to the tree that matches the
specifications will be included. While this is a good way to automatically keep your project updated, it
can cause performance degradation.

Exclusion Examples

SlickEdit supports Ant-like wildcards. It's essentially Ant syntax with some additional short hands. For
example, when doing recursive file listing path/ is treated as **/path/** and *.cpp is treated as
**/*.cpp.

When specifying a list of file or directory exclusions, they need to be separated by semicolons. Wildcard
expressions containing spaces can be placed in quotes.

Note

Absolute path file exclusions don't work. The exclusions need to be relative to the start path.

The table below shows some examples of filespec exclude patterns that you can use in various Exclude
combo boxes within SlickEdit®.

Example Description

math.cpp Exclude any .cpp with "math" in the file name.

readme.txt Exclude all files named readme.txt.

*.cpp Exclude any file with extension .cpp.

.png;.ico;*.jpg Exclude any file with extension .png, .ico, or
.jpg.

.svn\ Exclude any files in paths named ".svn".

C*\ Exclude any files in paths that start with "C".

/b*/debug//backup/ Exclude all files in this path name.

demo Exclude any file (not directory) with "demo" in the

Tools Dialogs and Tool
Windows

874

Example Description

name.

<Binary Files> Exclude Binary files. All extensions defined by the
Binary language are excluded. Also, unknown files
which appear to contain binary data use the Binary
language.

Workspace Tagging Excludes

The Workspace Tagging Excludes options allow you to specify directories of files to be excluded from
tagging. by the currently selected tag file.

• Add Full Path... - Allows you to add an absolute path to be excluded from tagging.

• Add Path Component... - Allows you to add a partial path to be excluded from tagging. For example,
"backup" would exclude all files beneath a backup directory.

GUID Generator

The GUID Generator (Tools → Generate GUID), shown below, is used to create Globally Unique
IDentifiers for use in your code.

The GUID Generator dialog contains the following fields and controls:

• GUID Format - Lets you select the format for the GUID.

• Current GUID - Displays the last created GUID. A new GUID is generated each time you invoke this
dialog.

• New - Click this button to generate a new GUID.

• Copy - Click this button to copy the current GUID to the clipboard.

Tools Dialogs and Tool
Windows

875

• Insert - Click this button to insert the current GUID into the active buffer at the cursor location.

Common Formatting Options for Brace-style Languages

Some common formatting options are available for brace-style languages which do not have beautifiers
(ActionScript, Ansi-C, AWK, Batch, CFScript, CH, D, Google Go, IDL, J#, Perl, Ruby, Slick-C, Tcl, Vera,
and Windows PowerShell). These option include the Syntax Indent and Syntax Expansion style settings.
To access these options, from the main menu, click Tools → Options → Languages, choose a
language, and click Formatting.

Note

Languages similar to ActionScript have similar Formatting Options screens that are not
specifically documented.

The following settings are available:

• Indent with tabs - Determines whether Tab key, Enter key, and paragraph reformat commands indent
with spaces or tabs. The hyperlink indicates if Adaptive Formatting is on or off for this setting. See
Indenting with Tabs for more information.

• Syntax indent- When this option is selected, the Enter key indents according to language syntax. The
value in the text box specifies the amount to indent for each level. The hyperlink indicates if Adaptive
Formatting is on or off for this setting. See Syntax Indent for more information.

• Tabs - Set tabs in increments of a specific value or at specific column positions. To specify an
increment of three, enter +3 in the text box. To specify columns, for example, enter 1 8 27 44, to specify
tab stops that are not an increment of a specific value. The hyperlink indicates if Adaptive Formatting is

Tools Dialogs and Tool
Windows

876

on or off for this setting.

• Begin/end style - Specify the brace style to be used for Syntax Indent and Syntax Expansion. The
hyperlink indicates if Adaptive Formatting is on or off for this setting. After specifying the brace style,
choose from the following options:

• Quick brace/unbrace one line statements - Enables Quick Brace/Unbrace, features that allow you
to convert a single line statement to a brace-enclosed block, and vice versa. See Quick Brace/
Unbrace for more information.

• Place "else" on same line as "}" - When this option is selected, SlickEdit® places the else keyword
on the same line as }. This is common when using brace Style 1.

• Indent first level of code - Specifies whether Syntax Indent should indent the cursor after declarations
such as functions.

• Function parameter alignment - Determines whether function parameters should use the continuation
indent or be aligned to the parenthesis. When "Auto" is selected, continuation indent is used unless the
first parameter is on the same line as the open parenthesis.

• Indent CASE from SWITCH - When checked, Syntax Expansion places the case statement indented
from the switch statement column. The hyperlink indicates if Adaptive Formatting is on or off for this
setting.

• Space before parenthesis - Determines whether a space is placed between a keyword such as if, for,
or while and the open paren when syntax expansion occurs. Example: (if(or if () The hyperlink
indicates if Adaptive Formatting is on or off for this setting.

• Insert padding between parentheses - When checked, a space is placed after the open paren, and
before the close paren, providing padding for the enclosed text. For example, if () becomes if (). The
hyperlink indicates if Adaptive Formatting is on or off for this setting.

• Indent namespace - Determines whether text inside namespace is indented.

• Indent in extern - Determines whether text extern braces is indented.

• Indent member access spec (public, private, protected) - Determines whether member access
specifier is indented (public: indented from class keyword).

• Indent from member access spec - Determines whether declarations are indented from the member
access specifier (i.e. indented from public:).

Options

877

Options

Options Dialog
The Options dialog is used to configure SlickEdit®. To display it, from the main menu, click Tools →
Options, or use the config command on the SlickEdit® command line.

Note

The Options dialog displayed below is Options dialog for the Pro edition. The Debugging and
Symbol Coloring options are not available in the Standard and Community editions.

The following sections describe how to use the Options dialog. For descriptions of individual options, skip
to the index located at Option Categories.

Using the Options Dialog

Options Dialog

878

The Options dialog is divided into two sections: the tree on the left, which contains category nodes (see
Option Categories), and the option panel on the right, which contains specific options. Right-click inside
the tree area to expand or collapse all nodes in the tree.

As you click on nodes, the option panel updates to show the applicable options. The layout of the option
panel can be either a property sheet in tabular format (like Tools → Options → Appearance →
General), or a form with radio buttons, check boxes, etc. (like Tools → Options → Appearance →
Colors).

The tree on the left, which contains category nodes, as well as the options search filters, can be collapsed
to conserve screen space. When the tree is collapsed, you can still navigate between panels by clicking
on their icons and by using the Up, Back, and Forward keys at the top of the Options dialog.

Options Dialog

879

Tip

Options Dialog

880

The Options dialog supports keyboard shortcuts, so you can use the dialog and change settings
without having to touch the mouse. See Keyboard Shortcuts in the Options Dialog for more
information.

See the following sections for more information:

• Section_Changing_and_Applying_Option_Settings

• Navigating to Previously Viewed Panels

• Option Favorites

• Option Search

• Keyboard Shortcuts in the Options Dialog

Changing and Applying Option Settings

When options are displayed as a property sheet, the name of the option is shown in the Option column,
and the setting is shown in the Value column. The manner in which an option value is changed depends
on the type of option:

• For options with switches - Click anywhere on the switch to toggle it off and on.

• For options with combo boxes - Use the drop-down arrow to make a selection. Alternately, to cycle
through and select a setting, double-click on the option. If you're using keyboard shortcuts, you can
toggle a combo box up and down using F4 or Alt+Up and Alt+Down, respectively, and then use the
Up and Down keys to make a selection.

• For options with numeric text boxes - Click on the option and type directly in the text box to change
the value. If you're using keyboard shortcuts, use one of the keys Right, Space, or F4 to enable the
text box.

• For color options - Double-click on the color block or press F4, and the color picker is displayed.

• For file and directory path options - Double-click on the value or press F4, and a directory picker is
displayed. If you have specified a file name or directory in a field and wish to change it back to the
default, press the Delete key. This clears the value and SlickEdit® will use the default setting.

For both forms and property sheets, when you change the value of an option, an asterisk appears after
the node name in the tree. If the option is in a property sheet, an asterisk also appears next to the option
name. This helps you see the options that have changed when you've made a lot of settings changes at
once. The asterisks remain until you click Apply or close the dialog. To see changes made in previous
dialog sessions, click the Options History node in the tree. See Options History for more information.

Click Apply to save option changes and leave the dialog open, or click OK to save the changes and close
the dialog. If you attempt to close the dialog by any other means, and if changes have been made but not
yet applied, you are prompted to save the changes. When the Options dialog is closed, the view is saved
and restored the next time the dialog is opened.

Options Dialog

881

Navigating to Previously Viewed Panels

Some options link to other option panels, like options for Adaptive Formatting. To make it easy to get back
to an option panel after clicking a link, Backward and Forward navigation buttons are available along the
top right side of the dialog. These buttons let you navigate between previously viewed panels, similar to
the Windows Explorer back/forward navigation features. Click the drop-down arrows to see lists of the
previously viewed option panel. Click on an item in one of the lists to navigate to the panel directly.

Tip

• If your mouse has Back and Forward navigation buttons, you can use them to navigate through
previously viewed option panels.

• If you prefer to use keyboard shortcuts, use Alt+Left and Alt+Right to navigate backward and
forward, respectively. See Keyboard Shortcuts in the Options Dialog for more information about
keyboard navigation.

Option Favorites

You can mark a frequently used options page as a favorite for quicker access. To add the current page to
your favorites list, click the Add [OptionsPage] to Favorites button located at the bottom of the tree.
After adding favorites, click the Show Favorites button located above the tree, and the tree changes to
only show a list of nodes which are favorites or parents of favorites. Favorite nodes are displayed in bold
type. To remove the selected favorite, click Remove from Favorites. To reset the tree to the default
view, click Show All. Note that initiating a search while viewing Favorites causes the tree to reset as well.

Option Search

The dialog lets you search for keywords throughout the options with an incremental search field located at
the top left of the dialog under Enter search text. As you type each character in the search box, the tree
is filtered to show only nodes that contain the search text. The node that contains a match is displayed in
bold type in the tree.

To perform a more in-depth search, check the Search descriptions checkbox. In the case that you do
not find what you are looking for using the regular search, this will enable searching of help information
included in the options dialog. This search will likely yield more results. Since the additional results will be
more difficult to go through, this search is off by default.

To reset the tree and clear the search box, click the Clear button or press Alt+C. Note that viewing
Favorites resets the tree and clears the search box as well.

After you have initiated a search, to see a list of search results, select the Search Results node. This
node only appears in the tree (at the bottom of the list) after you have started a search. The search
results are divided into columns showing the option name and the path to the option in the dialog. Double-
click on an option to navigate to the corresponding option page. For options in forms embedded in the
Options dialog, the results only show the name of the form. For example, if the Fixed Fonts Only option
on the Fonts form was a match, the results show "Fonts" as the option name and "Appearance" as the

Options Dialog

882

path.

Keyboard Shortcuts in the Options Dialog

If you prefer to keep your hands on the keyboard, invoke the Options dialog with the config command
and use keyboard shortcuts to navigate and change options.

Some quick tips:

• Each time the dialog is displayed, the focus is in the Search box at the top left of the dialog. Use Tab to
navigate through the elements on the dialog.

• Use the Right and Left keys to expand and collapse nodes in the tree.

• Prefix matching is supported for tree nodes and in property sheets. For example, if the Appearance
node category is expanded and focus is in the tree, you can type "F" and the first node beginning with
that letter is selected (Fonts). Likewise, if focus is at the top of the Tools → Options → Appearance
→ General property sheet, you can type "C" and the first option beginning with "C" is selected (Cursor
style). Note that only the current visible hierarchy of the tree is searched, and on property sheets,
property group headings are not included in the search.

• Use Alt+O to jump from the option tree to the option panel.

• On property sheets, use F4 to toggle combo boxes up and down, enable numeric text boxes, and
display color and directory pickers.

• Press Enter to save changes and close the Options dialog, or Esc to prompt for changes before
closing the dialog.

The table below describes all of the available shortcuts.

Summary Keyboard Shortcut(s) Description

Navigation Alt+[letter] or Alt+[number] Performs the following actions:

• If neither form nor property
sheet is visible, jumps to the
first Alt-prefixed shortcut on the
Options dialog proper (for
example, Alt+C corresponds to
the Clear button next to the
Search field). Note that for most
operating systems, Alt-prefixed
shortcuts correspond to the
underlined letters in labels on
forms and dialogs.

• If a form is visible, jumps to the
first Alt-prefixed shortcut on the
form (for example, in the

Options Dialog

883

Summary Keyboard Shortcut(s) Description

Appearance Colors form,
Alt+E corresponds to the
Screen element list).

• If a property sheet is visible,
jumps to the first option starting
with that letter or number (for
example, on the Tools →
Options → Appearance →
General property sheet, Alt+T
selects the first option that
starts with a "T", which is Top
of file line).

Navigation Tab Moves the focus to each area/
button on the Options dialog. In a
form, Tab moves between each
area/button on the form until
reaching the last element and
placing focus back on the Options
dialog proper. In a property sheet,
Tab jumps back to the dialog
proper.

Navigation Up and Down In the tree, moves up and down
the visible nodes. In property
sheets, moves up and down line-
by-line. In combo boxes, moves
up and down through the
available settings.

Navigation (dialog to panel) Shift+Tab Jumps from the OK button on the
Options dialog to the currently
visible option panel.

Navigation (tree to panel) Alt+O Shifts focus from the tree to the
currently visible option panel.
Subsequently, if the panel is a
property sheet, use the Up and
Down keys to navigate through
the options. If the panel is a form,
use Tab to navigate through the
elements on the form.

Navigation (between panels) Alt+Left and Alt+Right Navigates backward and forward,

Options Dialog

884

Summary Keyboard Shortcut(s) Description

respectively, between previously
viewed option panels. Same as
using the Back and Forward
buttons on the Options dialog.

Navigation or exit Enter Saves changes and closes the
Options dialog, or, if inside a text
box or combo box, shifts focus
back to the option panel. Same as
pressing OK on the Options
dialog.

Navigation or exit Esc Prompts to save any changes and
closes the Options dialog, or,
inside a text box or combo box,
shifts focus back to the option
panel. Same as pressing Cancel
on the Options dialog.

Expands/collapses tree nodes
and enables property sheet
controls

Right and Left Expands/collapses nodes in the
tree. In property sheets, enables
numeric text boxes and drops
down combo boxes (but not up).

Enables property sheet controls F4 Toggles combo boxes up and
down, enables numeric text
boxes, and displays color and
directory pickers.

Enables property sheet controls Alt+Up and Alt+Down Toggles combo boxes on property
sheets up and down, respectively.

Enables property sheet controls Space In property sheets, enables a
numeric text box and drops down
combo boxes (but not up). In the
Option Search results or Options
History nodes, displays the
selected option in the option panel
(same as double-clicking).

Scrolling Ctrl+Down and Ctrl+Up Scrolls the option tree and long
property sheets one line at a time.

Scrolling PageUp and PageDown Scrolls the option tree and long
property sheets one page at a

Options Dialog

885

Summary Keyboard Shortcut(s) Description

time.

Clears a directory/file name
property

Delete Clears a directory or file name
field, resetting the default value.

Option search Alt+C Clears the Search box on the
Options dialog. Same as using
the Clear button. See Option
Search for more information.

Option favorites Alt+F Adds or removes the selected
node to or from your favorites list.
Same as using the Add to
Favorites or Remove from
Favorites button on the Options
dialog. See Option Favorites for
more information.

Option favorites Alt+S Trims the tree to show only your
favorite option nodes (same as
the Show Favorites button), or
displays all nodes again when
viewing favorites (same as the
Show All button). See Option
Favorites for more information.

Save changes Alt+A Saves all option changes yet
leaves the Options dialog
displayed. Same as using the
Apply button on the Options
dialog.

Help Alt+H Displays the Help topic for the
Options dialog.

Option Categories

The tree in the Options dialog (Tools → Options) contains the following category nodes, which are
described in subsequent sections:

• Appearance Options

• Keyboard and Mouse Options

Options Dialog

886

• Editing Options

• Debugging

• Language Options

• File Options

• Application Options

• Network and Internet Options

• Tool Options

• Options History

Appearance Options
Appearance options (Tools → Options → Appearance) allow you to customize the look of SlickEdit®.
You can change fonts and colors, specify which toolbars and tool windows to display, enable display of
special characters, and more. Appearance option categories are:

• General Appearance Options

• Color Options

• Symbol Coloring Options

• Font Options

• Toolbar Options

• Tool Windows Options

• Preview Tool Window

• Special Character Options

• Advanced Appearance Options

General Appearance Options

General appearance options are shown below (Tools → Options → Appearance → General).

Appearance Options

887

The options are described as follows:

• Application theme - Effects the color scheme used by all controls except the edit window. Set to Dark
to have tool windows drawn with a dark background color. Specifies One of the following settings:

Appearance Options

888

• System- On Windows, this specifies the OS theme. On Mac, a default theme intended to match the
OS theme is used. On Unix, a theme is chosen similar to GTK but this can be configured with a
command line switch.

• Dark - Specifies a dark theme designed for SlickEdit.

• Horizontal scroll bar - When set to On, each editor window displays a horizontal scroll bar. This does
not affect edit window controls on dialog boxes.

• Vertical scroll bar - When set to On, each editor window displays a vertical scroll bar. This does not
affect edit window controls on dialog boxes.

• Window left margin - Specifies the amount of space, in inches, between the left edge of the window
and the editor text. This option has no effect when there are bitmaps displayed in the left margin, since
more space may be necessary to accommodate the size of the bitmap.

• Cursor style - Specifies the style of the cursor (block/text mode style, or vertical).

• Cursor blink period - Specifies the period of cursor blinks in milliseconds. Set this value to 0 to use
the default value for the OS.

• Hide mouse pointer - When set to On, the mouse pointer is hidden when typing, but visible when
moving the mouse or when a dialog box is displayed.

• Vertical line columns - Specifies the columns in which the editor is to display a vertical line. You can
show multiple lines by specifying each column, separated by a space. Set the value to 0 to have no
vertical lines. The vertical line is not displayed in Unicode files or when using proportional fonts.

• Vertical line color - Specifies the color of the vertical line when it is displayed.

• Top of file line - When set to On, a line 0 is inserted at the top of each buffer with the text "Top of File".
Does not affect lines of code. Note that rather than setting this option, you can press Ctrl+Shift+Enter
(Ctrl+Enter in the Visual C++ and Visual Studio default emulations) to insert a new line above the line
where the cursor is located.

• List command line completions - When set to On, a pop-up list of possible commands and argument
completions is displayed for partially typed commands and arguments on the SlickEdit® command line.
See Command Line Completion for more information.

• Change directory - When set to On, the current directory is changed in the editor when the directory is
changed in the Change Directory dialog (File → Change Directory) and the Open, Save Copy As, and
Save As dialogs (File → Open, File → Save Copy As and File → Save As).

• Show dot files - When set to On, displays dot files in the Open tool window and Open, Save Copy As,
and Save As dialogs. On Windows, the Open and Save as dialogs ignore this option and always
display dot files. This value is also controlled by the configuration variable def_filelist_show_dotfiles.

• Underline URLs - When set to On, URLs in and editor window are underline.

• Process recognized xterm color output in Build Window - When set to On, recognized color
escape sequences in the Build Window are processed. For example, "g++ -

Appearance Options

889

fdiagnostics-color=always myfile.cpp" or "clang++ -fdiagnostics-color=always myfile.cpp" will
display colored error messages in the Build window. Cursor movement and non-color escape
sequences are not supported. For Unix and macOS, using SoftWrap in the Build Window disables
support for bold, italics, and underline.

• Date display style - (Unix and Mac only) Determines how the date is displayed. This option effects
printing, alias dates, and template dates. Unfortunately, this option does not effect dates displayed in a
tree control which several dialogs use. It also does not affect how the date is displayed in the file
manager.

• Time display style - (Unix and Mac only) Determines how the time is displayed. This option effects
printing, alias times, and template times. Unfortunately, this option does not effect times displayed in a
tree control which several dialogs use. It also does not affect how the time is displayed in the file
manager.

• Scroll style options include:

• Smooth horizontal scroll - When set to On, editor windows scroll column-by-column when the
cursor moves out of view. When set to Off, the cursor is centered and the text is scrolled one-fourth
the width of the window when the cursor moves out of view.

• Smooth vertical scroll - When set to On, editor windows scroll line-by-line when the cursor moves
out of view. When set to Off, the cursor is centered and the text is scrolled half the height of the
window when the cursor moves out of view.

• Scroll when - Specifies how close (in number of lines) the cursor may get to the top or bottom of the
window before scrolling occurs. Does not affect horizontal scrolling.

• Current line highlight options include:

• Current line highlight - Specifies the type of highlight to be drawn around the current line. When
None is selected, the current line is not highlighted. When Draw box only is selected, a dotted box is
drawn around the current line. When Tabs ruler is selected, a box is drawn around the current line
with tab stops marked. When Syntax indent ruler is selected, a box is drawn around the current line
with Syntax Indent levels marked. When Decimal ruler is selected, a box is drawn around the
current line with marks at multiples of five and 10. For Unicode files or when using proportional fonts,
only a box will be drawn.

• Current line box color - Specifies the color of the box outline when Current line highlight is
enabled.

• Current line column color - Specifies the color for column markers when using a current line
highlight with column indicators (Tabs, Syntax Indent, or Decimal rulers). Note that this is the same
as the margin color.

• Selective Display options include:

• Selective Display bracketing - Specifies whether or not to draw lines to illustrate Selective Display
regions. For more information, see Selective Display and Selective Display on file open.

The following example shows what the selective display bracketing looks like. Note that solid

Appearance Options

890

horizontal connector lines indicate a collapsed selective display region.

• Selective Display line color - Specifies the color of the lines drawn to illustrate Selective Display
regions when Selective Display bracketing is enabled.

• Maximum nesting level - Specifies the maximum level of nesting for Selective Display outlining to
create. For more information, see Multi-Level outline and Selective Display on file open.

• Minimum level to collapse - Specifies the minimum level of nesting for Selective Display outlining to
leave expanded. Any region above this level will be collapsed. For more information, see Multi-Level
outline and Selective Display on file open.

• Message list colors - Select from the following options that pertain to the Message List feature:

• Message visited color - Specifies the color of the message in the Message List tool window after
you have navigated to the associated code location.

• Message modified color - Specifies the color of the message in the Message List tool window after
the line at the associated code location has been modified.

Appearance Options

891

Color Options

Color options are shown below (Tools → Options → Appearance → Colors). These options let you
specify colors for screen elements in SlickEdit® and create and manage color profiles. See Colors for
more information.

The options are described as follows:

• Profile - Specify the color profile to use from the drop-down list. Several predefined profiles are
available or you can define your own. See Using Color Profiles for more information.

• Copy... - Allows you to copy the current color settings as a new color profile with a name you specify.

• Reset - Resets a SlickEdit built-in profile back to its default configuration.

• Delete - Deletes the selected color profile. Only available for user defined color profiles.

• Rename... - Allows you to rename the selected color profile. Only available for user color profiles.

• Associated symbol coloring profile - (Pro only) Each color profile is associated with a corresponding
symbol coloring profile. This is necessary in order to insure that the symbol colors are compatible with
the base colors in the color profile. When you switch color profiles, you also switch symbol coloring
profiles.

Appearance Options

892

(Pro only) Press the Symbol Coloring... button to jump to the Symbol Coloring options dialog to take a
closer look at the available profiles. For more information about symbol coloring, see Symbol Coloring.

• Reset Colors - Restores all colors to the values they were when the Color Options dialog was invoked.
All color changes to the selected profile are saved when you exit the dialog or switch profiles.

• Screen element - Select the screen element before changing the Foreground and Background
colors. Most of the screen element items are obvious except for those in the following list. For a
complete list of color elements, see Color Elements.

• Window Text - This is the color of other text which is not a specific syntax element.

• Attribute (XML and HTML only) - This is the color used for a recognized attribute of an XML or
HTML tag. For example, in HTML, the src attribute of the img tag gets this color.

• Cursor - This screen element is displayed in the active edit window when the cursor is placed on the
command line. It is not the color of the blinking cursor.

• Current Line, Current Selected Line, Selection - SlickEdit® will attempt to render these elements
using your normal color settings for the Foreground color. The selected Foreground color will only
be used if there is not enough contrast between the font colors to be readable. It is best to specify a
Background color for these elements that is only a slight tint from your normal background color,
ensuring that the color-coded text is still easy to read.

• Foreground color - Click the color square to change colors for the selected element. The Color Picker
dialog is displayed, allowing you to pick a color from the palette or set your own custom color using
RGB values.

• Background color - Click the color square to change colors for the selected element. The Color Picker
dialog is displayed, allowing you to pick a color from the palette or set your own custom color using
RGB values.

The Embedded code option is used to define the background color to be used for source code which
is embedded in another language. (for example, JavaScript embedded in an HTML file). For HTML, the
syntax color-coding recognizes the <script language="???"> tag and uses embedded language
colors for the new language. In addition, for Perl and UNIX shell scripts, you can prefix your here-
document terminator with one of the color-coding profile names to get embedded language color-
coding. For an example, see Setting Colors for Screen Elements

Only color elements recognized by Color Coding, current line, and selection colors have an embedded
color option.

Select the Inherit option to specify that the background color and embedded code color should be
inherited from the basic Window Text color. This feature can be used to keep the background colors
synchronized among editor color elements.

• Use system default - When this option is selected, the operating system's default colors are used.
Currently, this check box is only available for the Status and Message fields. For UNIX, the system
default colors are selected by the editor and not the operating system.

Appearance Options

893

• Font style - For color-coded elements, you may choose whether the element is normal or a
combination of bold, italic, and underline. For example, keywords are bold by default.

• Sample Text - Use the sample text and the embedded sample text to preview the foreground,
background, and font attribute choices, both in normal code and embedded code.

• Sample Code - Use the sample code text box to view your selected color profile in a language of your
choosing. You can also cut and paste small samples of text into this box in order to view specific items.

Note

Due to limitations in the Sample Code display, when you switch between color profiles with
different background colors, the new color profile will be automatically applied, as if you had
pressed the Apply button.

Color Elements

Each of the following color elements which can be configured from within SlickEdit®.

• General - These color options are for syntactic elements displayed in editor windows. They correspond
to items defined in the language's Color Coding specification. For more information, see Color Coding.

• Function - This color is used to highlight identifiers which are followed by an open parenthesis,
provided the language's Color Coding options specify to color them as such. Note that this color can
be easily overridden by Symbol Coloring. For more information, see Symbol Coloring

• Identifier - This color is used to highlight symbols matching the identifier characters defined for the
current language.

• Keyword - This color is used to highlight identifiers which match one of the keywords defined in the
Color Coding for the current language.

• Library Symbol - This color is used to highlight identifiers which match one of the library symbols
defined in the Color Coding for the current language.

• Operator This color is used to highlight symbols and punctuation which match one of the operators
defined in the Color Coding for the current language.

• Preprocessor - This color is used to highlight preprocessor keywords defined in the Color Coding for
the current language.

• Punctuation - This color is used to highlight symbols and punctuation which match one of the
punctuation symbols defined in the Color Coding for the current language.

• Special Characters - This color is used for special characters such as tabs, newlines, and spaces.
The color is only used when the option to view special characters is turned on either at the language
level or for the current file.

• User Defined Symbol - This color is used to highlight identifiers which match one of the user-defined
symbols defined in the Color Coding for the current language.

Appearance Options

894

• Window Text - This color is used for all the text in an editor control which does not match one of the
other color coding elements defined for the current language.

• Selections - These color options are for text selections and the current line in the editor control.

• Current Line - This color is used to highlight the current line under the cursor. Underlying items will
be colored using their configured foreground color and the background color specified for the current
line, unless there isn't sufficient contrast, in which the foreground color for the current line will be
used.

• Cursor - This screen element is displayed in the active edit window when the cursor is placed on the
command line. It is not the color of the blinking cursor.

• Selected Current Line - This color is used to highlight the current line under the cursor when in a
selection. Underlying items will be colored using their configured foreground color and the
background color specified for the current line, unless there isn't sufficient contrast, in which the
foreground color for the current line will be used. Ideally, you should select a background for this
color that is a combination of the Current Line and Selection colors.

• Selection - This color is used to highlight selections within the editor.

• Comments - These colors are used to highlight different comment types defined in the Color Coding
specification for the current language. For more information, see Color Coding.

• Block Comment - This color is used to highlight block comments.

• Documentation Attribute - This color is used for attribute names within HTML and XML tags
recognized within documentation comments.

• Documentation Attribute Value - This color is used for attribute values within HTML and XML tags
recognized within documentation comments.

• Documentation Comment - This color is used for documentation comments. Three types of
documentation comments are supported: JavaDoc, XMLDoc, and Doxygen.

• Documentation Keyword - This color is used for documentation comment keywords and HTML and
XML tag names recognized within documentation comments.

• Documentation Punctuation - This color is used for punctuation used for HTML and XML tags
recognized within documentation comments.

• Inactive Code - This color is used for inactive code regions recognized by color coding. Inactive
code regions are found in languages that support C/C++ style preprocessing provided the option to
color inactive code regions is enabled for the current language.

• Inactive Code Keyword - This color is used for keywords within inactive code regions. Generally,
the colors chosen for inactive code are such that the code appears to be grayed out. Highlighting
keywords helps make inactive code still look somewhat like code, as apposed to just looking like
block comments.

• Inactive Code Comment - This color is used for comments within inactive code regions. Generally,

Appearance Options

895

the colors chosen for inactive code are such that the code appears to be grayed out. Highlighting
comments helps make inactive code still look slightly more like normal code.

• Line Comment - This color is used for line comments.

• Strings - These colors are used to highlight different string types defined in the Color Coding
specification for the current language. For more information, see Color Coding.

• Backquoted String - This color is used for strings which use the backwards single quote character
as a delimiter, such as found in shell scripts and Perl. Because the contents of these strings are
executed and evaluated, it is important to be able to visually distinguish this kind of string from a
common literal string.

• Single Quoted String - This color is used for strings and character literals which use the single
quote character as a delimiter. Because these are usually character literals, it is useful to be able to
distinguish between them and double quoted strings.

• String - This is the general string color, used for double quoted strings, regular expressions, and
anything else that is regarded as a string literal by the color coding engine. For example, this color is
also used for here-documents when they have no embedded language.

• Unterminated String - This color is used for the background of the right hand side of the line when
the string does not yet have a closing quote. You can disable this coloring simply by allowing it to
inherit it's background color from Window Text.

• Numbers - These colors are used to highlight different numeric types defined in the Color Coding
specification for the current language. For more information, see Color Coding.

• Floating Point Number - This color is used to highlight floating point numbers.

• Hexadecimal Number - This color is used to highlight numbers specified in hexadecimal format.

• Line Number - This color is used to highlight line numbers. This is different from the View → Line
Numbers display option. This option is for coded line numbers, such as that found in dialects of
Basic and COBOL.

• Number - This color is used for all other numeric constants recognized by the Color Coding engine.

• HTML and XML -

• Attribute - This is the color used for a recognized attribute of an XML or HTML tag. For example, in
HTML, the src attribute of the img tag gets this color. Unrecognized attributes are colored using the
Window Text color. Attribute values are colored using the String color.

• Unknown Tag Name - This is the color used for unrecognized XML or HTML tags. If an XML
document has no DTD or Schema, all the tags in the document will be colored using this color.
Recognized XML and HTML tags are colored using the Keyword color.

• XHTML Element in XSL - This color is used for an XHTML element in an XSL style sheet.

• XML/HTML Numeric Character References - This color is used for XML/HTML numeric character

Appearance Options

896

references &#nnnn; (decimal) or &#xhhhh; (hexadecimal).

• Markdown - Colors used when editing Markdown.

• Markdown Blockquote

• Markdown Code

• Markdown Header

• Markdown Link

• Modifications - These color are used to show change bars in the left margin, as well as in DIFFzilla®
to highlight changes.

• Inserted Line - This color is used in the left-hand margin for lines that have been inserted into the
current file since you started editing it. It is only displayed if you have Modified Lines coloring
enabled for the current language. See Language-Specific General Options for more information.

• Modified Line - This color is used in the left-hand margin for lines that have been changed in the
current file since you started editing it. It is only displayed if you have Modified Lines coloring
enabled for the current language. See Language-Specific General Options for more information.

• Modified Whitespace - This color is used in DIFFzilla® when doing a source diff (ignoring
whitespace). It is used to highlight locations where whitespace has been inserted, removed, or
changed. To disable display of modified whitespace in DIFFzilla®, set the background for this color to
inherit from Window Text.

• No Save Line - This color is used to display lines which are shown in the editor or DIFFzilla® which
will not be saved when the file is saved. These lines are also known as imaginary lines. This color is
also used for the top-of-file line.

• Highlighting - These color are used for various types of text highlighting used to display search results.

• Block Matching - This color is used to highlight matching parentheses, braces, brackets, and
keyword begin-end pairs. The behavior of this option is language-specific.

• Compiler Errors - This color is used to mark the position of compiler errors on the vertical scrollbar.

• Filename - This color is used in the Search Results tool window to highlight file names. It is not
used for file names in source code or for names displayed in the File Manager.

• Hex Mode - This color is used to display hexadecimal characters when displaying text in hex mode
or line hex mode.

• Highlight - This color is used to highlight word matches found by word completion.

• Incremental Search Current Match - This color is used to highlight the current matching word when
doing an incremental search.

• Incremental Search Highlight - This color is used to highlight matches to the current incremental
search expression.

Appearance Options

897

• Search Result Truncated - This color is used in the Search Results tool window to highlight the
leading and/or trailing part of search result line that is truncated.

• Symbol Highlight - This color is used to highlight other references to the current symbol under the
cursor within the current file.

• Margins - These colors are used for various marker lines and the left-hand indicator margin.

• Current Line Box - This color is used for the box drawn around the current line or the ruler line
drawn around the current line if a Current line highlight option is enabled. See Current line highlight
for more information.

• Line Prefix Area - This color is used for the background of the left-hand indicator margin and for line
numbers when the View → Line Numbers display option is on.

• Line Prefix Divider Line - This color is used to draw the single thin line between the left-hand
indicator margin and the editor control text area.

• Margin Column Line(s) - This color is used to draw a thin vertical line where the word-wrap margins
are set. This line is only displayed if word-wrap is enabled for the current file. This option does not
apply to comment formatting or HTML and XML text wrap options. See Language-Specific Word
Wrap Options for more information.

• Truncation Column Line - This color is used to draw a hard vertical line at the column where this file
is to be truncated. This option is only used, generally, for languages with fixed line length restrictions,
such as COBOL or certain dialects of assembly. See Truncation Column for more information.

• Vertical Column Line - This color is used to draw a thin vertical line at the column designated as the
vertical column line. This line simply gives you a visual indicator when the current line may be getting
longer than allowed by your coding conventions. See Vertical line columns for more information.

• Application Colors - The following colors are used to configure specific elements of the GUI displayed
outside of the editor windows themselves.

• Document Tab - Active - Active document tab displays the tab for the window with focus.

• Document Tab - Modified - The color for the tab caption of a window that is modified. Only the
foreground color is configurable since it overrides the caption color used on active, selected, and
unselected tabs. To use this color you must turn on "Color modified document tabs" on Tools →
Options → Editing → Editor Windows

• Document Tab - Selected - This color is used to designate a current tab. This color is overridden if
the tab is active or modified.

• Document Tab - Unselected - This color is used to display a non-current tab. The color is override if
tab is modified.

• Message - This color is used for the text displayed in the message bar found on the lower, left-hand
side of the main SlickEdit® window.

• Modified variable - This color is used in the debugger tool window and the to indicate that the value

Appearance Options

898

of a variable or watch has changed in the last debug stepping operation.

• Status - This color is used for the text displayed in the status bar found on the lower, right-hand side
of the main SlickEdit® window.

Symbol Coloring Options (Pro only)

Symbol Coloring options are shown below (Tools → Options → Appearance → Symbol Coloring).
These options let you specify colors for symbols identified using Context Tagging® and create and
manage symbol coloring profiles. See Symbol Coloring Profiles for more information.

Symbol Coloring settings

The options are described as follows:

• Profile - Specify the symbol coloring profile to use from the drop-down list. Several predefined profiles
are available or you can define your own. See Selecting a Symbol Coloring Profile for more information.

• Copy... - Allows you to copy the current symbol coloring profile as a new profile with a name you
specify.

Appearance Options

899

• Reset - Allows you to reset a modified system profile back to its original configuration.

• Delete - Deletes the selected symbol coloring profile. Only available for user-created profiles.

• Rename... - Allows you to rename the selected symbol coloring profile. Only available for user-
created profiles.

• Compatible with and Edit Compatibility... - Each symbol coloring profile can, optionally, be
associated with a set of color profiles that it is compatible with. This is necessary in order to insure
that the symbol colors are compatible with the base colors in the color profile. If a profile does not list
any specific compatible color profiles, it will be regarded as compatible with all color profiles. For
example, the Protected and Private profile only changes font attributes and is therefore compatible
with any color profile.

Press the Edit Compatibility... button to select which color profiles which are compatible with the
currently selected symbol coloring profile.

Generally, compatibility hinges on the amount of contrast between the selection of foreground colors
in the symbol coloring profile and the selection of background color in the base color profile. This is
why the standard profiles are classified, generally, as Light and Dark background.

• Rule list - The symbol coloring rules are presented in order of precedence. Symbol coloring rules are
matched in order from the top to bottom. For a symbol to match a rule, it must be the first rule in the
symbol coloring profile that matches all of the requirements. See Color Rules for detailed descriptions
of each of the standard symbol coloring rules shipped with SlickEdit®.

• Rule name - This is the name of the symbol coloring rule.

• Symbol declaration - This column contains a synopsis of the symbol coloring rule, including the
types it matches, it's attribute requirements, and regular expressions, if applicable. It is rendered
using color and font attributes specified for the rule. This is also why this column appears to have a
different background in color profiles which have a non-white background.

• Add rule - Click the plus bitmap to add a new symbol coloring rule. Focus will be placed on the rule
name field.

• Move Up - Use the up arrow button to move the currently selected rule up one position in the list
precedence. Remember that rules are applied in order of precedence.

• Move Down - Use the down arrow button to move the currently selected rule down one position in
the list precedence. Remember that rules are applied in order of precedence.

• Delete rule - Use the delete button to delete the currently selected rule.

• Rule name - This is the name of the rule. Press Tab or Enter to apply your changes after editing the
name of the currently selected symbol coloring rule.

• Color and font attributes - Use this panel to select how symbols which match the current symbol
coloring rule will be rendered in the editor.

• Base color on rule - A symbol coloring rule can selectively inherit parts of it's color information from

Appearance Options

900

another symbol coloring rule within the currently selected symbol coloring profile. It can also inherit
color information from certain colors from the basic color profile, listed below.

• --Window Text-- - This color is used for all the text in an editor control which does not match one
of the other color coding elements defined for the current language.

• --Function-- - This color is used to highlight identifiers which are followed by an open parenthesis,
provided the language's Color Coding options specify to color them as such.

• --Preprocessor-- - This color is used to highlight preprocessor keywords defined in the Color
Coding for the current language.

• --Library Symbol-- This color is used to highlight identifiers which match one of the library
symbols defined in the Color Coding for the current language.

• --User Defined Symbol-- This color is used to highlight identifiers which match one of the user-
defined symbols defined in the Color Coding for the current language.

• --Highlight-- This color is used to highlight word matches found by word completion.

• --Symbol Highlight-- This color is used to highlight other references to the current symbol under
the cursor within the current file.

• Foreground - Select Inherit to inherit the foreground color from the base color. If Inherit is
unchecked, you can click on the color sample to change the foreground color for this symbol coloring
rule. If Inherit is checked, the inherited foreground color will be displayed, but clicking on the sample
to change it will be disabled.

• Background - Select Inherit to inherit the background color from the base color. If Inherit is
unchecked, you can click on the color sample to change the background color for this symbol
coloring rule. If Inherit is checked, the inherited background color will be displayed, but clicking on
the sample to change it will be disabled.

For best results, you almost always want the symbol color to inherit it's background color instead of
setting it's own.

• Font attributes - Select Inherit font to inherit the font attributes from the base color. If Inherit is
unchecked, you can click on Normal, Bold, Italic, or Underline to select font attributes for this
symbol coloring rule. Note that font attributes can not be combined. If Inherit is checked, the
inherited font attribute will be checked, but all the font attribute choices will be disabled.

Note

For certain languages, identifiers which are followed by a parenthesis are colored using
"Function" color, as configured in the Color Options dialog. Typically, this will make those
identifiers bold. Symbol coloring will preserve this information and propagate the font attributes for
"Function" color forward when highlighting an identifier which is followed by a parenthesis. This
makes it possible, for example, to visually distinguish between constant-like defines and function-
like defines in a language such as C++.

Appearance Options

901

• Sample Text - The sample text shows what the symbol coloring text might look like in the editor. The
text is rendered in the same font as used in the editor for SBCS/DBCS Source Windows.

• Symbol types - A matching symbol's type must be one of the specified types. The special *SYMBOL
NOT FOUND* type is used to identify symbols which Context Tagging® can not locate. See Symbol
types for detailed descriptions of each symbol type.

• Symbol attributes - The attributes can be either required, ignored, or disallowed. A matching symbol
must have all the required attributes, and none of the disallowed attributes. See Symbol attributes for
detailed descriptions of each symbol attribute.

• Regular expression matching - In addition to the symbol type and attribute specifications, you can
further refine a symbol coloring rule by adding a Class name or Symbol name regular expression,
using the regular expression syntax of your choice. The class name regular expression is matched
against the name of the scope (class, package, struct) which a symbol is defined in. Do not confuse this
with the name of the scope in which the symbol is used. The symbol name regular expression is
matched against the name of the symbol. For example, a Wildcards expression of "vs*" would match all
symbols starting with the characters "vs". Case sensitivity for the regular expression matching is
regulated by the language's case-sensitivity. See Color Coding for more information.

• Use - This allows you to select the regular expression syntax you prefer to use for this symbol
coloring rule's class and symbol name regular expressions. See Regular Expressions for more
information.

• Class name - A matching symbol must belong to a class matching the regular expression.

• Symbol name - A matching symbol's name must match the regular expression.

Symbol types

The following symbol types may be included in a symbol coloring rule. A rule can include as many symbol
types as it requires, and sometimes that is necessary to create a rule with enough generality. For
example, to make a rule that matched any kind of constant value, you would need to include: Constant,
Enumeration value, and Preprocessor macro.

• *SYMBOL NOT FOUND* - This is a special symbol type used when a symbol found in the editor is not
recognized by Context Tagging®. This type is useful to have in a single rule as a rudimentary form of
error checking.

Warning

Context Tagging® tries very hard to correctly recognize symbols, but it is not as accurate as your
language's compiler. There are situations where a symbol will be highlighted as unknown, even
though it is not strictly an error. This is particularly true for dynamic languages and languages that
depend heavily on implicit declarations of local variables, such as most popular scripting
languages.

Appearance Options

902

Note

Highlighting of unknown symbols can be turned off on a per-language basis. This is a good idea
for languages that are dynamically typed or have implicit declarations. It is also a good idea for
Java because highlighting unknown symbols overlaps with the functionality provided by Java Live
Errors.

• Annotation or attribute instance - This is metadata. Examples include the use of a Java annotation or
C# attribute in code.

• Annotation or attribute type - This is the definition of a metadata type. Examples include a Java
annotation type or C# attribute class.

• Build target - Build target from Ant, a Makefile or other project build system.

• Class constructor - This is a constructor for a class in an object-oriented language. Note that in some
languages, constructors are treated as functions with a Constructor symbol attribute.

• Class destructor - This is the destructor for a class in an object-oriented language. Note that in some
languages, destructors are treated as functions with a Destructor symbol attribute.

• Class property - This is a property variable within a class type, as found in C#, Visual Basic .NET, and
Managed C++.

• Class type - This type is used for classes in object oriented languages.

• Constant - This is a named literal constant.

• Container variable - This is used for a container (or group) variable, as found in COBOL data sections.
A container variable is like an transparent structure type.

• Control or widget - This is used for a control type in languages that have built-in support for user
interfaces, such as Slick-C®.

• Database - This type is used for the name of a database. It only applies to SQL dialects.

• Database audit policy - This type is used for a database audit policy definition. It only applies to SQL
dialects.

• Database cluster - This type is used for a database cluster definition. It only applies to SQL dialects.

• Database column - This type is used for the column name of a database table. It only applies to SQL
dialects.

• Database constraint - This type is used for a database constraint definition. It only applies to SQL
dialects.

• Database cursor - This type is used for a database cursor type. It only applies to SQL dialects.

• Database dimension - This type is used for a database dimension definition. It only applies to SQL

Appearance Options

903

dialects.

• Database edition - This type is used for a database edition definition. It only applies to SQL dialects.

• Database index - This type is used for a database index name. It only applies to SQL dialects.

• Database link - This type is used for a database link name. It only applies to SQL dialects.

• Database partition - This type is used for a database partition name. It only applies to SQL dialects.

• Database role - This type is used for a database role name. It only applies to SQL dialects.

• Database select statement - This type is used for a database select statement. It only applies to SQL
dialects.

• Database sequence type - This type is used for a database sequence definition. It only applies to SQL
dialects.

• Database table - This type is used for a database table name. It only applies to SQL dialects.

• Database table space - This type is used for a database tablespace name. It only applies to SQL
dialects.

• Database trigger - This type is used for a database trigger definition. It only applies to SQL dialects.

• Database user profile - This type is used for a database user profile name. It only applies to SQL
dialects.

• Database user - This type is used for a database user name. It only applies to SQL dialects.

• Database view - This type is used for a database view name. It only applies to SQL dialects.

• Directory - This type is used for a file system directory name.

• Enumerated type - This type is used for type names of enumerated types.

• Enumeration value - This type is used for the names of the constants defined in an enumerated type.

• Event monitor - This type is used for an event monitor name.

• Event table - This type is used for event tables, as found in languages that have built-in support for
graphical user interfaces, such as Slick-C®.

• File descriptor - This is a file descriptor declaration, as found in COBOL or SQL.

• Form - This type is used for form or dialog names, as found in languages that have built-in support for
graphical user interfaces, such as Slick-C®.

• Friend relationship - This type is used for friend relationships. Note that friend relationships refer to
other symbols, so a symbol coloring rule that colored friend relationships would only color the actual
friend relationship declaration, not uses of the symbol that depended on the friend relationship.

• Function - This type is used for function names, both global functions and class member functions.

Appearance Options

904

• Function prototype - This type is used for a function declaration, both global and abstract class
member functions.

• Global variable - This type is used for global variables and variables declared at the namespace or
package level. It does not apply to local variables or member variables.

• Interface type - This is a class interface declaration, as found in most object-oriented languages.

• Library - This is a library module type, as found in Pascal.

• Local variable - This is a local variable, that is, a variable declared within the scope of a function.

• Member variable - This is a class member variable or the member of a structured or record type or
variable declared in a COBOL data section.

• Menu - This type is used for menu names, as found in languages that have built-in support for
graphical user interfaces, such as Slick-C®.

• Mixin construct - This type is used for class mixin statements, as found in the D Programming
Language. Note that, like friends, mixin's are only detected at the point of use. A function or variable
pulled into a class through a mixin will not be considered as a mixin type.

• Nested function - This type is used for functions which are nested inside of other functions or
procedures, as found in Pascal, Ada, and other languages.

• Nested procedure or paragraph - This type is used for procedures which are nested inside of other
functions or procedures. It is also used for COBOL paragraphs.

• Objective-C selector - This type is used for the name of a selector, for example as found in Objective-
C code.

• Package import or using statement - This type is used for an import or using statement. Note that
imports are only detected at point of use. A class or function pulled into a module through an import will
not be considered as an import type.

• Package, module, or namespace - This type is used for package, module, or namespace names used
to divide code into logical boundaries.

• Parameter - This type is used for the names of formal parameters to a function or procedure. It can
also be used for template parameter names in class templates.

• Preprocessor include - This type is used for a preprocessor include statement or COBOL copy book.

• Preprocessor macro - This type is used for a preprocessor macro (for example, a #define in C and
C++).

• Procedure or command - This type is used for procedure names, both global and class members. It is
also used for command names in languages that support command types.

• Procedure prototype - Type is used for procedure declarations, that is, forward declarations of
procedures.

Appearance Options

905

• Program - This type is used for program names, as found in Pascal, Cobol, and other languages.

• Statement label - This type is used for statement labels within functions or in assembly language code.

• Structure type - This type is used for struct types or record types.

• Task - This type is used for tasks, as found in Ada and Verilog dialects.

• Type alias - This type is used for a type definition name, or type alias.

• Union type - This type is used for union types, also known as variant types.

• XML or HTML attribute - This type is used for an attribute name in XML or HTML.

Symbol attributes

The following symbol attributes may be required or excluded in a symbol coloring rule. Each attribute can
be in one of three states:

1. If the attribute is checked, then it is required to be set for a symbol to match the rule. For example, if
you check the Inline function attribute then the rule will only match functions that are recognized as
inline, as in C++.

2. If the attribute is unchecked, then it is required to be unset for a symbol to match the rule. For example,
if you uncheck the Abstract attribute then the rule will only match functions which are not recognized
as abstract (also known as pure virtual in C++).

3. If the attribute is in the grayed state, then it is ignored with respect to rule matching.

Some attributes are mutually exclusive, such as Public, Protected, Package, and Private. In these
cases, checking two mutually exclusive attributes will produce a rule which will not match anything.
Instead, you need to use boolean logic and create a rule which unchecks the mutually exclusive attributes
that you do not want.

• 01 level in Cobol linkage section - Variables at the 01 level in COBOL data sections are given this
flag to indicate that they are at the top-most level of the data section. This may be a very useful
attribute to configure specialized coloring for if you are a Cobol programmer.

• Abstract - This attribute is set for abstract classes as well as pure-virtual methods or abstract methods
within a class definition.

• Ambiguous prototype/var declaration - In C and C++ and some other languages, there is an
ambiguity in syntax between function prototype declarations and variable declarations with initializers.
See the example below, not knowing type information, it could either be the prototype for a function
named ambiguousDeclaration which returns a ClassName and takes one parameter of type
Argument, or a variable named the same thing which is of type ClassName and is initialized with
Argument.

ClassName ambiguousDeclaration(Argument);

• Class constructor - This attribute is set for functions or procedures which act as a class constructor or

Appearance Options

906

static initializer for a class type.

• Class destructor - This attribute is set for class destructors.

• Const - This attribute is set for variables which are declared with a const return type, meaning that
they can not be modified, or that they point to data which can not be modified. It is also set for class
member functions that are declared as const, meaning that the function is not allowed to modify
members of the class or call other non-const functions.

• Created by preprocessor macro - This attribute is set for symbols which are declared in a section of
code that was expanded from a preprocessor macro, for example, in C++ where it is common to use
preprocessor macros to generate code.

• External function or data - This attribute is set for functions or global variables which are declared as
extern, meaning that they are defined in another module.

• Final - This attribute is set for functions which can not be overridden in derived classes. It is also set for
variables, for example, in Java, which are initialized only once and do not change.

• Forward declaration - This attribute is set for a forward declaration of a symbol. Since there is a
separate symbol type for function prototypes, this attribute is primarily used for forward declarations of
classes and structured types.

• Ignore/placeholder - This attribute is set for symbols which are merely placeholders, and should be
ignored by symbol searches.

• Implicitly defined local variable - This attribute is set for local variable which are implicitly defined.
This is used in some scripting languages where local variables do not have to be explicitly declared.

• Inline function - This attribute is set for functions which are marked as inline, meaning that instead of
being compiled into separate functions, their function bodies may be pulled inline at the point where the
function is called.

• Member of class or package - This attribute is set for symbols which are declared inside a class,
package, namespace, or other structured type.

• Mutable - This attribute is set for variables which are declared as mutable in, for example, C++.

• Native code function - This attribute is set for functions which are implemented in native code, for
example, in Java, where certain functions are implemented in DLLs for better performance.

• Opaque enumerated type - In C++, the constants declared in an enumerated type do not need to be
qualified with the name of the enumerated type. In this sense, they are transparent. In certain other
languages, enumeration constants need to be qualified with the name of the enumerated type. These
are considered as opaque. This attribute is set for enumerated types whose constants are opaque.

• Overloaded operator - This attribute is set for functions whose purpose is to overload standard
language operators, such as multiplication, division, assignment.

• Package scope - This attribute is set for symbols which are scoped at the package or namespace
level. They are visible within the package they are declared in, but considered as private outside of that
package. Package scope is the default scope in Java if no other scope (public, protected, or private) is

Appearance Options

907

specified.

• Part of an external file - This attribute is set for symbols which are declared in an external file which
was parsed as part of the process of parsing the current file. For example, this attribute is set for
symbols in COBOL copy books.

• Partial class - This attribute is set for classes which are marked as partial, meaning that the complete
class definition may be spread across several modules.

• Private scope - This attribute is set for symbols declared in classes which have private scope. These
symbols are visible within the class they are declared in, but not in derived classes, and not outside of
the declaring class.

• Protected scope - This attribute is set for symbols declared in classes which have protected scope.
These symbols are visible within the class they are declared in, derived classes, but not outside of the
declaring class.

• Public scope - This attribute is set for symbols declared in classes which have public scope. These
symbols are visible everywhere. Note that in many languages, public scope is the default scope if none
is otherwise specified (private, protected, or package).

• Static - This attribute is set for symbols which are marked as static. The static attribute can be applied
in several contexts:

• Local variables which are marked as static will retain their last value between function calls.

• Global variables and functions which are marked as static are visible only with the current module or
compilation unit.

• Class members which are marked as static do not require an instance of the class in order to be
accessed. In many respects, they are like globals, but scoped within the class declaration.

• Synchronized - The synchronized attribute is set for functions which are marked as synchronized,
meaning that the function is not re-entrant and can not allow two threads to enter it at the same time.

• Template or generic - The template attribute is set for class and function templates, also known as
generic functions or generic classes.

• Transient data - The transient attribute is set for variables which contain non-persistent data. This is a
Java-specific attribute.

• Unnamed structure - This attribute is used for anonymous structure types and other anonymous
(unnamed) types.

• Virtual function - This attribute is used for virtual functions in class definitions.

• Volatile - This attribute is used for variables and functions which are marked as volatile. A volatile
variable is one whose value can change unpredictably, such as a memory address that echoes the
value of the system clock. A volatile function is one that accesses a volatile variable.

Color Rules

Appearance Options

908

The standard color rules in the All symbols - Default symbol coloring profile are described below. These
same rules are used in most all the standard symbol coloring profiles, just with different colors, or a
subset of the rules.

The list below not only explains the rule types, but also tries to explain the reasoning behind the coloring
choices that were made for various rules.

• Local variable - This rule matches local variables within a function, excluding static local variables. In
most profiles, variable types are colored green, mirroring the color used for variables in the Defs tool
window.

• Static local variable - This rule matches static local variables. It is colored slightly more blue that the
variable rule, in order to indicate the static (or frozen) nature of the local variable.

• Parameter - This rule matches function parameter names and template argument names. Like local
variables, they are colored green, matching the color used for variables in the Defs tool window.

• Public member variable - This rule matches public member variables. In most profiles, variable types
are colored green, mirroring the color used for variables in the Defs tool window.

• Package member variable - This rule matches package scope member variables. In most profiles,
variable types are colored green, mirroring the color used for variables in the Defs tool window.

• Protected member variable - This rule matches protected member variables. In most profiles, variable
types are colored green, mirroring the color used for variables in the Defs tool window. Protected and
private members are shown in italic in order to indicate their limited scope.

• Private member variable - This rule matches private member variables. In most profiles, variable
types are colored green, mirroring the color used for variables in the Defs tool window. Protected and
private members are shown in italic in order to indicate their limited scope.

• Public static member variable - This rule matches public member variables. In most profiles, variable
types are colored green, mirroring the color used for variables in the Defs tool window. It is colored
slightly more blue, in order to indicate the static nature of the variable.

• Package static member variable - This rule matches package scope member variables. In most
profiles, variable types are colored green, mirroring the color used for variables in the Defs tool window.
It is colored slightly more blue, in order to indicate the static nature of the variable.

• Protected static member variable - This rule matches protected static member variables. In most
profiles, variable types are colored green, mirroring the color used for variables in the Defs tool window.
It is colored slightly more blue, in order to indicate the static nature of the variable. Protected and
private members are shown in italic in order to indicate their limited scope.

• Private static member variable - This rule matches private static member variables. In most profiles,
variable types are colored green, mirroring the color used for variables in the Defs tool window. It is
colored slightly more blue, in order to indicate the static nature of the variable. Protected and private
members are shown in italic in order to indicate their limited scope.

• Global variable - This rule matches global variables. In most profiles, variable types are colored green,
mirroring the color used for variables in the Defs tool window.

Appearance Options

909

• Static global variable - This rule matches static global variables, which are visible only within the
current module. In most profiles, variable types are colored green, mirroring the color used for variables
in the Defs tool window. It is colored slightly more blue, in order to indicate the static nature of the
variable.

• Global function - This rule matches global functions and functions declared within namespaces and
packages. In most profiles, functions are colored magenta, mirroring the color used for functions,
procedures, and prototypes in the Defs tool window.

• Static global function - This rule matches static global functions. In most profiles, functions are
colored magenta, mirroring the color used for functions, procedures, and prototypes in the Defs tool
window. It is colored slightly more blue, in order to indicate the static nature of the function.

• Class constructor - This rule matches class constructors. Class constructors, destructors, and class
names are colored blue, mirroring the color used for Class constructors and destructors in the Defs tool
window.

• Class destructor - This rule matches class destructors. Class constructors, destructors, and class
names are colored blue, mirroring the color used for Class constructors and destructors in the Defs tool
window.

• Public member function - This rule matches public class member functions. In most profiles, functions
are colored magenta, mirroring the color used for functions, procedures, and prototypes in the Defs tool
window.

• Package member function - This rule matches package scope class member functions. In most
profiles, functions are colored magenta, mirroring the color used for functions, procedures, and
prototypes in the Defs tool window.

• Protected member function - This rule matches protected scope class member functions. In most
profiles, functions are colored magenta, mirroring the color used for functions, procedures, and
prototypes in the Defs tool window. Protected and private members are shown in italic in order to
indicate their limited scope.

• Private member function - This rule matches private scope class member functions. In most profiles,
functions are colored magenta, mirroring the color used for functions, procedures, and prototypes in the
Defs tool window. Protected and private members are shown in italic in order to indicate their limited
scope.

• Public static member function - This rule matches public static class member functions. In most
profiles, functions are colored magenta, mirroring the color used for functions, procedures, and
prototypes in the Defs tool window. It is colored slightly more blue, in order to indicate the static nature
of the function.

• Package static member function - This rule matches package scope static lass member functions. In
most profiles, functions are colored magenta, mirroring the color used for functions, procedures, and
prototypes in the Defs tool window. It is colored slightly more blue, in order to indicate the static nature
of the function.

• Protected static member function - This rule matches protected static class member functions. In
most profiles, functions are colored magenta, mirroring the color used for functions, procedures, and

Appearance Options

910

prototypes in the Defs tool window. It is colored slightly more blue, in order to indicate the static nature
of the function. Protected and private members are shown in italic in order to indicate their limited
scope.

• Private static member function - This rule matches private static class member functions. In most
profiles, functions are colored magenta, mirroring the color used for functions, procedures, and
prototypes in the Defs tool window. It is colored slightly more blue, in order to indicate the static nature
of the function. Protected and private members are shown in italic in order to indicate their limited
scope.

• Public class property - This rule matches public class property names. In most profiles, properties are
colored cyan, mirroring the color used for properties in the Defs tool window.

• Package class property - This rule matches package scope class property names. In most profiles,
properties are colored cyan, mirroring the color used for properties in the Defs tool window.

• Protected class property - This rule matches protected class property names. In most profiles,
properties are colored cyan, mirroring the color used for properties in the Defs tool window. Protected
and private members are shown in italic in order to indicate their limited scope.

• Private class property - This rule matches private class property names. In most profiles, properties
are colored cyan, mirroring the color used for properties in the Defs tool window. Protected and private
members are shown in italic in order to indicate their limited scope.

• Class - This rule matches Class names. Class names are colored blue, mirroring the color used for
class constructors in the Defs tool window.

• Template class - This rule matches template or generic class names. Class names are colored blue,
mirroring the color used for class constructors in the Defs tool window.

• Abstract class - This rule matches an abstract class name. Class names are colored blue, mirroring
the color used for class constructors in the Defs tool window.

• Interface class - This rule matches class interface names. Class and interface names are colored blue,
mirroring the color used for class constructors in the Defs tool window.

• Struct - This rule matches a structured type, such as a struct in C/C++ or a record type in Pascal or
Modula. Structure types are colored blue-green.

• Union or variant type - This rule matches union types or variant record types in Pascal. They are
colored yellow, mirroring the color used for union types in the Defs tool window.

• Type definition or alias - This rule matches type definitions or type aliases.

• Preprocessor macro - This rule matches preprocessor macro names. The color inherits it's color from
the preprocessor keyword color of the base color profile.

• Package or namespace - This rule matches a package or namespace name. In most profiles, they are
colored red, mirroring the color used for package, namespace, and programs in the Defs tool window.

• Symbolic constant - This rule matches symbol constants used to give names to constant literal
values. In most profiles, they are colored gray, mirroring the color used for constants in the Defs tool

Appearance Options

911

window.

• Enumerated type or constant - This rule matches enumerated types and constants defined in
enumerated types. In most profiles, they are colored cyan, mirroring the color used for enums in the
Defs tool window.

• Statement label - This rule matches statement labels. They are colored blue, matching the color used
for labels in the Defs tool window.

• Symbol not found - This rule is present as a catch-all for the case where a symbol is not found by
Context Tagging®. It is colored bright red in order to indicate that there is a fair likelihood that the
source file contains an error.

Font Options

You can specify which fonts are used by screen elements using the options shown below (Tools →
Options → Appearance → Fonts). If you want to change the font used in editor windows, use Window
→ Font instead. See Fonts for more information about changing fonts and a list of recommendations.

The options are described as follows:

• Element - This list contains the screen elements for which fonts can be changed. When an element is
selected, the font type and size will automatically adjust to the current settings for that element, and a

Appearance Options

912

preview of the font will be displayed in the Sample area. A description of the element will appear below
the Element list. Select from the following elements:

• Command Line - The SlickEdit® command line displayed at the bottom of the application window.

• Status Line - For status messages displayed at the bottom of the application window.

• SBCS/DBCS Source Windows - Editor windows that are displaying non-Unicode content (for
example, plain text).

• Hex Source Windows - Editor windows that are being viewed in Hex mode (View → Hex).

• Unicode Source Windows - Editor windows that are displaying Unicode content (for example,
XML).

• File Manager Windows - Controls the display of the SlickEdit® File Manager (File → File Manager).

• Diff Editor SBCS/DBCS Source Windows - The editor windows used by DIFFzilla® that are
displaying non-Unicode content.

• Diff Editor Unicode Source Windows - The editor windows used by DIFFzilla® that are displaying
Unicode content.

• Parameter Info - Controls the fonts used to display pop-ups with information about symbols and
parameters.

• Parameter Info Fixed - Used when SlickEdit® needs to display a fixed-width font for parameter info,
such as when displaying example code.

• Selection List - The font used for selection lists, like the document language list (Document →
Select Mode).

• Dialog - Controls the font used in SlickEdit® dialogs and tool windows.

• HTML Proportional - The default font used by HTML controls for proportional fonts. In particular, this
affects the Version Control History dialog, the Preview tool window, the About SlickEdit dialog, and
the Cool Features dialog.

• HTML Fixed - The default font used by HTML controls for fixed-space fonts.

• Document Tabs - The default font used by tabs used to switch between documents.

• Font and Size - The Font and Size fields allow you to make typeface and point size changes to the
selected screen element. The fonts that are listed are the fonts that are installed on your computer.

• Fixed Fonts Only - Select this option to display only fixed fonts in the Font field. By default, this option
is not selected.

• Style - Styles, such as bold and italic, can be set to affect the selected font.

• Sample area - This area provides a preview of the selected font, size, and style.

• Use fixed spacing for bold and italic fixed Unicode fonts - (Unicode support required) When this

Appearance Options

913

option is selected, and a fixed font is selected for a Unicode source window, bold and italic color-coding
is supported. Since this requires the Unicode text to be converted to the active code page, some
characters may be displayed incorrectly. The current editor display engine ignores bold and italic
settings for proportional fonts or fixed Unicode fonts (which are treated like proportional fonts).

• Use anti-aliasing - Select this option to use anti-aliasing when displaying fonts in the edit window. This
does not effect fonts displayed in the minimap window. Use the minimap context menu to toggle anti-
aliasing for a particular font size the minimap window.

Toolbar Options

Toolbar options (Tools → Options → Appearance → Toolbars) let you modify, create, and change the
behavior of toolbars. It contains a list of the default toolbars within SlickEdit®, and settings made here
affect each toolbar individually. See Toolbars and Tool Windows for more information.

The following options are available:

• New - Creates a new, empty toolbar.

• Rename - Renames the selected toolbar. Note that you can only rename custom toolbars.

• Delete - Deletes the selected toolbar. Note that you can only delete custom toolbars.

• Reset - Restores the default buttons to the selected toolbar (not applicable for custom toolbars).

• Visible - When checked, the selected toolbar is displayed, if it is not already displayed. When
unchecked, the selected toolbar is closed.

• Allow docking - When unchecked, the selected toolbar, when non-docked, cannot accidentally be
docked.

Toolbar Customization

Toolbar Customization options (Tools → Options → Appearance → Toolbar Customization) let you
add or remove buttons from toolbars. You can also access these options from the main menu by selecting
View → Toolbars → Customize or by right-clicking on the toolbar and selecting Customize. See

Appearance Options

914

Toolbars and Tool Windows for more information.

This dialog categorizes the toolbar controls (buttons) and allows you to drag and drop them onto existing
toolbars.

Select a category from the Categories list and the associated controls are displayed in the Controls box.
To add a control, click on the control you wish to add, and drag it onto a toolbar. To remove a control,
drag it from the toolbar onto the Categories screen. See also Toolbar Control Properties Dialog.

Tool Windows Options

Tool Windows options (Tools → Options → Appearance → Tool Windows) let you control the behavior
and visibility of tool windows. You can also access these options from the main menu by selecting View
→ Tool Windows → Customize or by right-clicking on any tool window's title bar (or on UNIX/Mac, the
tool window's background) and selecting Customize.

Appearance Options

915

The following options are available:

• Visible - When checked, the selected tool window is displayed, if it is not already displayed. When
unchecked, the selected tool window is closed.

• Always on top - When checked, the selected tool window, when non-docked, will remain on top of the
editor window.

• Allow docking - When unchecked, the selected tool window, when non-docked, cannot accidentally be
docked.

• ESC dismisses floating window - When checked, pressing Esc on a floating tool window (not a
docked or auto-hide window) will dismiss the tool window as if it were a dialog. When unchecked,
pressing Esc on a floating tool window puts focus back to the active MDI child.

Tip

Pressing Esc on a docked tool window puts focus back to the active MDI child. Pressing Esc on
an auto-hide tool window will hide the tool window.

Tool Window & Toolbar Options

The Tool Window & Toolbar options (Tools → Options → Appearance → Tool Window & Toolbar
Options) provides general options to control the behavior of all tool windows and toolbars.

Appearance Options

916

• Tool Windows

• Close button affects active tab only - When checked, the Close button on a tool window will close
only that tool window. When unchecked, and the tool window is tab-linked with other tool windows, all
tab-linked tool windows are closed. By default, this option is selected.

• Auto Hide button affects active tab only - When checked, the Auto Hide button (the Pushpin
button) on a tool window will auto-hide only that tool window. When unchecked, and the tool window
is tab linked with other tool windows, all tab-linked tool windows are auto-hidden. Auto-hidden tool
windows are displayed in the dock channel on the side of the editor where they were auto-hidden. By
default, this option is not selected.

• Auto show tool window on mouse over - When checked, auto-hidden tool windows are auto-
displayed when the mouse is over the item in the dock channel. Delay specifies how long to wait (in
milliseconds) before the mouse triggers an auto-hidden tool window to auto-display.

• Auto hide delay - Specifies how long to wait (in milliseconds) before an auto-displayed tool window
auto-hides itself.

• Hide when application is inactive - When checked, non-docked tool windows are hidden when you
switch to another application. When you switch back to SlickEdit®, the tool window is made visible
again. This option is global to all tool windows.

• Tool window menu toggles hide/show - When checked, tool windows that are already docked,
floating, or auto-shown, if selected from the tool window menu, will be closed (effectively toggled).
Otherwise, selecting at item from the tool window menu activates the tool window.

• Tab Icon Size - Specifies size of the icon to use for bitmaps displayed on the tabs of tool window. By

Appearance Options

917

default, small icons are used, which tend to match the size of the default dialog font.

• Tree Icon Size - Specifies size of bitmaps to use for bitmaps displayed in tree controls on various
tool windows. By default, this icon size is determined automatically based on the height of the Dialog
font (see Font Options for more information). On smaller, high-resolution displays, it can be useful to
use a larger size to improve visibility.

• Toolbars

• Show tool tips - When set to On, pop-up tool tips are displayed when the mouse pointer rolls over a
button. This option is global to all toolbars.

• Delay (ms) - Specifies the delay, in milliseconds, before tool tips are displayed when Show tool tips
is enabled.

• Hide when application is inactive - When checked, non-docked toolbars are hidden when you
switch to another application. When you switch back to SlickEdit®, the toolbar is made visible again.
This option is global to all toolbars.

• Use unified toolbar - (Mac only)The unified toolbar uses merges the toolbar and title bar into one
area, similar to other Mac applications.

• Toolbar Buttons - Changes to these options can be previewed here as you make changes. Click
Apply to save changes.

• Size - Specify the size of buttons on a toolbar.

• Spacing - Specify the amount of vertical and horizontal spacing between buttons on a toolbar.

• Style - Specify the style of icons to use for toolbar buttons. There are several styles available to suite
your preferences for look and feel including traditional color 3-Dimensional buttons, limited color flat
buttons, two-color buttons, and monochrome buttons in both dark grey and white. The white
monochrome buttons are best suited when using the Dark application theme.

Preview Tool Window (Pro only)

These options are used to control when the Preview window is activated with a new symbol lookup. By
selecting a symbol in another tool window, you can activate the Preview tool window and see the preview
of that symbol.

Appearance Options

918

The options are described as follows:

• Activate Preview tool window from other windows - Setting this option to On allows you to activate
the Preview tool window automatically from other windows. You can further specify which windows by
setting the options below.

• Bookmarks - When set to On, selecting a bookmark in the Bookmarks tool window will activate the
Preview tool window with the bookmarked line shown.

• Breakpoints - When set to On, selecting a breakpoint in the Breakpoints tool window will activate the
Preview tool window and show the line with the selected breakpoint.

• Class - When set to On, selecting an item in the Class tool window will activate the Preview tool
window with the corresponding symbol shown.

• Code Annotations - When set to On, selecting an item in the Code Annotations tool window will
activate the Preview tool window with the line containing the annotation shown.

• Defs - When set to On, selecting an item in the Defs tool window will activate the Preview tool window

Appearance Options

919

with the corresponding symbol shown.

• Files - When set to On, selecting an item in the Files tool window will activate the Preview tool window
with the selected file shown.

• Find Symbol - When set to On, selecting an item in the Find Symbol tool window will activate the
Preview tool window with the corresponding symbol shown.

• Message List - When set to On, selecting an item in the Message List tool window will activate the
Preview tool window with the line relevant to the selected message shown.

• References - When set to On, selecting an item in the References tool window will activate the
Preview tool window with the corresponding reference shown.

• Search results - When set to On, selecting an item in the Search results tool window will activate the
Preview tool window with the located search item shown.

• Symbols - When set to On, selecting an item in the Symbols tool window will activate the Preview tool
window with the corresponding symbol shown.

• Unit Test - When set to On, selecting an item in the Unit Test tool window will activate the Preview tool
window with the selected unit test shown.

• Select Symbol - When set to On, selecting an item in the Select Symbol dialog will activate the
Preview tool window with the selected symbol shown.

Special Character Options

Special character options are shown below (Tools → Options → Appearance → Special Characters).
These options are used to define the characters that are displayed when the view of special characters is
enabled. Enabling special characters inserts characters into your file to show such items as tabs, spaces
and line endings that are otherwise invisible. See Viewing Special Characters for more information about
these settings.

The graphic displayed for tab and space characters is not configurable. Since some customers like to use
background color to view tabs or spaces, you can turn off drawing for the tab and/or space character with
the "Display tab graphic" and "Display space graphic" check boxes.

Appearance Options

920

Advanced Appearance Options

Advanced appearance options are shown below (Tools → Options → Appearance → Advanced).

Appearance Options

921

The options are described as follows:

• Short key names - Specifies how keyboard shortcuts are displayed in the MDI menu bar. For example,
when Long is selected, the Edit → Undo menu item shows Ctrl+Z for the shortcut. This is traditional
for the CUA emulation. When Short is selected, C-Z is displayed, traditional in other emulations.

• macOS style Browse for Folder dialog - (Mac only) When set to On, a Mac-style Browse for Folder
dialog box is used to choose directories when possible. When set to Off, the standard Choose
Directory dialog is used at all times. This dialog displays the navigation tree on a disk-drive basis,
starting with the current drive, and includes a text box that supports Directory Aliases that help you
quickly type the directory name.

• Windows style Browse for Folder dialog - (Windows only) When set to On, a Windows-style Browse
for Folder dialog box is used to choose directories when possible. This dialog displays the navigation
tree in a more Windows-friendly structure, letting you navigate to items such as the Desktop, My
Computer, etc. When set to Off, the standard Choose Directory dialog is used at all times. This dialog
displays the navigation tree on a disk-drive basis, starting with the current drive, and includes a text box
that supports Directory Aliases that help you quickly type the directory name.

• Maximize editor in full screen mode - When set to On, fullscreen mode maximizes the editor to use
the entire screen. Otherwise, fullscreen just swaps in the fullscreen toolbars, but the editor maintains
the same size and position. On Unix, maximize is not guaranteed to work since the window manager
controls sizing.

• Show MDI menu in full screen mode - (Windows and Unix only) When set to On, fullscreen mode
shows the MDI menu. Otherwise, the MDI menu is hidden in fullscreen mode.

Keyboard and Mouse Options
Keyboard and Mouse options (Tools → Options → Keyboard and Mouse) pertain to use of the
keyboard and mouse, and include options for setting the emulation you want to use and creating custom
key bindings.

Keyboard option categories are:

• Emulation Options

• Key Binding Options

• Redefine Common Key Options

Keyboard and Mouse Options

922

• Advanced Keyboard and Mouse Options

• Vim Options

• ISPF Options

Emulation Options

Emulation options (Tools → Options → Keyboard and Mouse → Emulation) are shown below. Use
these options to specify the editor's emulation mode and to restore default key bindings. Be sure to save
your custom bindings before switching emulations. This can be done by exporting (click Key Bindings in
the Options tree) or by using the prompt that is displayed when you switch emulations. See Emulations
for more information about these settings.

Key Binding Options

Key binding options are shown below (Tools → Options → Keyboard and Mouse → Key Bindings).
From here, you can view, create, and manage key binding associations for SlickEdit® commands and
user-recorded macros. You can also import, export, or save a chart of your key bindings. See Managing
Bindings for more information.

Keyboard and Mouse Options

923

Note

• The first time the Key Bindings option screen is invoked, the Building Tag File progress bar
may be displayed while Slick-C® macro code is tagged.

• Bindings are based on the editor emulation mode (CUA is the default). To change the
emulation mode, click Tools → Options → Emulation. For more information, see Emulations.

The Key Bindings option screen is described as follows:

• Search by command - This filter is used for searching commands in the Command column. Type a
string in the filter box, and the list of commands is filtered as you type to show only those commands
that contain the specified string. The red X button is used to clear the text box or you can edit inside the
text box manually.

• Search by key sequence - This filter is used for searching bindings in the Key Sequence column. It
captures literal keyboard input. For example, when the focus is in this filter, press Ctrl and C at the
same time, and "Ctrl+C" is displayed. Press the Backspace key and "Backspace" is displayed. Mouse

Keyboard and Mouse Options

924

events inside the filter are literal as well. For example, right-clicking within the filter displays the text
"RButtonDn". Because the key sequence filter captures literal keyboard input, you cannot edit the text
or use key functions such as backspacing or tabbing in and out of the field. You must use the red X
button to clear the filter.

• Command - This column lists, in alphabetical order by default, the SlickEdit® commands and user
macros that are or can be bound to keys or mouse events. Click on the column label to sort bindings by
this column. An arrow in the column header indicates the sort order (ascending or descending).

If a command/macro has more than one binding, each instance is listed on a separate row. For
example, in CUA emulation, the command gui_open is bound to F7, Command+O (on the Mac), and
Ctrl+O. Therefore, gui_open appears in the Command column three times, once for each binding.

• Key Sequence - This column shows the mouse event or key sequence associated with the command
or macro. If a Key Sequence cell is empty, no binding is associated with that command/macro. Click
on the column label to sort bindings by this column. An arrow in the column header indicates the sort
order (ascending or descending).

• Mode - This column shows the language editing mode to which the key binding applies. The default
mode causes the binding to work in all language editing modes. However, the default mode will be
overridden by any language-specific mode binding to another command/macro. Click on the column
label to sort bindings by this column. An arrow in the column header indicates the sort order (ascending
or descending).

Note

To change the mode for a command/macro that is already bound, first you should unbind the
command/macro, then recreate the binding with the mode you want to use. See Editing Bindings
for more information. For information about editing modes, see Language Editing Mode.

• Recorded - This column indicates if the item in the Command column is a SlickEdit® command (No) or
a user-recorded macro (Yes).

• Documentation pane - The bottom pane displays the code documentation for the selected command
or macro, if it exists. Click "See Also" hyperlinks (if any exist) to display Help for that item. For See Also
links, if a Help entry does not exist, a message box notification is displayed. The documentation pane
can be resized by dragging the size bar above it. The size is remembered the next time the screen is
displayed.

• Import and Export- These buttons allow you to import and export bindings. This is useful for creating
backups, sharing with other team members, or taking with you should you switch computers. See
Exporting and Importing Bindings for details of these features.

• Save Chart - This button allows you to save a reference chart of all current bindings for all language
editing modes in the selected emulation. The chart is saved in HTML format with a name and location
that you specify. Commands/macros that are not bound are not included.

• Remove - This button clears the binding for the selected command/macro. You can also press the
Delete key to clear the binding.

Keyboard and Mouse Options

925

• Add - This button displays the Bind Key dialog, which is used to initiate a new binding. See Bind Key
Dialog and Creating Bindings for more information.

Bind Key Dialog

This dialog is used to initiate a new key binding and is displayed when you click Add on the Key Bindings
option page.

The dialog is described as follows:

• Command - This field shows the command that you have selected to bind.

• Key Sequence - This field is used to enter the key sequence or mouse event that you want bound to
the command. For example, to enter the key sequence Ctrl+W, literally press the Ctrl and W keys
together. It accepts literal keyboard/mouse input, so you cannot edit the text or use key functions such
as backspacing or tabbing in and out of the field. You must use the red X button to clear the filter.

• Mouse Event button - Click this button located next to the red X button to pick a mouse event to use
for the binding. If the event involves pressing a modifier key or keys, such as Ctrl, Alt, Shift, Cmd,
Ctrl+Alt, etc., in conjunction with a mouse click, for example, Ctrl+RButtonDn, press the modifier
key(s) when clicking the Mouse Event button. Then the Select Mouse Event dialog shows a list of
modifier-prefixed mouse events. After selecting the mouse event you want to look up, click OK. The
Key Sequence field updates to show the selected mouse event.

• Bind - After entering the key sequence or mouse event, click this button to save the binding and close
the dialog. Prior to clicking Bind, you may want to assign the binding to a specific language editing
mode (see below).

• Cancel - Click this button to cancel the binding operation and close the dialog.

• Advanced - Click this button to expand the language editing mode settings. By default, all new
bindings are assigned to the "default" language editing mode, which means that the binding will work in
all modes. To assign the binding to a specific language editing mode, select Bind to mode and click

Keyboard and Mouse Options

926

the language editing mode from the drop-down list.

Redefine Common Key Options

Redefine Common Key options (Tools → Options → Keyboard and Mouse → Redefine Common
Keys) allow you to change the behavior of certain common keys. See also Redefining Common Keys for
more information.

The options are described as follows:

• Backspace in Replace mode - Specifies the behavior of the Backspace key when the Start mode is
set to Replace (Tools → Options → Editing → General → Start mode). When Remove previous
character only is selected, Backspace removes the previous character and moves the cursor left.
Otherwise the previous character is replaced with a space.

• Backspace over tab - Specifies the behavior of the Backspace key when the previous character is a
tab. When Convert tab to spaces and remove 1 space is selected, the Backspace key deletes
through tab characters one column at a time.

• Redefinable keys options are:

• Backspace key - Specifies when the cursor is allowed to wrap to the previous line when pressing the
Backspace key at the left margin.

• Delete key - Specifies the behavior of the Delete key when the rest of the current line is empty.
When Next line always joins is selected, the line below the current line is joined with the current
line.

• End key - Specifies where the cursor is placed when pressing the End key. The Toggle option is
useful for trimming extra spaces from long lines, because it gives you a natural and quick way to get
to your vertical line column and the last non-blank column.

• Enter key - Specifies whether a line is split when pressing Enter and how the cursor is aligned on the
new line. Nosplit Insert Line inserts a blank line after the current line and aligns the cursor with the
first non-blank character of the original line. The current line is not split. Split Insert Line splits the
current line at the cursor. Enough blanks are inserted at the beginning of the new line to align it with
the first non-blank character of the original line. Maybe Split Insert Line means that if the Start

Keyboard and Mouse Options

927

mode is set to Insert (Tools → Options → Editing → General → Start mode), the current line is
split at the cursor. Enough blanks are appended to the beginning of the new line to align it with the
first non-blank character of the original line. If the Start mode is set to Replace, the cursor is moved
to column one of the next line.

Note

When changing the key binding for the Enter key, the binding for Ctrl+Enter will automatically
switch to the opposite setting, depending on whether it is bound to Split Insert Line or Nosplit
Insert Line.

• Home key - Specifies where the cursor is placed when pressing the Home key.

Advanced Keyboard and Mouse Options

Advanced keyboard options are shown below (Tools → Options → Keyboard and Mouse →
Advanced).

The options are described as follows:

• Use Alt+key for menu drop-downs - (Non-CUA emulation modes and non-Mac systems only) When
set to On, "Alt"-prefixed keyboard shortcuts display the corresponding drop-down menu. When set to
Off, you can be more selective about key bindings because you are permitted to bind Alt keys you
normally could not, such as Alt+F. Set to Off if you bind Alt keys that are normally menu keys;
otherwise, you will lose these key bindings.

• Alt menu - When set to on, pressing the Alt key by itself causes the focus to shift to the menu bar. The
hotkeys in the menu names are underlined. When this value is set to off, pressing the Alt key has no
effect.

Keyboard and Mouse Options

928

• Use Command+key for dialog hotkeys - (Mac only) When this option is set to On, the Command key
is used for dialog hotkeys.

• Use Command+key for menu drop-downs - (Non-macOS emulation modes and Mac systems only)
When set to On, "Command"-prefixed keyboard shortcuts display the corresponding drop-down menu.
When set to Off, you can be more selective about key bindings because you are permitted to bind
Command keys you normally could not, such as Command+F. Set to Off if you bind Command keys
that are normally menu keys; otherwise, you will lose these key bindings.

• Mac Option/Alt key behavior - (Mac only) Select Default Mac IME (Extended ASCII entry) to use
Option+key for entering extended ASCII symbols (default macOS behavior). Set this option to Use as
Windows-style Alt key modifier to use Option+key for user-defined key bindings.

• Key message delay - Specifies the maximum delay, in tenths of a second, between two key
combinations when used as a single key binding (for example, Ctrl+X,Ctrl+C). If the time limit is
exceeded between when the two key combinations are pressed, the key sequence is interpreted as two
separate bindings.

• Command line prompting - When set to On, pressing a key binding that normally opens a dialog box
causes the SlickEdit® command line to prompt for arguments instead of opening the dialog. For
example, instead of displaying the Open file dialog, Ctrl+O (bound to gui_open) opens the command
line prompting for the file to open. See Command Line Prompting for more information.

• Selective Display, Expand/collapse - Specifies how Selective Display expand/collapse bitmaps (View
→ Selective Display) are clicked in order to expand/collapse areas. For more information, see
Selective Display.

• Use Clear key as NumLock - When set to On, the Clear key will behave as the NumLock key.

• Initial NumLock state - Sets the initial value of NumLock when the application is started. Only applies
when Use Clear key as NumLock is set to On.

Vim Options

The following options are specific to the Vim emulation and are only available after you have selected it.
See Emulation Options.

• Enter normal mode on ESC during codehelp - when set to On, pressing the Escape key during any

Keyboard and Mouse Options

929

codehelp or auto-complete will dismiss the dialog and switch to normal mode.

• Change cursor shape between modes - when set to On, the cursor will change shape when
switching between insert mode and normal mode.

• Verbose Ex mode prompt - when set to On, a warning is displayed in front of the prompt when staying
in Ex mode.

• Always highlight search results - when set to On, the editor will always highlight search results.

• Start in normal mode - when set to On, the editor will switch to normal mode any time you switch to a
different buffer.

ISPF Options

The following options are specific to the ISPF emulation and are only available after you have selected it.
See Emulation Options.

• Prefix area width - Sets the width of the prefix area.

• Display prefix area for readonly files - By default, the prefix area is not displayed for read-only files.
Since the prefix area can be used to enter commands, you may wish to have the prefix area visible for
these files.

• Enter places cursor in prefix area - When set to On, pressing the Enter key places the cursor in the
prefix area on the next line.

• Right CTRL = Enter/Send - When set to On, pressing the right-hand CTRL key sends the command.

• Cursor page up/down - When set to On, pressing PageUp or PageDown will move the current line to
the top or bottom of the screen, respectively. If the current line was already at the top/bottom of the
screen, then the display is scrolled one page. When Off, the display is always scrolled one page.

• END command saves the file - When set to On, the END command saves the file before closing the
file. When set to Off, you will be prompted whether to save.

Keyboard and Mouse Options

930

• XEDIT line commands - When set to On, allows the use of XEDIT commands.

• Home key places cursor on command line - When set to On, pressing the Home key puts the cursor
on the SlickEdit command line.

Editing Options
Editing options (Tools → Options → Editing) directly impact your SlickEdit® coding experience. By
customizing these options so that SlickEdit® works the way you prefer and to which you are accustomed,
you can greatly improve your coding speed and efficiency. Editing options include default search/replace
values, selection styles, specifying the size of new editor windows, and more.

Editing option categories are:

• General Editing Options

• Editor Window Options

• Cursor Movement

• Context Tagging Options

• Selection Options

• Search Options

• Bookmarks

• Auto-Close

• Global Alias Options

General Editing Options

General editing options are shown below (Tools → Options → Appearance → General).

Editing Options

931

The options are described as follows:

• Apply .editorconfig, .seeditorconfig.xml settings - Enables/disables .editorconfig and
.seeditorconfig.xml settings. The supported .editorconfig properties are indent_style, indent_size,
tab_width, end_of_line, and trim_trailing_whitespace. For documentation on .editorconfig files, go to
http://editorconfig.org/.

.seeditorconfig.xml support allows you to specify beautifier profile overrides for specific source trees

Editing Options

932

(i.e. different project source trees). Use Tools>Beautify>Beautifier Profile Overrides to create beautifier
profile overrides for a specific source tree.

• Start mode - Specifies the default insert/replace editing mode to use each time the editor is invoked.
The editing mode is indicated in the status line of the editor (Ins or Rep). You can also click on the
indicator to toggle the editing mode.

• Line insert style - SlickEdit® treats line selections differently than character selections. This option
controls whether lines are inserted before or after the current line when you paste a line selection. This
feature saves you from having to tediously position the cursor at the beginning or end of a line prior to
pasting.

• Next word style - Specifies the cursor behavior when navigating with the next_word command
(Ctrl+Right). When Begin is selected, the cursor is placed on the beginning of the next word. When
End is selected, the cursor is placed at the end of the next word.

• Maximum clipboards - Specifies the maximum number of clipboards saved. By default, a stack of your
last 50 clipboards are kept, any one of which can be pasted with Ctrl+Shift+V.

• Allow drag/drop of text - When set to On, selected text can be copied or moved by dragging and
dropping the selection using the left mouse button.

• Throw away file lists - When set to On, File Manager file lists (File → File Manager) can be modified
and closed without a save prompt.

• Auto exit build window - When set to On, the concurrent build window is automatically exited when
the buffer is closed or when exiting the editor.

• Reflow next - Specifies where the cursor is placed when running the reflow_paragraph command.
When Cursor on next paragraph is selected, the cursor is placed on the next paragraph after it has
reformatted the current paragraph.

• Protect read-only mode - When set to On, read-only files cannot be modified. If you attempt to modify
a read-only file, SlickEdit® displays a notification. If you attempt to save a read-only file, SlickEdit®
prompts for a different output file name.

• CUA text box - When set to On, the keys Ctrl+X, Ctrl+C, and Ctrl+V perform cut, copy, and paste
commands respectively for text boxes other than the command line, regardless of the emulation. When
Off, these keys operate the same in a text box as they do in the command line and edit windows, which
could be useful if you're using a non-CUA emulation or prefer to use your own editing key bindings.

• Preserve column on top/bottom - When set to On, the top_of_buffer (Ctrl+Home) and
bottom_of_buffer (Ctrl+End) commands do not change the column position unless already at the top
or bottom of the buffer.

• CR w/o LF erases line in build window - When set to On, lines of output sent to the Build tool window
that contain carriage return (CR) characters without subsequent line feed (LF) characters are erased.
When set to Off, these lines are not erased.

Tip

Editing Options

933

Where does this concept originate? On manual typewriters, carriage return (CR) moves the
carriage back to the first column of text, and line feed (LF) moves to the next line. Older computer
terminals, such as VT100 and its successors (Windows and UNIX shells), used this terminology
as a metaphor to redraw lines. For example, to draw a line that showed percent complete, you
would output "CR <number>%" repeatedly, then issue the line feed when it finished. In SlickEdit®
therefore, due to this practice, it is possible that output sent to the Build tool window may contain
carriage return characters without subsequent line feed characters. When this happens, the line
is erased in the Build window.

• Show extra line after last newline - When set to On and the last line of a file has a newline, an extra
line is displayed. When set to On, newly created files will start with a single line that is not terminated
with a newline.

Tip

If you like turning this option on, you may want to rebind your select all key (Ctrl+A by default) to
select_all_char. Otherwise, the select_all command will use a LINE selection which causes
paste to work differently than products that typically work this way.

• Parenthesis matching - See Begin/End Structure Matching for more information about parenthesis
matching. The following options available:

• Parenthesis matching style - When Highlight is selected, after typing a closing parenthesis,
SlickEdit® temporarily block-selects the text within the parenthesis pair. When Cursor to Begin
Parenthesis is selected, after typing a closing parenthesis, SlickEdit® temporarily places the cursor
on the matching begin parenthesis. When None is selected, SlickEdit® just inserts the closing
parenthesis.

• Highlight matching blocks - When set to On, the corresponding parenthesis, brace, bracket, or
begin/end word pair under the cursor is automatically highlighted.

• Highlight matching blocks after (ms) idle - Determines idle time delay before matching blocks are
highlighted.

• Highlight matching blocks timeout (ms) - Determines timeout for aborting highlighting matching
blocks.

• Maximum nesting level for Highlight matching blocks - Specifies the maximum level of recursive
block searching to perform to highlight the corresponding parenthesis, brace, bracket, or begin/end
word pair under the cursor before returning control to the editor.

• Maximum distance for Highlight matching blocks (KB) - Specifies the maximum distance, in
kilobytes, to search to highlight the corresponding parenthesis, brace, bracket, or begin/end word pair
under the cursor before returning control to the editor.

• Turn off Highlight matching blocks when file larger than (KB) - When the current file is larger
than this value, SlickEdit will not automatically highlight the corresponding parenthesis, brace,

Editing Options

934

bracket, or begin/end word pair under the cursor.

Tip

To customize the highlight color, go to Tools → Options → Appearance → Colors, and select
the Block Matching screen element. To adjust the delay in milliseconds before the highlighting is
updated, go to Macro → Set Macro Variable and modify the variable def_match_paren_idle.
See Setting Colors for Screen Elements and Setting/Changing Configuration Variables for more
information.

• Large File Editing - These options apply when working with large files. Use these settings to improve
performance when working with such files.

• Use Plain Text mode when file larger than (KB) - When the current file is larger than this value, it
will automatically be opened in Plain Text mode, turning off most language-related editing features
and improving performance.

• Turn off undo when editing file larger than (KB) - When editing a file larger than this value, undo
capabilities will be turned off to improve performance.

• Turn off soft wrap when editing file larger than (KB) - When editing a file larger than this value,
soft wrap capabilities will be turned off to improve performance.

• Turn off view line numbers when editing file larger than (KB) - When editing a file larger than this
value, viewing line numbers will be turned off to improve performance.

• Turn off minimap when editing file larger than (KB) - When editing a file larger than this value, the
minimap window will be turned off to improve performance.

• Turn off check for inconsistent line endings when editing file larger than (KB) - When editing a
file larger than this value, SlickEdit will turn off checking for inconsistent line endings on open to
improve performance.

Editor Window Options

Editor window options are shown below (Tools → Options → Editing → Editor Windows). See also
Files, Buffers, and Editor Windows for more information.

Editing Options

935

The following options are available:

• Zoom (hide tabs) when one window - When there is only one editor window, the application can hide
the document tabs. Select from the following choices:

• Always - Always hide the document tabs when there is one editor window.

• Auto - Figures out to hide the document tabs based on whether the last use of the zoom_toggle
command.

• Never - Never hide the document tabs when there is one editor window.

• Files per window - Specifies whether each buffer opened in SlickEdit® is allocated in its own editor
window or in the same editor window.

• Hide maximized child window titlebars - (Mac only) When set to On, maximized editor windows will
not display a titlebar.

• Mac resize borders - (Mac only) When set to On, editor windows can be resized from any edge or
corner.

Editing Options

936

• Smart next window style - Specifies preferences for navigating between editor windows. Select from
the following values:

• Smart next window - This is the default style. It allows you to press Ctrl+Tab (next_window
command) to switch the focus between the two most frequently used open editor windows, rather
than always going to the next window. Press Ctrl+Shift+Tab (prev_window command) to switch
between all open editor windows. This style is similar to how Ctrl+Tab and Ctrl+Shift+Tab work in
other Windows MDI applications, like Visual Studio.

Note

Under the Gnome desktop environment, Smart next window may not work correctly when the
mouse option 'Highlight the pointer when you press Ctrl' is enabled.

• Reorder windows - If selected, activating an existing window reinserts the window after the current
window. Neither Ctrl+Tab nor Ctrl+Shift+Tab reorders the windows. This option is very good for
switching between more than two files, but it is not the Windows standard. It's similar to the way
SlickEdit® reorders buffers.

• No window reordering - If selected, newly opened windows are inserted after the current window,
like in all settings. Activating an existing window, pressing Ctrl+Tab, or pressing Ctrl+Shift+Tab
does not reorder windows. This option is best if you memorize the hot key numbers on the Window
menu (for example, Alt+W,1) because it attempts to keep the hot key numbers the same.

Note

In all cases, cycling through the windows using Ctrl+Tab or Ctrl+Shift+Tab does not affect the
order of the windows. Specifically activating a file by clicking on a file tab or selecting it in the
Files tool window will reorder the windows unless you have set this option to "No window
reordering".

• Place cursor on focus click - When set to On, clicking in an editor window that does not have focus
will set focus and also place the text cursor. When set to Off, clicking in an editor window that does not
have focus only sets the focus.

•
File tab sort order - This setting controls the order of the file tabs and document tabs. The following
choices are available:

• Alphabetical - File tabs are listed alphabetically by file name.

• Most recently opened - File or document tabs are listed in the order they were opened. Most
recently opened files are positioned according to the New file tab position setting. This order is
useful if you prefer a static order, since switching buffers does not change the order.

• Most recently viewed - File or document tabs are listed in the order in which they were last viewed.
The current (and most recently viewed) file is at the left edge. Switching buffers reorders the tabs.

Editing Options

937

• Manual - Enables you to drag and drop file or document tabs to the position where you want them.
New files are opened according to the New file tab position setting.

• New file tab position - This option specifies whether file or document tabs for newly opened files
appear on the right or the left of the file tabs, or to the right or the left of the current file tab. This option
is only available when File tab sort order is set to Most recently opened or Manual.

• Show close buttons on document tabs - When set to On, individual file or document tabs will have a
close button to allow you to quickly close files.

• Document tab title - Sets how the file name is displayed on the document tabs. Choose from the
following options:

• Full path - display the full path of the file (Example: C:\work\foo.cpp).

• Name followed by full path - display the file name followed by the full path, including the file name
(Example: foo.cpp - C:\work\foo.cpp).

• Name followed by path - to see the file name, followed by the path, without the file name at the end
(Example: foo.cpp - C:\work\).

• Name only - display the file name only (Example: foo.cpp).

• Abbreviate file tab captions - When set to On, files with the same name but different extension will
have their captions abbreviated for all but the first file. For example, if you have files foo.cpp and foo.h,
then the file tab for foo.h will directly follow foo.cpp, but the caption will only say .h. This feature is only
available when File tab sort order is set to Alphabetical.

• Hide known file extensions - When set to On, files with specified file extensions will be displayed
without their extension in order to conserve space. When set to Off, the full file name is shown for every
file. This is useful for languages such as Java where all the source files have the same extension, so it
is a bit redundant to show the file extensions in the file or document tabs. This feature is only available
when File tab title is set to Name only.

• Hidden file extensions - Determines which file extension to hide in order to conserve space in the
document tabs.

• Color modified document tabs - When set to On, document tab captions for modified files will be
colored.

• Split window style - Determines how newly split windows are sized when using the hsplit_window
(Window → Split Horizontally) or vsplit_window (Window → Split Vertically) commands. The
following choices are available:

• Evenly - Divides up available space evenly among all current windows.

• Strict halving - Divides the window being split into two evenly-sized windows. Does not affect other
currently open windows.

•
Tab double-click action - Specifies the action to be performed when a document tab is double-clicked.

Editing Options

938

The following choices are available:

• Close file - Closes the selected file.

• Do nothing - Performs no action.

• One window - Zooms the current window and deletes all other windows.

• Split horizontal - Splits the selected file horizontally.

• Split vertical - Splits the selected file vertically.

• Zoom toggle (Document Tabs) - Zooms the selected file, hiding the document tabs.

• Tab middle-click option - Specifies the preferred action when a document tab is middle-clicked. For
the available choices, see Tab double-click action.

Cursor Movement

Cursor Movement options are shown below (Tools → Options → Editing → Cursor Movement). These
options control the movement of the cursor within editor windows.

The following options are available:

• Cursor right/left wraps to next/previous line - When set to On, the cursor_left and cursor_right
commands wrap to the previous or next line respectively.

• Cursor up/down places cursor in virtual space - When set to Off, the cursor_up and cursor_down
commands place the cursor up or down, respectively, at either the end of the line or at the column of
the original location, whichever comes first. The cursor is never placed past the end of the line. When
set to On, cursor_up and cursor_down go to the same column of the next or previous line, regardless
of the length of the line.

Editing Options

939

• Click past end of line - When set to On, the cursor can be placed past the end of a line into virtual
space.

• Cursor up/down within soft wrapped lines - When set to On, if Soft Wrap is enabled (View → Soft
Wrap), the cursor_up and cursor_down commands move the cursor up to the next or previous visible
line, including line continuations. When set to Off, cursor_up and cursor_down moves the cursor to
the previous or next physical line (the same position to which the cursor would move if Soft Wrap was
off).

• Cursor left/right in leading spaces - Specifies the behavior of the cursor_left and cursor_right
commands when moving the cursor within leading space. The purpose of this option is to emulate the
"feel" of real tab characters even if you only use spaces for indentation.

• Line wrap - Specifies when line wrapping occurs, either when the cursor reaches column one or when
it reaches the left margin. When language-specific Word Wrap is on (Tools → Options → Languages
→ [Language Category] → [Language] → Word Wrap), wrapping occurs when the left margin is
reached regardless of this setting.

• Strip leading spaces when joining lines - When set to On, hitting Delete at the end of a line to join
with the following line will strip the leading spaces from the following line, effectively joining to the first
non-blank character. When set to Off, the leading spaces from the following line will be preserved.

• Jump over tab characters - When set to On, moving the cursor over a tab character with the Left or
Right arrow key causes the cursor to jump across the virtual space. When set to Off, the Left and Right
arrow keys move the cursor into the virtual space of tab characters. Note that this setting also controls
where the cursor is placed when clicking in a buffer or making a selection.

• Subword navigation - When set to On, the word navigation commands, like next_word, behave like
their subword navigation counterparts, like next_subword. Word navigation jumps to the next word
based on the Word chars value set at Tools → Options → Languages → [Language Category] →
[Language] → General. Subword navigation stops within a word at each capital letter or after each
underscore or dash, making it easier to edit the name of a symbol. For more information, see Subword
Navigation.

• Undo affects cursor movement - When set to On cursor movement is added to the undo stack, so
undo operations will also undo cursor movement and edits.

• Create multiple cursors with Ctrl+Click - When set to On, Ctrl+Click can be used to create multiple
cursors. Turning off this feature is useful when working on a laptop keyboard where it is easy to
accidently click by touching the touchpad. You can still create multiple cursors using Ctrl+|. See also
??? for more information.

Background Tagging Options (Pro only)

Background Tagging options are shown below (Tools → Options → Editing → Background Tagging).
These options let you set general parameters for background tagging. You can designate whether or not
Background Tagging is performed and where or not to utilize threaded Background Tagging, as well as
tune the application to maximize performance. See also Building and Managing Tag Files for more
information.

Editing Options

940

The following options are available:

• General:

• Use background tagging - When set to On, background tagging will keep your tag files up-to-date
when source files change on disk or files are added and/or removed from your project.

When set to Off, all background tagging features except for Tag file on save and Tag file on switch
buffer will be disabled. In this case, the only way to update tag files will be by using the Tag Files
dialog (invoked from Tools → Tag Files) or by updating your workspace or project tag files manually
using Project → Retag workspace or Project → Retag project, respectively.

• Use background tagging threads - When set to On, background tagging will use background
threads to parse source files and update tag files. This is designed to maximize performance by
parsing multiple files in parallel, as well as minimize delays in the editor. When set to Off, all
background tagging features will operate on a timer in the main GUI thread, which can lead to delays.

Editing Options

941

• Tag file on save - When set to On, files are retagged when you save a modified file.

• Tag file on switch buffer - When set to On, files are retagged when you switch away from a
modified file.

• Background tagging of open files:

• Background tagging of open files - When set to On, all open files are retagged in the background
if they have been modified.

• Use background thread when possible - When set to On, open files are tagged using a separate
thread instead of using a timer on the main thread.

• Start after seconds idle - Specifies the amount of time, in seconds, the editor remains idle (no
keyboard or mouse movements) before retagging of buffers starts, when Background tagging of
open files is enabled.

• Background updating of other files:

• Update workspace tag file on open - When set to On, background tagging will update the
workspace tag file on a thread when the workspace is opened.

If Use background tagging threads is not enabled, this option will also be disabled in order to
prevent delays at startup or when switching workspaces.

• Update workspace tag file on activate - When set to On, background tagging will update the
workspace tag file on a thread when SlickEdit® loses focus or gains focus.

If Use background tagging threads is not enabled, this option will also be disabled in order to
prevent delays when SlickEdit® regains focus.

• Background tagging of other files - When set to On, tag files are updated when another
application modifies a file. Note that this causes SlickEdit® to constantly perform disk I/O to check
dates of files on disk.

• Workspace tag file only - When set to On, background tagging cycles through only the workspace
tag file. When set to Off, background tagging cycles through all of your language-specific tag files
(listed under Tools → Tag Files) in addition to the workspace tag file.

• Start after minutes idle - Specifies the amount of time, in minutes, the editor remains idle (no
keyboard or mouse movements) before retagging of files on disk starts, when Background tagging
of open files is enabled.

• Minutes before restarting - Specifies the number of minutes to wait for background tagging to start
again after all files have been fully tagged.

• Background Tagging Threads:

• Number of tagging threads to start - The number of threads to be used for background tagging.
This number should be based on the number of processors/cores on your computer and the other
tasks you may be running while editing.

Editing Options

942

• Use background thread to build workspace tag file when possible - When set to On workspace
files are initially built on a background thread instead of being built synchronously. This option applies
only to languages that support threaded tagging.

• Use background thread to build language support tag files when possible - When set to On tag
files for language support, like compiler libraries, are built initially using a background thread instead
of being built synchronously. This option applies only to languages that support threaded tagging.

• Report background tagging progress on status bar - When set to On messages are written to the
message line indicating the progress of background tagging.

• Process background tagging jobs after (ms) idle - Specifies the amount of idle time to wait before
polling for completed background tagging jobs.

• Background tagging timeout (ms) - Specifies the maximum amount of time to spend gathering
background tagging results before returning control to the editor.

• Maximum number of active tagging jobs - Specifies the maximum number of background tagging
jobs to allow to be active in the background tagging processing queues at once. This setting is used
to limit the amount of memory that background tagging can consume while running. You have to
restart the editor for a change to this setting to take effect.

• Maximum amount of background tagging memory usage (MB) - Specifies the maximum amount
of memory, in megabytes, that can be consumed by background tagging jobs in any stage before the
tagging jobs need to be throttled back from reading any more files off of disk. This setting is used to
limit the amount of memory that background tagging can consume while running. You have to restart
the editor for a change to this setting to take effect.

Context Tagging® Options (Pro only)

Context Tagging options are shown below (Tools → Options → Editing → Context Tagging). These
options let you set general parameters for the Context Tagging features. You can designate the way
Context Tagging is performed and how the references function within the application, and you can also
tune the application to maximize performance. See also Building and Managing Tag Files for more
information.

Editing Options

943

Editing Options

944

The following options are available:

• Tagging Tool Windows :

• Update tool windows after (ms) - Specifies the amount of idle time before the Preview window is
updated to match the current location. Prevents the Preview window from showing results as you
cursor through the code.

• Additional time to wait before updating tool windows (ms) - Additional delay before updating
other tool windows. This gives background threads more time to update the current file before other
windows are updated.

• Preview window symbol lookup timeout (ms) - Specifies the maximum amount of time that the
preview window should spend trying to look up a symbol. If the symbol is not found in that time, it will
not display the symbol preview. Smaller values will help prevent typing delays.

• Show preview of symbols in tool windows on mouse-over - When set to On, hovering over
symbols in tagging-related tool windows or in the file tabs will cause symbols to be shown in the
preview window.

• Show preview of symbols in tool windows after (ms) - Specifies the amount of time to delay, in
milliseconds, when hovering over symbols in tool windows or in the file tabs before showing the item
under the mouse in the preview window.

• References - Select from the following:

• Build workspace tag file with references - When set to On, newly created tag files are built with
support for symbol cross-references.

• Find references search strategy - The References tool window supports multiple search strategies,
depending on how immediately you want to see all the results of a references search.

• Find references in background - By default, all files with potential references are searched and
analyzed in the background. You may temporarily see files which do not have any valid references
to the symbol you are looking for listed in the References tool window. Files which do not contain
any references will be removed from the file list as they are processed. This option allows you to
keep working while the references search completes.

• Find references incrementally - This option allows reference searches to return control to the
editor faster because analysis stops at the first file found containing a valid reference. However,
you may see files which do not have any valid references to the symbol you are looking for listed in
the References tool window. It will then resume the references search when you go to the to the
next occurrence by pressing Ctrl+G (Search → Next Occurrence or invoke the find_next
command).

• Find all references immediately - If a references search involves four or more files, a progress
dialog is displayed while all the files with potential references are analyzed. Files which do not
contain any valid references are removed from the file list immediately. You can cancel the search
by hitting Cancel.

• Update references and call tree on single click - When set to On, references in the References

Editing Options

945

tool window are updated when you click on a new symbol in the Classes, Defs, or Symbols tool
window.

• Jump to first item when finding references - When set to Off, Find Reference searches for
references but does not jump immediately to the first reference. When set to On, Find Reference
searches for references and automatically jumps to the first one. Note that you can find the next
reference by using the find_next command (Search → Find Next or Ctrl+G).

• Search for word matches if symbol is not found - When set to On, Go to Reference will search for
simple word matches if the symbol under the cursor is not found by Context Tagging®.

• Highlight references in editor - When set to On, each reference is highlighted within files.

• Show bitmap in margin for each reference - When set to On, each reference will have a bitmap in
the left margin of the editor.

• Only highlight current set of references - When set to On, only the current set of references will be
highlighted, not each one on the references stack.

• Allow mixed language references - When set to On, allow the system to also search for references
in files that do not match the source language for the symbol in question.

• Automatically build references stack - When set to On, Go to Reference will always create a new
item on the top of the references stack. If not enabled, you can still manually add searches to the
stack using the 'Add' tool button on the References tool window.

• Automatically pop references stack - When set to On, Pop Bookmark will automatically remove
the top-most item from the references stack if the originating bookmark was created using Go to
Reference.

• Automatically pop when no more references - When set to On, Find Next will automatically
remove the top-most item from the references stack when there are no more occurrences.

• Tag File Cache (tune for performance) - You can tune Context Tagging performance by dedicating
more memory to caching the contents of tag files.

• Use memory mapped files - When set to On, use memory mapped files for reading and writing tag
database files. This option may not be available on all platforms. If you are using very large tag files
on a 32-bit system, for example, tag files in excess of 1000 megabytes, it is recommended to turn
this option off.

On Windows, memory mapped tag files are automatically disabled for network file systems.

• Tag file cache size - Specifies the cache size, in megabytes, for tag files. Tagging performance can
be improved by adjusting this setting to better match the size of your tag files. Generally, a tag file
cache size that matches the total size of the tag files being used will provide the best performance.
For example, if the tag files for your source code and libraries adds up to 100 MB, you should set
your cache size to 100 MB. You may have to experiment to find the optimum value. Use the following
recommendations as a guide:

* Minimum - 8 MB

Editing Options

946

* Default - 64 MB

* Ideal - Sum of tag file sizes

* Maximum - 25% of physical system memory

Note that this is the same as the Tag file cache size option under Tools → Options → Application
Options → Virtual Memory.

• Tag file cache maximum - Specifies the maximum cache size, in megabytes, for tag files. The tag
file cache size can be dynamically adjusted as high as this amount depending on the amount of
available memory on your machine at the time SlickEdit is started.

Note that this is the same as the Tag file cache maximum option under Tools → Options →
Application Options → Virtual Memory.

• Use independent database file caches - When set to On, use independent file caches for each tag
database, rather than using a single multi-file database cache. Turning on this feature can allow
memory usage to increase by a factor equal to the number of open tag files, whereas with the feature
turned off, memory usage is limited to the size of the single shared database file cache. It is
recommended to turn this feature off if you are running on a system with a low amount of available
memory.

• Maximums (tune for performance) - You can tune Context Tagging performance and accuracy by
adjusting these values. Higher values will find more tags but increase search time. Lower values
improve performance but may cause symbols to be omitted.

• Context Tagging® result cache maximum - Specifies the maximum number of symbol sets to
store for current context tagging, statement tagging, local variable tagging, and context tagging
search results. The minimum allowed is 10 items, but if you have enough memory available, it is
recommended to set this to at least five times the number of files you typically keep open at one time.
For a very liberal estimate, on average, each item in the cache can consume a megabyte of memory.

• Maximum functions found by parameter help - Specifies the maximum number of overloaded
functions to display when function parameter help (Parameter Information) is invoked.

• Maximum class/struct shown in list members - Specifies the maximum number of class/struct
symbols to display in the Class tool window.

• Maximum response time for list members (ms) - Specifies the maximum amount of time, in
milliseconds, that SlickEdit spends finding symbols to display while using list members or completing
symbols.

• Maximum candidates for list parameters - Specifies the maximum number of local variables and
class members that are evaluated to determine assignment compatibility when Auto List Compatible
Parameters is invoked.

• Maximum response time for list parameters (ms) - Specifies the maximum amount of time, in
milliseconds, that SlickEdit® spends finding compatible parameters. Note that this is not a hard limit;
in some cases, evaluating the assignment compatibility of a single variable can be time-consuming,

Editing Options

947

especially when templates are involved.

• Maximum tags found in symbol search - Specifies the number of tags found when Find Tag is
invoked (right-click in the Symbols Tool Window and select Find Tag). This setting also controls the
number of duplicate tags that are tried when SlickEdit® is attempting to evaluate the type of a
symbol.

• Maximum items found in references search - Specifies that a symbol references search should
stop after this many hits are found.

• Update after (ms) idle (0 implies no delay) - This option controls the idle time in milliseconds
before the List Members feature displays a list.

• Maximum response time (ms) for highlighting matching symbols - Specifies the maximum
amount of time to spend locating matching symbols. Only symbols found in this amount of time will
be displayed.

• Update Context performance tuning: - Use these options to fine tune the editors performance when
updating the list of symbols for the current file. This is needed by Context Tagging®, as well as many
tagging tool windows and various smart editing features.

• Maximum size of files to tag - Specifies the maximum size, in kilobytes, a file is allowed to have in
order to be tagged.

• Maximum size of files for statement tagging - Specifies the maximum size, in kilobytes, a file is
allowed to have in order to be tagged using statement tagging.

• Maximum size of files for building token list - Specifies the maximum size, in kilobytes, a file is
allowed to have in order to be allowed to construct a token list. Token lists are used to optimize
gathering expression information for symbol analysis, symbol coloring, and positional keyword
coloring.

• Maximum number of tags per file - Specifies the maximum number of tags (including statements, if
Statement Level Tagging is enabled) that a file is allowed to have in order to appear in the Defs and
Current Context tool windows.

• Maximum time for parsing current file (ms) - Specifies the maximum amount of time in
milliseconds to spend updating the current context. This setting exists to prevent delays when
updating the symbols in the current file for files that have slower proc-search functions instead of
tagging callbacks written in C++.

• Avoid updating context if average time exceeds (ms) - If the maximum time in milliseconds to
update the context for the current file exceeds this threshold, avoid non-essential operations, like
auto-complete, symbol coloring and highlighting, and beautify while typing which require the current
context to be updated on demand.

• Immediately update context if maximum observed time is less than (ms) - If the maximum time
in milliseconds to update the context for the current file is less than this threshold, do not hesitate to
update the current context when it is needed for updating a tool window or auto-complete or any
other tagging operation.

Editing Options

948

• Symbol coloring performance: - Use these options to fine tune symbol coloring performance.

• Update after (ms) idle - Specifies the amount of time (in milliseconds) to wait to update the symbol
coloring information for a file after the file has been modified. Based on average typing speed, we do
not recommend setting this value to less than 250 ms.

• Timeout after (ms) - Symbol coloring will be performed in time slices no greater than the amount
specified. Setting this value very low will protect against typing delays. However, you may see the
symbols coloring from top to bottom rather than seeing the whole page colored in one shot.

• Number of lines to color above and below the current page - For best performance, symbol
coloring only colors the current visible page of lines and a small window of surrounding lines. This
setting allows you to configure how many lines before and after the current visible page of lines are
also colored. Set this to 0 for optimal performance with no prefetch of symbol coloring information.

• Number of off-page lines to color per pass (chunk size) - After calculating the symbol coloring for
the lines on the current page, symbol coloring will start prefetching coloring for surrounding lines.
This setting controls the number of lines calculated per pass.

• Windows to color - This setting controls which windows to color. Select Current window to color
the current window only (best performance). To color all currently visible windows, select All visible
windows. To color all currently open windows, select All windows.

• Auto-Complete performance tuning:

• Maximum symbols - For performance tuning, you can limit the maximum number of symbols
displayed by Auto-Complete. This setting affects all file extensions.

• Maximum function prototypes - Limits the maximum number of symbols displayed with their
function arguments.

• Maximum word completion - For performance tuning, you can limit the maximum number of word
completions displayed by Word Completion. This setting affects all file extensions. This is especially
useful when editing large files.

• Display after (ms) idle - The number of milliseconds the editor must be idle before auto-completion
suggestions will be displayed. This setting affects all extensions.

• Update after (ms) idle - The number of milliseconds the editor must be idle before auto-completion
suggestions will be refreshed. This setting affects all extensions.

• Timeout after (ms) when automatic - For performance tuning, you can limit the amount of time that
Auto-Complete spends finding suggestions when it comes up automatically. Set this to less than a
second to avoid typing delays.

• Timeout after (ms) on demand - For performance tuning, you can limit the amount of time that
Auto-Complete spends finding suggestions when it is invoked manually. Set this to as much as a
minute, depending on how long you might be willing to wait for results.

Selection Options

Editing Options

949

Selection options are shown below (Tools → Options → Editing → Selections). See also Selections for
more information.

The following options are available:

• Styles - Choose the selection style you wish to use from the following options:

• User defined - This option is for setting your own selection preferences. Any changes that are made
to the CUA behaviors automatically select User Defined. Selecting CUA automatically resets the
select behaviors.

• CUA - (Default for most emulations and the default emulation) When this style is selected, selected
text is deleted before a paste or character is inserted unless the selection is locked. Pressing the
Backspace or Delete keys deletes the selection unless the selection is locked. Advanced selections
(those selections not started with the mouse or Shift+<arrow keys>) are extended as the cursor
moves. Locking a selection requires one of the emulation commands select_line, select_block, or
select_char. To access these commands from Edit pull-down menu, select this option in any
emulation.

• Extend selection as cursor moves - When checked, the selection is extended to cursor position. This
option is not available if using Brief or Emacs emulation.

• Deselect after copy - Indicates whether copied text is selected. This is not available if using Brief or
Emacs emulation.

• Deselect after paste - Indicates whether pasted text is selected. This is not available if using Brief or
Emacs emulation.

• Inclusive character selection - When checked, a character selection includes the character following
the cursor. This option is not available if using Brief or Emacs emulation.

Editing Options

950

• Inclusive block selection - When checked, a block selection includes the character following the
cursor.

• Delete selection before insert - Indicates whether a selection is deleted before new text is inserted.
This option is not available if using a Brief or Emacs emulation.

• Auto deselect (i.e. when cursor moves) - Check this box to clear a selection when the cursor moves
or one of a few other editor operations occurs. This option is not available if using a Brief or Emacs
emulation.

• Shift+Cursor always char select - When this check box is cleared, pressing the Shift+<arrow keys>
will select line or block selections, depending upon the direction the cursor moves. This is not available
if using a Brief emulation.

• Alt+Shift+Cursor selects block - When checked, pressing Alt+Shift+<arrow keys> will create a
block selections.

• Mouse selection creates clipboard - Select this option to use the left mouse button to create a
clipboard and to use the middle mouse button to paste.

• Arrow keys traverse selection - If checked, the Left arrow key moves the cursor to the beginning of
the selection and the Right arrow key moves the cursor to the end of the selection.

• Enable block selections with right-click and drag - If checked, then clicking the right mouse button
and dragging allows you to make block selections.

• Indent selection when text selected - When this option is selected, pressing Tab or Shift+Tab
indents or unindents the selected text.

• HTML Clipboard formats - (Windows only) Check this option to enable pasting of HTML-formatted
and color-coded text to other applications (as well as plain text).

Search Options

Search options are shown below (Tools → Options → Editing → Search). This option screen can also
be displayed from the Find and Replace tool window (Search → Find or Ctrl+F), or right-click in the
background and select Configure Options.

These are the default search options that control the behavior of Find and Replace operations in the
following instances:

• The very first time the Find and Replace tool window is displayed. After that, dialog history takes over,
unless:

• You set the default search option Initialize with default options setting to On, then the options are
reset to default every time the tool window is invoked, or

• You use the right-click context menu in the Find and Replace tool window to select Use Default
Options, which resets to the default state.

• The default options are always applied when using:

Editing Options

951

• Quick Search and Quick Replace.

• Incremental Search.

• Command-line searches (find and /) if you don't specify options explicitly.

• Selective Display commands when searching by text.

For more information, see Find and Replace.

Editing Options

952

Editing Options

953

The following options are available:

• Default search options - The following default search options apply to all command line searches,
quick searches and incremental searches, and to the Find and Replace tool window when the option
Initialize with default options is enabled.

• Match case - When set to On, search commands default to case-sensitive searches.

• Match whole word - When set to On, search commands default to only finding matches to the word
as a whole. When set to Off, search commands default to finding all instances of the word, ignoring
characters that are to the left and right of the occurrence.

• Regular expression - When set to On, search commands default to regular expression searching.

• Regular expression syntax - Specifies which regular expression syntax to use for default regex
searching, when Regular expression search is enabled.

• Wrap at beginning/end - Specifies whether or not search commands always wrap at the beginning
or end of a buffer during a search/replace operation when the range is the current buffer.

• Search backward - When set to On, searches are always performed from the end to the beginning.

• Place cursor at end - When set to On, the cursor is placed at the end of the found occurrence.

• Search hidden text - When set to On, text hidden by Selective Display is allowed to be searched. To
set Selective Display options, from the main menu click View → Selective Display. See Selective
Display for more information.

• Tool Window options - Select from the following:

• Close after find/replace - When set to On, the Find and Replace tool window is closed after finding
text in the buffer.

• Preview All shows modified file(s) on the left - When set to On, Hitting Preview All... after a
Replace or Replace in Files will show the modfied file(s) on the left side rather than the right.

• Mini window options - Select from the following:

• Close on Enter key - When set to On, Mini Find is closed on Enter key in addition to Esc key.

• Maximum buffer size for incremental search (KB) - If the buffer size is larger than this size,
incremental searching will not be performed to improved performance.

• Maximum occurrence matches - Determines that maximum number of matches for Incremental
search highlighting.

• Search string initialization - The following options provide starting values for when a search and
replace operation is activated:

• Initialize search string - Specifies the initial value to be used in the Search for fields of the Find and
Replace tool window when the window is activated. When History retrieval is selected, the Find and
Replace tool window uses the last item that was searched for as the word used when performing a

Editing Options

954

search. When Word at cursor is selected, the Find and Replace tool window uses the word that is at
the cursor when performing a search.

• Selected text (if exists) - When set to On, the current selection is used as the initial value in the
Search for fields of the Find and Replace tool window when the window is activated. If a selection
doesn't exist, the value specified by the Initialize search string option is used.

• Auto escape regular expression - When set to On and the string is initialized with selected text or
current word, add escape (Backslash) to any regular expression metacharacters.

• Additional options - Select from the following:

• Default Find and Replace GUI - Determines the dialog displayed by the gui-find (Ctrl+F) and gui-
replace (Ctrl+R) commands. Mini displays the Mini Find and Replace dialog. Tool Window displays
the Find and Replace tool window.

• Initialize with default options - When set to On, options on the Find and Replace tool window and
Mini Find are reset to the original default values each time the window is launched.

• Restore cursor after replace - When set to On, the cursor is restored to its original position after a
search/replace operation completes without being cancelled.

• Leave selected - When set to On, the last occurrence of a matching search string is left selected
when a search operation completes. This also affects whether pressing Esc during a search and
replace leaves the search string selected.

• Incremental search highlighting - When set to On, incremental searching highlights matching
occurrences with two colors: one for the current match at the cursor and one for all possible matches.
Highlights are removed when the search terminates. These colors are controlled by the I-Search
Current Match and I-Search Highlight screen elements (Tools → Options → Appearance →
Colors). See Incremental Searching for more information.

• Maximum search results output (KB) - Specifies the maximum amount of search results, in
kilobytes, to return after a search operation.

• Maximum search result line length - Specify maximum line length for printing search result line in
full. If the line length is greater than the setting, the line will be truncated around the match. Set this
value to 0 to disable this check.

• Truncated search result width - Specify the number of columns before and after the match for a
truncated search result line.

• Search Results Buffers - Specify starting number of tabs for Search Results tool windows.

• Sort Find in Files search results by filename - When set to On, search results are sorted by
filename. Turning this option on can affect performance because the entire filelist must be scanned
and sorted before threads can search files.

• Find in Files threads - When using Find in Files, this determines the number of threads used to
search files. Using more threads can increase performance but it depends on the number of cores
your CPU has and hard drive speed. Using more threads can use more memory but it's typically not

Editing Options

955

significant.

• Default Excludes - Configure set of semicolon delimited list of excludes that can be used in Find and
Replace Excludes. Choose <Default Excludes> from the Excludes combo box to make use of the list.
The Default Excludes typically excludes binary files so that a wildcard specification like '*' or '*.*'
excludes binary files. Defaults to <Binary Files>, which specifies all extensions associated with
Binary document mode. See File Extension Manager for more information on adding extensions and
associating language modes with extensions.

Bookmarks

Bookmark options are shown below (Tools → Options → Editing → Bookmarks) See Bookmarks for
more information.

The following options are available:

• Use workspace bookmarks - When set to On, bookmarks are associated with the workspace used to
create them, even if the files they are in are not part of the workspace. When you switch workspaces,
the Bookmarks tool window updates to show only the bookmarks associated with the current
workspace. See Using Workspace Bookmarks for more information.

• Show set bookmarks - When set to On, a green Bookmark bitmap is displayed in the left margin of
the editor window at the location of each set bookmark.

• Show pushed bookmarks - When set to On, a blue Bookmark bitmap is displayed in the left margin of
the editor window at the location of each pushed bookmark. This helps you see where "Pop Bookmark"
will go.

• Close deletes pushed bookmarks - When set to On, any pushed bookmarks remaining are removed
when a buffer is closed. This option is helpful for buffer management, because it prevents buffers which
were explicitly closed from coming back when you pop up out of your bookmark stack.

Editing Options

956

• Maximum stack depth - Specifies the maximum number of bookmarks kept in the bookmark stack.
When this number is exceeded, the oldest bookmark is removed from the stack.

• Automatically close visited files - Specifies the closing of visited files. A file is considered visited if it
is opened as a result of a symbol navigation or search operation, not modified, and subsequently
navigated away from. Features that open files for visiting include Go to Definition, Go to Declaration,
Go to Reference, Find in Files, and Pop Bookmark (see Symbol Navigation), and some search
operations. Select from the following values:

- On - When this setting selected, visited files are automatically closed when you navigate away from
them.

- Off - When this setting is selected, the option is not enabled and visited files are not closed.

- Prompt me each time - When this setting is selected, you will be prompted with a choice each time
you navigate away from a visited file.

• Top/bottom buffer pushes bookmark - When set to On, a bookmark is pushed whenever you jump to
the top or bottom of the buffer (Ctrl+Home/Ctrl+End, or top_of_buffer/bottom_of_buffer commands,
respectively). This is convenient, for example, in C++: if you jump to the top of the buffer to add a
#include statement, a bookmark is pushed, so you can use Ctrl+Comma (pop_bookmark command)
to get back to your previous position. This option corresponds to the configuration variable
def_top_bottom_push_bookmark.

• Navigating search results pushes bookmark - When set to On, a bookmark is pushed when you
navigate between search results. This allows you to use pop-bookmark to jump back to the previous
location.

Auto-Close

Auto-Close automatically inserts matching closing punctuation when opening punctuation is entered.
Auto-Close options are shown below (Tools → Options → Editing → Auto-Close).

The following Auto-Close options are available:

• Show navigation hints - This option controls whether a navigation hint is shown when Auto-Close is
used. These hints will tell you where you can jump by using the completion keys. Select from the
following choices:

Editing Options

957

• Caret - The navigation hint will appear as a small triangle at the bottom of the line of code.

• Vertical pipe - The navigation hint will appear as a vertical pipe, similar to a non-blinking cursor.

• None - Select this choice if you do not wish to see any navigation hints.

• Completion Keys - These Options determine which keys can be used to jump to the end of
automatically inserted punctuation.

• Enter - When set to On, pressing Enter will jump to the end of automatically inserted punctuation.
When set to Off, Enter will perform its usual function when in the middle of automatically inserted
punctuation.

• Tab - When set to On, pressing Tab will jump to the end of automatically inserted punctuation. When
set to Off, Tab will perform its usual function when in the middle of automatically inserted
punctuation.

Hotspot Options

Hotspots are used with the Syntax Expansion and Aliases features. When expanding a block of text,
markers are inserted where you are likely to want to jump to as you edit. You can use Tab to jump to the
next hotspot, or use the next_hotspot and prev_hotspot commands.

The Hotspot options are shown below (Tools → Options → Editing → Hotspots).

The following Hotspot options are available:

• Hotspot navigation - Enables hotspots for syntax expansion and alias expansion.

• Allow Tab key navigation - Use the Tab key to jump to the next hotspot. When turned Off, then the
next_hotspot and prev_hotspot commands can be used (or bound to keys using the Keybindings
options).

• Show navigation hints - Determines how to display hotspots in the editor window. The following
choices are available:

Editing Options

958

• None - Do not display hotspots.

• Caret - Use the caret character (^) to represent hotspots.

• Vertical pipe - Use the vertical pipe character (|) to represent hotspots.

Global Alias Options

Global alias options are shown below (Tools → Options → Editing → Global Aliases). After using this
screen to create an alias, use the alias in the editor by typing the identifier and pressing Ctrl+Space.

Note that the Global Aliases options page uses the same form that is used to create and manage
Language-Specific Aliases. See Global Aliases for more information about this feature.

Debugging Options (Pro only)
Debugging options (Tools → Options → Debugging) are used for tuning the run-time performance of

Debugging Options (Pro only)

959

the integrated debugger, examining the properties of the underlying debugger system, setting class filters,
and controlling the directories searched for source files.

You can also access these options by clicking the Debug → Debugger Options from the main menu (or
by using the debugger_options command).

Note

To see information about the underlying debugger system, including a general description
retrieved from the debugger, version number, run-time version, and debugger name, make sure
you're in debug mode, then click Debug → Debugger Information (or use the debug_props
command). See Viewing Debugger Info and Setting Options for more information.

Debugging options categories are:

• Debugging General Options

• Debugging Numbers Options

• Debugging Runtime Filter Options

• Debugging Directories Options

• Debugging Configurations Options

Debugging General Options

The Debugging General Options screen is shown below (Tools → Options → Debugging → General).
Use these options to increase debugger performance.

Debugging Options (Pro only)

960

The options are described as follows:

• Performance:

• Number of lines to scan for Autos - Specifies the number of lines, starting with the current line, to
scan for symbols to evaluate and display in the Autos tab of the Debug Variables tool window.

• Number of elements to expand in arrays - Specifies the maximum number of elements to expand
when examining the contents of an array or string in the debugger. Note: This setting is not enforced
by all debugger environments, nor is it an absolute maximum in all debugger environments.

• Response timeout(s) - Specifies the number of seconds to wait for a connection or response from
the underlying debugger system before giving up.

• Minimum running update time(ms) - Specifies the minimum amount of time in milliseconds to
spend polling for asynchronous events coming from the underlying debugger system. This value is
also used to determine the frequency with which to poll for events when the application is running.

Debugging Options (Pro only)

961

• Maximum suspended update time(ms) - Specifies the maximum amount of time in milliseconds to
spend polling for asynchronous events coming from the underlying debugger system. This value is
also used to determine the frequency with which to poll for events when the application is suspended.

Tip

Decreasing the minimum and maximum update times will make the editor more responsive in
some cases during debugging, however, increasing these times can improve overall
performance.

• Toolbar update delay(ms) - Specifies the amount of time to wait in milliseconds before updating the
debugger toolbars. This is done to improve debugger performance and decrease overhead and
redraws when single stepping through code. Set this value to 0 to force an immediate update.

• Asynchronous message duration(s) - Specifies the amount of time in seconds to display certain
informative messages caused by asynchronous events (such as loading classes in Java) before they
are erased.

• Features:

• Allow edit and continue (hot swap) where available - (Edit and continue - Java only) When set to
On, you can edit a file during a Java debugging session, compile or rebuild, and then continue to
debug. Keep in mind that when using this feature, there are certain feature limitations that you might
encounter that are defined by the Java Virtual Machine.

• Allow editing of source files during debugging - When set to On, you can edit files during
debugging sessions.

• Show value of symbol under mouse - When set to On, as the mouse cursor floats over a symbol,
the information about the symbol, including its value for variables, are displayed.

• Automatically correct breakpoint scope - When a breakpoint is set in the debugger, the name of
the function and the class it is in is recorded. If the class name or function name subsequently
changes between debugging sessions, having this option enabled will allow the debugger to correct
this information stored with the breakpoint.

• Input/Output:

• vsdebugio connection port - Specifies the TCP/IP port to connect to vsdebugio running locally on
the same machine.

• Advanced GDB Options:

• (Windows only) Use remote proxy - (Windows only). Set to true to use gdb remote proxy
application to mediate connection between gdb and remote target. This setting only applies to
attaching to remote target.

• (Windows only) Remote proxy port - (Windows only). Specifies the TCP/IP port to use when gdb
connects to a remote target through the gdb remote proxy application. 'def_gdb_use_proxy' must be

Debugging Options (Pro only)

962

set to true for this to have any effect. The default port number is 8002.

• Enable Python pretty printing - Specifies to enable pretty printing using Python scripts provided
that the GDB executable has supports for python built-in.

• Disable auto-loading of scripts - Specifies to disable auto-loading of pretty printing modules and
other scripting that a user's GDB may have pre-configured. This is generally necessary when using
the integrated pretty printing because the scripts can be prone to cause long delays.

Debugging Numbers Options

The Debugging Numbers Options screen is shown below (Tools → Options → Debugging →
Numbers). Use these options to configure settings for viewing numbers in multiple bases (hex, octal, and
binary views) or for viewing floating point values using a speicfic style, or for viewing strings with Unicode
characters or with non-ascii characters escaped.

These settings allow you to specify how different numeric types are formatted by the debugger by default.
You can specify settings for integer numbers, floating point numbers, characters, and strings. Each option
contains the same values for you to pick from. The table below shows examples of each type of
configuration for numbers.

Option Value Base Example

Binary 2 0b01000001

Char N/A 'A'

Decimal 10 65

Debugging Options (Pro only)

963

Option Value Base Example

Hexadecimal 16 0x41

Octal 8 0101

The following options are for floating point numbers:

Option Value Example

Default 0.000123

Scientific 1.23e-4

Floating Point 0.0001230000

For string values, they can be displayed with native Unicode characters, or they can be displayed with all
Unicode characters escaped to make the string plain ascii text.

These settings can be overridden by using the right-click context menu in any of the debugger variables
tool windows. They may also be overridden on a per-variable basis, again by using the right-click context
menu in the debugger variables tool windows (Autos, Locals, Members, Watches). See Debug Tool
Windows for more information.

Debugging Runtime Filters Options

The Debugging Runtime Filters Options screen is shown below (Tools → Options → Debugging →
Runtime Filters). Use this screen to configure the Step Into command (Debug → Step Into,
debug_step_into) to skip certain runtime functions and methods.

Debugging Options (Pro only)

964

For GNU C/C++, click Add to specify a function, or class and method patterns (ex. strcpy, str*,
MyClass::*, MyClass::Insert*) for the debugger to consider as run-time functions. This will affect the
behavior of Step Into. Step Into will step over statements that call into run-time functions. The Reset
button will reset the filters back to the defaults.

For Java, click Add to specify packages or specific classes or class patterns for the debugger to consider
as run-time classes. This will affect the behavior of Step Into and the Debug Loaded Classes tool window.
Step Into will step over statements that call into run-time classes. The Reset button will reset the filters
back to the defaults, which are java.*, javax.*, com.sun.*, and sun.*, which correspond to the
defaults used by Sun's JDB debugger.

Debugging Directory Options

The Debugging Directories Options screen is shown below (Tools → Options → Debugging →
Directories). Here, you can tune the search path used to find source files while debugging.

Debugging Options (Pro only)

965

When debugging, if a source file path cannot be resolved using the current directory or the class path,
you will be prompted for the source file. The debugger then saves the path in which the source file was
found, so you will not be prompted again when that file or another in that directory is needed during a
debugging session. The Reset button clears all stored source paths.

Debugging Configurations Options

The Debugging Configurations Options screen is shown below (Tools → Options → Debugging →
Configurations). Valid only for projects utilizing the GDB debugger, these settings provide the ability to
define multiple GDB debuggers, specify arguments to be passed to each debugger in the list, and define
one of the debuggers in the list as the default to be used when debugging local, native executables.

These settings are especially useful for development teams who use cross-compiler platforms for
applications such as embedded systems. They are also useful for adding newer versions of the GDB
debugger, when they become available, for use in the debugging processes.

Debugging Options (Pro only)

966

The debuggers in this list also appear on the Remote Options tab of the Debug → Attach Debugger →
Attach to Remote Process(GDB) dialog box.

Language Options
SlickEdit® provides many options that can be configured on a language-specific basis, such as indenting
and word wrap. For example, settings for coding in C/C++ can be set differently than those used for Java.
SlickEdit® uses the extension of the current file to determine what language you are using, thereby only
making available the features that are possible in that language and applying the associated settings. For
convenience, we provide a means to set most of these values for all languages, too.

Use the [Language] section of the Options dialog (Tools → Options → Languages → [Language
Category] → [Language]) to control the behavior of SlickEdit for specific a language. Each supported
language is categorized by its language type. Expand the applicable category node to find your language.
For example, C/C++ and Java are located under the Application Languages node.

Tip

A shortcut method to access language options for the current buffer is to use the Document →
[Language] Options menu item. This will open the Options dialog to the General language-
specific option screen for that language.

The options available for each language are further categorized by type. In general, the option categories

Language Options

967

are the same for each language (General, Editing, View, Formatting, etc.), although if a particular
language does not support a particular set of options, that options category is not included. Conversely,
some languages include additional options that are not available in other languages. While most of the
options are common among all languages, the default settings for these options vary.

Many of the language options can be set for all languages as well, using Tools → Options →
Languages → All Languages. This avoids having to repetitively set options for things like viewing line
numbers. The All Languages options are arranged in the same hierarchy and screens used for the
individual language options. For more information, about this section, see All Languages

The Language Manager and Extension Manager nodes are used to add and remove languages and
manage language extension associations. See Managing Languages and Managing File Extensions for
more information on these screens. You can also use Advanced File Mappings to associate files without
extensions to languages. See Managing Extensionless Files for more information about this screen.

The common categories for each language (when supported) are:

• Language-Specific General Options

• Language-Specific Editing Options

• Language-Specific View Options

• Language-Specific Formatting Options

• Language-Specific Adaptive Formatting Options

• Language-Specific Comment Options

• Language-Specific Comment Wrap Options

• Language-Specific Word Wrap Options

• Language-Specific Alias Options

• Language-Specific Auto-Complete Options

• Language-Specific Context Tagging Options

• Language-Specific Color Coding Options

• Language-Specific File Options

• Language-Specific Live Errors Profiles

• Language-Specific Compiler Properties

Language Manager

The Language Manager provides and alphabetical listing of all languages known to SlickEdit. By selecting
a language and clicking the Settings button, you can navigate to the general options page for that
language. See Language-Specific General Options for more information.

Language Options

968

File Extension Manager

The File Extension Manager associates a file extension with a language. You can set the default
encoding for files with that extension or specify an application to use to open files of this type. Click the
Language Setup button to go to the General options for the selected language. See Language-Specific
General Options for more information.

Language Options

969

Advanced File Mappings

Some files do not have extensions or need their language type determined based on their filename. The
Advanced File Mappings dialog allows you specify the language based on an ant-like file pattern.

Patterns

• Edit - Edit the selected pattern.

Language Options

970

• Add name - Add a pattern that matches a name where no path information is necessary.

• Add path and name - Add a pattern that matches an absolute filename.

• Add path - Add a pattern that matches a path.

• Add pattern - Add a pattern on your own.

• Delete - Remove the selected pattern from the list.

• Move up - Move the selected pattern higher in the list.

• Move down - Move the selected pattern lower the list.

All Languages

SlickEdit supports many languages and allows you to configure each one on an individual basis. Should
you wish to set a language-specific setting to the same value for each language, you can use the All
Languages Options (Tools → Options → Languages → All Languages). By expanding this category,
you can see the same options nodes found underneath the individual languages.

Setting All Languages Options

To set an all language options, simply use the control as you would any other control. Set the value you
wish to be used by all languages, then click OK or Apply. The settings of each language will be updated.
Once you set a value, other language options nodes will be updated to reflect that change. For example,
if you set All Languages > Formatting > Tabs to +3, when you navigate to C/C++ > Indent, the Tabs
value will be set to +3. You can still set an individual language option. If you then set Tabs for C/C++ to
+4 and click OK, then the tabs for C/C++ will be set to +4, while the tabs for every other language will still
be set to +3, as specified in the All Languages options.

Initial Settings

When you first view an options node for an individual language, the options show the current settings for
that language. However, for All Languages, the options shown reveal amalgamated settings for all the
languages that SlickEdit supports. If every language has a setting turned off, it will be shown as off under
All Languages. Additionally, each control has a "neutral" setting, which indicates that all the languages
do not share the same setting. This neutral setting appears differently for different controls.

• Radio buttons - When all languages do not have the same setting for a radio button set, then none of
the radio buttons will be selected.

Language Options

971

• Check boxes - A check box option will be filled in with a square to indicate that all languages do not
have the same value for the setting.

• Text boxes - Text boxes will be left blank to indicate that all languages do not share the same value.

• Combo boxes - When all languages do not have the same value for a combo box setting, the combo
box will say Languages Differ in the text area.

• Property Sheet Options - If an option found in a property sheet does not have the same setting for all
languages, then the property value will say Languages Differ.

Language-Specific General Options

This option screen shows the mode name and associated file extensions for the selected language, and
provides other general options. The settings on this page depend on the selected language. As an
example, the C/C++ General options are shown below (Tools → Options → Languages → Application
Languages → C/C++ → General).

Language Options

972

The options are described as follows:

• Mode name - Allows you to enter a more meaningful name for this extension setup. Define a mode
name here for the Document → Select Mode menu item to work well. See Language Editing Mode for
more information.

• File Extensions - This area displays a list of file extensions associated with the selected language.
See Managing File Extensions for more information.

To associate file extensions such that they are automatically opened in SlickEdit, see Setting File
Associations (Windows only).

• Edit These Extensions - Allows you to add or remove file extensions for the language mode. The
language-specific File Extensions dialog is displayed. Click the green Plus button to add a new
extension and use the red X button to delete the selected extension. You can also add an extension by
double-clicking where indicated.

Language Options

973

• Referenced in - This area displays a list of languages which may contain code which can reference
symbols in this language. This is used by the tagging and references searching to narrow down search
results to files that are related to the originating file and to avoid searching through references in
unrelated languages. See Managing File Extensions for more information.

• Edit These Languages - Allows you to add or remove languages from the list of languages which can
reference symbols defined in this language mode. The language-specific Referenced in Languages
dialog is displayed. Click the green Plus button to add a new language and use the red X button to
delete the selected language. You can also add an language by double-clicking where indicated.

Language Options

974

• Context menus - These options specify which context menu to display in the editor window based on
whether a text selection is made in the editor window.

• Menu if no selection - This specifies the menu that is displayed when right-clicking in an edit
window that does not have a selection.

• Menu if selection - This specifies the menu that is displayed when right-clicking in an edit window
that has a selection.

• Words - These options specify how to handle word boundaries, begin/end pairs, spell checking, and
auto-capitalization of keywords.

• Begin/end pairs - Specify the begin/end pairs to use for the selected extension in a format similar to
a regular expression. This text box is unavailable for languages that have special begin/end matching
built-in. See Begin/End Structure Matching for more information about begin/end pairs and using this
option.

• Word chars - These are the characters that SlickEdit® uses to recognize a string of text as a word.
The word characters affect the operation of all word-oriented commands, including word searching.
You can use a dash (-) character to specify a range, such as "A-Z", which specifies uppercase
letters. To specify the dash (-) character as a valid word character, place a dash at the beginning or
end of the word character string.

Note

Language Options

975

Word chars are not used for tagging operations. To adjust the identifier characters used by
Context Tagging®, use the Identifiers options on the Tokens tab of the Color Coding options
page (Tools → Options → Languages → [Language Category] → [Language] → Color
Coding).

•
Spell check while typing - (Pro only) When enabled, words are spell check as you type them. No
more than the current page is ever spell checked making this a very efficient implementation. See
Spell Check Options for information on configuration spell checking options.

• Auto CAPS - If selected, and a file is opened that does not contain any lowercase characters, caps
mode is turned on (not the same as caps lock). When caps mode is on, all text is inserted in
uppercase. This feature is intended to emulate ISPF.

• Language-Specific Project - Click this button to set project properties specific to the selected
language. See Defining Language-Specific Projects for more information.

Language-Specific Editing Options

This option screen shows the editing options for the selected language. The settings on this page depend
on the selected language. As an example, the C/C++ Editing options are shown below (Tools → Options
→ Languages → Application Languages → C/C++ → Editing).

Language Options

976

The options are described as follows:

• Indentation - These options specify indentation options for the selected language.

• Tab key reindents line - These options specify that the Tab key be used to beautify or reindent the
current line. Select from the following settings:

• Never - When this option is selected, pressing Tab will never reindent the line. It will indent to the
next tab stop.

• Always - Pressing the Tab key in any column will reindent the current line.

• In leading blanks - Pressing the Tab key reindents the line only if the cursor position is before the
intended indent location and within the leading white space of the line; otherwise, it will insert an
additional tab stop.

• In leading blanks strict - Pressing the Tab key will reindent the line if the cursor is positioned
within the leading white space of the line.

• Tab key - These options specify how the Tab key indents. These options have no effect in cases
where the line is reindented or beautified. Select from the following settings:

• Indent by syntax indent - When the cursor is within the leading white space, pressing Tab
indents by the syntax indent amount. For example, if the syntax indent is 4 and current column is 3,
the cursor will be indented to column 7. Notice that is not treating the syntax indent amount as if it
is tab stops. This is useful if your code has not been consistently indented. When the cursor is not
within the leading white space, pressing Tab indents to the next syntax indent tab stop. Note that
due to proportional fonts and unicode, tab stops sometimes only work well for leading indent.

• Use syntax indent as tab stops - When the cursor is within the leading white space, pressing
Tab indents to the next syntax indent tab stop. For example, if the syntax indent is 4 and current
column is 3, the next syntax indent tab stop is column 5. This is useful if your code has been
consistently indented by the syntax indent amount. When the cursor is not within the leading white
space, pressing Tab indents to the next syntax indent tab stop. Note that due to proportional fonts
and unicode, tab stops sometimes only work well for leading indent.

• Use tab stops and not syntax indent - Move cursor to next tab stop defined by your tab stop
settings. For example, if your tab stops are "5 20 25 80" and current column is 3, the next tab stop
is column 5. This can be useful for text files or source languages which are very column oriented
(possibly assembly or Cobol). Note that due to proportional fonts and unicode, tab stops
sometimes only work well for leading indent.

• Indent style - Select from the following indent styles:

• None - When this option is selected, the Enter key will put the cursor at the beginning of the line.

• Auto - When this option is selected, the Enter key indents according to the previous line.

• Insert real indent - When this option is selected, the Enter key inserts real spaces or tabs
representing the indent instead of virtual spaces. This option allows the function for the End key on
the keyboard to place the cursor after blank text where new text can be typed.

Language Options

977

• Backspace at beginning of line un-indents - When this option is selected and the cursor is located
before the first non-blank character, pressing the Backspace key unindents the current line by one
indent level. See also Setting the Backspace Unindent Style.

• Use SmartPaste® - Specifies whether copied or pasted text should be reindented according to what
the editor thinks is the correct indent level. See SmartPaste® for more information.

• Syntax Expansion - These options specify syntax expansion options for the selected language.

• Use Syntax Expansion on space - Activates the Syntax Expansion feature. When this option is
selected, pressing the spacebar after typing a keyword such as if or for will cause that syntax
element to be expanded, inserting the rest of the if or for statement. Alternately, you can bind a
space command to a key other than the spacebar. See Syntax Expansion for more information on
using this feature.

In addition, for brace-oriented languages, this setting also determines if certain control statements
can be expanded as one-line statements (with no brace block) by typing a semicolon immediately
after a control keyword such as if or for.

• Minimum expandable keyword length - Sets the minimum length for a keyword that will trigger
Syntax Expansion. For example, if this is set to 3, then two-letter keywords such as if will not be
expanded.

• Use Dynamic Surround - Provides the ability to surround a group of statements with a block
statement, indented to the correct levels according to your indent settings. In order for Dynamic
Surround to work, the option Syntax Expansion must also be selected (see below). See Dynamic
Surround for more information on how to use this feature.

• Expand aliases on space - When set to On, typing an alias identifier, then pressing space will
automatically expand the alias. When set to Off, space does not expand aliases automatically. See
Global Aliases for more information about Aliases.

• Insert blank line between braces - Specifies whether a blank line should be inserted between
braces when a template expands with braces.

• Diff Columns - When On, diff will ignore changes outside the column range specified. This feature is
designed for main frame languages like COBOL.

• Truncation - When On or Auto is selected, all editor operations prevent the data from the right of the
truncation line length to be moved or to be modified. For example, search and replace operations do
not find data to the right of the truncating line length. In addition, when a replace occurs, the data to the
right of the truncation line length will not move.

Set this to Auto for the editor to determine the truncation line length based on the record format of the
file. For files that do not have a record format, the truncation length is turned off. For example, when
Auto is on and the record width of the file is 80, 72 is used as the truncation line length (the record
length minus eight).

• Bounds - This setting is unique to ISPF emulation. It controls column bounds for specific ISPF
commands that operate on column ranges. See Section_ISPF_Emulation_OptionsISPF_Options for

Language Options

978

more information.

• Beautify - These options specify options for beautification while editing the selected language. These
options are only available for languages which support beautify.

• Beautify line when reindent - (Pro only) When on, beautifies the line when the Tab key reindents
the line. This option is only supported by languages that support the beautify while typing feature.
This feature is great for beautifying the current line when the beautify while typing feature doesn't get
automatically triggered (i.e. you haven't typed a semicolon or other beautifier trigger key).

•
Beautify syntax expansions - (Pro only) When enabled, every time a syntax expansion occurs, the
snippet of expanded code is run through the beautifier. Enabled by default. Only available for
languages which have formatting beautifiers. See Formatting Beautifiers for more information.

• Beautify alias expansions - (Pro only) When enabled, whenever a language-specific alias is
expanded, the expansion is run through the beautifier. Enabled by default. Only available for
languages which have formatting beautifiers. See Formatting Beautifiers for more information.

•
Beautify while typing - (Pro only) When enabled, the beautifier will be run on statements as you
type them, usually when a statement terminator is encountered. Disabled by default. Only available
for languages which have formatting beautifiers. See Formatting Beautifiers for more information.

• Beautify on paste or drag and drop - (Pro only) Whenever a paste or drag and drop event occurs,
the beautifier can run on the newly inserted statements. Only available for languages which have
formatting beautifiers. See Formatting Beautifiers for more information.

Language-Specific View Options

These options control the display of special characters, line numbers, and more. C/C++ View options are
shown below (Tools → Options → Languages → Application Languages → C/C++ → View).

Pro:

Language Options

979

Standard

Special Characters

When this option is selected, view of all types of special characters is enabled for the language. This
includes Tabs, Spaces, Newline characters, and Other control characters as well as all of the other
special characters listed on the Tools → Options → Appearance → Special Characters option screen.

Alternately, select the individual options to enable display of the special characters you want to see. Note
that you can also toggle display of special characters on a per-document basis with the menu item View
→ Special Chars (or use the view_specialchars_toggle command). Viewing of special characters is
only available for ASCII files. See Viewing Special Characters for more information.

Configure Special Characters - Jumps to the Tools → Options → Appearance → Special Characters

Language Options

980

node in the Options dialog, where you can define the visible characters that represent each type of
special character. See Special Character Options for more information.

Line Numbers

When this option is selected, display of line numbers is enabled for the selected language. By default,
SlickEdit automatically adjusts the width of the line numbers based on the length of the current file. You
can set a fixed width if you prefer.

Note that you can also toggle display of line numbers for a single document with View → Line Numbers
(or the view_line_numbers_toggle command). See Viewing Line Numbers for more information.

Symbol Coloring (Pro only)

Use this to enable Symbol Coloring for the selected language.

Hex

The following options are available for hex editing

•
Number of columns - Specifies the number of columns in Hex mode. Has no effect on Line Hex mode.

•
Bytes per column - Specifies the number of bytes per column in Hex mode. Has no effect on Line Hex
mode.

• Hex View - This option is used to determine the hex mode when you open a file. This setting is most
useful for binary files. After opening a file, you can also enable Hex mode on a per-document basis with
the menu items View → Hex and View → Line Hex (or use the commands hex and linehex). See Hex
Mode Editing for more information.

Selective Display on file open

The following options are available for creating a selective-display outline of symbols, statements, and/or
comments in a file when the file is opened.

• Create file outline:

• Symbol level - Create an outline of all the global-level symbols.

• Statement level - Create an outline down to the statement level. Note that this option is only
supported for languages that support statement tagging.

• Do not create file outline

• Hide documentation comments - Collapse documentation style comments, such as JavaDoc,
XMLDoc, or Doxygen comments. This feature only works with documentation comment styles
supported by the color coding engine.

• Hide other comments - Collapse other multi-line comments.

Language Options

981

Color positional keywords

When available and checked, positional keywords (identifiers which can be keywords when used in a
specific context) which are detected by the language specific tagging parser will be colored as keywords.
This feature is only supported by a few languages, including SQL.

Modified Lines

When checked, modified and inserted lines are indicated with a color bar in the left margin. Click the
Select color link to select the colors for each. For more information see Modified Lines.

Current Line

When checked, the current line is highlighted using the selected background and foreground color. To
select the colors used, click the Select colors link. For more information see Current Line.

Show minimap

When checked, the minimap window is displayed.

Language-Specific Formatting Options

These options let you configure the way SlickEdit® formats code as you type. Depending on the
language, you can specify the code formatting templates, how various syntactical elements are treated,
when and what code elements are automatically inserted, and more. The formatting options that are
available depend on the selected language.

For languages which do not yet have formatting beautifiers, you can still specify how the code will be
formatted as you type. Each language has at least the following options:

• Indent with tabs - Determines whether Tab key, Enter key, and paragraph reformat commands indent
with spaces or tabs. The hyperlink indicates if Adaptive Formatting is on or off for this setting. See
Indenting with Tabs for more information.

• Syntax indent- When this option is selected, the Enter key indents according to language syntax. The
value in the text box specifies the amount to indent for each level. The hyperlink indicates if Adaptive
Formatting is on or off for this setting. See Syntax Indent for more information.

Language Options

982

• Tabs - Set tabs in increments of a specific value or at specific column positions. To specify an
increment of three, enter +3 in the text box. To specify columns, for example, enter 1 8 27 44, to specify
tab stops that are not an increment of a specific value. The hyperlink indicates if Adaptive Formatting is
on or off for this setting.

Other languages have more advanced options. For more information, see the following section for your
language (or the one that most closely relates to your language):

• Common Formatting Options Interface

• XML Formatting Options

• HTML Formatting Options

• Ada Formatting Options

• COBOL Formatting Options

• Pascal Formatting Options

• PL/I Formatting Options

(Pro only) Some languages have beautifiers that handle all formatting settings. Use the beautifier settings
to control automatic as-you-type formatting, as well as how SlickEdit® reformats your code when you
select Tools → Beautify. The Formatting Beautifier options are shown below.

For more information, see Beautifying Code.

Language Options

983

Language-Specific Adaptive Formatting Options

Adaptive Formatting scans a file for the formatting styles in use and automatically matches those settings
for the current editing session. The options on this screen are used to enable/disable Adaptive Formatting
and configure the styles that SlickEdit® should recognize for the language. The C/C++ Adaptive
Formatting options are shown below (Tools → Options → Languages → Application Languages →
[Language] → Adaptive Formatting).

Select or clear the Use Adaptive Formatting option to enable or disable the feature for the selected
language. When Adaptive Formatting is enabled, use the subsequent check boxes to select the individual
style settings for which SlickEdit should scan. The individual style settings that appear on the Options
screen will vary depending on the language. See Adaptive Formatting for more information.

Language-Specific Comment Options

Comment options let you control how block and line comments are created.

To comment out selected lines, select text in the editor and then click Document → Comment
BlockorDocument → Comment Lines (box and comment commands, respectively). These operations
use the matching comment style to comment out all text on the lines containing the selection. Comment
Block surrounds multiple lines with a single block comment. Comment Lines comments out each line in
the selection with a line comment. See Commenting for more information.

Note

The settings on this page are used only when inserting block and line comments. To configure
which characters are recognized as comments, go to Tools → Options → Languages →
[Language Category] → [Language] → Color Coding and then select the Comments tab.

Language Options

984

The settings on the Comments screen depend on the selected language. As an example, the C/C++
options for comments are shown below (Tools → Options → Languages → Application Languages →
C/C++ → Comments).

Comment block

These settings are used when you comment out a selected block of text (Document → Comment Block
or box command). SlickEdit® provides eight fields to specify the characters used in your commenting
style. If you want to apply a comment with no additional decoration, fill in the upper-left and lower-right
fields with the characters to begin and end a block comment. To draw a box around the comment, fill in
additional characters in the other fields. For example, you might put an asterisk in each of the other fields
to draw a box of asterisks around the block comment.

SlickEdit interprets the contents of these fields literally. If you want the asterisks on the left-hand side to
line up, you need to put a space before the asterisk in the left, middle field. Likewise you would put a
space before the asterisk and slash in the field containing the end of comment characters. Trailing spaces
are ignored on the right-hand fields.

To illustrate, the following code sample is a selection:

if (!enabled) {
tabState = TIS_DISABLED;

}

From the main menu, click Document → Comment Block, and the selection is commented out as
follows:

Language Options

985

/*
if (!enabled) {

tabState = TIS_DISABLED;
}

*/

Select from the following comment block options:

• First line is top - When this option is selected, the first line of the text selection is used as the first line
of the comment. The top border is not drawn. Otherwise the open comment characters will appear on
their own line.

If this option is selected for the preceding code sample, the comment will instead be formatted as
follows:

/* if (!enabled) {
tabState = TIS_DISABLED;

}
*/

• Last line is bottom - When this option is selected, the last line of the text selection is used as the last
line of the comment. The bottom border is not drawn. Otherwise the open comment characters appear
on their own line.

Using the same example, if this option is selected, the comment will be formatted as follows:

/*
if (!enabled) {

tabState = TIS_DISABLED;
} */

Comment line

These settings are used when you comment out selected lines (Document → Comment Lines or
comment command).

• Left and Right - Characters that you specify in these boxes are literally inserted to the left and right of
the text on each line of the selection when you use SlickEdit® to create a line comment. The placement
of the Left characters can be controlled through the Location options below. Characters specified in
the Right box are placed and aligned vertically at the end of the longest line of text in the selection. For
example, if the Left and Right boxes both contain the characters //, clicking Document → Comment
Line comments out the example code as follows:

// if (!enabled) { //

Language Options

986

// tabState = TIS_DISABLED;//
// } //

• Location - Mutually exclusive location options control where characters specified in the Left box are
placed:

• At left margin - Places characters flush against the left margin of the editor window, as shown in the
previous example. The indent levels are not changed. This provides better visibility for your
comments and a way to clearly see the indent level relative to lines that are not commented out.

• At level of indent - Places and aligns characters vertically at the current indent level. For example:

//if (!enabled) {
// tabState = TIS_DISABLED;
//}

• Start in column - Specifies in which column to start the comment for a line selection. This is useful
for column-oriented languages such as COBOL. Type or use the spin box to select the desired
column number. The left comment characters are placed at the specified column.

Doc comments

Select from the following options:

• Automatically expand doc comments - When this option is selected, SlickEdit® automatically inserts
a skeleton doc comment when you type comment start characters and then press Enteron a line
directly above a function, class, or variable. The type of skeleton that is inserted is based on your start
characters and style settings.

Note

In C#, you do not need to press Enter, as the skeleton comment is inserted after you type the
third slash.

• Automatically expand XMLDOC comments - Turn this on to automatically insert a skeleton XMLDOC
comment when you type comment start characters directly above a function, class, or variable.

• Edit expansion - Click this button to open the Doc Comment Editor, where you can define and edit the
templates that are inserted when doc comments are expanded. See Modifying Doc Comment
Templates for more information.

• Extend leading border - Put a check in this box to precede each line with the leading characters from
the previous line. This is useful if you like to have an asterisk in the first column of your doc comments,
for example.

• Comment creation style - Use this option to select the kind of documentation comment you prefer to

Language Options

987

have generated when you use the Update Doc Comment command from the right-click context menu
for a function which does not have an existing documentation comment.

• Prompt with choices - You will be prompted which style of documentation comment to generate.

• Do not convert style - The documentation comment generator will attempt to generate a
documentation comment using the existing comment style, even if it is not a documentation comment
style.

• /** Javadoc style -

• /*! Doxygen style -

• //! Doxygen style -

• /// Doxygen style -

• /// XMLDOC style -

• Store documentation comments when tagging - When enabled, tagging will scan for documentation
comments associated with symbols and store them in the tag file. It will also detect when a symbol has
no comments. This speeds up fetching comments displayed in the Preview tool window, Auto-
complete, List Symbols, and Function Argument help. This option is enabled by default. Turning off this
option has the advantage of making the tag file slightly smaller and forces all the comment extraction to
be done using the per-language logic that previous versions of SlickEdit used.

Comment editing

The following options control comment editing behaviors. These options will be unavailable for non-
applicable extensions.

• Split line comments - If selected, when you press Enter in the middle of a line comment, a new line
comment will automatically be started on the new line. For example:

// The quick brown fox [CURSOR_HERE]jumped over the lazy dog.

Pressing Enter will result in:

// The quick brown fox
// [CURSOR_HERE]jumped over the lazy dog.

• Extend line comments - If selected, when you press Enter at the end of a line containing a line
comment, and there is also an aligned line comment on the line before or after the current line, a new
line comment will automatically be started on the new line. For example:

// The quick brown fox
// jumped over the lazy dog.[CURSOR_HERE]

Language Options

988

Pressing Enter will result in:

// The quick brown fox
// jumped over the lazy dog.
// [CURSOR_HERE]

• Join comments when joining lines - If selected, when you press Delete at the end of a line
containing a line comment to join the current line with the next line, and the next line is also a line
comment, the line comment characters will automatically be deleted. For example:

// The quick brown fox [CURSOR_HERE]
// jumped over the lazy dog.

Pressing Delete will result in:

// The quick brown fox[CURSOR_HERE] jumped over the lazy dog.

• Automatically close block comments - Enables automatic completion of C-style comment block start
and end markers. Typing /* on a blank line will auto-complete to /**/, with the cursor placed between the
two asterisks. This option applies to all languages.

String editing

If Split strings on Enter is selected, when you press Enter to split a line when the cursor is inside of a
string, the closing and opening quotes and, if necessary, operators, will automatically be inserted, and the
string will be aligned with the original string. For example:

String x = "The quick brown fox [CURSOR_HERE]jumped over the lazy
dog.";

Pressing Enter will result in:

String x = "The quick brown fox "+
"[CURSOR_HERE]jumped over the lazy dog.";

The Split strings on Enter feature only supports strings which may not span multiple lines. Not all
languages have support for this feature. If you want this feature added to your language, please request
it.

Language-Specific Comment Wrap Options

Language Options

989

Comment Wrap options let you activate wrapping and configure the way block, line, and doc comments
are wrapped. See Comment Wrapping for more information.

The settings on this page depend on the selected language. As an example, the C/C++ Comment Wrap
options are shown below (Tools → Options → Languages → Application Languages → C/C++ →
Comment Wrap).

The options are described as follows:

• Enable comment wrap - When selected, comments are allowed to be wrapped. You must still specify
the type of comments that you want wrapped by selecting one or more of the Enable options for block,
line, and doc comments.

• Start wrapping on line - This setting pertains to line comments only. Make sure line comment
wrapping is turned on, then type or select the number of consecutive line comments that must be
present before wrapping is activated. If your code contains many one line descriptive comments, you
may want to set this to 2 or more so that comment wrapping will not affect these short line comments.

• Comment width - There are three types of width settings for comments:

• Fixed width - If selected, comments are formatted to the specified width. This is useful since
comments are typically indented with the corresponding code. This option maintains the original left
margin of the comment and adjusts the right margin to meet the target width.

If Maximum right column is used, comment lines will be wrapped when they reach the specified
column, even if they have not reached the specified fixed width. This is useful if coding standards

Language Options

990

mandate that text should not exceed a specified column.

• Automatic width - If selected, the width of the longest multi-line paragraph in the comment block is
used as the width for block comments. This is useful for preserving the formatting of existing
comments.

If Maximum right column is used, comment lines will be wrapped when they reach the specified
column, even if they have not reached the specified fixed width. This is useful if coding standards
mandate that text should not exceed a specified column.

• Fixed right margin - If selected, lines will break before the specified number of columns in the Right
column field has been reached.

• Preserve width on existing comments - If selected, when editing an existing comment, SlickEdit®
preserves the width of the existing comment. The width is determined by the length of the longest
multi-line paragraph. If the width of the existing comment cannot be determined, the formatting option
specified under Comment width will be used instead.

• Continue bullet list on Enter - If selected, when Enter is pressed inside a bulleted paragraph, a
new bullet will be inserted and the cursor will be placed at the text starting position.

• Javadoc - If Use hanging indent on block tag commentsis selected, the second line of a block tag
comment will be automatically aligned to the first non-whitespace character after the first word after the
tag.

• Sync vertical line column - This button will make visible and move the vertical line column to match
the hard margin column (if using fixed right column margins) or the maximum right column (if using
fixed width). To set the vertical line column to a different value, see Vertical line columns.

Language-Specific Word Wrap Options

These language-specific options let you set margins and the justification style and configure Word Wrap,
which keeps the cursor within the specified margins when entering text, moving the cursor, and deleting
characters. Note that Word Wrap is intended for plain text only.

The settings on this page depend on the selected language. As an example, the C/C++ Word Wrap
options are shown below (Tools → Options → Languages → Application Languages → C/C++ →
Word Wrap).

Language Options

991

The options are described as follows:

• Automatic Left Margin - If selected, the left margin is determined by the first non blank in the line. The
right margin may be specified as follows:

• Fixed right column - If selected, lines will break before the specified column.

• Fixed width - If selected, specifies the maximum amount of non blank text allowed on each line.

• Fixed left column - If selected, allows you to specify the left margin, right margin, and new paragraph
columns.

• Justify style - Select from the following justification styles:

• Left and respace - Left justification with space character reformatting. One space is placed between
words except after the punctuation characters period, ?, and !, which get two spaces. To have only
one space after the period, question mark, and exclamation point punctuation characters, turn on 1
space after period.

• Left - Left justification with respect for space characters between words. This setting requires the
Save options to be set such that trailing spaces are not stripped when a buffer is saved. See Save
File Options for more information.

Language Options

992

• Justified - Full justification. Left and right edges of text will align exactly at margins.

• Partial word wrap - When on and word wrap while typing is on, a more conservative word wrap
approach is taken. This option provides word wrap similar to previous versions of SlickEdit. You may
prefer this style of word wrapping if you leave word wrap while typing on for source files. This option
only effects word wrap while typing characters, pressing Backspace, or pressing Del.

• Word wrap while typing - This option activates/deactivates Word Wrap. When on, word wrapping
within the margins occurs when typing characters, pressing Backspace, pressing Del, pressing Left, or
pressing Right. Note that Word Wrap is intended for plain text only.

• Soft wrap - Soft Wrap makes it easy to view long lines of code without scrolling. Each line is wrapped
as though a carriage return was inserted, however, the file itself is not modified. The options are as
follows:

• Enable soft wrap - This option activates Soft Wrap. A curved arrow is displayed at the end of each
line, along the right-hand border of the edit pane, indicating that the text continues on the next line.
The horizontal scrollbar disappears as it is no longer needed.

• Break on word boundary - Breaks the text at the end of the line so that words are kept whole. This
makes for easier reading, especially in text files.

Language-Specific Alias Options

Aliases are identifiers that you can quickly type, which are then expanded into snippets of text. Language-
specific aliases are useful for inserting comment headers, statement and function templates, or any other
text that you frequently use. This option screen is used to manage language-specific aliases. As an
example, the C/C++ Aliases options are shown below. See also Language-Specific Aliases for more
information.

Language Options

993

The name of the file that contains the aliases is displayed next to the label Alias file.

The left side of the options screen contains the alias list. The box on top of the alias list allows you to
search the alias list incrementally as you type, so you can find the alias you want to edit or remove.

The list shows both regular aliases and Surround With aliases. Surround With is a feature that lets you
surround existing code with text or predefined structures. Alias types are differentiated in the list by icon.
See Surround With for more information about creating and working with Surround With aliases.

The large box on the right is the alias edit window. When an alias is selected in the alias list, you can
type directly inside this window to define or edit the alias expansion.

Use the Insert Escape Sequence button to insert escape sequences into your alias expansion. See Alias
Escape Sequences for a list of available sequences.

The following buttons appear under the alias list and alias edit window:

• New - Click this button to create a new alias name to be added to the alias list. After doing this, define
the expansion by typing in the alias edit window.

• Delete - Deletes the alias that is currently selected in the alias list.

Language Options

994

The lower section of the Aliases options page is used to create and manage parameter prompts in
aliases. Parameter Prompting is a feature that lets you insert a parameter inside an alias so that when the
alias is expanded, a dialog is displayed, prompting you to input the values.

The parameter list contains a list of the parameters you have created. It is divided into sections that
correspond to the fields on the Enter Alias Parameter dialog, which is used to add a new parameter:

• Param Name - The name that is used in the alias to identify this parameter.

• Prompt String - This string appears as a label on the dialog that prompts for values when the alias is
expanded.

• Initial Value - (Optional) This text is automatically entered as the initial value for the parameter on the
dialog that prompts for values when the alias is expanded.

The Parameters section of the Aliases options page provides the following buttons:

• Add - Displays the Enter Alias Parameter dialog, used to add a new parameter for the alias that is
currently selected in the alias list. See Parameter Prompting for more information.

• Remove - Deletes the parameter that is selected in the parameter list.

• Edit - Displays the Edit Alias Parameter dialog, used to edit the parameter that is selected in the
parameter list. See Parameter Prompting for more information.

• Up and Down - Use these buttons to change the order of the parameters, moving the selected
parameter up or down in the parameter list.

Language-specific aliases can be automatically expanded when you type the alias identifier and press
space.

Language-Specific Auto-Complete Options

These options let you configure the behavior of the Auto-Complete feature. The settings on this page
depend on the selected language. As an example, the C/C++ Auto-Complete options are shown below
(Tools → Options → Languages → Application Languages → C/C++ → Auto-Complete).

Language Options

995

The options are described as follows:

• Enable auto-completion - If selected, activates the Auto-Complete feature. See Auto-Complete for
more information.

• Symbols - If selected, symbols will be displayed as completion options if the word prefix at the cursor
matches one or more symbols using a strict, context-sensitive and language-specific tag search.

• Locals - (Pro only) If selected, local variables and parameters will be displayed as symbol
completion choices. This functions identically to the Symbols setting, except that the results are
limited strictly to locals. For performance, Locals can be enabled even if Symbols is disabled.

Language Options

996

• Current class - (Pro only) If selected, methods and members in the current class will be displayed as
completion choices. This functions identically to the Symbols setting, except that the results are
limited strictly to members of the current class. Current class can be enabled even if Symbols is
disabled.

• Current file - - (Pro only) If selected, symbols from the current file will be displayed as completion
choices. This functions identically to the Symbols setting, except that the results are limited strictly to
the current file. For performance, Current file can be enabled even if Symbols is disabled.

• Syntax expansion - If selected, Auto-Complete will show Syntax Expansion choices for the word
prefix under the cursor. Syntax Expansion completes syntactic elements of the language, like if or for
statements, putting in the parentheses and braces matching your specified coding style settings. See
Syntax Expansion for more information.

• Alias expansion - If selected, Auto-Complete will show the matching alias for the word under the
cursor. Aliases names require an exact word match, not just a prefix match. For more information on
using aliases, see Aliases.

• Keywords - If selected, Auto-Complete will show keyword choices for the word prefix under the
cursor, if it matches one or more keywords in the current language, as defined in the language-
specific color coding options. For more information on keywords, see Color Coding Tokens Tab.

• Word completion - If selected, word completions will be displayed if the word prefix under the cursor
matches one or more words in the current file. The strength of this option is that it ties into the word
and line completion features of SlickEdit®. After you select a word completion, you can press
Ctrl+Shift+Space to complete the rest of the line from which the original word came. See Word
Completion for more information.

• Argument completion - (Pro only) If selected, turns Auto-Complete on in the Build tool window for
completing file names and paths.

• Visual Details - The Visual details of Auto-Complete system can be customized to your tastes to make
it show only the information you require.

• Light bulb - If selected, displays the light bulb as a reminder when Auto-Complete suggestions are
available for the current word prefix.

• Expanded text - If selected, shows the rest of the word or statement being completed.

• List of matches - If selected, shows the list of matches underneath the word prefix. Use the key
combinations of Shift+Up and Shift+Down to move the list above or below the current line provided
there is enough space to display it there.

• Show icons - If selected, displays symbol icons and folder icons. Turn this feature off to get a more
compact list containing only names.

• Show categories - If selected, shows completions in a categorized list for each type. If cleared, all
completions will be shown in one flat, sorted list.

• Show parameters - (Pro only) If selected, shows the function parameter signatures for symbol

Language Options

997

completions. If a function is overloaded, it will show all the overloaded signatures once the list of
functions is sufficiently narrowed down. When a specific signature is selected and completed, if
enabled, you will be put directly into function argument help for that function signature.

• Symbol declaration - (Pro only) If selected, for symbol completions, this will show the symbol
declaration as a comment to the right of the symbol completion.

• Show comments - (Pro only) If selected, for symbol completions, the comments are displayed for
the currently selected symbol in the list displayed by Auto-Complete. When a symbol has multiple
definitions or overloads, and multiple sets of comments, the comments will indicate that you are
looking at item "< 1 of n >". Click on the arrows or use Ctrl+PgUp and Ctrl+PgDn to cycle through
the comment sets. Click on the blue arrow to jump to the symbol displayed. Use the key
combinations of Shift+Left and Shift+Right to move the comment to the left or right of the list
provided there is enough space to display it there.

• Auto-Complete Options - The following Auto-Complete options pertain to how you use the system to
select a completion and what happens when you select a completion.

• Insert open parenthesis for functions - If selected, selecting an item in the list inserts the current
item in the list and any extra characters that are required by the symbol. For example, an open
parenthesis is inserted after a function name for languages that require an open parenthesis after a
function name. For C++, the less-than symbol (<) is inserted after a template class name.

• Tab inserts longest unique prefix - If selected, pressing Tab will cause Auto-Complete to attempt
to insert the longest unique prefix match of all its completions. If the word prefix cannot be extended,
Tab will cycle to the next completion choices. If this option is not selected, use the similar option for
Space, or use Ctrl+Space when Auto-Complete is displayed to perform symbol completion.

• Tab cycles through choices - Select this option if you want to use Tab and Shift+Tab to cycle
through completion choices, as is done in some command shells. If cleared, Tab will attempt to insert
the longest unique prefix (if selected), or insert the selected completion, or cancel Auto-Complete and
behave normally if there is no completion selected.

• Space inserts longest unique prefix - If selected, pressing the spacebar when Auto-Complete is
displayed will insert the longest unique matching prefix from the symbols in the list. For example, if
the list contains FLAG_CHAR and FLAG_LONG, then typing FL<Alt+Dot><spacebar> completes
the line of code up to FLAG_. If this option is not selected, use the similar option for Tab, or use
Ctrl+Space when Auto-Complete is displayed. Note that pressing the spacebar when there is no
item selected in the list will simply insert a space.

• Space always inserts space - If selected, pressing the spacebar when Auto-Complete is displayed
will insert the current item and a space in the list after the current item. If this option is not selected,
pressing the spacebar will only insert the current item with no extra space. Note that pressing the
spacebar when there is no item selected in the list will simply insert a space.

• Enter always inserts item - If selected, pressing the Enter key will insert the current item.

• Minimum prefix length - The minimum number of characters the word prefix must contain before
auto-completions will be displayed automatically.

Language Options

998

• Completion choice - When set to Automatically choose unique completion, if Auto-Complete
finds exactly one word match, it will automatically select that match for completion. If Insert current
completion in file is selected, then completions selected from Auto-Complete will replace the
current text, modifying the file as you work. Choose Manually choose completion to select and
insert the completion manually.

• Preserve identifier to right of cursor - When set to Preserve always, only the identifier characters
before the cursor are replaced with an item selected from an Auto-Complete list, while identifier
characters after the cursor are preserved. When this option is set to Replace entire identifier,
identifier characters following the cursor are replaced with the item selected from an Auto-Complete
list. When this option is set to Preserve for auto list members only, trailing identifier characters are
preserved for auto list members but not when listing symbols on demand by pressing Alt+Dot to
invoke the list-symbols command.

For example, if List Members is active and the current line is as follows:

this->foo<cursor_here>Bar

Then if this option is set to Preserve always and you choose a symbol named "foodForThought"
from the Auto-Complete list, the line will be changed to:

this->foodForThought<cursor here>Bar

If this option is set to Replace entire identifier, doing the same would result in:

this->foodForThoughtBar<cursor here>

• List include files after typing #include - (Pro only) When editing in certain languages that use
#include, Auto-Complete can generate a list of possible files for you. To view a list of quoted files
after typing #include followed by a space, set this option to List quoted files after typing #include.
An empty pair of quotes will be inserted by default. If you prefer to use < and > to specify the include
file path, just type < inside the quotes and the #include will be converted to that format. To see a list
of files after typing " or <, select List files after typing " or <. If you do not wish to see a list of
possible files, select Do not list include files. To access this feature on demand, press Alt+Dot.

• List-symbols options - (Pro only) The following options apply to List Symbols. See List Members for
more information.

• Auto-list members - If selected, typing a member access operator (for example, "." or "->" in C++)
will trigger SlickEdit® to display a list of the members for the corresponding type. To access this
feature on demand, press Alt+Dot to invoke the list-symbols command. If you use this feature on
demand, and you are not in a member expression, this feature will display a list of all completions
available in the current scope, depending on what is enabled. By default you should see locals,
current class members, symbols from the current file, global symbols, keywords, syntax expansion,

Language Options

999

and word completions.

• Auto-list compatible values - If selected, compatible variables are automatically listed after you
press the spacebar after assignment operators and return statements. Global (non-module) variables
are not listed. This only affects C, C++, and Java. To access this feature on demand, press
Alt+Comma.

• Use strict case-sensitivity rules - The following options allow you to control whether or not Auto-
Complete, List Symbols, and Symbol Completion with respect to whether it searches strictly for
language-defined exact-case symbol matches, or also for case-insensitive symbol matches.

Note

Enabling this feature can make symbol completion more concise, but it can also make it much
less convenient, because you will need to type the symbol case correctly.

•
Use strict case-sensitivity rules - The strict case-sensitivity options pertain to whether or not
symbol completions are searched for using a case-insensitive search, even for case-sensitive
languages. When not using the strict option, SlickEdit will first search for exact-case matches, then
case-insensitive symbol matches.

• For auto-complete - If selected, when auto-complete is automatically displayed, it will attempt to find
symbols using an exact-case search.

• For list-members / list-symbols - If selected, when auto-list members is displayed, or invoked
manually using Alt+Dot to invoke the list_symbols(Pro only) command, it will attempt to find
symbols in the current context matching the identifier under the cursor using an exact-case search.
See List Members for more information.

• For manual symbol completions - If selected, when symbol completion is manually invoked using
Ctrl+Space to invoke the codehelp_complete(Pro only) command, it will attempt to find symbols in
the current context matching the identifier under the cursor using an exact-case search. See
Completions for more information.

• Use subword matching rules - (Pro only) The subword matching options pertain to when and how
SlickEdit will attempt to find matches using subword patterns for the symbol under the cursor.

Note

This feature can be rather intensive for large code bases, and will tend to time out before finding
all of the possible subword matches.

The algorithm is optimized to perform better if the first character of the search pattern matches
the first character of the symbol you are trying to complete. For examplek, if you are trying to
complete a symbol named getLengthOfQueue, you could potentially use a pattern like lenq,
however, the lookup will be quicker if you use a pattern such as glq where the first character

Language Options

1000

matches, thus narrowing the search space.

Note

Subword matching is only enabled when the identifier prefix under the cursor is at least one
character longer than the Minimum prefix length. See Minimum prefix length for more
information.

• For auto-complete - If selected, when auto-complete is automatically displayed, it will attempt to find
symbols in the current context matching the identifier under the cursor interpreted as a subword
pattern. Enabling this feature for auto-complete can both impact performance and make auto-
complete somewhat less concise because for a given pattern, it might find more matches than you
would expect to have.

• Exclude globals for auto-complete - For performance, limit subword matching for auto-complete to
local variables, the current file, and class members.

• For list-members / list-symbols - If selected, when auto-list members is displayed, or invoked
manually using Alt+Dot to invoke the list_symbols(Pro only) command, it will attempt to find
symbols in the current context matching the identifier under the cursor interpreted as a subword
pattern. See List Members for more information.

• For manual symbol completions - If selected, when symbol completion is manually invoked using
Ctrl+Space to invoke the codehelp_complete(Pro only) command, it will attempt to find symbols in
the current context matching the identifier under the cursor interpreted as a subword pattern. See
Completions for more information.

• First attempt uses prefix match only - If selected, the first time symbol completion is manually
invoked using Ctrl+Space to invoke the codehelp_complete(Pro only) command, it will only do a
quick prefix match. The second and subsequent times you directly invoke symbol completion, it will
search for subword pattern matches.

This option exists for performance, because subword matching can be expensive, you might not want
it to happen every time. This provides a very convenient way to tell SlickEdit to try harder to find a
symbol only when you need to.

• Subword matching strategy - The following options are available:

Note

Subword boundaries are defined by camel case transitions and underscore or dash connectors.
Leading upper or lower cases prefixes, up to four characters, are also considered as subword
boundaries. This exception allows for better handling of Polish notation identifiers and other
prefix-based naming conventions.

Example: - The subwords of MYTwinFallsIdahoTelescope are M, Y, Twin, Falls, Idaho,
and Telescope.

Language Options

1001

Example: - The subwords of THE_CAT_IN_THE_HAT are THE, CAT, IN, THE, and HAT.

• Stone-skipping with subword boundaries - Stone-skipping matches the pattern left-to-right
skipping characters which do not match. All of the characters in the pattern must be matched. This
strategy adds the requirement that when groups of characters are matched, they must start on a
subword boundary.

Example: - Given the symbol TwinFallsIdahoTelescope, the patterns: falltele matches
the symbol, hotel does not match the symbol because it does not start at a word boundary, tfit
matches the symbol as an acronym, and twinturbo does not match.

• Acronyms using subword boundaries - This strategy allows only the first character at a word
boundary to be matched against the pattern. It can be useful, but it precludes matching whole
subwords, and is thus the most restrictive of all the strategies.

Example: - Given the symbol TwinFallsIdahoTelescope, the patterns: tfit matches the
symbol, hotel does not match the symbol as an acronym, and turbo does not match.

• Pure stone-skipping - Stone-skipping matches the pattern left-to-right skipping characters which
do not match. All of the characters in the pattern must be matched. Pure stone skipping uses this
algorithm with no additional requirements on word boundaries. This is a very general strategy, in
fact, all of the other strategies can be characterized as pure stone skipping with additional
requirements. Like substring matching, it has the disadvantage of frequently finding matches which
are not intended.

Example: - Given the symbol TwinFallsIdahoTelescope, the patterns: falltele matches
the symbol, hotel matches the symbol as a substring, hotelscope matches the symbol, tfit
matches the symbol as an acronym, twinturbo does not match.

• Character matching in any order - Simply determine if the symbol contains all the characters that
are in the pattern, in any order, with no word boundaries. If the pattern repeats a character, it must
repeat at least as many times in the symbol name in order to match.

Example: - Given the symbol TwinFallsIdahoTelescope, the patterns: twin matches the
symbol, twinfall matches the symbol, falltwin matches the symbol, twinfallo matches
the symbol, twinfallooo does not match (too many o's) hotel matches the symbol, and
twinturbo does not match.

• Simple substring matching - Simple substring strategy is self-explanatory, however, despite
being easy to understand, it has the disadvantage that it can find matches that are overlap
subword boundaries.

Example: - Given the symbol TwinFallsIdahoTelescope, the patterns: hotel matches the
symbol, falltele does not match the symbol, and twinturbo does not match.

• Subword matching - Subword matching is equivalent to a substring match with the additional
requirement that the match starts on a subword boundary.

Language Options

1002

Example: - Given the symbol TwinFallsIdahoTelescope, the patterns: tele matches the
symbol, falltele does not match the symbol because the subword matches are not contiguous,
hotel does not match the symbol because it does not start on a subword boundary, and
twinturbo does not match.

• Prefix matching only - This option is equivalent to turning off subword matching, because Context
Tagging with SlickEdit does prefix matching by default.

Example: - Given the symbol TwinFallsIdahoTelescope, the patterns: twin matches the
symbol, twinfall matches the symbol, hotel does not match the symbol, and twinturbo
does not match.

• Relax pattern matching order constraints - Relax pattern matching order constraints to allow for
the possibility that the pattern could have one or two subwords or characters out or order.

This option only applies to Stone-skipping with subword boundaries, Acronyms using subword
boundaries, and Pure stone-skipping.

Example: - Using the Stone-skipping with subword boundaries technique, given the symbol
TwinFallsIdahoTelescope, both patterns twinfall and falltwin match the symbol.

• Start matching globals with first char - If selected, when searching for all global matches to a
subword pattern, start by searching for symbols that begin with the first character of the subword
pattern. If this search yields matches, then stop searching.

This option exists for performance. Subword matching can be expensive, especially when you are
searching through a large set of global symbols. By narrowing down the search space to just global
symbols starting with the first character of the pattern, on average, we can find matches 20 times
faster. It also yields slightly more focused matches. The disadvantage of this option is that it can get
in the way of finding symbols that do not match the first character, but would otherwise be legitimate
pattern matches.

When this option is not selected, the first character search strategy is still employed for globals,
however, the search will continue to search for all subword pattern matches.

• Limit to current workspace - Limit subword pattern matching to the current workspace. This option
exists both for performance and to narrow down the results to get more focused and relevant
matches.

• Include auto-updated tag files - If selected, include the workspace's auto-updated tag files in the
subword pattern matching search.

• Include compiler tag files - If selected, include compiler tag file in the subword pattern matching
search.

• Manual symbol completion fixes minor typos - If checked, instructs symbol completion, when
manually invoked by pressing Ctrl+Space to invoke the codehelp_complete(Pro only) command,
to attempt to correct minor typographical errors in the symbol under the cursor, such as fixing
transposed characters, inserting a missing character, replacing a single mistyped character, or

Language Options

1003

correcting a repeated character. See Completions for more information.

It does this by finding the symbols visible in the current context, and matching each one against the
symbol under the cursor. If only one unique corrected symbol matches, symbol completion will
replace the symbol with the corrected version.

Note

When using Stone-skipping with subword boundaries, Pure stone-skipping, or Acronyms
using subword boundaries, you can use the underscore or dash characters (_ or -,
respectively), as a tying connector to indicate that the pattern (or acronym) matches need to
match adjacent subwords.

For example, the pattern gsf_to could be used to match the symbol GetSnowFallTotal
without matching symbols with letters between the subword matching f (Fall) and the subword
matching t (Total).

For example, the symbol GetSouthernFriedTaterTots would not match the pattern, because
Tater does not match as an adjacent subword.

This is an advanced technique, but can be helpful when you know exactly the symbol you want
and just want to type fewer characters before completing it.

This technique only works for languages where underscore or dash are valid identifier characters.

Language-Specific Auto-Close

These options let you configure Auto-Close for a specific language. Auto-Close inserts matching closing
punctuation when opening punctuation is entered. For example, when you type an open parenthesis,
Auto-Close automatically inserts the closing parenthesis right next to it.

The settings on this page depend on the selected language. As an example, the C/C++ Auto-Close
options are shown below (Tools → Options → Languages → Application Languages → C/C++ →
Auto-Close).

Language Options

1004

The following options are available:

• Enable Auto-Close - When set to On, the punctuation items selected in the additional checkboxes will
Auto-Close. To turn off Auto-Close for all punctuation, set this value to Off.

• Parenthesis () - When set to On, Auto-Close will automatically insert a closing parenthesis when an
open parenthesis is entered.

• Insert padding - To insert spaces between the parentheses, set this value to On.

• Bracket [] - When set to On, Auto-Close will automatically insert a closing bracket when an open
bracket is entered.

• Insert padding - To insert spaces between the brackets, set this value to On.

• Angle Bracket <> - When set to On, Auto-Close will automatically insert a closing angle bracket
when an open angle bracket is entered.

• Insert padding - To insert spaces between the angle brackets, set this value to On.

• Double Quote "" - When set to On, Auto-Close will automatically insert a closing double quote when
an open double quote is entered.

Language Options

1005

• Single Quote '' - When set to On, Auto-Close will automatically insert a closing single quote when an
open single quote is entered.

• Brace {} - When set to On, Auto-Close will automatically insert a closing curly brace when an open
curly brace is entered.

• Put closing brace - Specifies where to put the closing brace when auto-closing braces. Possible
values are:

• On same line - puts the closing brace on the same line as the opening brace.

• On next line - puts the closing brace on the next line after the opening brace.

• After blank line - inserts a blank line between the opening brace and the closing brace.

• Quick brace/unbrace statements - When this feature is enabled, you can convert a single-line
statement to a brace-enclosed block and vice versa. For languages without beautifiers, this option is
found on the Formatting page.

• Configure completion (Enter, Tab) - This link takes you to Auto-Close so that you can configure
completion keys.

• Configure automatic closing of block comments - This link takes you to Language-Specific
Comment Options so that you can configure the automatic closing of block comments.

Language-Specific Auto-Surround

These options let you configure Auto-Surround for a specific language. Auto-Surround surrounds the
current selection with typed bracketed and quotation pairs. For example, when you type an open
parenthesis, Auto-Surround will insert the open parenthesis at the start of the selection and the close
parenthesis at the end of the selection.

The settings on this page depend on the selected language. As an example, the C/C++ Auto-Surround
options are shown below (Tools → Options → Languages → Application Languages → C/C++ →
Auto-Surround).

Language Options

1006

The following options are available:

• Enable Auto-Surround - When set to On, the punctuation items selected in the additional checkboxes
will Auto-Surround To turn off Auto-Surround for all punctuation, set this value to Off.

• Parenthesis () - When set to On, Auto-Surround will support parenthesis.

• Bracket [] - When set to On, Auto-Surround will support square brackets

• Angle Bracket <> - When set to On, Auto-Surround will support angle brackets

• Double Quote "" - When set to On, Auto-Surround will support double quotes

• Single Quote - When set to On, Auto-Surround will support single quotes

• Brace {} - When set to On, Auto-Surround will support single quotes

Language-Specific Context Tagging® Options (Pro only)

These options let you configure language-specific settings for Context Tagging (see Context Tagging
Features). Note that global Context Tagging options are located at Tools → Options → Editing →
Context Tagging (see Context Tagging® Options).

The settings on this page depend on the selected language. As an example, the C/C++ Context Tagging
options are shown below (Tools → Options → Languages → Application Languages → C/C++ →
Context Tagging).

Language Options

1007

Parameter Information

The following options control the lookup of parameter information. See Parameter Information for more
details.

• Auto-display parameter information - If selected, the prototype and comments for a function are
automatically displayed when a function operator such as the open parenthesis is typed, and the
current argument is highlighted within the displayed prototype. To access this feature on demand, press
Alt+Comma.

Language Options

1008

• Show comments - If selected, comments are displayed when Parameter Info is displayed. When a
symbol has multiple definitions, and multiple sets of comments, the comments will indicate that you are
looking at item "< 1 of n >". Click on the arrows or use Ctrl+PgUp and Ctrl+PgDn to cycle through the
comment sets.

• Auto-insert matching parameter - If selected, when Parameter Info is displayed and the name of the
current formal parameter matches the name of a symbol in the current scope of the appropriate type or
class, the name is automatically inserted. When the name is inserted, it is also selected so that you can
type over it, or you can type Comma, Space, Tab, or a closing parenthesis to use the automatically
inserted parameter.

• Auto-list compatible parameters - If selected, compatible variables are automatically listed when
parameter info is active and typing the arguments to a function call. Global (non-module) variables are
not listed. This only affects C, C++, and Java. To access this feature on demand, press Alt+Comma.
See Auto List Compatible Parameters for more information.

• Pad parentheses - If selected, a space is inserted after the open parenthesis when a parameter name
is automatically inserted. In addition, if you type a close parenthesis after an automatically inserted
parameter, it will insert a space before the close parenthesis.

• Insert space after comma - If selected, a space is inserted after the comma when a parameter name
is automatically inserted, such as myfun(a, b, c).

• Insert keyword before parameter when required - If selected, for languages that require a keyword
before function parameters to indicate calling convention (for example, C# ref and out keywords), the
keyword will be inserted automatically when a parameter name is automatically inserted, such as
myfun(ref a, out b, c).

Go to Definition

These options control the behavior when you navigate from a symbol to its definition or declaration. You
can do this by selecting Search → Go to Definition or Search → Go to Declaration, selecting Go to
Definition or selecting Go to Declaration from the context menu, pressing Ctrl+Dot or Ctrl+Alt+Dot in
CUA emulation, or by executing the push_tag or push_alttag command from the SlickEdit command
line. See Symbol Navigation for more information.

• Prioritize navigation to - Here you can specify if you prefer to navigate directly to a symbol's definition
(proc) or declaration (proto). If Prompt is selected, the Select Symbol Dialog is displayed, prompting
you for both definitions and declarations.

The Go to Definition command, invoked by pressing Ctrl+Dot, will honor the navigation settings
precisely. However, its counterpart, Go to Declaration, invoked by pressing Ctrl+Alt+Dot, utilizes the
opposite setting for navigation priority. That is, if you specify to prioritize navigation to jump directly to a
symbol's definition (proc), Go to Declaration will prioritize navigation to jump directly to the symbol's
declaration (prototype).

In any case, if you use Ctrl+Dot to jump to a symbol, you can cycle through the alternate symbols by
pressing Ctrl+Dot repeatedly. You can step backwards through the list of matches by pressing
Ctrl+Comma. However, once you reach the first match, Ctrl+Comma will then pop back to the original
location, where you were before you pressed Ctrl+Dot. The same applies for Go to Declaration

Language Options

1009

invoked by pressing Ctrl+Alt+Dot.

Independent of the settings for these options, in the following circumstances, SlickEdit® will jump
directly to the definition or declaration.

• If the cursor is on the first line of a symbol's declaration, it will jump directly to the definition, provided
it is unique.

• If the cursor is on the first line of a symbol's definition, it will jump directly to the declaration, provided
it is unique.

This behavior is particularly convenient for C++ programmers to navigate from a function to its
prototype and vice versa. See Symbol Navigation for more information about navigating through your
code.

• Prioritize navigation to symbols in the current project - When this option is enabled, Go to
Definition will navigate directly to a symbol in the current project if there is a unique match. If there is
no unique match within the current project, you will be prompted with all choices, with the matches in
the current project, directory and workspace closer to the top of the list. The current project is the
project that the current source file belongs to, or the active project.

• Ignore forward class declarations - When this option is enabled, Go to Definition filters out forward
class declarations, and only shows the actual class definitions. Note that Go to Declaration does will
always show both class definitions and forward declarations.

• Use strict case-sensitivity rules - when selected, factors upper/lowercase letters as part of the
matching criteria.

• Attempt to filter out non-matching function overloads (expensive and slow) - when selected,
SlickEdit attempts to filter out functions with the same name but with different function signatures. As
stated, this can slow down the matching.

Preview and Highlighting

• Show info for symbol under mouse - When selected, as the mouse cursor floats over a symbol, the
information and comments for that symbol are displayed.

• Show comments - If selected, comments are displayed when mouse-over information is displayed.
When a symbol has multiple definitions, and multiple sets of comments, all the comments will be
displayed separated by horizontal lines.

• Evaluate and show return type - If selected, the symbol's return type is evaluated and fully qualified
then displayed along with the symbol declaration. This option is helpful when working with languages
that allow you to declare type-inferred variables, for example, using "auto" in C++, or ":=" in Slick-C or
Google Go. It is also helpful when the symbol's apparent return type is an imported symbol.

• Highlight matching symbols under cursor - When selected, all occurrences of the current symbol
under the cursor in the buffer are highlighted. The highlight color is controlled by the Symbol Highlight
screen element (Tools → Options → Appearance → Colors). Advanced configuration options are
available. See Cursor on Symbol Shows All Uses in File for more information.

Language Options

1010

• Show preview for symbol under cursor - When selected, if the Preview tool window is active, the
information and code preview for the symbol under the cursor is displayed.

• Show comments - If selected, comments are displayed in the Preview tool window, when a symbol
is displayed. This option can be turned off in order to improve performance if you really don't want to
see the symbol comments. In addition, you can collapse the comment pane in the Preview tool
window so they are not visible.

• Evaluate and show return type - If selected, the symbol's return type is evaluated and fully qualified
then displayed along with the symbol comments. This option is helpful when working with languages
that allow you to declare type-inferred variables, for example, using "auto" in C++, or ":=" in Slick-C or
Google Go. It is also helpful when the symbol's apparent return type is an imported symbol.

• Show statements in the Defs tool window - This option controls the Statement Level Tagging
feature. When selected, the tool window shows an outline of all statements in each function within the
current file and all other files in the current language mode. This allows you to see a primitive function
flowchart or to navigate to a specific statement within a function. Note that statement-level tagging is
not supported for all languages.

Language-Specific Tag Files(Pro only)

(Pro only) Displays the Context Tagging® - Tag Files dialog, shown below, to manage all the tag files for
the current language mode. This includes both language-specific and compiler-specific tag files, where
applicable. For more information, see Context Tagging - Tag Files Dialog. For more information about tag
files, see Building and Managing Tag Files.

Language-specific tag files have checkboxes which can be turned off in order to keep a tag file in the list,
but ignore it. This makes it easy to de-activate and re-activate a tag file that you need on occasion, but do
not want to always use for the current language.

Compiler-specific tag files also have checkboxes, but they are read-only, and used only to indicate which
tag file is currently active for the current workspace and project configuration.

Language-Specific Color Coding Options

Color Coding is a feature that displays various portions of code in different colors for improved readability.

Language Options

1011

The recognized syntactic elements (like keywords, comments, strings, etc) are determined by the Color
Coding settings defined here. Each syntactic element has a "Type" (short for color element type) which is
one of the supported color element types. The actual color displayed for each color element type is
determined by the color settings (See Color Options).

SlickEdit has a very powerful color coding engine which allows any user to add color coding for almost
any language. For handling more complex syntactic elements, regular expressions may be used. When
the start delimiter is a regular expression, tagged expressions can be used for the end delimiter and
embedded language. Also, there is built in support for color coding numbers so most or all number
constructs can be added without defining any regular expressions. For convenience, there is an xml literal
check box on the Language Tab. This is useful for languages like Scala, Visual Basic, and Action Script
which support xml literals.

The settings on the Color Coding options page depend on the selected language. The C/C++ Color
Coding options (Tools → Options → Languages → Application Languages → C/C++ → Color
Coding) are used in the screen shots for this section.

The Color Coding options page contains the following uncategorized options:

• Profile name - Select the language color coding profile to use from the Profile drop-down list. This sets
the active profile for that language.

• New - Click this button, located next to Profile, to prompt for a profile name to start a new language-
specific color coding definition (see Creating Color Coding for a New Language).

• Delete - Click this button, located next to Profile, to remove a profile from the list. You can only delete
user-created color coding profiles.

• Reset - Click this button, located next to Profile, to reset a built-in color coding profile to it's default
settings. You can only reset modified builtin color coding profiles.

• Import - Click this button to import color coding profiles from a .cfg.xml or the older .vlx file.

• Colors - Click this button to jump to the Tools → Options → Appearance → Colors option screen
where you can specify the colors used. Click the Back button on the Options dialog to return to the
Color Coding Language tab. See Setting Colors for Screen Elements for more information.

Other options are categorized into the following tabs:

• Color Coding General Tab

• Color Coding Tokens Tab

• Color Coding Settings Tab

• Color Coding More Tab

• Color Coding Embedded Tab

• Color Coding Numbers Tab

• Color Coding Language Tab

Language Options

1012

• Color Coding Tags Tab

How To's:

• Creating Color Coding for a New Language

• How to add new color coding words (keywords, library symbols, operators, punctuation etc.)

• How to add a line comment

• How to add a multi-line comment

• How to add a string

• How to define color coding for numbers

• How to add interpolation to a string

If you want to use a regular expression to match the start and/or end delimiter, see Tips on using regular
expressions matching in color coding for more information

Color Coding General Tab

The General tab defines the syntax for an identifier and whether identifiers are case sensitive. For most
languages, the settings here are sufficient. Recognizing identifiers (and operator identifiers) for Scala
required some very complicated regular expressions in addition to some settings here.

Language Options

1013

The following options are available:

• Identifiers - All Context Tagging® operations use this set of characters to find identifiers in the code
that is being analyzed. Therefore, it is important to set the start and follow characters in a manner that
is consistent with the language specification. In most languages, identifiers can contain digits, but they
cannot start with them. For example, in C/C++, start characters are "a-zA-Z_$" and follow characters
are "0-9".

• Case-sensitive - Indicates whether identifiers are case-sensitive.

• ID start characters - Specifies characters which are valid for the start of an identifier or any part of
an identifier.

• ID follow characters - Specifies additional characters which are valid after the first character of an

Language Options

1014

identifier.

• Inherit tokens from - Specifies a color coding profile to inherit all tokens from. Inherited tokens are
processed before tokens for the current profile. That allows tokens in the current profile to more easily
override inherited tokens. Only tokens are inherited and no other settings like Numbers Tab settings or
other tab settings.

• Comment text at or after column - Specifies that characters at or after the column specified should be
colored as a comment. The first column is 1. The column is currently specified in bytes and is intended
for some mainframe languages. This field is typically blank which means it has no effect.

Color Coding Tokens Tab

The Tokens tab allows you to define the syntactic elements like keywords, strings, and comments etc.
Simple syntactic elements like keywords specify a plain text string Start delimiter to match and a color
element Type. Syntactic elements like stings and multi-line comments typically require a Start delimiter,
End delimiter, and color element Type. There are many additional options that can be applied to
syntactic elements defined here including case sensitivity, regular expression searching, and more.

Language Options

1015

The buttons to the right of the tree list are the following:

• Add Words... - Allows you to add one or more Start delimiter words of a specified color element type
and case sensitivity at the same level in the tree. Words are specified with a space delimited list of
words. Words with spaces can be double quoted. Use the Add Other or Add Sub Item buttons to add
words which contain double quotes. The Add Other and Add Sub Item buttons also allow you to add
simple words like the Add Words... button but items can only be added one at a time.

• Add Other - Adds a new mostly blank syntactic element at the same level in the tree. The Type is
initially set to "Comment" but you can change it to something else.

• Add Sub Item - Adds a new mostly blank syntactic element inside the current item in the tree. The
Type is initially set to "Comment" but you can change it to something else. It only makes sense to put
an element "inside" another when the parent item has a Start delimiter and a End delimiter or is

Language Options

1016

colored past the Start delimiter. Sub items are only colored when found inside the parent item.

• Delete - Deletes the current item in the tree and it's children if it has any.

• Import Word List... - Allows you to add one or more Start delimiter words of a specified color element
type and case sensitivity at the same level in the tree. Each line in the file is a space delimited list of
words. Words with spaces can be double quoted. Use the Add Other or Add Sub Item buttons to add
words which contain double quotes.

Color Coding Settings Tab

The Settings tab provides the most common settings.

This tab contains the following

• Type - The primary color element type for the item. This sets the default start delimiter color,
continuation color (Color to end of line), and the end delimiter color. The start delimiter and end
delimiter color can be changed by setting the Start Color and/or End Color on the More Tab
respectively. The default start and end delimiter color for String types is done with some special built-in
logic for improved and standardized appearance. There are common cases where only the continuation
color is the same color as the Type color and the start and end delimiters are colored as keywords.
Note that some smart editing features scan the color coding profiles for specific types (like comments
that are multi-line).

• Start delimiter - Plain text or regular expression string to search for and color. This field is never blank.
When this delimiter is not a regular expression and starts with a valid identifier character, the previous
character may not be an identifier character. Likewise, when this delimiter is not a regular expression
and ends with a valid identifier character, the next character may not be an identifier character. There
are rare cases where this automatic extra identifier word break logic isn't what you want. Use a regular
expression to avoid automatic identifier word break checking. See Perl Regular Expressions, Vim
Regular Expressions or SlickEdit® Regular Expressions for information on regular expression syntax.
Also see Tips on using regular expressions matching in color coding for more information

• End delimiter - Plain text or regular expression string to search for and color after the Start delimiter
is found. This field is often blank except for begin/end constructs. When this delimiter is not a regular
expression and starts with a valid identifier character, the previous character may not be an identifier
character. There are rare cases where this automatic extra identifier word break logic isn't what you
want. Use a regular expression to avoid automatic identifier word break checking.

IMPORTANT: When the Start delimiter is a regular expression, tagged expressions and escapes are
processed in the End delimiter even if the end delimiter is not a regular expression. When the Start
delimiter and End delimiter are both regular expressions, things get complicated. First, tagged
expressions and escapes are processed. Then the result is compiled as a regular expressions. This
means you may need to escape a literal character twice (ex instead of just "\\" you need "\\\\"). Note that
When the tagged expressions are replaced, special characters are escaped so that the tagged
expression replacements are considered literal text. See
Section_Replacing_with_Regular_Expressions for information on tagged expressions and special
characters in the replace string. Also see Tips on using regular expressions matching in color coding for
more information

Language Options

1017

• Color to end of line - This sets the continuation color or color to end of line color for constructs which
color past the Start delimiter. When this is set to (None) the Type color is used.

• End color to end of line - When the End delimiter is non-blank, this optionally specifies the color to
use to color to the end of line. This is useful for begin/end constructs where once the end delimiter is
found, the rest of the line is ignored and colored as a comment.

• Color to end of file - Only visible when the End delimiter is blank. Specifies whether to continue
coloring after the Start delimiter to the end of file. Color used is determined by the Color to end of
line if set, otherwise the Type is used.

• When end delimiter is not on same line - Only visible when End delimiter is non-blank. One of the
following settings:

• Color to end of line - Color to the end of line when End delimiter is not found not found on the
same line as the Start delimiter.

• Color to the end across multiple lines - Continue coloring until the End delimiter is found.
Coloring will continue even if the End delimiter is not found.

• Color start as Other color - When specified, text is colored between start delimiter and end
delimiter only if end delimiter is found on the same line as the start delimiter. Otherwise, the start
delimiter is color as Other color.

• Two consecutive quotes represent one. Doubles char - Only available when End delimiter is non-
blank or Color to end of file is checked. Specifies that two consecutive quotes (or character specified)
represents one. This is often necessary for begin/end string constructs where a correct search for the
end quote which is the first character in End delimiter requires skipping consecutive quotes.

• Escape char - Only available when End delimiter is non-blank or Color to end of file is checked.
Allows you to define the escape character where the next character is skipped so the End delimiter
can be correctly found. Many String type constructs support escaping with a character like backlash
(some languages uses a different escape character).

• Line continuation char - Only available for single line constructs. When this character is found at the
end of the line, coloring will continue to the next line.

Color Coding More Tab

The More tab provides less frequently used settings.

This tab contains the following

• Nesting allowed - When checked, allows the nest with start and end to be defined. This is useful for
defining constructs like multi-line block comments which support nesting. Set the Nest with start and
Nest with end to specify nested delimiters.

• Match start delimiter only if first non-blank character in line - While you could use a regular
expression that starts with ^[\t]* to match beginning of the line followed by blanks, checking this is
easier. There is a subtle difference with the Order of evaluation. Items with Match start delimiter only
if first non-blank character in line or Check for start delimiter first checked get processed before

Language Options

1018

items with either of these options checked.

• Check for start delimiter first - When selected, checks for the Start delimiter before looking for other
items. This is typically used only when a Start delimiter column is specified.

• Start color - Overrides the default start delimiter color. When not set to (None), start delimiter is
colored with this color.

• End color - Overrides the default end delimiter color. When not set to (None), end delimiter is colored
with this color.

• Start delimiter column - Specifies the columns in which the Start delimiter is considered a match.
Specify a begin and end column to set a range of columns. Leave the end column blank, to specify that
the start delimiter is recognized anywhere after the start column.

• End delimiter column - Specifies the columns in which the End delimiter is considered a match.
Specify a begin and end column to set a range of columns. Leave the end column blank, to specify that
the end delimiter is recognized anywhere after the start column.

• Order - This is a signed integer which determines the order of evaluation of items. In more complicated
scenarios where there are multiple Start delimiter patterns matching the same text, this is used to
choose which match gets processed. Lower values are matched first and take precedence. Sometimes
a regular expression which is intended to match a longer pattern also exactly matches a shorter
duplicate pattern.

Color Coding Embedded Tab

The Embedded tab provides options for embedded language support. While handling of embedded XML
literals is a built-in, most other embedded language constructs uses these options.

This tab contains the following

• Embedded profile - When non-blank, indicates this item is an embedded language even if it doesn't
match an existing color coding profile. When the Start delimiter is a regular expression, replacements
for tagged expressions and escapes just like a typical search and replace will be performed. See
Section_Replacing_with_Regular_Expressions for information on tagged expressions and special
characters in the replace string.

• Prefix match embedded profile - When checked, the prefix of embedded profile name is matched
against other color coding profiles (ex "cppEOF" would match "cpp").

• Embedded end delimiter is token - This is useful for interpolated strings where finding the End
delimiter requires tokenizing the text so that tokens like strings which could contain the End delimiter
are skipped. Note that defining an interpolated string requires the outer string start/end delimiters to be
defined and then an inner start/end delimiters (often \$\{ and } when start delimiter is a SlickEdit regular
expression) to be defined where this option is checked. Use Add Sub Item to add the sub item for
interpolation and set the start/end delimiters. You may need to set the Nest with start and Nest with
end to { and }. Scala interpolated strings require the interpolation to support nested braces where Nest
with start and Nest with end are { and } respectively.

• Apply multi-line coloring at the end of line - Only available for multi-line constructs. This option is

Language Options

1019

typically used for here-document constructs where the start should be colored as Other color, then the
text until the end of line is colored as if this construct was never hit, and then subsequent lines continue
with this construct.

• End embedded at beginning of line if possible - When the Start delimiter for an embedded
language construct starts at the end of a line and the End delimiter is the first non-blank in a line,
choose this option. That way only lines in between the start and end delimiters are colored in
embedded language color.

• Embedded color style - One of the following:

• Color as embedded - Switches the background color to embedded.

• Don't color as embedded - Continue to use the current background color which may already be
embedded.

• Color as embedded only if profile found - If Embedded profile is found, switch to the background
to embedded. Otherwise, the current background color which may already be embedded is used.

Color Coding Numbers Tab

The Numbers tab provides options for color coding numerical values when working with SlickEdit®.

Language Options

1020

This tab contains the following:

• Integers may start with a digit [0-9] - Indicates whether integers starting with a digit (ex. 123) is
colored in number color.

• Floating point numbers may start with a digit [0-9] - Indicates whether floating point starting with a
digit (ex. 1.2) is colored in float point number color.

• 1.e4 is valid float (e4 is exponent and not data member) - Indicates whether floating point
numbers allow the exponent to immediately follow the decimal point (ex 1.e4).

• Floating point may use "D" exponent - Indicates whether floating point numbers also allow the
exponent to be specified with a "D" (ex 1.4D5).

Language Options

1021

• Floating point numbers may start with a decimal point (ex .123) - Indicates whether floating point
numbers may start with a decimal point (ex .123).

Hexadecimal floating point (ex 0x1A.F3p+EF) - Indicates whether floating point hexadecimal
numbers are colored in floating point number color. Many languages have adopted this standard syntax
for hexadecimal floating point syntax.

• 1.p4 is valid float (p4 is exponent and not data member) - Indicates whether hexadecimal floating
point numbers allow the exponent to immediately follow the decimal point (ex 1.p4).

• 0x#### Hexadecimal (ex 0xFF) - Indicates whether hexadecimal numbers such as 0x123ABC is color
coded in number color

• 0o#### Octal (ex 0o777) - Indicates whether octal numbers such as 0o777 is color coded in number
color.

• 0b#### Binary (ex 0b1010) - Indicates whether binary numbers such as 0b1010 is color coded in
number color.

• 0d#### Decimal (ex 0d89) - Indicates whether decimal numbers such as 0d89 is color coded in
number color.

• Verilog base single quote numbers (ex 16'hFFFF 16'd1234) - Indicates whether Verilog syntax base
single quote numbers like 16'hFFFF and 16'd1234 are color coded in number color.

• No exponent on floating point. Don't allow 1.2e4 but allow 1.2. - When checked, indicates that
floating point numbers do not have an exponent.

• Allow hex digits in integers. Used for coloring 1AFFFH (Module-2 and Assembly) - This option is
useful for coloring hexadecimal numbers which start with a digit (no prefix characters) and may contain
hexadecimal digits. Typically there is a suffix character like 'H' added to the Hex suffixes text box.

• Color leading sign as part of number - When on, the leading sign (ex +123 or -123) is colored as part
of the number.

• Digit separator char - Specifies a single character which is allowed between digits. For example, C++
supports a single quote character (ex 123'000'000). Perl and many other languages support an
underscore (123_000_000).

• Integer suffixes - Space delimited list of supported integer suffixes. By default, all suffixes are case
insensitive. Prefix the suffix with "\c" to specify a case sensitive suffix. If your prefix starts with a
backslash, uses two backslashes (ex "\\").

• Float suffixes - Space delimited list of supported floating point suffixes. By default, all suffixes are case
insensitive. Prefix the suffix with "\c" to specify a case sensitive suffix. If your prefix starts with a
backslash, uses two backslashes (ex "\\").

• Hex suffixes - Space delimited list of supported hexadecimal integer suffixes. By default, all suffixes
are case insensitive. Prefix the suffix with "\c" to specify a case sensitive suffix. If your prefix starts with
a backslash, uses two backslashes (ex "\\").

Language Options

1022

Color Coding Language Tab

The Language tab is used to set global language-specific color coding options. options.

This tab contains the following:

• Language specific - Selecting some of the language specific options simply adds some extra table
entries you could have defined yourself. Others like HTML and XML apply some built-in changes that
can't be done as table entries. You may be able to use one of these language-specific settings for
another language, but there's no guarantee it will work. Typically only one of these options can be
checked at a time.

• Color Code Line Numbers (Basic/COBOL) - When selected, indicates that leading line numbers
should be color-coded in line number color.

Language Options

1023

• XML literals (Scala/VB) - When selected, indicates XML literals should be color coded as embedded
XML.

• Here Document (UNIX Shells/Perl) - Adds support for generic HERE documents similar to Perl syntax
but primarily backward compatible with previous versions of SlickEdit. Note that the Perl color coding
definition no longer uses this option. Instead, more precise Perl specific table items are defined.

print <<HTMLEOF;
<HTML><HEAD><TITLE>...</TITLE></HEAD>
<BODY>
...
</BODY>
</HTML>
HTMLEOF

Unknown languages are color-coded in string color. Embedded language colors are user-definable.

• Color identifiers followed by '(' as a function - For language such as C++, Java, and Slick-C®, an
identifier followed by a parenthesis always indicates a function.

• Special coloring for 'package' and 'import' statements (Java) - When selected, the Java syntax
package and import statements are supported. This option is forced on for the Java color coding profile
You must add the package and/or import keywords to your keyword list in order for this option to have
any effect.

• Preprocessing keywords can appear anywhere - When selected, preprocessing keywords are color-
coded even if they are not only preceded by white space.

• Identifiers may start with a number (COBOL) - When selected, identifiers may start with one or more
decimal digits. By default, leading decimal digits indicate a number.

• Treat everything after 0x1a as comments (end of file) - Historically, DOS used 0x1a to mark the end
of the file. When checked, SlickEdit will treat all characters after 0x1a as comments.

• Color inactive code regions (C/C++ Preprocessing, eg. #if 0) - When checked, uses a single color
for inactive code regions, instead of applying normal color coding.

• Use schema for color coding (XML) - When opening an XML file, checks for a schema to color
elements and attributes. If the schema is remote and inaccessible, this can cause delays.

• Blade - When on, turns on Laravel Blade color coding.

• Jinja Settings... - Settings for adding Jinja color coding.

• Supported documentation keywords - Indicates the supported documentation comment types
(JavaDoc, XML Doc, and/or Doxygen) which should be supported in constructs with the color element
Type set to Doc Comment. For example, when JavaDoc is checked, "@param" is colored in Doc
Keyword color.

Language Options

1024

Color Coding Tags Tab

The Tags tab is used to set color-coding attributes when working with tagged-based languages such as
HTML and XML. The following screen shot shows the Color Coding Tags tab for HTML:

It contains the following options:

• Tag names - List box containing tags for HTML or XML. To add or delete tags, use the New and
Delete buttons below this list box.

• >>Attributes - List box containing attributes that belong to the tag selected in the Tag names list box.
To add or delete attributes, use the New Attr and Delete buttons below this list box.

• Attribute values - List box contains the values for the specified tag and attribute. To add or delete a

Language Options

1025

value, use the New Value and Delete buttons below this list box.

• For all tags - When this option is selected, the values in the Attribute valuelist box are applied to all
tags that have the specified attribute.

Language-Specific File Options

These options are used to specify load and save options for files on a language-specific basis. As an
example, the C/C++ file options are shown below (Tools → Options → Languages → Application
Languages → C/C++ → File Options).

The options are described as follows:

• Load Options:

• Load as Binary - When set to On, files are loaded without any translations (like changing tabs to
spaces). This setting has precedence over all global options, as well as all language-specific options.

• Expand tabs to spaces - When set to Default, SlickEdit® uses the setting for the global file load
option, Expand tabs to spaces (Tools → Options → File Options → Load). When set to On,
SlickEdit always loads files with tabs expanded to spaces. When set to Off, tabs are always left

Language Options

1026

unexpanded.

• Save Options:

• Save as Binary - When set to On, files are saved without any translations, exactly byte-for-byte as
they appear in the buffer. This setting has precedence over all global options, as well as all language-
specific options.

• Expand tabs to spaces - When set to Default, SlickEdit uses the setting for the global file save
option, Expand tabs to spaces (Tools → Options → File Options → Save). When set to Expand
all tabs to spaces, SlickEdit all tabs in a file will be expanded to spaces on save. When set to Do
not expand tabs to spaces, tabs are always left unexpanded. You can also set this value to
Expand tabs to spaces only on modified lines to expand tabs only on lines that have been
modified or inserted.

• Strip trailing spaces - Specifies if and when to remove trailing spaces from the ends of lines. When
set to Default, SlickEdit uses the setting for the global file save option, Strip trailing spaces (Tools
→ Options → File Options → Save). When set to Strip all trailing spaces, trailing spaces at the
end of lines are stripped. When set to Do not strip trailing spaces, spaces at the end of lines are
always left.When set to Strip trailing spaces only from modified lines, trailing spaces at the end of
lines are stripped only from modified or inserted lines.

• Line format - Specifies how end of line characters are translated when a file is saved. When
Automatic is set, the line breaks are saved automatically in the file format appropriate to the context
in which you are working with no changes to the end of line characters. However, you can specify the
line breaks. For example, if you are working in Windows and using CVS, using UNIX line breaks will
make using CVS easier. Therefore, set the file format to UNIX/macOS(LF).

Note

• The Save As dialog also allows the translation of the line end characters for the current file.
See Save As Dialog.

• Classic Mac line endings are a single carriage return (ASCII 13).

Language-Specific Live Error Profiles

These options are used to define profiles that describe how to run a syntax checking program, and to
define the default profile to use for the language.

Note

For the Java language, there is no “Live Errors Profiles” panel, as the legacy Live Errors
implementation has to be more Java centric to get good performance. For details on how to
enable Live Errors for Java, see Java Live Errors.

As an example the Python error profile options are shown below (Tools → Options → Languages →

Language Options

1027

Scripting Languages → Python → Live Error Profiles).

• Edit... - Edits the selected profile. See Live Error Profile Dialog for details.

• New... - Creates a new blank profile.

• Copy... - Copies and renames an existing profile. Useful if you want to just tweak an existing profile
without changing the original.

• Delete - Deletes a profile permanently. Only user-created profiles can be deleted, the profiles shipped
with the editor can not be deleted.

• Default profile: - Allows you to pick which profile is used by default for the source language. There is a
<Auto Detect> selection that will pick the first profile that references a syntax checking program that is
installed on your system.

Live Error Profile Dialog

The Live Error system depends on external checking programs producing the error messages shown to
the user. The editor runs these programs in the background for the file being edited automatically.

It is expected that a checker program:

• Takes an argument for the file to be checked

• Produces error messages with file and line number references on the standard output or the standard
error streams.

• Runs fairly quickly. Feedback that takes more than a few seconds will quickly lag behind your typing.

Language Options

1028

The editor recognizes the errors in the output of the checker using the same error parsing used for
recognizing errors in builds. If the output of the checker program is not recognized, you can update the
error parsing configuation. See Configuring Error Parsing for more details.

The profile editor dialog:

• Program- The path to the syntax checking executable, or the bare name of the executable if the
checker is on the PATH.

• Command line - the command line to be passed to the program where “%f” is a placeholder for the
path of the source file being checked. In addition, this field recognizes the escape sequences defined in
Escape Sequences for Build Commands.

• Run from dir - directory the checker program should be run from. In most cases the default of “%rw”
(workspace directory) should be fine. In addition, this field recognizes the escape sequences defined in
Escape Sequences for Build Commands

• Minimum time between runs - the minimum time between separate runs of the checker in mS. If a
checker is resource intensive, this allows you control over how often it can run.

Language Options

1029

• Environment vars to set - allows you to set or modify environment variables for tools use environment
variable parameters. Environment variable values recognize the escape sequences defined in Escape
Sequences for Build Commands.

For example, you could set "PYTHONPATH" to "%rw/3rdparty:%(PYTHONPATH)" to extend the
existing "PYTHONPATH" variable to include the 3rdparty directory that's located in the same directory
as your workspace.

Additional Escape Sequences

For the fields that recognize escape sequences, there are are two additional escape sequences that are
specific to Live Errors.

Sequence Expands to

%OF The full path name of the source file in your current
buffer that is being checked. This will not be the
same as the path passed to the external tool via the
%f escape.

%OD The directory of the source file in your current buffer
that is being checked. This is useful for tooling
where extra include paths or other details need to
be based off the location of the source file being
edited.

Language-Specific Compiler Properties (Pro only)

These settings are used to configure your compiler so that SlickEdit® can correctly perform full
preprocessing, parsing, symbol analysis, and cross-referencing. The fields and options on this page
depend on the selected language.

Note

These language-specific compiler settings are also available in a dialog interface. The fields and
options are identical, so you can use the interface you prefer. To access the dialog, from the main
menu, click Project → Project Properties. Select the Compile/Link tab, then click the Ellipsis
button to the right of the Compiler combo box.

The following fields and options are common to all languages on the Compiler Properties interface:

• Compiler Name - Contains a list of compilers. Names in this list are the names specified when you
click Add.

• Add - Used to add a new compiler name to the list. After adding the name, you will need to configure
the compiler using the configuration settings on the lower-half of the interface.

Language Options

1030

• Delete - Deletes the selected compiler and its associated configuration. Does not delete files from disk.

• Copy - Used to add a new compiler configuration by copying the selected compiler's configuration. You
will be prompted for a new compiler name.

• Set Default - Specifies that the selected compiler should be used as the default. The current default is
displayed under the Compiler Name field.

• Build Tag File - Used to build tag files for the selected compiler configuration. This is especially useful
when new configurations are created. If you do not build the tag file here manually, it will be built on
demand.

• Compiler Configuration - The lower half of the Compiler Properties interface is used to configure the
selected compiler. In C/C++, you specify the header file and include directories. In Java, you specify the
root JDK installation and system libraries.

For more information, see C/C++ Compiler Settings or Java Compiler Properties Dialog.

File Options
These global file options (Tools → Options → File Options) are used to make settings regarding file
operations such as loading and saving. For more information about working with files, see the chapter
Workspaces, Projects, and Files.

File option categories are:

• Open File Options

• Load File Options

• Save File Options

• Backup File Options

• AutoSave File Options

• Files of Type Filter Options

• Associate File Types Options

• History Options

Open File Options

Open file options are shown below (Tools → Options → File Options → Open). For more information
about loading and opening files, see Opening Files.

File Options

1031

The options are described as follows:

• Edit 'A B C' start on file A - When set to On, the first file opened becomes the active buffer.

• Open files using - Specifies which style of open dialog you wish to use to open files. Select one of the
following values:

• Browse files with Open Dialog - Uses the traditional open dialog to open files.

File Options

1032

• Smart Open - Uses the Open Tool Window to open files.

• Decompress .gz files on open - When set to On, opening a .gz or .Z file will decompress it and open
the file it contains instead of displaying the binary data.

• Decompress .xz files on open - When set to On, opening a .xz file will decompress it and open the
file it contains instead of displaying the binary data.

• Decompress .bz2 files on open - When set to On, opening a .bz2 file will decompress it and open the
file it contains instead of displaying the binary data.

• Check for inconsistent line endings on open - When set to On, opened files will be checked for
inconsistent line endings. If the file has inconsistent line endings, you can change the line endings. By
default, files in the Binary mode are skipped. Also, files larger than the 'Turn off check for inconsistent
line endings when editing file larger than (KB)' are not checked either. Use the check_line_endings
command (Edit → Other → Check Line Endings) to check any file.

• Excludes for inconsistent line ending checking - Semicolon delimited list of excludes (ant-like
wildcard expressions). Filenames which match these excludes do not get checked for inconsistent line
endings on open. Ex. '*.exe;*.dll;temp/;<Binary Files>'

• e/edit command Smart Open - Specifies the completion behavior when using the e or edit
commands.

• e/edit command Smart Open workspace files - When using the edit command to open files,
specifies that Smart Open will help complete file names in the current workspace.

• e/edit command Smart Open documents - When using the edit command to open files, specifies
that Smart Open will help complete file names of other files current open in the editor.

• e/edit command Smart Open files in same directory - When using the edit command to open files,
specifies that Smart Open will help complete file names in the same directory as the current file.

• Set current directory when switching buffers - When set to On, sets the current directory to the
location of the selected file each time you change buffers.

• Add opened files to Recent Files - When set to On, files opened are added to the Windows Recent
Files list.

• Open Tool Window - The following options are available:

• Dismiss on select - When set to On, the Open Tool Window is closed or auto-hidden after a file is
selected and opened. When set to Off, the tool window remains open and visible.

• Clear text box on Enter - When set to On, the File name text box will be cleared when Enter is
pressed. When set to Off, characters in the text box will remain.

• Sync current directory - When set to On, changing the current directory outside of the Open Tool
Window will also change the current directory within the tool window. Changing the current directory
within the Open Tool Window also changes the application's current directory. When set to Off, The
Open Tool Window maintains its own current directory, independent from the rest of the application.

File Options

1033

• Show all folders in directory panel - When set to On, displays all folders which are siblings to
folders along the path in the directory panel, rather than focusing only on the current path.

• Change current directory with single-click - When set to On, a single mouse click in the directory
explorer pane will change the current directory and refresh the files panel. When set to Off, this
behavior is triggered by a double-click.

• Show folders in file list - When set to On, files and folders are shown in the top pane of the Open
tool window. This allows patterns in the File name field to match folders as well as files.

• *.ext<Enter> in File name - Set to one of the following options:

• Open currently selected file - Pressing <Enter> will open the currently selected file.

• Set Files of type - Pressing <Enter> will set the Files of type to the extension list specified.

• <Tab> in File name - Set to one of the following options:

• Move focus to file list - Pressing <Tab> will set focus to the file list control.

• Complete selected filename - Pressing <Tab> will complete selected filename.

• Show/match workspace and project files - When set to On, files from the current project and
workspace are shown when their file names match the file name filter text. When set to Off, these
files are never shown in the list of matched file names.

• Show/match open files - When set to On, open buffers are shown when their file names match the
file name filter text. When set to Off, these files are never shown in the list of matched file names.

• Show/match files in history - When set to On, files from the recently opened file history are shown
when their file names match the file name filter text. When set to Off, these files are never shown in
the list of matched file names.

• Show/match files in current file directory - When set to On, files in the same directory as the
current file are shown when their file names match the file name filter text. When set to Off, these
files are never shown in the list of matched file names.

• *.ext wildcard name match style - Set to one of the following options:

• Current directory contains matching - When selected, lists files in the current directory which
contain the wildcard specified anywhere in the string. For example, "*.c" will match a file called
"main.cpp".

• Current directory exact matching - When selected, list files in the current directory which match
the wildcard specified. For example, "*.c" will match a file called "main.c" but not a file called
"main.cpp".

• Recursive contains matching - When selected, lists files from configured Show/match files
options (workspace, open files, history) which contain the wildcard specified anywhere in the string.
For example, "*.c" will match a file called "main.cpp". Searching of files on disk is always limited to
the current directory.

File Options

1034

• Recursive exact matching - When selected, lists files from configured Show/match files options
(workspace, open files, history) which match the wildcard specified. For example, "*.c" will match a
file called "main.c" but not a file called "main.cpp". Searching of files on disk is always limited to the
current directory.

• Other wildcard name match style - Set to one of the following options:

• Current directory contains matching - When selected, lists files in the current directory which
contain the wildcard specified anywhere in the string. For example, "n*.c" will match a file called
"main.cpp".

• Current directory exact matching - When selected, list files in the current directory which match
the wildcard specified. For example, "m*.c" will match a file called "main.c" but not a file called
"main.cpp".

• Current directory prefix matching - When selected, list files in the current directory which match
the wildcard prefix specified. For example, "m*.c" will match a file called "main.c" and also a file
called "main.cpp".

• Recursive contains matching - When selected, lists files from configured Show/match files
options (workspace, open files, history) which contain the wildcard specified anywhere in the string.
For example, "m*.c" will match a file called "main.cpp". Searching of files on disk is always limited
to the current directory.

• Recursive exact matching - When selected, lists files from configured Show/match files options
(workspace, open files, history) which match the wildcard specified. For example, "m*.c" will match
a file called "main.c" but not a file called "main.cpp". Searching of files on disk is always limited to
the current directory.

• Recursive prefix matching - When selected, lists files from configured Show/match files options
(workspace, open files, history) which match the wildcard prefix specified. For example, "m*.c" will
match a file called "main.c" and also a file called "main.cpp". Searching of files on disk is always
limited to the current directory.

• Non wildcard name match style - Set to one of the following options:

• Current directory contains matching - When selected, lists files in the current directory which
contain the wildcard specified anywhere in the string. For example, "n.c" will match a file called
"main.cpp".

• Current directory exact matching - When selected, list files in the current directory which match
the wildcard specified. For example, "main.c" will match a file called "main.c" but not a file called
"main.cpp".

• Current directory prefix matching - When selected, list files in the current directory which match
the wildcard prefix specified. For example, "main.c" will match a file called "main.cpp" but will not
match a file called "grepmain.cpp".

• Recursive contains matching - When selected, lists files from configured Show/match files

File Options

1035

options (workspace, open files, history) which contain the wildcard specified anywhere in the string.
For example, "main.c" will match a file called "main.cpp" and also a file called "grepmain.cpp".
Searching of files on disk is always limited to the current directory. Recursive searching of files
(workspace, open files, history) ignores the current directory.

• Recursive exact matching - When selected, lists files from configured Show/match files options
(workspace, open files, history) which match the wildcard specified. For example, "main.c" will
match a file called "main.c" but not a file called "main.cpp". Searching of files on disk is always
limited to the current directory. Recursive searching of files (workspace, open files, history) ignores
the current directory.

• Recursive prefix matching - When selected, lists files from configured Show/match files options
(workspace, open files, history) which match the wildcard prefix specified. For example, "main.c"
will match a file called "main.cpp" but will not match a file called "grepmain.cpp". Searching of files
on disk is always limited to the current directory. Recursive searching of files (workspace, open
files, history) ignores the current directory.

• Auto-size columns - When On the first column will be auto-sized in an attempt to make the longest
item fit. Otherwise, the previous column size is used.

• Show relative paths - When On paths are displayed relative to the project.

• Maximum number of files to list - To improve performance, only a limited number of files are
shown in the upper panel of the Open tool window. When filtering the file list based on a search
string, this limit is not used. The limit also applies to the Workspace tab of the Files tool window.

• Open tool window orientation - Specifies whether the Open tool window should be oriented
vertically (with the directory tree under the files list) or horizontally (with the directory tree next to the
files list). Select Auto (Default) to have the orientation selected automatically based on the tool
window's current size.

• Show files in Add Source Files dialog - Set to one of the following options:

• Hide files already in the project if supported by native dialog - When selected, files already in
the project are hidden when using the Add Source Files dialog as long as the native open dialog
supports it.

• Show files already in the project - When selected, files already in the project are always
displayed.

• Project Properties dialog - The following options are available:

• Show files in Add Source Files dialog - Specifies whether or not to hide files that are already in the
project when adding source files to a project using the Add Source Files dialog (see How to Add or
Remove Files From a Project). There are two options for hiding files. The default is to only hide files
already in the project if that kind of filtering is supported by the native open dialog. Use the second
option if the convenience of filtering out files that are already in the project is more important than
using the operating system's native open file dialog.

File Options

1036

Tip

Turning this option off (Show files already in the project), can improve the performance of the
Add Source Files dialog for large projects.

Load File Options

Load file options are shown below (Tools → Options → File Options → Load). For more information
about loading and opening files, see Opening Files.

File Options

1037

The options are described as follows:

• Fast line count on partial load - When set to On, SlickEdit® counts the number of lines when files are

File Options

1038

opened. The line number is always displayed in the line indicator area of the editor. This option is much
faster than the Count number of lines option when editing files larger than the cache size (2 MB by
default), because very little data is written to the spill file. The Auto Reload feature does not work until
the file is saved. If you are using the edit command to open files, use the switch +LFto control this
option (see Command Line Switches).

• Show EOF character - When set to On, the EOF character is not removed when a file is loaded. If you
are using the edit command to open files, use the switch +LE to control this option (see Command Line
Switches).

• Expand tabs to spaces - When set to On, the entire contents of files are read into memory and tabs
are expanded into spaces. If your tab settings for the file being loaded are of the form +<increment>
(e.g. "+4"), then tabs are expanded in increments of the specified increment. Otherwise, tabs are
expanded in increments of eight. To set tabs in a form +<increment>, select Tools → Options →
Languages → [Language Category] → [Language] → Indent, and enter your values in the Tabs text
box. For languages such as REXX and Linux containing shell scripts that require the contents of the file
be analyzed before the file type is known, the Fundamental mode tab settings are used. If you are
using the edit command to open files, use the switch +E to specify this option (see Command Line
Switches).

• File locking - When set to On, a file handle is kept open to the file for locking purposes. This detects
when another user is editing the same file. If you are using the edit command to open files, use the
switch +N to specify this option (see Command Line Switches).

• Reinsert after current - When set to On, SlickEdit switches back to the previous buffer with the
prev_buffer command. If you are using the edit command to open files, use the switch +BP to specify
this option (see Command Line Switches).

• Wrap line length - Specifies the number of characters at which long lines should be wrapped when a
file is opened. This option improves editing performance and is particularly useful for editing very large,
single-line XML files.

• Use undo - When set to On, modifications to buffers may be undone (Ctrl+Z or Edit → Undo).

• Max undo steps - Specifies the maximum number of steps that are stored for undo operations when
Use undo is enabled. Cursor motion can be undone but is not counted as a step. If you are using the
edit command to open files, use the switch +U to specify this option (see Command Line Switches).
For example, +U:32000 turns on undo and specifies a 32,000-step max.

• Prompt to undo past last save - When set to On, when you undo all the changes up to the last save,
you will be prompted whether you want to continue undoing changes.

• Save/restore file position - When set to On, the cursor position in files is preserved on close and
restored on open.

• Max files - Specifies the maximum number of recently closed cursor positions to save when Save/
restore file position is enabled.

• Line endings for new files - Specifies the line endings used when a new file is created.

• Encoding - Unicode support required. Specifies the global (non-extension specific) file encoding. This

File Options

1039

setting is overridden if a extension-specific encoding is defined on the File Extension Manager for the
selected language (see Managing File Extensions). Both the extension-specific and global setting are
overridden if you specify an encoding in the Open dialog. SlickEdit records the encoding used to
override default encoding settings and reuses this setting the next time you open the same file. This
provides you with per-file encoding support. Encoding is also supported for Microsoft project files
(vcproj, csproj, vbproj) that are XML files but that default to active code page encoding and not
UTF-8, like XML. See Encoding for more information.

• Load entire file - The following options are available:

• Load entire file - When set to On, the entire contents of opened files are read into memory,
however, the line indicator (located at the bottom right section of the editor) might become blank if the
file does not fit in the editor's cache (defaults to 2 MB). When Off, Auto Reload does not work until
the file is saved. If you are using the edit command to open files, use the switch +L to specify this
option (see Command Line Switches).

• Load partially for large files - When set to On, the editor only partially loads files larger than the
size specified in Load partially when files are larger than, in order to conserve memory. Since the
file handle remains open to your file, Auto Reload does not work until the file is saved. The line
indicator might be blank unless the Fast line count on partial load option is enabled.

• Load partially when files are larger than - Specifies the size limit for files to be opened completely
in the editor. If the size of the file being loaded is greater than this value, only a portion of the file is
read into memory.

• Count number of lines - When set to On, the entire contents of opened files are read into memory
and the number of lines in the file are counted. The line number is always displayed in the line
indicator area of the editor. The Load entire file setting will have the same affect as this setting when
the entire file fits within the cache of the editor (defaults to 2 MB) and does not have to be spilled. If
you are using the edit command to open files, use the switch +LC to specify this option (see
Command Line Switches).

• Truncate file at EOF - When set to On, the entire contents of the opened files are read into memory
and the number of lines are counted. In addition, DOS format files are truncated when an EOF (End
of File) character is found. The line number is always displayed in the line indicator area of the editor.
This option is useful for REXX .cmd files which can have p-code appended to them after the EOF
character. If you are using the edit command to open files, use the switch +LZ to specify this option
(see Command Line Switches).

• Auto reload - The following options are available:

• Auto reload - When set to On, SlickEdit detects when files being edited have been modified by other
applications and prompts to replace the files with the new copies on disk. If there are files with
unsaved changes, the user can select among them to compare them to the files on disk before
choosing to reload or merge changes. Open files that have been deleted from disk are also detected
and the user can select which to resave.

• Suppress prompt unless modified - When set to On, files that have been changed on disk are
automatically reloaded unless the file has been modified in SlickEdit.

File Options

1040

• Compare file contents before auto reload - When set to On, if auto reload detects that the current
file has been changed on disk, SlickEdit will also compare the contents of the file on disk with the
version in memory to determine if it really needs to be reloaded. This option is useful when you have
a file system which does not report modification dates correctly.

• Size limit for comparing contents (KB) - Specifies the size limit below which files are compared to
determine whether they need to be reloaded.

• Auto read only - When set to On, SlickEdit detects when other applications change the read-only
attribute of a file, and automatically changes the permissions of the file being edited to match.

• Fast auto read only - (Windows only) When set to On, this option speeds up the Auto read only
feature by only checking the attribute on disk (not opening every file). This option is controlled by the
configuration variable def_fast_auto_readonly (see Setting/Changing Configuration Variables).

• Reload on switch buffer - When set to On, SlickEdit detects if a file has been modified by another
application when you switch buffers to view the file in the active editor window. When Off, the default
check is still performed when you switch from another application.

• Auto reload current file only - When set to On, SlickEdit will check if the current open file has been
modified by another application when you switch buffers switch from another application. Otherwise,
all files are checked for reload. Enabling this option can improve performance when switching from
another application back to SlickEdit.

• Auto reload all files if current file changed - When set to On, if auto reload detects that the current
file has been changed on disk or deleted, SlickEdit will then check if any other open files have been
changed on disk or deleted.

• Auto reload timeout (ms) - Specifies the amount of time to wait for file information before skipping
auto reload.

• Show auto reload timeout notifications - When set to On, the user will be given a message when
auto reload is skipped for a file.

Save File Options

Save file options are shown below (Tools → Options → File Options → Save).

File Options

1041

The options are described as follows:

• Append EOF character - When set to On, an EOF (End of File) character is appended to the end of
DOS files when the buffer is saved. Has no effect on UNIX, Mac, or binary files. If you are using the
save command to save files, use the switch +Z to specify this option (see Command Line Switches).

• Remove EOF character - When set to On, the EOF (End of File) character is removed from the end of
DOS files when the buffer is saved. Has no effect on UNIX, Mac, or binary files. If you are using the
save command to save files, use the switch +ZR to specify this option (see Command Line Switches).

• Expand tabs to spaces - When set to Expand all tabs to spaces, SlickEdit all tabs in a file will be
expanded to spaces on save. When set to Do not expand tabs to spaces, tabs are always left
unexpanded. You can also set this value to Expand tabs to spaces only on modified lines to expand
tabs only on lines that have been modified or inserted..

• Strip trailing spaces - select one of the following values:

• Do not strip trailing spaces - Leaves all trailing spaces as they are in the file.

• Strip all trailing spaces - Trailing spaces at the end of lines are stripped when the buffer is saved. If
you are using the save command to save files, use the switch +S to specify this option (see
Command Line Switches).

• Strip trailing spaces only from modified lines - Strips trailing spaces at the end of modified or
inserted lines only are stripped when the buffer is saved. If you are using the save command to save
files, use the switch +SM to specify this option (see Command Line Switches).

• Save files on loss of focus - When set to On, all modified files are saved when you switch to another
application.

• Reset modified lines - When set to On, line modify flags are reset when the buffer is saved. If you are
using the save command to save files, use the switch +L to specify this option (see Command Line
Switches). For more information on viewing modified lines, see Modified Lines.

• Add file to project upon Save As - This option controls the default value of the Add to project option

File Options

1042

on the Save As dialog. If you are using the save command to save files, use the switch +P to specify
this option (see Command Line Switches).

• Save all prompts to name unnamed files - Determines whether the save_all command requires
unnamed files to be named before being saved. When off, a temp name is automatically created an
used. This option effects the "Save All" button in the List Modified Buffers dialog when it's displayed
before exiting the application or closing a workspace.

Backup File Options

Backup file options are shown below (Tools → Options → File Options → Backup). For more
information about backing up files, see File Backups.

The options are described as follows:

• Make backup files - select one of the following values:

• Backup history on save - (Not in Community edition)Creates a new version each time you save a
file. This produces a more fine grained version history than what is available in version control,
bridging the gap between checkins. Note that diskspace requirements are reduced by storing
differences and not whole files unless it takes too long to determine the differences.

• Backup file on save ([Backup location option]) - Creates a single backup the first time in an
editing session that you save a file. This is useful to preserve the state of a file prior to working on it.
See ([Backup location option]) below for information on backup location options.

• Off - No backups are created.

• ([Backup location option]) - When a Backup file on first save option is selected, you can specify
where backup files are stored. Select from the following:

File Options

1043

• (global directory) - This option places backup files in a single directory. The default backup directory
is your unversioned configuration directory (Windows: ...\My Documents\My SlickEdit
Config\backup, UNIX: $HOME/.slickedit/backup, Mac: $HOME/Library/Application
Support/SlickEdit/backup). The backup file gets the same name as the destination file. For
example, given the destination file c:\project\test.c (UNIX or Mac: /project/test.c), the
backup file will be $SLICKEDITCONFIG\backup\test.c (UNIX or Mac:
$SLICKEDITCONFIG/backup/test.c). If you are using the save command to save files, use the
switch +D to specify this option (see Command Line Switches).

• (global nested directories) - This option places backup files into a directory derived from
concatenating a backup directory with the path and name of the destination file. The default backup
directory is your unversioned configuration directory (Windows: ...\My Documents\My
SlickEdit Config\backup, UNIX: $HOME/.slickedit/backup, Mac:
$HOME/Library/Application Support/SlickEdit/backup). For example, given the
destination file c:\project\test.c, the backup file will be
$SLICKEDITCONFIG\backup\project\test.c (UNIX or Mac:
$SLICKEDITCONFIG/backup/project/test.c). If you are using the save command to save
files, use the switch -D to specify this option (see Command Line Switches).

• (same directory as *.BAK) - This option places backup files in the same directory as the destination
file but the extension is changed to .bak. If you are using the save command to save files, use the
switch +DB to specify this option (see Command Line Switches).

• (child backup directory) - This option places backup files in a directory off the same directory as the
destination file. For example, given the destination file c:\project\test.c (UNIX or Mac: /
project/test.c), the backup file will be c:\project\backup\test.c (UNIX or Mac: /
project/backup/test.c). If you are using the save command to save files, use the switch +DK
to specify this option (see Command Line Switches).

• Backup directory path - Specifies the path to the directory (including the drive, if you wish) in which to
place backup files when Make backup files is enabled and one of the "Global" Backup directory
options is selected. Sets the VSLICKBACKUP environment variable. Press Delete to clear this field,
specifying the default.

• Number of backups to keep for each file - Specifies the number of backups to store for each file.

• Limit size of backup - When set to On, SlickEdit® limits backups to the size specified in the option
Maximum size to backup.

• Maximum size to backup - Specifies the maximum size, in kilobytes, for files in order to be backed up
when Limit size of backup is enabled.

• Maximum size of in-line deltas in archive files (KB) - Approximate maximum size of an in-lined
delta. Once the delta is larger than this amount, it is written to an external file.

• Minimum size for fast delta creation (KB) - Minimum size of file to use faster delta creation algorithm.
Improves speed of creating backup deltas when saving a file.

• Use timeout - When set to On, SlickEdit® stops comparing after the timeout and stores a backup of
the entire file.

File Options

1044

• Timeout (s) - Specifies the maximum time, in seconds, to wait for a compare operation before storing
entire version of file.

• Exclusions - Specifies a list of semicolon delimited ant-like filespecs that should not be backed up
using backup history. For example path1/;*.bak will exclude files under a directory named path1 and
files with extension .bak. For more examples, see Exclusion Examples.

AutoSave File Options

AutoSave file options are shown below (Tools → Options → File Options → AutoSave). For more
information, see Saving Files.

The options are described as follows:

• AutoSave activated - When set to On, AutoSave is enabled, which prevents you from losing data
when an abnormal editor exit occurs (possibly from a power loss). AutoSave creates temporary files in
the specified AutoSave directory. Temporary files are only created for modified files and are replaced or
deleted when AutoSave runs subsequently. AutoSave files are deleted when they are no longer
needed. When AutoSave occurs, the Auto Restore file (vrestore.slk) is written in such a way that
SlickEdit will know it is auto-restoring from an AutoSave state and knows the temp names/file names.

• Save after period of inactivity - Specifies the amount of idle time, in seconds, after which modified
files are saved. Set this value to 0 if you do not want this option ignored.

• Exit SlickEdit on AutoSave - When set to On, the SlickEdit® application closes after an AutoSave, if
AutoSave is enabled.

• Save after period of time - Specifies the amount of time, in seconds, after which modified files should
be saved. Set this value to 0 if you want this option ignored.

• Save to - Specifies save options for AutoSave temporary files. Select from:

• Save to different directory - This option places all AutoSave files in the directory specified by the
AutoSave directory. Use this option to clean up or find all of the AutoSave files if an abnormal editor
exit occurs.

File Options

1045

• Same name, different extension - Named files are auto-saved in the same directory as the file that
is being auto-saved, but with a different extension. The third character of the extension is replaced
with a ~ (tilde) character. The length of the extension is padded with underscores if the length of the
extension is less than three characters. For example, the AutoSave file for test.c is test.c_~.
The AutoSave file for test.prg is test.pr~. If you are editing two files in the same directory which
differ only by the third character, one AutoSave temporary file will be overwritten by the other.
Unnamed files are auto-saved in the directory specified by the AutoSave directory field.

• Same name - Modified named files are saved back to the original filename (like a normal save).
Unnamed files are auto-saved in the directory specified by the AutoSave directory.

• AutoSave directory - Specifies the directory to use for AutoSave temporary files. If this field is blank,
<configuration_directory>\autosave is used. To find the location of your configuration directory, see
Help → About SlickEdit. Press Delete to clear this field, specifying the default. Temporary files for
unnamed files are saved to this location.

• Largest file to AutoSave - Specifies the maximum size, in kilobytes, a file is allowed to have in order
to be automatically saved. To have all files auto-saved, set this value to 0.

Files of Type Filter Options

The Files of Type Filter options are shown below (Tools → Options → File Options → Files of Type
Filters). They are used to specify the list file filters for the Open, Save Copy As, and Save As dialogs.
Each filter defines a set of related file types that are used together.

File Options

1046

The order of the filters specifies the order they will appear in the Open, Save Copy As, and Save As
dialogs. The first file filter is used to initialize the file list. Use the Up and Down arrow buttons to change
the order. Click the Delete button to delete a selected filter from the list.

To add a new filter, click the Add button and enter the new filter name. Then set the value using the Filter
value box on the options screen. Separate each filter with a comma. Place file patterns in parentheses
and separate them with a semicolon. Some example filters are:

• Basic Files (*.bas), All Files (*.*)

• C/C++ Files (*.cpp;*.cxx;*.c;*.h), All Files (*.*)

Associate File Types Options

File Options

1047

Use these options (Tools → Options → File Options → Associate File Types) to set up file
associations. Files that are associated run in SlickEdit® when you open them from Windows Explorer.
The options, shown below, can also be displayed with the assocft command. See Setting File
Associations for more information.

Note

This feature is available for Windows platforms only.

History Options

These options (Tools → Options → File Options → History) let you view a list of recently opened files,

File Options

1048

projects, and windows, in addition to allowing you to modify options pertaining to how the history is
displayed.

You can see the history of items recently opened from the File or Project menu. These are listed in the
History type box. When you select a menu, the Items box updates to show the latest files that were
opened from that menu. Click Delete to remove selected items from the history list.

You can also specify how many items should appear in each history by changing the value of the History
size This value will control the maximum number of items that will appear in the history selected in the
History type list.

You can also control the number of recently used items appearing on the New File and New Project
dialogs, as well as options for how the file history should be displayed and how project history should be
tracked. These options are as follows:

File Options

1049

• Number of recent language modes to store on File > New - Specifies the number of recently used
language editing modes to display at the top of the Document Mode list.

• Number of recent project types to store on Project > New - Specifies the number of recently used
project types to display at the top of the Project type list.

• Track active project in workspace along with workspace history - When set to On, track the
current active project history along with the workspace history on the Project menu. This is useful for
workspaces that contain multiple projects to make it easy to switch between the projects used most
frequently.

• Track active project in workspace along with workspace history - When set to On, sort all the
workspace and project names under the All Workspaces menu. When set to Off, display the menu it
the order it was arranged using Organize All Workspace dialog. The Move Up and Move Down
buttons on the Organize All Workspaces dialog are only enabled if this option is Off. See Organize All
Workspaces for more information.

• Show file name twice - When set to On, file history is displayed on menus with the filename and the
full path to the file, redundantly including the file name in the path, rather than just showing the path
part to save space. This setting applies to the history items on the File, Project, and Window menus.

Path length - When file history is displayed on menus, to conserve space if possible, the file path is
abbreviated in length to this number of characters.

Application Options
Application options (Tools → Options → Application Options) pertain to the SlickEdit® application. You
can specify what parts of SlickEdit should be restored on startup, the amount of virtual memory to use,
and more.

Application option categories are:

• General Application Options

• Auto Restore Options

• Virtual Memory Options

• Exit Options

• Notification Options

• Product Improvement Program Options

Directory Project Options

Directory Project Options are shown below. They let you specify how SlickEdit behaves when invoked
with a directory as an argument and when a directory is drag/dropped onto SlickEdit

• Activate Open tool window - One of the following settings:

Application Options

1050

• Don't activate tool window- No tool window is activated when SlickEdit is invoked with a directory
or a directory is drag/dropped.

• Open tool window- Activate the Open tool window when SlickEdit is invoked with a directory or a
directory is drag/dropped.

• Projects tool window- Activate the Projects tool window when SlickEdit is invoked with a directory
or a directory is drag/dropped.

• Include filespecs - Sets the default Add Tree Include filespecs (see Add Tree). Used when SlickEdit
is invoked with a directory or a directory is drag/dropped.

• Exclude filespecs - Sets the default Add Tree Exclude filespecs (see Add Tree). Used when
SlickEdit is invoked with a directory or a directory is drag/dropped.

• Recursive - Sets the default Add Tree option (see Add Tree) to Recursive. Used when SlickEdit is
invoked with a directory or a directory is drag/dropped.

• Create subfolders - Sets the default Add Tree option (see Add Tree) to Create subdfolders. Used
when SlickEdit is invoked with a directory or a directory is drag/dropped.

• Add as wildcard - Sets the default Add Tree option (see Add Tree) to Add as wildcard. Used when
SlickEdit is invoked with a directory or a directory is drag/dropped.

• Create parent directory folder - Sets the default Add Tree (see Add Tree) option to Create parent
directory folder. Used when SlickEdit is invoked with a directory or a directory is drag/dropped.

• Don't prompt - By default, the Project New dialog or Add Tree dialog is displayed when SlickEdit is
invoked with a directory or a directory is drag/dropped. Check this option is you want to use your default
Add Tree settings.

• Show new workspace dialog - When set to On, the new workspace dialog will be shown so that you
can immediately create a workspace for the directory SlickEdit was invoked with.

Auto Restore Options

Auto Restore options are shown below (Tools → Options → Application Options → Auto Restore).
They let you specify the elements of your SlickEdit® environment that are restored when you switch
workspaces or close and re-open SlickEdit. See Restoring Settings on Startup for more information about
these options.

Application Options

1051

The options are described as follows:

• Auto restore files - When set to On, files and editor windows that were open in your last edit session
are restored when you start SlickEdit.

• Auto restore clipboards - When set to On, clipboards are preserved and restored across editing
sessions.

• Auto restore working directory - When set to On, the working directory is preserved and restored
across editing sessions.

• Auto restore build window - When set to On, the concurrent process buffer is preserved and restored
across editing sessions.

• Auto restore workspace - When set to On, the open workspace is preserved and restored across
editing sessions. When set to Off, the editor opens with no workspace open.

• Auto restore workspace files - When set to On, files and windows that were open in the workspace
previously are restored when you switch between workspaces. See Workspaces and Projects for more
information.

• Auto restore line modify - When set to On, line modification flags are saved and restored when you
save and open files, respectively. Line modification flags for the last 200 files are saved. This option
works best when the language-specific Color Coding option Modified lines is enabled (Tools →
Options → Languages → [Language Category] → [Language] → View).

• Auto restore selective display - When set to On, Selective Display is saved and restored when
saving and opening files, respectively. Selective Display for the last 200 files is saved.

• Auto restore symbol browser tree - When set to On, the symbol browser tree in the Symbols Tool
Window is restored across edit sessions. The currently selected position is always restored regardless
of this setting.

• Auto restore projects tree - When set to On, the projects tree in the Projects Tool Window is restored
across edit sessions. This setting can impact startup performance for very large wildcard projects.

Application Options

1052

• Auto restore supported options per monitor configuration - When set to On, auto restore of
window and tool window/toolbar layouts is per monitor configuration. Dialog position and size options
support per monitor configuration. This can be very useful if you add/remove monitors from your
machine.

Virtual Memory Options

Virtual memory options are shown below (Tools → Options → Application Options → Virtual
Memory).

Note

You must restart SlickEdit® for these settings to take effect.

The options are described as follows:

• Spill file path - Specifies the directory for spill and temporary files. On Windows, this defaults to the
directory specified the TEMP environment variable. If it does not exist, the directory specified by the
TMP environment variable is used. On UNIX, this defaults to the directory specified by the TMP
environment variable. Press Delete to clear this field, specifying the default.

• Buffer cache size (MB) - Specifies the maximum amount of memory, in megabytes, used to store text
buffer data. A value that is less than zero specifies all available memory. The buffer cache size must be
approximately twice the size as the file on disk in order for the entire file to be cached in memory. For
example, if a file is 100 megabytes, the buffer cache size would need to be 200 megabytes for the
entire file to be cached in memory. There is only one buffer cache for all files being edited.

Caution

If the operating system starts the swapping process memory before the cache is full, performance
might be degraded. In practice, it's best to make sure the total memory used by SlickEdit® is no
more than about one third of available memory.

• Tag file cache size (MB) - (Pro only) Specifies the cache size, in megabytes, for tag files. Tagging

Application Options

1053

performance can be improved by adjusting this setting to better match the size of your tag files.
Generally, a tag file cache size that matches the total size of the tag files being used will provide the
best performance. For example, if the tag files for your source code and libraries adds up to 100 MB,
you should set your cache size to 100 MB. You may have to experiment to find the optimum value. Use
the recommendations below as a guide. Note that this is the same as the Tag file cache size option
under Tools → Options → Editing → Context Tagging. For more information about tagging, see
Building and Managing Tag Files.

• Tag file cache maximum (MB) - (Pro only) Specifies the maximum cache size, in megabytes, for tag
files. The tag file cache size can be dynamically adjusted as high as this amount depending on the
amount of available memory on your machine at the time SlickEdit is started.

Note that this is the same as the Tag file cache maximum option under Tools → Options → Editing
→ Context Tagging. For more information about tagging, see Building and Managing Tag Files.

• Maximum number of memory allocators - Specifies the maximum number of memory allocators.
Making this value smaller will reduce SlickEdit's memory usage but will also reduce threading
performance due to increased contention when allocating memory. This primarily effects background
tagging performance. It's easier to test for memory leaks when this option is set to 2.

Tagging Performance Recommended Setting

Minimum 8 MB

Default 64 MB

Ideal Sum of tag file sizes

Maximum 25% of physical system memory

Exit Options

Exit options are shown below (Tools → Options → Application Options → Exit). For more information
about exiting the editor, see also Exiting the Program.

The options are described as follows:

• Save configuration - Specifies whether or not configuration changes are made immediately, or upon
exit, and whether or not a confirmation prompt is displayed. If set to Save configuration immediately,

Application Options

1054

configuration changes will be saved immediately after changes are detected.

• Exit confirmation prompt - When set to On, SlickEdit always displays a confirmation prompt prior to
exiting the application.

Notification Options

The Notifications system informs you when SlickEdit performs automatic actions. These actions are
divided into three groups: background processes, feature notifications, and informational messages.
Background processes include features like background tagging, which run while you work. Feature
notifications provide information about features which may insert more text in the buffer than you have
typed or format your code differently than your settings. For more information see Feature Notifications.
Informational messages include warnings, product update notifications, and debugging status messages.

Application Options

1055

The Notifications options screen is shown above. From this form, you can set how you want to be notified
about different events.

All background processes use a status bar icon and popup to notify you that they are running. If you wish
to disable just the popup or even both the icon and the popup, you can do so using the checkboxes in the
Background Processes group.

Feature Notifications and information messages offer more options to determine how you wish to be
notified about what automatic events happen within the editor. You can turn all notifications to the same
value or set them individually by feature. If you want to be notified of all features by a message on the
status line, select Turn all notifications to and select Status line message. If you want to be notified
about Adaptive Formatting with a dialog but only want notifications about Syntax Expansion to appear in
the status line, select Set notification level by feature , choose the appropriate notification type from the
drop-down list and then set the level in the Notification level drop-down list. You can also set which
notifications appear in the Notifications tool window by checking the Log in Notification tool window
checkbox.

The Notifications options screen contains the following settings:

• Turn all notifications to - choose a notification level for all features. Note that choosing to have all
notifications display a dialog can create a lot of disruption.

• Set notification level by feature - allows you to set the notification level differently for each notification
type. Since some features are more surprising than others, you may wish to have a more intrusive
notification.

The following options are only available if you have selected Set notification level by feature.

• Notification type - select the notification type for which you want to set the notification level.

• Notification level - sets the kind of notification for the selected feature. You can choose from the
following:

• Dialog - displays a dialog notification. This requires you to click a button to continue. This is used for
the most surprising features.

• Status line icon with pop-up - activates the status line icon and pops up a message. This option is
not available when the status line icon or pop-ups have been disabled.

• Status line icon without pop-up - activates the status line icon, but does not pop up a message.
This option is not available when the status line icon has been disabled.

• Message line - a short text message identifying the feature is displayed on the SlickEdit message
line at the bottom of the application window.

• None - suppresses all notifications.

• Log in Notification tool window - By checking this, then all notifications of this type will be listed in the
Notifications tool window.

• There are two links at the bottom of this group that allow you to navigate to the options screen for the

Application Options

1056

selected feature or view help about the feature.

Product Improvement Program Options

You can opt in or out of the SlickEdit Product Improvement Program using the options found at (Tools →
Options → Application Options → Product Improvement Program). These options are shown below.

To participate in the program, check the Participate in the Product Improvement Program checkbox.
The options page contains information about the program, as well as a link to additional information found
on SlickEdit's website. For more information about the Product Improvement Program, see Product
Improvement Program.

Network & Internet Options
Network and Internet options (Tools → Options → Network & Internet Options) are used to configure
the IP setting, FTP connection profiles and options, proxy settings, and more.

Network and Internet option categories are:

• Network Settings

• FTP Default Options

• URL Mapping Options

• URI Scheme Options

• Proxy Settings

Network & Internet Options

1057

• Web Browser Setup Options

Network Settings

Network settings are shown below (Tools → Options → Network & Internet Options → Network
Settings). These options are used to set the Internet Protocol (IP) version.

The option is described as follows:

• Internet Protocol (IP) - The IP setting affects how addresses are chosen when connecting to a host.
Features that use this setting include FTP, SFTP, and Opening URLs. The options are mutually
exclusive: Select IPv6 and IPv4 (the default) to automatically select the address when connecting to a
host. Select IPv4 only to force IPv4 address connections or IPv6only to force IPv6 address
connections.

FTP Default Options

Default FTP options are shown below (Tools → Options → Network & Internet Options → FTP Default
Options). This Options screen is also displayed when you click File → FTP → Default Options or when
you click the Default Options button on the FTP Profile Manager. Options include the ability to set the
default local directory, specify preferences such as the default time-out and port information, enable
firewall/proxy support, and configure SSH information. See FTP for more information.

The options are categorized into the following tabs:

• FTP Default Options General Tab

• FTP Default Options Advanced Tab

• FTP Default Options Firewall/Proxy Tab

• FTP Default Options SSH/SFTP Tab

• FTP Default Options Debug Tab

FTP Default Options General Tab

Network & Internet Options

1058

The General tab contains the following:

• Anonymous e-mail address - Default password used for anonymous logins.

• Default local directory - Default used when adding a new connection profile. Specifies the initial local
directory after login. The local directory only applies to the FTP Client toolbar.

• Upload on save - Select from the following:

• Do not upload - When on, saving an FTP file will not upload the file.

• Prompt - When on, a prompt appears to upload when an FTP file is saved to specify ASCII or Binary
transfer type.

• Upload without prompting - When on, saving an FTP file will upload the file. The same transfer
type used to open the file is used to upload the file.

• Resolve links - Default for adding a new connection profile. Resolves symbolic links on remote host.

FTP Default Options Advanced Tab

Network & Internet Options

1059

The Advanced tab contains the following:

• Timeout (sec) - Default used when adding a new connection profile. Specifies the wait time for a reply
from the FTP server.

• Port - Default used when adding a new connection profile.

• Keep alive - Default used when adding a new connection profile. Keeps a connection alive even when
idle.

• Upload filename case - Default used when adding a new connection profile. Indicates what file case
should be used for the remote file name based on the local file name.

FTP Default Options Firewall/Proxy Tab

Network & Internet Options

1060

The Firewall/Proxy tab contains the following:

• Enable firewall/proxy - When on, indicates you have a firewall or proxy. You need to turn this on to
add a connection profile that uses a firewall.

• Host name - Host name of firewall.

• Port - Port number of firewall.

• User ID - User ID used when logging into firewall.

• Password - Password used when logging into firewall.

• Type - Select from the following:

• USER user@site - When this option is selected, host and port are required. User id and password
are ignored. USER @remote_host is sent to the firewall when connecting.

• OPEN site - When this option is selected, host and port are required. User ID and password are
ignored. OPEN remote_host is sent to the firewall when connecting.

• USER user@site after logon - When this option is selected, host, port, user id, and password are
required. USER remote_userid@remote_host is sent to the firewall after logon.

• Router - When this option is selected, host, port, user id, and password are ignored. Router based
firewalls are transparent with the exception that connections can only be established one way (out
through the firewall). Because incoming connections are not allowed, PASV is turned on

Network & Internet Options

1061

automatically.

• Passive transfers (PASV) - When this option is selected, transfers are initiated by SlickEdit®.

FTP Default Options SSH/SFTP Tab

The SSH/SFTP tab contains the following options:

• SSH executable - The location of the SSH client program that is used to establish the secure
connection with the SSH server.

SFTP support requires the OpenSSH client program to operate. Windows users can obtain the SSH
client by downloading and installing the Cygwin package (www.cygwin.com) and making sure to
choose the openssh package during install.

• Subsystem/Service name - The name of the SFTP service being run by the SSH server. Defaults to
sftp.

FTP Default Options Debug Tab

This tab is used by SlickEdit® Product Support to debug customer FTP/SFTP issues.

URL Mapping Options

URL Mapping options are shown below (Tools → Options → Network & Internet Options → URL

Network & Internet Options

1062

Mappings). These options let you map a URL path or file to a local or remote path or file, so you can
work offline or from a test location that contains DTDs referenced by your XML files. See URL Mapping
for information.

To add a new URL mapping, click the Add button (or click <add> in the From column) and type the URL
that will be mapped to a different location. Then in the corresponding field in the To column, type the
location to use for this URL. To delete the selected mapping, click Delete.

URI Scheme Options

URI Scheme options are shown below (Tools → Options → Network & Internet Options → URI
Schemes). These options let you specify URL types that SlickEdit should recognize as hyperlinks in the
editor. See Navigating to URLs for information.

Network & Internet Options

1063

To add a new URI scheme, click Add, and type the scheme you want to add. Do not include the "://". For
example, if you want to be able to click on e-mail addresses in the editor, you could add a mailto
scheme. After adding a scheme, newly recognized URLs are underlined in the edit window as soon as it
regains focus.

To delete the selected scheme, so that those URLs are not hyperlinked, click Delete.

Proxy Setting Options

Proxy options are shown below (Tools → Options → Network & Internet Options → Proxy Settings).
These options allow you to configure a proxy server to use when SlickEdit® needs to use an Internet
connection. Internet Explorer settings are used by default.

Network & Internet Options

1064

The following options are mutually exclusive:

• None - Specifies that no proxy server is used.

• Use Internet Explorer settings - If selected, Internet Explorer settings will be used, and the remaining
options and fields on the page are inapplicable and therefore dimmed.

• Use proxy server - If selected, the remaining options and fields are applicable and available.

• Servers - Indicates the proxy address and port to use.

• Exceptions - Indicates the Web site addresses that the proxy server should disregard. Separate
entries with semicolons (;).

Web Browser Setup Options

Network & Internet Options

1065

Web browser setup options are shown below (Tools → Options → Network & Internet Options → Web
Browser Setup). Use these options to specify the browser to use when SlickEdit® needs to launch one.
Selecting a preferred browser automatically sets the defaults for the other options on this form.

The following options are available:

• Browser - Select which Web browser you want to use. Selecting a preferred browser automatically
sets the defaults for the other items in the Web Browser Setup dialog box. Note the following:

• Windows platforms - Your Web browser is automatically detected.

• UNIX and macOS platforms - You need to specify which Web browser you are using. In addition, you
need to give the full path to the program executable.

• Command line - Indicates the program to run. You may specify a %F in this text box or any of the
other text boxes on this dialog box to have the HTML file name inserted into the command that is
executed.

• DDE - The Application, Topic, and Item text boxes specify DDE XTYP_REQUEST parameters and
are used only if the Use DDE option is selected.

Tool Options
Options for tools (Tools → Options → Tools) pertain to tools such as Spell Check, and utilities supported
by SlickEdit®, such as version control (CVS, Subversion, etc.).

Tools option categories are:

• Spell Check Options

Tool Options

1066

• Version Control Setup Options

• Configure Error Parsing

Spell Check Options

Spell Check options are shown below (Tools → Options → Tools → Spell Check). These settings
control the behavior of Spell Check in the editor (Tools → Spell Check). You can also access these
options from the main menu item Tools → Spell Check → Spell Options, or by using the spell_options
command.

The Spell Check Options screen contains the following:

• User list 1 or 2 - When a word is not found during a spell check and you add the word to User list 1 or
2, the word is added to the associated profile specified in these fields. User modified spelling profiles
are stored in user.cfg.xml. You may create as many spelling profiles as you want. All spelling
profiles are combined when SlickEdit is invoked.

• Ignore all UPPERCASE words - When set to On, all words in uppercase are ignored during a spell
check operation. This applies to all spell check operations.

• Ignore URLs - When set to On, all words in URLs are ignored. This applies to all spell check
operations.

• Detect repeated words - When set to On, words that are repeated twice in a row are detected during a
spell check operation. Spell checking while typing does not support this option.

Version Control (Pro only)

SlickEdit provides seamless integration with several version control systems. Version Control
configuration options are found at (Tools → Options → Tools → Version Control).

Version Control Setup Options (Pro only)

Version Control setup options are shown below (Tools → Options → Tools → Version Control →
Version Control Setup). Use these options to enable version control support and to specify configuration

Tool Options

1067

information and preferences. For more information, see Version Control.

This screen contains the following:

• Command line systems support - The following items are used to manage your command line
version control systems.

• Command line systems - This is a list of command line version control systems that have built-in
support. To select a version control system, first select this option and then select the system.

• Setup - To change the individual commands that will be run for the selected system, click on the
Setup button. You may need to fill in the VCS Project text box depending on your advanced version
control setup. This Setup button takes you to the section of the options dialog that configures the
version control system you have selected.

• Add - To add a new command line version control system, click the Add button and you will be
prompted to fill in a name for the new version control system. The newly-added version control
system will be selected in the list.

• Copy - To add a new command line version control system with the same settings as an existing
system, click the Copy button and you will be prompted to fill in a name for the new version control
system. The new version control system will be selected in the list.

• Delete - To remove the support of a command line version control system, select the system in the
list and then click this button. This action is only available for version control systems you previously
added, not systems with built-in SlickEdit support.

Tool Options

1068

• Rename - To rename a command line version control system, select the system and then click the
Rename button. You will be prompted for the new name. This action is only available for version
control systems you previously added, not systems with built-in SlickEdit support.

• SCC providers - This section is for SCC version control systems that are registered.

• Other

• Auto check-out on edit - When selected, a prompt appears to check out a file when you open a file
that does not exist or is read-only. This option is global and not local to the current project.

• Set files to read only on check in - When selected, after a file is checked in, the buffer in memory is
set to read-only mode if the file is read-only. This option is global and not local to the current project.

• Prompt for files - When selected, the Checkin or Checkout Files dialog is displayed when checking
a file in or out, respectively. This option is not available for CVS or Subversion. See Checkin/
Checkout Files Dialog for more information.

Version Control Providers

SlickEdit provides the capability for integration with several different Version Control Providers. Each
provider is customizable on an individual basis, since your settings for one provider may be different from
another.

Use the Version Control Providers section of the Options dialog (Tools → Options → Tools → Version
Control → Version Control Providers) to control the behavior of SlickEdit for specific version control
systems. Each provider has its own node, some of which expand to show multiple options pages. If you
add your own version control provider, it will also be added to the Options dialog under this node. Use
Version Control Setup Optionsto add or remove your own custom provider.

Most command line version control systems, including user-defined systems, use the options forms
shown below. However, CVS, Git, and Subversion have their own specific set of options. For more
information about these options, see CVS Options, Git Options, and Subversion Options

Version Control Commands Setup Dialog

You can define what commands are used to run specific version control actions. To configure these
commands, go to Tools → Options → Tools → Version Control → Version Control Providers, then
expand your provider of choice, then select Commands. These options are available for all command line
systems except CVS and Subversion. As an example, the ClearCase Commands dialog is shown below.

Tool Options

1069

The following items appear on this setup dialog:

• Version Control Command - This is a list of commands that can be run from the editor. To edit how a
command is performed, select the command in this list and edit the Command text box described
below.

• Command - This is the command that is run by the operating system when the corresponding version
control command is run. Click on the arrow to the right of the text box for a list of variables to be parsed
in.

Version Control Advanced Settings

You can access advanced setup options for each version control system that supports them. From the
Version Control Setup options (Tools → Options → Tools → Version Control), expand the Version
Control Providers node and select the version control system you wish to set up. Click the Advanced
options node to access the advanced options. The options are similar for each version control system.
For example, below is a screen capture of the ClearCase Advanced Setup dialog. For more information
about working with Version Control, see Version Control.

Tool Options

1070

The following options are available:

• Write comment to file - Write comment to a temp file, the name of which can be parsed into the
command line by putting in %c. If this option is not selected, and %c is in the command line, the
comment can only be one line, and %c will be replaced with the comment itself.

• UNIX comment file - Writes comment file with UNIX end-of-line characters. This option is for Windows
only.

• Run dosrc to get error code - Used to help get the return code, especially from 16-bit applications.
Has no adverse affect, so it is best to leave this on under Windows.

• Add *.??v to File Type list (PVCS) - Select this option for PVCS.

• Require VCS Project box to be filled in - Requires the VCS Project text box on the Version Control
Setup dialog to be filled in.

• Always show output - Show output from the version control system regardless of return code.

• CD to file's directory before running VCS command - Temporarily change the current directory to
the path of the file being operated on while running the VCS command. The directory is changed back
after the command is run.

• VCS Project - Specifies VCS Project behavior. Select one of the following:

• CD to this directory before running VCS command - Temporarily change the current directory to
the path specified in the VCS Project text box on the Version Control Setup dialog while running the
VCS command. The directory is changed back after the command is run.

• This directory contains the archive files (RCS) - For command line versions of RCS, specify the
directory that has the archive files for the VCS Project text box on the Version Control Setup dialog.

• Source Safe Tree Style - Use this style to map Source Safe projects to your actual disk hierarchy.

Tool Options

1071

In the VCS Project text box on the Version Control Setup dialog, enter the Source Safe project name
in square brackets followed by the root directory for files in the project. For example:

[$/vslick15] c:\vslick15

When using this style, the Source Project tree looks like the directory tree. If the name of the file you
check in or check out is c:\vslick15\clib\test.c, this file will placed in the project
$/vslick15/clib/test.c. Only files at or below c:\vslick15 directory may be checked in or
out.

• Source Safe One Dir - When using this style, all source files are checked into or out of the Source
Safe project directory specified in square brackets. Enter the project name in square brackets in the
VCS Project text box on the Version Control Setup dialog. For example:

[$/vslick15]

• Source Safe Locate File - When using this file, the VCS Project text box may be blank (even if the
vcp_required style is present). However, a Source Safe base project directory may be specified in
square brackets. When using this style, the Source Safe project is dynamically determined by using
Source Safe's locate command. If the file exists in the base project (VCS Project not blank), only
projects at or below this project are used. This mode of operation is slower than sstree and ssonedir
because it requires the locate command to execute for each file.

• None - Select this style if none of the others apply.

• Error Capture

• Error Capture - Specifies how error output from the version control system should be capture.
The choices are as follows:Error Capture - Specifies how error output from the version control
system should be capture. The choices are as follows:

• Capture errors from stdout and stderr - If the version control executable returns non-zero
(indicating an error), display output from both stdout and stderr. Most command line version control
systems will behave this way.

• Capture errors from stdout (TLIB only) - Capture errors from stdout only. Displays output from
version control system if the return code from the version control executable is non-zero.

• Retrieve errors from file (SS only) - This option is for the command line version of Source Safe.
It will open the error file and search for exit code. The error file name used is the default file name
for directing errors into, and can be specified in the command line as %t. It also displays output
from the version control system if the value after the colon is non-zero.

• Internal command lookup - Check to see if the command specified is a Slick-C® command,
otherwise run as an OS command.

• Simulate return code (Search output for "Error")(Delta) - Searches for Error or Warning. Displays
output from the version control system if either are found.

Tool Options

1072

Note

If you are using Source Safe for Windows, use the SCC interface.

Checkin/Checkout Files Dialog

When the option Prompt for files is checked in the Version Control Setup options, the Checkin Files or
Checkout Files dialog is displayed when checking files in or out, respectively. This allows you to see a list
of files in the current workspace or project, or a list of open files (buffers), and select the files to check in
or out.

Note

This dialog is not available for CVS and Subversion.

The Checkin Files and Checkout Files dialogs share a similar interface and contain the following
elements:

• Workspace - When this option is selected, all files in the workspace are added to the list.

• Project - When this option is selected, all files in the current project are added to the list.

Tool Options

1073

• Buffers - When this option is selected, all open files are added to the list.

• Available - When this option is selected, all files available for the check-in or check-out operation are
displayed in the list. For example, if you are performing a check-in, all files that have been checked out
will be added to the list. This option is only available for SCC systems.

• Save if modified - When this option is selected, any unsaved files are saved before check-in.

• Checkin or Checkout - Click these buttons to perform the check-in or check-out operation on the
selected files.

• Advanced - This button displays the options dialog specific to the version control system you are using.
This option is only available for SCC systems.

Configure Error Parsing (Pro only)

Options used to configure error parsing are shown below (Tools → Options → Tools → Configure Error
Parsing). They can also be accessed by clicking Build → Configure Error Parsing from the main menu,
or by using the configure_error_regex command. See Parsing Errors with Regular Expressions for
information about these features.

CTags Tagging Options (Standard only)

Tool Options

1074

CTags Tagging options are shown below (Tools → Options → Tools → CTags Tagging). These
settings control the CTags(1) executable used for building 'tags' files for SlickEdit.

The ctags program generates an index (or "tag") file for a variety of language objects found in a set of
file(s). This tag file allows these items to be quickly and easily located by a text editor or other utility. A
"tag" signifies a language object for which an index entry is available (or, alternatively, the index entry
created for that object).

The CTags Tagging Options screen contains the following:

• CTags executable - Specifies the path to the CTags executable that you wish to use.

• CTags options - Specifies the options to pass to CTags when building ctags-based tag files. Warning,
'-e' for etags mode (exuberant ctags), '-x' for generating a cross-reference, and any other option that
causes the output to deviate from standard ctags output are not supported.

See Building CTags Based Tag Files for information.

Refactoring Options (Pro only)

Refactoring options are shown below for Quick Refactoring. These settings control the behavior of the
Section_Refactoring_resultsReviewing_Refactoring_Changes dialog.

• Display modified file(s) on the left - When set to On, the refactored file will be displayed on the left
hand side of the Refactoring Results dialog.

• Advance to next file after last difference - When set to On, hitting Next Diff when on the last
difference in a file in the Refactoring Results dialog will automatically proceed to review the next file in
the list.

• Advance to previous file after first difference - When set to On, hitting Prev Diff when on the first
difference in a file in the Refactoring Results dialog will automatically proceed to review the previous
file in the list."/>

Options History
The Options History node in the Options dialog (Tools → Options → Options History) is used to see
changed options. From the drop-down, select Anytime to see all options that have been changed from
the default values since the editor was installed, or, choose to see only those options that were changed

Options History

1075

today, yesterday, or within the last week or month. Only the most recent date is shown for options that
have been changed more than once.

Note

Options History only shows changes that were made through the Options dialog. Changes made
by setting configuration variables, in macro code, or in other dialogs are not viewable in the
Options History.

The results are displayed in the Options dialog in the results window, as shown in the following screen.

The number of results returned is displayed at the top right of the results window. The results are divided
into columns showing the name of the option, the path to the option in the option tree, and the date it was
last changed. Click on the column header to sort by any column. Double-click on an option to display that
option panel in the dialog. For options changed on forms embedded in the Options dialog, the results
show only the name of the form. For example, if you made a change to a color under Tools → Options
→ Appearance → Colors on the Options dialog, the Options History results show "Colors" as the name
of the option and "Appearance" as the path.

Export/Import Options
To export options, select Tools → Options → Export/Import Options. You can export all your options at
once or you can export a designated group of them. To export all options click the Export All Options

Export/Import Options

1076

button. To export a particular set of options click the Setup Export Groups button. To import already
exported options, click Import Options. See below for details of each operation.

Note

Moving options to a machine with a different operating system is allowed, but not supported. The
same applies to exporting options from a one version of SlickEdit and then imported into another.
While these operations may work for some options, we cannot predict when this will cause a
problem.

Export All Options

To Export all of your options, click the Export All Options button. You will be asked to select a file where
you want to save your export package. Exports are saved in packages with the extension ".zip." Once you
have selected a file, click OK to begin the export. If there are any errors, you will be notified with a
message. Individual errors will also be listed in the Message List.

Export/Import Options

1077

Setup Export Groups

Export Groups allow you to export a specific set of options. Two default export groups have been created:
Team and Personal. The Team Export Group contains settings which might be shared across a
programming team, such as coding styles. The Personal Export Group contains settings which control
how the editor looks and behaves. You can change these groups or create new ones. To view or use an
export group, select the group from the combo box found at the top left corner of the Export Groups
Editor dialog.

Note

The Standard and Community editions do not have all of the export groups listed below.

Export/Import Options

1078

Add or remove options to include this group by checking or unchecking nodes in the hierarchy. To include
all of the items in subtree, put a check in the box next to a parent. If you select specific items in a subtree,
the parent node will be filled in with gray.

To create a new export group, click the New button next to the combo box containing the list of Export
Groups. You can either create a blank group or copy an existing group. Then you can drill down to the
property level to select which options to export. You can also select whole categories at a time if you
wish. Once you are finished modifying your Export Groups, click "Save" to save your changes. You can
also export the current group by clicking Export.

Importing Options

You can import options by clicking the Import Options button on Tools → Options → Export/Import
Options. Then navigate to the location of the export package file.

Note

The Standard and Community editions do not have all of the export groups listed below.

Once the export package is read, a tree of the options within the package is displayed. You can choose
which options to import. Once you have made your selections, click Import . The options will be imported

Export/Import Options

1079

and set. If there are any errors, you will be notified with a message. Individual errors will also be listed in
the Message List.

Restoring Default Options

You can restore options to the default settings by clicking the Restore Default Options button on Tools
→ Options → Export/Import Options.

Once the default export package is read, a tree of the options within the package is displayed. You can
choose which options to restore. Once you have made your selections, click Import. The options will be
restored and set. If there are any errors, you will be notified with a message. Individual errors will also be
listed in the Message List.

Note

The Standard and Community editions do not have all of the export groups listed below.

Additional Options

Export/Import Options

1080

Some settings are not configurable through the options dialog but are still available for export/import.
These options can be found under the Additional Options node in the Setup Export Groups dialog. They
are also included automatically if you export all options.

The options available for export/import under Additional Options are:

• Menu Customizations - Exports any changes made to menus by adding, removing, or modifying
individual menu items. For more information about customizing menus, see Menus.

• Toolbar Customizations - Exports customizations made to any of the Toolbars, including added or
removed buttons and changes to button behavior. For more information about customizing Toolbars,
see Toolbar Options.

• Toolbar and Tool Window Layout - Exports changes made to the layout of tool windows and toolbars.

• User-Created Forms - Exports any forms created by the user.

• User-Created Menus - Exports any menus created by the user.

• User-Created Toolbars - Exports any toolbars created by the user.

• User-Recorded Macros - Exports any macros recorded by the user such that these macros can be
shared with other users. To find out about recording macros, see Recorded Macros.

• Beautifier Settings - Code beautifiers are used to reformat existing code and rely on formatting
preferences set by the user. For more information about beautifiers, see Beautifying Code.

• Code Templates - You can export and import your code templates, which are used to automate the
creation of common code elements. For information about creating and using templates, see Code
Templates.

• Project Types - Project types allow you to create a template of a project by setting up directories, build
tools, compiler properties and more. You can then export and import these types. For more information,
see Creating Custom Project Types.

Configuration Backup

Whenever you import any options, certain configuration files are backed up so that you can restore your
application should the imported options cause any problems. To restore your configuration after an
options import, do the following:

1. Close the application.

2. Locate your configuration directory. For more information about your configuration directory and how to
find it, see Configuration Directory Location. Make sure you can find the backed-up configuration files.
They will be named vslick.sta.bak, and vusrobjs.e.bak (UNIX: vslick.sta.bak
vunxobjs.e.bak).

3. Remove the existing configuration files, named vslick.sta, and vusrobjs.e (UNIX: vslick.sta,
vunxobjs.e). Also remove the loaded macro files vusrobjs.ex (vunxobjs.ex).

Export/Import Options

1081

4. Rename the backed-up configuration files by removing the .bak extension.

5. Run the application. Your configuration should be back to where it was before the options import.

Window

1082

Window
This section describes items on the Window menu and associated dialogs and tool windows. For more
information about working with editor windows, see Files, Buffers, and Editor Windows.

Window Menu
The table below describes each item on the Window menu and its corresponding command.

Window Menu Item Description Command

Tile Tiles editor windows. tile_windows

Tile Horizontal Tiles editor windows horizontally
when there are three or less
windows.

tile_windows h

Arrange Icons Rearranges iconized windows. arrange_icons

Next Switches to next window. next_window

Previous Switches to previous window. prev_window

Close Closes the current window. close_window

Font Displays the Window Font dialog,
which allows you to set/view fonts
for the current editor window or all
windows. See Window Dialogs
and Tool Windows.

wfont

Split Horizontally Splits the current window
horizontally in half.

hsplit_window

Split Vertically Splits the current window
vertically in half.

vsplit_window

Zoom Toggle (Document Tabs) Zooms or unzooms the current
window. Document Tabs are
hidden when zoomed.

zoom_window

One Window Zooms the current window and
deletes all other windows.

one_window

Duplicate Creates another window linked to duplicate_window

Window Menu

1083

Window Menu Item Description Command

the current buffer.

Link Window Displays the Link Window dialog,
which allows you to select a buffer
to display in the current editor
window. See Link Window Dialog.

link_window

Window Dialogs and Tool Windows
This section describes the dialogs and tool windows that are associated with the Window menu items.

Window Font Dialog

The Window Font dialog is used to set the font and font style of editor windows. For more information
about setting fonts, see Fonts.

To access the Window Font dialog, click Window → Font, or use the wfont command.

Window Dialogs and Tool
Windows

1084

The following options and settings are available:

• Scope - Specifies the editor windows to affect.

• Current window - Affects the current editor window only.

• All windows and Default - Affects all open editor windows and all newly-created editor windows.

• Font - Displays a selection list of the fonts installed on your computer.

• Size - Displays a selection list of the sizes that are available for the selected font.

• Style - Displays a selection list of common font style options such as bold, italic, etc.

• Fixed Fonts Only - If selected, only fixed fonts that are installed on your computer are displayed in the
Font list box.

• Script - (Windows only) Displays a selection list of character language settings. Choose Default unless

Window Dialogs and Tool
Windows

1085

you are editing files that have characters not in the active code pages. Choose Western to use the
typical English characters.

• Sample - Displays a preview of the selected font and settings.

Link Window Dialog

The Link Window dialog is used to link files to editor windows, so that you can view more than one file in
one editor window. For more information about working with editor windows, see Files, Buffers, and Editor
Windows.

To access the Link Window dialog, click Window → Link Window, or use the link_window command.

The buttons are described as follows:

• Link to Window - Changes the file that is displayed in the current window to be the selected file/buffer
in the list box. Modifications made to the buffer that was previously displayed will not be lost.

• Open File - Opens a file and displays it in the current window. No additional window is created.

• Start Process - Starts a process buffer and displays it in the current window. If a process buffer has
already been started, it is linked to the current window.

Help

1086

Help
This section describes items on the Help menu and associated dialogs and tool windows. For more
information about how to use the Help system and how to obtain product support, see The Help System
and Product Support.

Help Menu
The table below describes each item on the Help menu and its corresponding command.

Help Menu Item Description Command

Contents Displays the Help system open to
the Table of Contents. See The
Help System.

help -contents

Index Displays the Help system open to
the Index, where you can search
for index items. See The Help
System.

help -index

Search Displays the Help system open to
the Search tab, where you can
search for any item. See The Help
System.

help -search

New Features Displays the Help system open to
the New Features and
Enhancements section. See New
Features and Enhancements.

help new features

Cool Features Displays the Cool Features
dialog, which shows SlickEdit®
feature tips. See Help Dialogs and
Tool Windows.

cool_features

Quick Start Displays the SlickEdit Quick Start
documentation. See Quick Start.

help Quick Start

Keys Help Displays the Help system open to
the emulation key binding
reference tables for the current
emulation. See Emulation Tables.

help key bindings

What Is Key Used to discover the command what_is

Help Menu

1087

Help Menu Item Description Command

associated with a key binding.
Opens the command line,
prompting with the text What is
key. See Determining the
Command of a Key Binding.

Where Is Command Used to discover the key binding
associated with a command.
Opens the command line,
prompting with the text Where is
command. See Determining the
Key Binding of a Command.

where_is

Macro Functions by Category Displays the Help system open to
this topic, which shows a
categorized list of macro
functions.

help macro functions by
category

Frequently Asked Questions Invokes a Web browser which
opens to the FAQs section of the
SlickEdit Web site, which contains
answers to common user
questions.

goto_faq

License Manager Displays the SlickEdit License
Manager for managing licenses.
See Licensing.

lmw 1

Product Updates Displays the Product Updates
menu, from which you can install
updates and hot fixes. See Help
Menu.

N/A

Register Product Displays the Register dialog, from
which you can begin the SlickEdit
on-line registration process.

online_registration

SlickEdit Support Web Site Invokes a Web browser and
opens the SlickEdit Support Web
page. See Product Support.

goto_slickedit

Contact Product Support Used to invoke a Web browser
and opens a form on the SlickEdit
Web site that you can use to
contact Product Support. See

do_webmail_support

Help Menu

1088

Help Menu Item Description Command

Product Support.

Check Maintenance Invokes a Web browser and
opens a SlickEdit Web page that
shows the status of your
Maintenance and Support
Agreement.

check_maintenance

SlickEdit Forum Invokes a Web browser and
opens the SlickEdit Forum Web
page.

check_maintenance

About SlickEdit Displays a property sheet
containing information about your
product, such as serial and
version numbers, as well as
release notes, copyright notices,
the license agreement, and
contact information.

version

Product Updates Menu

The table below describes each item on the Help → Product Updates menu and its corresponding
command.

Product Updates Menu Item Description Command

New Updates Checks for new updates to the
product.

upcheck_display

Options Displays the Update Manager
Options dialog, used to set the
frequency of automatic checking
of new updates. See Update
Manager Options Dialog.

upcheck_options

Load Hot Fix Displays an Open-style dialog, to
begin the process of installing a
hot fix. See Applying Hot Fixes.

load_hotfix

List Installed Fixes Displays a summary sheet of hot
fixes that are installed on your
computer. See Applying Hot
Fixes.

list_hotfixes

Help Menu

1089

Product Updates Menu Item Description Command

Help Dialogs and Tool Windows
This section describes the dialogs and tool windows that are associated with the Help menu items.

Cool Features Dialog

The Cool Features dialog appears automatically after the product installation has completed, and by
default, each time the editor is started. To access the dialog at any time, from the main menu, click Help
→ Cool Features, or use the cool_features command on the SlickEdit® command line.

Help Dialogs and Tool Windows

1090

The following options and buttons are available:

• Options for Feature - Displays the dialog from which you can make settings for the selected feature.

• Help on Feature - Displays the Help system open to the documentation for the selected feature.

• View Demonstration - Invokes a Web browser which navigates to a SlickEdit Web page containing an
audio/visual demonstration of the feature in action.

• Topics - Displays a table of contents from which you can select a Cool Feature to learn more about.
The previously viewed topic is remembered and displayed the next time the dialog is invoked.

• Prev - Scrolls to the previous Cool Feature.

• Next - Scrolls to the next Cool Feature.

• Show on startup - If selected, prevents the Cool Features dialog from appearing each time the editor
is started.

Update Manager Options Dialog

The Update Manager checks for new product updates. To set the frequency of automatic updates, use
the Update Manager Options dialog (Help → Product Updates → Options). Click Proxy Settings to
display the Proxy Setting Options.

Help Dialogs and Tool Windows

1091

1092

Appendix

This chapter contains reference information about encodings, emulations, and configuring SlickEdit.

1093

Tutorials
Tutorials in this section:

• Hello World Tutorial (C/C++)

• Hello World Tutorial (C#)

• Hello World Tutorial (Java)

• Vim Tutorial

• Creating and Distributing Custom Toolbars

Hello World Tutorial (C/C++) (Pro only)
This tutorial outlines the steps to create, build, and run a sample Hello World program using the auto-build
system for GNU C/C++ projects.

The sample C++ program prints the text hello world to the standard output on the Console view. Follow
these steps to create a Hello World program using the GNU C/C++ wizard.

Create the Project Using the GNU C/C++ Wizard

1. From the main menu, click Project → New.

2. On the Project tab, click to expand C/C++, then click GNU C/C++ Wizard.

3. Specify the Project name as HelloWorld. Change the location if you want.

4. Click OK on New project dialog.

5. Select the Project Type as Executable and the Source Type as C++.

6. Click Next.

7. For the Application Type, select A "Hello World" application.

8. Click Next.

9. Select Build without a makefile.

1
0.

Click Finish. A dialog is displayed, containing information about the new project. Click OK. The wizard
constructs a workspace by the name of HelloWorld.vpw, a project called HelloWorld.vpj, and a
program file called HelloWorld.cpp.

Build the Project

To build this project, from the main menu, select Build → Build.

Hello World Tutorial (C/C++) (Pro
only)

1094

Run the Program

To run the program, from the main menu, click Build → Execute. The application displays Hello World in
the output window.

Comments

When creating a new project in a new workspace, a new workspace does not have to be explicitly
created.

The workspace is created automatically when the project is created. The workspace will be given the
same name as the project.

For large projects, multiple projects most likely will be created and the workspace name should be distinct
from the project names for easier organization.

Hello World Tutorial (C#) (Pro only)
This tutorial describes how to build a simple C# console application with SlickEdit, no Visual Studio
required. It assumes you have the .NET Framework 2.0 and the C# compiler (Csc.exe) installed under
%WINDIR%\Microsoft.NET\Framework\v2.0.50727. The Windows SDK (v6.0 or later) or the full
.NET Framework SDK is required if you want to interact with the managed code debugger (mdbg.exe).

Creating the Starter Project

Project Setup

Use the following steps to set up the starter project:

1. From the main menu, click Project → New.

2. Select the (Other) project type.

3. In the Project name box, type SeHello.

4. Select the Create project directory from project name option.

5. Change the Location to the path where you want to store the project.

Hello World Tutorial (C#) (Pro
only)

1095

6. Click OK.

7. Close the Project Properties dialog that automatically appears.

Create and Add a File to the Project

Next, use the following steps to create and add a file to the project:

1. From the main menu, click File → New Item from Template.

2. In the Categories list, under Installed Templates, select CSharp.

3. In the Templates list, select C# Main Entry Point.

4. In the Name box, select the default or change the name based on your preference.

5. Select the Add to current project option.

Hello World Tutorial (C#) (Pro
only)

1096

6. Click Add.

7. Click OK on the Parameter Entry dialog.

8. The new file opens in the editor and also appears in the Source Files project folder. Use the Projects
tool window to see project folders and their contents.

9. Add the following code inside Main():

#if DEBUG
Console.WriteLine("Hello World - Debug");
#else
Console.WriteLine("Hello World - Release");
#endif

1
0.

Save and close the file.

Hello World Tutorial (C#) (Pro
only)

1097

Set Environment Variables

Use the steps below to set variables for the workspace. A SlickEdit workspace (.vpw) is equivalent to a
solution (.sln) in Visual Studio.

1. From the main menu, click Project → Workspace Properties.

2. Click the Environment button.

3. Click Set Environment Variable.

4. In the Name box, type DOTNETDIR.

5. In the Value box, specify your .NET framework that you want to use for the C# compiler, for example,
C:\Windows\Microsoft.NET\Framework\v2.0.50727. To use an existing environment variable
in the definition of the workspace environment, use the %(VARIABLE) syntax, not the VARIABLE%
syntax, for example, %(WINDIR)\Microsoft.NET\Framework\v2.0.50727. Be sure to select
environment variable names that do not already exist.

6. Optionally, create another variable named WINSDKDIR, and point it to the Windows SDK or .NET
Framework SDK, for example, C:\Program Files\Microsoft SDKs\Windows\v6.0. This
should be a directory where the mdbg.exe managed code debugger can be found.

Hello World Tutorial (C#) (Pro
only)

1098

7. Click OK.

8. Close and reopen the workspace to set the environment variables.

Setting Up the Release Build

Once you've set the environment variables, complete the following steps to configure the commands for
building a release version:

1. From the main menu, click Project → Properties.

2. In the Settings for box, select Release.

3. Click to display the Tools tab.

4. In the Tool name box, remove both Compile and Rebuild by selecting them and clicking the red X
button. The remaining tools are Build, Debug, and Execute.

Hello World Tutorial (C#) (Pro
only)

1099

5. In the Tool name box, select the Build tool.

6. In the Command line box, type the following, replacing SeHello.exe with your own executable
name:

%(DOTNETDIR)\csc.exe /warn:3 /target:exe /define:TRACE /debug-
/out:%bdSeHello.exe %{*.cs}

The %bd in the above command line is a variable that represents the build output directory, in this
case Release\. The %{*.cs} construct specifies all project files that end with the .cs extension.

7. Make sure the Run from dir box contains %rw, which specifies the build should run from the project's
working directory.

8. Make sure the Capture output and Output to build window options are selected, so the output is
captured and displayed in the Build tool window.

Hello World Tutorial (C#) (Pro
only)

1100

9. Back in the Tool name box, select the Execute tool.

1
0.

Change the command line to "SeHello.exe" (including quotes), replacing SeHello.exe with the name
of the executable specified in Step 6 above.

1
1.

In the Run from dir box, change the option to %bd (which represents the build output directory).

1
2.

Make sure the Capture output and Output to build window options are selected.

1
3.

Click OK to save your settings and close the Project Properties dialog.

Hello World Tutorial (C#) (Pro
only)

1101

You can now execute a build and see the output of the C# compiler by clicking Build → Build from the
main menu. Once successful, you can run the console program and display the "Hello World-Release"
results by clicking Project → Execute from the main menu.

Setting Up the Debug Build

To configure commands for a debug build, complete the following steps:

1. From the main menu, click Project → Project Properties.

2. Click the Configurations button.

3. Click New.

4. In the New config name box, type Debug.

5. In the Copy settings from box, make sure Release is selected.

6. Click OK to create the Debug config, and dismiss all of the dialogs.

7. On the Project Properties dialog, click to display the Tools tab.

8. In the Settings for box, select Debug.

9. In the Tool name box, select the Build tool.

1
0.

In the Command line box, type the following, replacing SeHello.exe with your own executable name:

%(DOTNETDIR)\csc.exe /warn:3 /target:exe /define:DEBUG;TRACE /debug+
/out:%bdSeHello.exe %{*.cs}

Adding the DEBUG define and changing /debug- to /debug+ are the only changes between the
Release and Debug configuration command lines.

1
1.

In the Tool name box, select the Execute tool.

1
2.

Set up the Execute tool the same as you did in Step 9 for the Release configuration (see Setting Up
the Release Build).

1
3.

Click OK to save your settings and close the Project Properties dialog.

1
4.

From the main menu, click Build → Set Active Configuration and select Debug.

You can now execute the build by clicking Build → Build from the main menu. Once successful, click
Build → Execute to see the "Hello World - Debug" output in the Build tool window.

Handling Complex Build Commands

A small console application like this one doesn't have any extensive dependencies, and most of the
default options for the C# compiler are fine. However, more complex projects will require many more
options to be passed on the command line. For these cases, it can be useful to create an options file for

Hello World Tutorial (C#) (Pro
only)

1102

all of the command line switches. To do this:

1. From the main menu, click File → New to create a new text file and add it to the project. For this
example, we are creating the command line options for the Debug build in a file called Debug.opts.

2. Insert the following into the new file. This should match your first few options on the Debug build
command line:

/warn:3 /target:exe /define:DEBUG;TRACE /debug+

3. From the main menu, click Project → Project Properties.

4. Click to display the Tools tab.

5. In the Settings for box, select the Debug configuration.

6. In the Tool name box, select the Build tool.

7. In the Command line box, type the following, where SeHello.exe is your own executable name:

%(DOTNETDIR)\csc.exe @Debug.opts /out:%bdSeHello.exe %{*.cs}

8. Close the Project Properties dialog.

9. From the main menu, click Build → Build to make sure the options file was correctly read.

Setting Up the Console Debugger

Optionally, to set up the console debugger, complete the following steps. This demonstrates how to hook
up an external tool, and how it can be used interactively inside the Build tool window.

1. From the main menu, click Project → Project Properties.

2. Click to display the Run/Debug tab.

3. Select the option to Use External Debugger.

4. In the Debugger: box, type the name of the debugger you wish to use.

%(WINSDKDIR)\Bin\mdbg.exe

5. In the Other options: box, type additional options to be passed to the debugger on the command line,
for example, if SeHello.exe is the name of your own executable:

SeHello.exe

6. Click to display the Tools tab.

7. In the Settings for box, select the Debug configuration.

Hello World Tutorial (C#) (Pro
only)

1103

8. Make sure Run from dir is set to %bd.

9. For command line debugging tools, make sure the Capture output and Output to build window
options are selected.

1
0.

Click OK to save your settings and close the Project Properties dialog.

1
1.

From the main menu, click Debug → Start to start the debugger.

1
2.

From the main menu, click Build → Show Build. The Build tool window now has focus with a blinking
cursor just after the first mdbg> prompt.

1
3.

In the Build window, type the following commands in order, pressing Enter after each one:

• print args - To show the value of the args variable.

• next - To do a step over.

• go - To continue execution.

• quit - To quit the debugger. The debugger must be stopped in order for SlickEdit to regain control of
the Build window.

The entire debug session output should look similar to the following:

C:\Dev\Lab\TestProjects\SeHello\Debug

> C:\WinSDK\Bin\mdbg.exe SeHello.exe

MDbg (Managed debugger) v2.0.50727.312 (rtmLHS.050727-3100) started.
Copyright (C) Microsoft Corporation. All rights reserved.
For information about commands type "help";
to exit program type "quit".
run SeHello.exe
STOP: Breakpoint Hit
16: static void Main(string[] args) {
[p#:0, t#:0] mdbg> print args
args=array [0]
[p#:0, t#:0] mdbg> next
19: Console.WriteLine("Hello World - Debug");
[p#:0, t#:0] mdbg> go
Hello World - Debug
STOP: Process Exited
mdbg> quit
C:\Dev\Lab\TestProjects\SeHello\Debug
>

Hello World Tutorial (Java) (Pro
only)

1104

Hello World Tutorial (Java) (Pro only)
This tutorial outlines the steps to create, build, and run a sample Hello World program for Java projects.
The sample Java program prints the text Hello World to the standard output.

Create the Project

1. From the main menu, click Project → New.

2. On the Project tab, click to expand Java, then select Java - Empty Project.

3. Type the Project name, HelloWorld. If you already completed the C/C++ tutorial you will need to enter
a different name, like HelloWorldJava.

This creates a workspace and project by the name HelloWorld at C:\HelloWorld.

Create the File

1. From the main menu, click Project → New.

2. Select the File tab.

3. Select Java from the list and enter a Filename, HelloWorld.java. Be sure to type the file extension.

4. Check the Add to Project check box or the file will be created but will not be able to be built.

By default the file is created in the directory created in the previous step.

Edit the File

Edit the file to enter a Hello World program, as shown in the following example:

public class HelloWorld {
public static void main (String args[]) {

System.out.println("hello world");
}

}

Build the Project

From the main menu, select Build.

Run the Program

From the main menu, click Run → Execute. The words Hello World are displayed in the window.

Vim Tutorial

1105

Vim Tutorial
SlickEdit® provides an emulation mode for the Vim text editor. If you want to learn Vim, you can use the
vimtutor command. Most Vim installations come with this command, which displays a special "learn-
by-doing" practice file in the editor that you can actually edit as you learn how to use the Vim commands.
This file has been customized for SlickEdit users.

To use the command, open the SlickEdit command line, then type the command and press Enter. The
practice file is displayed in the editor. Each time you use the vimtutor command, SlickEdit creates a fresh
copy of this file.

Tip

• You will be prompted to switch to the Vim emulation when you invoke the command if the editor
is set to a different emulation. See Changing Emulations for more information.

• When in the Vim emulation, you can open the SlickEdit command line with Ctrl+A, or in any
emulation, by clicking in the message area with the mouse. See Activating the Command Line
for more information.

Creating and Distributing Custom Toolbars (Pro only)
Use the following steps to write a macro which will load a custom toolbar that you can easily distribute to
other users:

1. Create a new form by clicking Macro → New Form.

2. Change the form's name by editing the name property. For this example, we will name the form
"mytoolbar1". You will need to remember the name of the form.

3. Save the new form by pressing Ctrl+S, or, right-click on the form and select Save Form.

4. Close the form and its properties.

5. Create a new toolbar. To do this, click Tools → Options → Appearance → Toolbars, and click New.
Enter a new toolbar name in the Tool Bar Name field. This is the caption that will be used on the title
bar of your toolbar when it is floating (i.e. not docked). For this example, we will use "My Toolbar 1".
Next, expand the dialog by clicking the Advanced button. In the Form Name box, enter the form name
that you just created in Step 1, then click OK. The new toolbar is displayed as floating.

6. Add buttons to the new toolbar by dragging and dropping them onto the new toolbar from the Toolbar
Customization options page (Tools → Options → Appearance → Toolbar Customization).

7. Activate the SlickEdit® command line (see Activating the Command Line) and run the save_config
command.

Creating and Distributing
Custom Toolbars (Pro only)

1106

8. Open the file vusrobjs.e (this file resides in your SlickEdit config directory, which can be found by
going to Help → About SlickEdit). An example of this file is located in the docs/samples installation
subdirectory.

9. Copy all of the code which is related to your new toolbar as well as the defmain() function at the
bottom of the file, and paste it into a new file with a .e extension. An example of this file is
newToolbar.e, located in the docs/samples installation subdirectory.

1
0.

Add the following include statements to the very top of the file:

#include "slick.sh"
#include "toolbar.sh"

Be sure that slick.sh is included first.

1
1.

At the end of the defmain() method, add the following line directly below the call to
_config_modify_flags (as seen in newToolbar.e):

_tbAddForm("mytoolbar1", TBFLAG_NEW_TOOLBAR,false,0,true);
// Where mytoolbar1 is the name of your new form and _not_ the

name of your toolbar.

This will actually add the toolbar to SlickEdit and update the SlickEdit state file.

1
2.

Save the file.

1
3.

This macro (remember that it ends in .e) will not compile like standard macros because of the
defmain() call. Therefore, activate the SlickEdit command line and enter the full path to the newly
created macro file (in this case, newToolbar.e). This will load the macro and the new toolbar.

In order to share this toolbar, distribute the new macro file that you created in Step 10, and have each
user run it on the SlickEdit command line as described in Step 14. The new toolbar can be displayed by
clicking View → Toolbars → My Toolbar 1.

Your final macro should look very similar to newToolbar.e. Of course you can add more than one
toolbar to the macro file using the same steps.

Encoding

1107

Encoding
To provide better support for editing Unicode and non-Unicode files, file data can be loaded natively as
either Utf-8 (Unicode mode) or SBCS/DBCS in the active code page. This means that no conversion is
necessary to open a file in one of these encodings. For example, the default text encoding for Ubuntu and
Mac is Utf-8. When you open a huge Utf-8 file on Ubuntu or Mac, the file will open in less than 1 second.
Unicode mode supports most of the features supported by SBCS/DBCS, but there are a few limitations.
For more information, see Unicode Limitations

Encodings are used to convert a file to either SBCS/DBCS for the active code page or Unicode (more
specifically UTF-8) data. By default, XML and Unicode files with signatures (UTF-8, UTF-16 and UTF-32)
files are automatically loaded as Unicode UTF-8 data, while other more common program source files like
.c, .java, and .cs source files are loaded using the platform specific default text encoding (Windows:
SBCS/DBCS, Mac: Utf-8 Unix: depends on LANG).

There are many encodings available, including:

• Automatic - Encoding is chosen based on file settings, file type (extension), and global settings.

• Text - Load default text encoding file as Unicode (default text encoding is Utf-8 on some platforms).

• Text, SBCS/DBCS mode - Load active code page file in SBCS/DBCS editing mode. Only active code
page characters are supported. Has the advantage of providing the best performance when a fixed font
is chosen.

• Binary - Load file in Utf-8 encoding. Disables all options which automatically translate data in the file
(expand tabs, change line ends, etc.).

• Binary, SBCS/DBCS mode - Load active code page file in SBCS/DBCS editing mode. Disables all
options which automatically translate data in the file (expand tabs, change line ends, etc.).

• Auto XML - This encoding specifies that the file encoding be determined based on XML standards and
that the file be loaded as Unicode data. The encoding is determined based on the encoding specified
by the ?xml tag. If the encoding is not specified by the ?xml, the file data is assumed to be UTF-8 data
which is consistent with XML standards. We applied some modifications to the standard XML encoding
determination to allow for some user error. If the file has a standard Unicode signature, the Unicode
signature is assumed to be correct and the encoding defined by the ?xml tag is ignored.

• Auto Unicode - When this encoding is chosen and the file has a standard Unicode signature, the file is
loaded as Unicode data. Otherwise, the file is loaded as SBCS/DBCS or Utf-8 depending on the OS
default text encoding.

• Auto Unicode2 - When this encoding is chosen and the file has a standard Unicode signature or looks
like a Unicode file, the file is loaded as Unicode data. Otherwise, the file is loaded as SBCS/DBCS or
Utf-8 depending on the OS default text encoding. This option is NOT fool-proof and may give incorrect
results.

• Auto Unicode Utf-8 - When this encoding is chosen and the file has a standard Unicode signature, the
file is loaded as Unicode data. Otherwise, the file is loaded as Utf-8.

Encoding

1108

• Auto Unicode2 Utf-8 - When this encoding is chosen and the file has a standard Unicode signature or
looks like a Unicode file, the file is loaded as Unicode data. Otherwise, the file is loaded as Utf-8. This
option is NOT fool-proof and may give incorrect results.

• Auto EBCDIC - When this encoding is chosen and the file looks like an EBCDIC file, the file is loaded
as Unicode data. Otherwise, the file is loaded as SBCS/DBCS or Utf-8 depending on the OS default
text encoding. This option is NOT fool-proof and may give incorrect results. The option does attempt to
support binary EBCDIC files.

• Auto EBCDIC and Unicode2 - This encoding is a combination of the Auto EBCDIC and Auto Unicode2
encodings described above.

• Auto HTML - This encoding specifies that the file encoding be determined based on the first HTML
charset specified. Otherwise, the file is loaded as SBCS/DBCS or Utf-8 depending on the OS default
text encoding.

• Auto HTML5 - This encoding specifies that the file encoding be determined based on the first HTML
charset specified. Otherwise, the file is loaded as Utf-8.

• EBCDIC, SBCS/DBCS mode - Load file in SBCS/DBCS editing mode. Only active code page
characters are supported. Has the advantage of providing the best performance when a fixed font is
chosen.

Using Unicode
To use encodings in SlickEdit®, Unicode support is required (OEMs typically turn this feature off).
Unicode is supported for the following list of features:

• All Context Tagging® features.

• Color Coding.

• Level 1 regular expressions as defined by the Unicode consortium.

• Multi-file search and replace.

• Support for many encodings including UTF-8, UTF-16, UTF-32, and many code pages. Automatic
encoding recognition for XML files. Configure encoding recognition per extension or globally. Optionally
store signatures and specify little endian or big endian. Use the Save As or Write Selection dialog to
convert data to a particular file encoding.

• Support for converting Unicode to UNC data and visa versa. Supported UCN formats include \xHHHH,
\x{HHHH}, \uHHHH, &xHHHH;, and &xDDDD;. This is useful for specifying Unicode character strings
in SBCS/DBCS active code page source files. See Converting Unicode to UCN.

• Multiple clipboards.

• Sorting.

• 3-Way Merge.

Using Unicode

1109

• Support for composite and surrogate characters.

• Support for storing up to 31-bit Unicode characters.

• SmartPaste®.

• Syntax Expansion and Syntax Indenting.

• Code beautifiers.

• Support for almost all of SlickEdit's SBCS/DBCS active code page features.

Unicode File Recognition

By default, XML and Unicode files with signatures (UTF-8, UTF-16 and UTF-32) files are automatically
loaded as Unicode. If you have Unicode files that are not XML and do not have signatures, configure
default options to get the best recognition possible. This is important because some features such as
drag/drop files and DIFFzilla® do not prompt you for the file encoding.

Each extension may have its own encoding specification. If the extension-specific encoding is set to
Automatic, then the global setting defined at Tools → Options → Languages → File Extension
Manager is used. Both the extension-specific and global setting are overridden if you previously specified
an encoding in the Open dialog. The encoding used to override default encoding settings is recorded. The
setting is then reused the next time you open the same file. This provides you with per-file encoding
support.

If you have non-XML UTF-16 files that have signatures, then try selecting Auto Unicode2 as an
extension-specific or global encoding. Since there is no option for recognizing UTF-8 or UTF-32 files
(other than Auto XML) by looking at the file contents, you will either need to set an extension-specific
encoding, or specify the encoding in the Open dialog the first time you open the file.

Some compilers (such as Visual C++) let you specify the code page in the source file (in fact, more than
one code page can be used in the file). This is not supported, so the assumption is that the file is SBCS/
DBCS active code page data.

Opening Unicode Files

To open a Unicode file, complete the following steps:

1. Use the Open dialog (File → Open).

2. Specify the encoding if necessary.

3. Press Enter.

Surrogate Support

Unicode data is stored as UTF-8 and not UTF-16. Since the Windows Win32 calls are used to implement
some Unicode features there are some issues. By default, Windows does not support surrogates. You
must use the regedit program to turn on surrogate support.

Using Unicode

1110

To turn on surrogate support, run the regedit program and go to the following key location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\LanguagePack

Set the value for SURROGATE to 0x00000002.

Casing features (uppercase, lowercase, ignore case) do not support surrogates. Windows is used for
casing support and Windows casing features do not support surrogates.

Converting Unicode to UCN

You can convert a selection from Unicode to UCN or vice-versa. SlickEdit® conversion features are
located on the Edit → Other menu. The Edit → Other → Unicode to UCN conversion feature is most
useful for specifying Unicode character strings in SBCS/DBCS active code page source files. For
example, here are the steps to store some UCN in a Java source file:

1. Open the Unicode file containing the Unicode characters or create a new Unicode file and enter the
characters you want to convert.

2. Select the Unicode characters you want to convert.

3. Execute the Edit → Other → Copy Unicode As → Java/C# (UTF-16 \uHHHH) menu item.

4. Open the Java source file and paste (Edit → Paste) the UCN data into the file.

Unicode Limitations

The following is a list of Unicode limitations:

• Proportional font tab character expansion is not yet fully supported. Since Unicode support requires the
use of proportional fonts, tab expansion is not fully supported.

• The Unicode line end character 0x2048 is not supported.

• Casing features (uppercase, lowercase, ignore case) do not support surrogates. On Windows, the
WIN32 calls are relied upon for casing support, and Windows casing features do not support
surrogates. See Surrogate Support.

• Version control supports files containing Unicode data but does not support file names that contain
characters not in the active code page.

• Truncation line length and bounds columns are not supported.

• Record width on the File Open dialog is not supported.

• DDE is not supported. Unicode DDE does not work with Internet Explorer or Netscape®. You can view
files with Unicode data in Internet Explorer; however, this feature will fail if the file name contains
characters not in the active code page.

Unicode Implementation

Using Unicode

1111

Native Unicode and SBCS/DBCS editing modes are supported. When you edit a SBCS/DBCS (active
code page) file such as a .c, .h, or .java file, the data is loaded as SBCS/DBCS data and is not
converted to Unicode. When you edit a Unicode file, such as an XML file, the data is converted to UTF-8
that is one of the standard formats for supporting Unicode files. There are several advantages to this
implementation:

• Since almost all source files for programming are stored as SBCS/DBCS or UTF-8, loading these files
is significantly faster. This is very important to our customers who expect superior performance from
SlickEdit®.

• Unicode editing mode requires using proportional fonts. Not all features can work exactly like you were
used to when editing SBCS/DBCS files (see Unicode Limitations).

• Macros can be written once to support both editing modes. This was very important to us because we
wanted to reduce development time.

• Since Unicode is stored as UTF-8, only one set of binaries is required. Most products that support
SBCS/DBCS and Unicode (UTF-16), use preprocessing. This requires two sets of binaries.

Environment Variables

1112

Environment Variables
Below is a list of environment variables that can be used within SlickEdit®. Configuration environment
variables are set in the operating system or in user.cfg.xml file. For more information see Setting
Environment Variables in user.cfg.xml

You can also use the set command from the SlickEdit command line to temporarily change one of the
configuration environment variables or any other environment variable. See Using the set Command for
more information.

Caution

Do not set the SLICKEDITCONFIG environment variable in user.cfg.xml.
SLICKEDITCONFIG determines where the editor looks for user.cfg.xml. When the editor
starts up, it sets the value of environment variables specified in user.cfg.xml. For more
information, see Setting Environment Variables in user.cfg.xml.

Environment Variable Description

VSLICKRESTORE Directory to store Auto Restore files.

SLICKEDITCONFIG Directory where user's local configuration files are
stored. Used in multi-user environments. Defaults
to:

• (Windows) .../My Documents/My
SlickEdit Config/[version]/

• (Mac) $HOME/Library/Application
Support/SlickEdit/Editor_Version/

• (Linux, UNIX)
$HOME/.slickedit/[version]/

Note that VSLICKCONFIG and
VSLICKCLASSICCONFIG are no longer
supported. VSLICKCONFIG has been replaced
with a new variable, SLICKEDITCONFIG.

VSLICK Specifies additional command line arguments to
editor as if you were typing them in when invoking
the editor. See also Invocation Options.

VSLICKPATH One or more directories separated with a semicolon

Environment Variables

1113

Environment Variable Description

(;) (or a colon [:] on UNIX) where batch macros or
executable files are searched.

VSLICKMACROS One or more directories separated with a semicolon
(;) (or a colon [:] on UNIX) that contain macro files
(*.e). VSLICKPATH must also contain the
directories listed here.

VSLICKBIN One or more directories separated with a semicolon
(;) (or a colon [:] on UNIX) that contain binary files.
VSLICKPATH must also contain the directories
listed here.

VSLICKBITMAPS One or more directories separated with a semicolon
(;) (or a colon [:] on UNIX) that contain bitmap files
(*.bmp). VSLICKPATH must also contain the
directories listed here.

VSLICKMISC One or more directories separated with a semicolon
(;) (or a colon [:] on UNIX) that contain
miscellaneous files including *.api, *.idx,
vslick.sta, main.dct, *.pif, *.ini, and
*.lst. VSLICKPATH must also contain the
directories listed here.

VSLICKALIAS One or more file names separated with a semicolon
(;) (or a colon [:] on UNIX) that contain alias
definitions.

VSLICKTAGS Specifies global tag files. One or more file names
separated with a semicolon (;) (or a colon [:] on
UNIX) that contain tags. Do not put this
environment variable in user.cfg.xml.

VSLICKBACKUP Directory to place backup files. Affects +D (default)
and -D backup configurations only.

VSLICKSAVE Allows save options to be specified per drive.

VSLICKLOAD Allows load options to be specified per drive.

VSLICKXTERM (UNIX only) Allows you to specify the default xterm
program and arguments used by the dos command
and shell function. The complete path to the xterm

Environment Variables

1114

Environment Variable Description

program must be specified. You may not specify the
-e option in the command string. For example,
setting VSLICKXTERM to:

/usr/X11/bin/xterm -geometry 80x40

will create xterm windows with a width of 80
characters and a height of 40 characters.

VSUSER The License Manager handles system crashes
better if each user sets the VSUSER environment
variable to a unique name.

VST Specifies additional command line arguments to the
macro compiler as if you typed them in when
invoking the compiler.

VSLICKXNOPLUSNEWMSG Suppresses a message when starting a second
instance of SlickEdit.

Setting Environment Variables in user.cfg.xml
Along with whatever facilities are provided by your operating system to set environment variables, you
can set configuration environment variables in the file user.cfg.xml. This file is located in the following
default directory based on your platform (if it does not exist, it can be created manually):

• Windows: .../My Documents/My SlickEdit Config/[version]/

• Mac: $HOME/Library/Application Support/SlickEdit/Editor_Version/

• Linux and UNIX: $HOME/.slickedit/[version]/

Below is text from a sample user.cfg.xml file with an environment profile.

<options>
<misc.environment n="misc.environment" version="1" >

<-- Use semicolons for separating directories on Windows -->
<p n="VSLICKPATH"

v="%VSLICKBIN%;%VSLICKMACROS%;%VSLICKBITMAPS%;%SLICKEDITCONFIGVERSION%;%SLICKEDITCONFIG%"
configs="win"/>

<-- Use colons for separating directoris on Mac and Unix
platforms. -->

<p n="VSLICKPATH"
v="%VSLICKBIN%:%VSLICKMACROS%:%VSLICKBITMAPS%:%SLICKEDITCONFIGVERSION%:%SLICKEDITCONFIG%"

Setting Environment Variables
in user.cfg.xml

1115

configs="unix mac"/>
<p n="VSLICKMACROS" v="%VSLICKMACROS%;%SLICKEDITCONFIG%"

configs="win"/>
<p n="VSLICKMACROS" v="%VSLICKMACROS%:%SLICKEDITCONFIG%"

configs="unix mac"/>
<p n="VSLICKINCLUDE" v="%SLICKEDITCONFIG%"/>
<p n="MYPROJECTVERSION" v="c:\myprog4.2"/>

</misc.environment>
</options>

When the editor starts, the following environment variables are created by the editor:

• VSDRIVE - Drive letter followed by a colon (:) where editor executable resides.

• VSDIR - Directory of editor executable with a trailing backslash (UNIX: slash).

Environment variables can be embedded in any line within a section by placing % characters around the
environment variable.

Using the set Command
Change or view the environment while running using the set command on the SlickEdit command line.
The operation of the built-in set command is almost identical to the DOS SET command. Use the set
command to temporarily change one of the configuration environment variables or any other environment
variable. For a complete listing of configuration environment variables, see Environment Variables. The
syntax of the set command is:

set [envvar_name [=value]]

When you invoke the set command with no parameters, a new buffer is created and the current
environment variable settings are inserted. The current value of an individual environment variable may
be retrieved by executing the set command followed by the name of the environment variable. Specify the
name of the environment variable followed by an equal sign and the new value will replace the value of an
existing environment variable or assign a value to a new environment variable.

To remove an environment variable, specify the name of the environment variable followed by an equal
sign, but omit the value parameter (ex. set classpath=). The DOS command shell removes environment
variables in this way also.

The following steps are a convenient way to change the PATH environment variable:

1. Press Esc to toggle the cursor to the command line.

2. Type set path and press Enter. This will place the current value of the PATH variable on the command
line.

3. Edit the current value and press Enter.

Using the set Command

1116

You can use the above steps to change the value of any other environment variable by specifying a
different environment variable name in the second step. The set command supports completion on the
environment variable name. Typing set ? on the command line will give you a selection list of all of the
environment variable names.

Configuration Variables

1117

Configuration Variables
SlickEdit® has many behaviors that are controlled through properties not exposed in the options dialogs.
They are set through global configuration macro variables in Slick-C®, using the set_var command. The
most commonly used of these variables are listed in the table below.

Viewing Configuration Variables
To view the complete list of configuration variables, bring up the SlickEdit® command line and type
set_var def- (note the hyphen). The completion list will provide the full list of available variables. Use the
Help system to look up information on a variable by typing the name of the variable into the Index search
field. You can also see a list of variables under Help → Macro Functions by Category → Configuration
Variables.

Alternatively, you can use the Symbols Tool Window to find where the variable is defined in the Slick-C®
code. Expand the Slick-C folder and then expand the Global Variables folder. If Slick-C hasn't already
been tagged, type fp into the SlickEdit command line. This is an abbreviation of the find_proc command,
which will trigger Slick-C tagging if it hasn't already been done.

Setting/Changing Configuration Variables
There are two ways to set/change these macro variables:

• From the SlickEdit® menu, click Macro → Set Macro Variable (or use the gui_set_var command) and
enter the macro variable in the Variable field. The current value of the variable will be shown in the
Value text box. Click Edit to edit this variable, then click OK to accept the change. For more
information, see Set Variable Dialog.

• From the SlickEdit command line, invoke the set_var command with the macro variable name (for
example, set_var def_auto_linecomment), then press Enter to view the current value. You can edit
this value, then press Enter to accept the change.

See Programmable Macros for more information on loading macros and setting variables.

Table of Configuration Variables
The table below provides a list of the most commonly used configuration variables.

Configuration Variable Description

def_alias_case Controls whether alias identifier matching is case-
sensitive. Set to i to make alias matching case-
insensitive (default). Set to e to turn on case-
sensitivity.

Viewing Configuration Variables

1118

Configuration Variable Description

def_auto_linecomment Change to 0 to turn off automatic line comment
insertion.

def_binary_ext This variable is used for the Brief emulation, or in
other emulations if def_list_binary_files is set to
false. The space-delimited extensions listed by this
variable are filtered out by the edit command's
completion. The default is .ex .obj .exe .lib.

def_buflist Change this variable to find the initial file in Buffer
List. The default is 3. This macro variable
determines how the list_buffers commands
displays the buffer list. By default, the buffer list is
sorted and path information is in a separate column
to the right of the name. This macro variable is
composed with the following flags:

• SORT_BUFLIST_FLAG - 1

• SEPARATE_PATH_FLAG - 2

Add the flags together to select a configuration.
Leaving out a flag removes the features. If the
buffer list is not sorted, the list will be in the order of
the buffer ring.

If you set this variable to 1, it will show the full path,
which you can order according to path. The default
(3) will show an alphabetical list of the files in the
left column and the directories in the right column.

def_ctags_flags This variable is a safeguard against parsing past
the end of a proc when the braces mismatch. To
have SlickEdit® recognize the second dd, set the
value of this variable to 10.

def_debug_logging (Pro only) If you change this value to 1, then run the
integrated debugger and let it time out, a vs.log
file will be created in your config directory under the
logs subdirectory.

def_deselect_copy Set to 1 in Brief emulation to deselect after a copy.

Table of Configuration Variables

1119

Configuration Variable Description

def_do_block_mode_key Set this variable's value equal to 0 to stop SlickEdit
from inserting characters on every line of a block
selection.

def_error_re2 Edit this variable to change from the SlickEdit
regular expression used for compile/build errors.

def_fast_auto_readonly When set to 1, this option speeds up the Auto read
only feature by only checking the attribute on disk
(not opening every file). See Load File Options for
more information.

def_filelist_show_dotfiles Controls the global Show files beginning with a
dot option (Tools → Options → Appearance →
General). On Windows, the default value of this
variable is 1; change to 0 to view Dot files. On UNIX
platforms, the default value is 0; change to 1 to hide
Dot files. (Dot files are files with names beginning
with a dot character.)

def_from_cursor Default is 0. If non-zero, the commands
upcase_word, lowcase_word, and cap_word will
start case change from the cursor position instead
of the beginning of the current word.

def_linewrap Default is set to 1. If you are at the end of a line that
has whitespace only on the line below it (spaces or
tabs) and you press Delete, this will bring the
whitespace below it up to the end of the line that
you are on. When the value is set to 0, if you press
Delete while at the end of a line that has
whitespace only on the line below it (spaces or
tabs), the whitespace is removed entirely®acting as
a line delete.

def_linux1_shell To use an alternate shell, set this variable to the
shell that you want to run (for example, /bin/bash
-i). This will cause the editor to use your process
shell.

def_max_filehist Increases the number of files displayed in the file
history of the File menu. Enter the number of files
you want to see in the history.

def_max_mffind_output This variable is set for performance reasons. You

Table of Configuration Variables

1120

Configuration Variable Description

can increase the amount of information displayed in
the Output tool window during a multi-file search by
changing this to your desired setting.

def_max_workspace_hist Increases the length of the Workspace history list in
the Project menu. Enter the number of files you
want to see in the history.

def_modal_paste Default is 0. If non-zero, commands that insert a
BLOCK-type clipboard will overwrite the destination
text if the cursor is in Replace mode.

def_plusminus_blocks When the value is set to 1, the plusminus
command will try to find code blocks to expand or
collapse if the cursor is on a line that does not have
a Plus or Minus bitmap on it. The default is 1.

def_preplace Default is 1. If the value is set to 0, the save
command will NOT prompt you if you are
inadvertently overwriting a file. For example, if you
invoke the command savexyz, and an xyz file
already exists, and xyz is not the name of the
current buffer, you are prompted by default whether
you wish to overwrite the file.

def_rwprompt Default is 1. Change this to 0 to suppress the pop-
up that asks: Do you want to update the read-
only attribute of the file on disk?

def_save_macro Default is 1. Set this variable to 0 if you do not want
to be prompted with the Save Macro dialog box
after ending macro recording.

def_shift_updown_line_select Set this value to 1 for Shift+Up or Shift+Down to
select the current line.

def_show_makefile_target_menu This variable can be set to decrease the time that it
takes for menus to open. Set to 0 to disable all
makefile submenus (such as the Build menu and
the Projects tool window). Set to 1 to enable all
makefile submenus (this is the default). Set to 2 to
enable makefile submenus only in the Projects tool
window (the Build menu makefile targets are
disabled).

Table of Configuration Variables

1121

Configuration Variable Description

def_switchbuf_cd Set this variable equal to 1 to change the current
working directory to the file that currently has focus
in the editor. This variable is on by default in the
GNU Emacs emulation, and off in all other
emulations.

def_top_bottom_push_bookmark Set this variable to 1 to push a bookmark whenever
you jump to the top or bottom of the buffer. Note
that even when this variable is set, no bookmarks
are pushed when using the current buffer as a build
window (.process buffer). The default value is 0.

def_undo_with_cursor Set this value to 1 to enable the undo of each
cursor movement.

def_update_context_max_file_size This variable increases the array size in bytes of a
file that is too large. The default size of files that can
be processed by Context Tagging® is 4 MB. The
size can be lowered by changing this variable and
setting it to equal the size that you want (in bytes).

def_vc_advanced_options Set to this variable to 0 to remove advanced options
that decrease performance when using ClearCase
version control.

def_vtg_tornado (Pro only) Set this variable value to 0 to prevent
Context Tagging of Tornado files.

def_xml_no_schema_list To prevent SlickEdit from accessing the Internet to
validate and get color coding information from
DTDs, add your XML extension to this variable. Set
the value to a list of space-delimited extensions that
you want excluded for actual schema validation. For
example: .xml .xsl .xsd. This will prevent SlickEdit
from attempting to connect to the Internet for these
extensions.

Configuration Directories and
Files

1122

Configuration Directories and Files

User Configuration Directory
Your SlickEdit® configuration directory contains configuration files representing the changes you have
made through setting editor options, and it preserves the state of SlickEdit by using the state file, Table of
User Configuration Files.

You should make periodic backups of your SlickEdit configuration directory. If you experience a problem
in the editor, you can often solve it by using a saved config directory.

Configuration changes are saved when you exit the editor. Note that SlickEdit cannot save configuration
changes when another instance is running. If you attempt to close an instance that contains configuration
changes, while another instance is running, a Save failed message is displayed, then a prompt asks
whether or not to exit anyway.

Configuration Directory Location

By default, the user configuration directory is in the following location, depending on the operating system
you are using:

• Windows: .../My Documents/My SlickEdit Config/Editor_Version/

• Mac: $HOME/Library/Application Support/SlickEdit/Editor_Version/

• Linux, UNIX: $HOME/.slickedit/editor_version/

SlickEdit® creates a versioned config subdirectory for each version of SlickEdit you run.

Tip

You can view the path to the config directory by clicking Help → About SlickEdit. When SlickEdit
displays the config directory, it includes the versioned subdirectory. For example: C:\Documents
and Settings\SlickEditUser\My Documents\My SlickEdit Config\20.0.3\.

If you want to use a different directory for your config files, set the SLICKEDITCONFIG environment
variable (see Environment Variables), or specify the location by using the -sc invocation option on the
command line (see Invocation Options). In both cases, SlickEdit will create a versioned subdirectory
below the specified directory.

Resetting the Configuration Directory

For troubleshooting purposes, it is sometimes helpful to reset the configuration directory to the defaults.
SlickEdit Product Support may also ask you to use a default configuration to help debug problems. To
reset to the default configuration:

1. Exit any instances of SlickEdit® that are running.

User Configuration Directory

1123

2. Make a backup of the user config directory and store the backup in a safe location.

3. Delete the contents of the versioned config directory (i.e. 20.0.3) but NOT the directory itself.

4. Start SlickEdit.

After completing these steps, SlickEdit opens with the default configuration settings. Note that you will be
prompted for all of the initial setup information just as if you were running SlickEdit for the first time (see
Running SlickEdit).

Note

If, instead of deleting the contents of the directory, you delete the directory itself, SlickEdit will
attempt to migrate your settings from a previous version.

Table of User Configuration Files

The table below provides a list of the user configuration files.

User Config File Description

compilers.xml An XML file that contains compiler include/jar file
configurations. Often the settings found there have
been auto generated. The compiler profiles are user
customizable. It is only safe to delete this file if
you've never created or modified compiler profiles.

diffmap.ini A text file which stores root directory mappings. It's
used to automatically set other text box when typing
in the first text box of the DIFFzilla® dialog. This
data is a lot like auto-restore data but since there's
a standalone vsdiff program, it made more sense
for this to be in a separate file. This file can be
deleted without causing any problems or losing
important settings.

diffsessions.xml A text file which contains diff session history and
named diff sessions.

perfile.xml An XML text file that contains buffer history
information which is used when you open an
addition file. The most valuable information this
stores is your previous edit location so that it can be
restored when you reopen a file. It also contains the
following buffer settings: encoding, Soft Wrap,
Language mode, and XML Wrap scheme. This file
can be deleted without causing any problems or

User Configuration Directory

1124

User Config File Description

losing important settings.

personal.sca An XML file that contains global annotation options
and settings. The annotation feature allows you to
make various notes about certain lines of files
without modifying the file itself. Great for code
review notes.

project.vpe

(UNIX: uproject.vpe)

A text file that contains user-defined language-
specific projects.

user.cfg.xml (very import) An XML file containing almost all non-
Auto Restore like configuration settings. Includes
settings for fonts, color profiles, emulation, key
bindings, environment variables, language settings,
beautifier profiles, color coding profiles, printing
profiles, FTP profiles, and more.

usercpp.h A text file that contains global defines (default
preprocessing) for Context Tagging® of C++ and C
code.

usersystemverilog.svh A text file that contains global defines (default
preprocessing) for Context Tagging® of
SystemVerilog code.

userverilog.v A text file that contains global defines (default
preprocessing) for Context Tagging® of Verilog
code.

usrprjtemplates.vpt A text file that contains user-defined project
packages.

vrestore.slk A text file that contains auto-restore information,
such as buffer information and command line
history. This file can be deleted without causing any
problems or losing important settings.

vslick.sta A binary file that contains dialog boxes, menus,
macro pcode, key bindings, and all other
configuration data not stored in one of the other
configuration files. Both user and system
configuration information is stored here. It is safe to
delete this file but only if you are not running any

User Configuration Directory

1125

User Config File Description

instances of SlickEdit. The changes to this file will
be re-applied when you restart SlickEdit.

vusrobjs.e

(UNIX: vunxobjs.e)

A text file that contains user-defined dialog boxes
and menus in Slick-C syntax.

vusrs*.e

(UNIX: vunxs*.e)

A text file that contains system modified dialog
boxes and menus. These changes are NOT
automatically transferred unless the version
encoding matches. For example, vusrs10e.e.

*.vpwhist A text file that contains workspace auto-restore
information including windows, files, break points,
tool windows, toolbars, and more. This file can be
deleted without causing any problems or losing
important settings.

System Configuration Files
System configuration files are located in the SlickEdit® installation directory.

Typically, these files are only modified by SlickEdit Inc. or OEM customers. OEM customers might want to
modify one of these files to ship a customized version of SlickEdit.

Table of System Configuration Files

The table below provides a list of the system configuration files.

System Config File Description

com_slickedit.base.zip A plug-in that contains almost all default system
settings. Most of the settings are stored in
.cfg.xml files. A .cfg.xml file typically contains
one profile with any number of properties.

prjtemplates.vpt A text file that contains default project packages.
This file is NOT modified by the dialogs and is not
preserved when a new editor is installed.

syscpp.h

(UNIX: usyscpp.h)

A text file that contains system-defined default
preprocessing for Context Tagging® of C++ and C
code.

System Configuration Files

1126

System Config File Description

systemverilog.svh A text file that contains system-defined default
preprocessing for Context Tagging® of
SystemVerilog

verilog.v A text file that contains system-defined default
preprocessing for Context Tagging® of Verilog

vslick.sta A binary file that contains default dialog boxes,
menus, macro pcode, key bindings, and all other
configuration data not stored in one of the other
configuration files.

.cfg.xml File Format

1127

.cfg.xml File Format

.cfg.xml files contain profiles with properties. Profile names are case insensitive. Property names are case
sensitive. There's rarely a need for case insensitive property names and you can always add a
"display_name" attribute to a property for a pure case insensitive implementation when needed.

Normalized and Unnormalized Profiles
When profiles are loaded, they are normalized if they aren't already normalized.

A normalized profile with a normalized property looks like this:

<options>
<profile n='misc.options' version="1">

<p n="buffer_kcache_size" v="2005"/> <-- example of
normalized standard property -->

</profile>
</options>

All Slick-C profile/property APIs are designed only to handle the above normalized profile format
(_plugin_get_profile, _plugin_set_profile, etc.). Before user.cfg.xml is saved, the Slick-C function
_xmlcfg_apply_profile_style is called to unnormalize the profile.

The unnormalized version of the above profile looks like this:

<options>
<misc.options n="misc.options" version="1">

<buffer_kcache_size v="2005"/> <-- example of unnormalized
standard property -->

</misc.options>
</options>

It's much easier to define an XML Schema for unnormalized profiles (used for XML validation, color
coding, and auto completion). Otherwise, profiles would always be stored in the normalized form.

Standard and XML Properties
For simplicity, all property names are case sensitive. There's rarely a need for case insensitive property
names and you can always add a "display_name" attribute to a property for a pure case insensitive
implementation when needed.

There are two types of properties: Standard and XML.

Normalized and Unnormalized
Profiles

1128

Normalized standard properties look like this:

<p n="name_of_property" v="value-of-property" [apply="0"|"1"]
[configs="space-delimited-configs"] />

Unnormalized standard properties look like this:

<name_of_property v="value-of-property" [apply="0"|"1"]
[configs="space-delimited-configs"] />

Only property names that are valid XML element names can be stored in the unnormalized standard
property form. Usually the normalized form is used if the property names may not be valid XML element
names.

Valid predefined configs for space-delimited-configs are win, mac, unix (all UNIX platforms except Mac),
linux, intelsolaris, sparcsolaris, aix, and hpux.

The standard property form is very restricting but it is often all that is needed. If you need to add additional
attributes or need child elements, you must use the less restrictive XML property form.

Examples

<!-- Normalized Unnormalized -->
<p n="n1" v="v1"/> <n1 v="v1"/>
<p n="n2" v="v1" apply="1" configs="win mac"/> <n2 v="v1"

apply="1" configs="win mac"/>

XML properties look like this:

Normalized XML properties look like this:

<p n="name_of_property"
[any-custom-attribute-value-pairs-but-no-v-attribute] [apply="0"|"1"]
[configs="space-delimited-configs"]/>

or this:

<p n="name_of_property"
[any-custom-attribute-value-pairs-but-no-v-attribute] [apply="0"|"1"]
[configs="space-delimited-configs"]>

[any-xml-here]
</p>

Standard and XML Properties

1129

Unnormalized XML properties look like this:

<name_of_property
[any-custom-attribute-value-pairs-but-no-v-attribute] [apply="0"|"1"]
[configs="space-delimited-configs"]/>

or this:

<name_of_property
[any-custom-attribute-value-pairs-but-no-v-attribute] [apply="0"|"1"]
[configs="space-delimited-configs"]>

[any-xml-here]
</name_of_property>

Only property names that are valid XML element names can be stored in the unnormalized XML property
form. Usually the normalized form is used if the property names may not be valid XML element names.

Examples

<!-- Normalized Unnormalized -->
<p n="n1" a="avalue" b="bvalue"/> <n1 a="avalue"

b="bvalue"/>
<p n="n2" apply="1" configs="win mac">avalue</p> <n2 apply="1"

configs="win mac">avalue</n2>

The Standard property form is used for the very common name/value pair scenario. The XML property
form is used for everything else. You may have both forms of properties in a single profile.

File Search Order

1130

File Search Order

Search Order for Executable Files
The search order for executable files, batch macro programs, and miscellaneous files is:

1. Current directory.

2. Configuration directory.

3. Paths specified in VSLICKPATH environment variable.

4. Paths specified in PATH environment variable.

Search Order for Executable
Files

1131

Color Coding Profiles
For more basic information about using Color Coding, see Colors, Color Coding, and Symbol Colors.

To modify the color coding profiles, use one of the following methods:

• Use the language-specific Color Coding options screen (see Language-Specific Color Coding
Options). This is much easier to learn and helps avoid mistakes.

• Hand edit an XML color coding profile in user.cfg.xml. The user.cfg.xml file defines language-
specific color coding as well as many other settings.

Creating a New Color Coding Profile
Perform the steps below to create a new color coding profile for a language.

1. From the main menu, click Tools → Options → Languages, expand your language category and
language, then select Color Coding.

2. Create the new color coding profile by clicking the New button.

3. Enter the new color coding Profile name and click the OK button.

4. Use the Color Coding dialog to set the various options (add keywords, define comments/
strings/numbers, etc.).

5. Click OK to commit the changes or Apply to try out your changes.

User created or modified profiles are stored in user.cfg.xml.

Color Coding Profile Format
Take a look at some of the existing color coding profiles shipped with SlickEdit to help you figure out how
to add certain color coding constructs.

The system color coding profiles shipped with SlickEdit are stored in .cfg.xml files in the
com_slickedit.base.zip plug-in along with many other profiles. You can open files out of
com_slickedit.base.zip without unzipping it first. Type "c:\Program Files\SlickEdit Pro
??.?.?\plugins\com_slickedit.base.zip\com_slickedit.base\color_profiles\" in the Open tool window to see
a list of color coding profiles. It's a good idea to look at some of these profiles to better understanding of
how the XML properties in color coding profiles work. Features such as Smart Open (Open tool window
and "e" command support it), multi-file search & replace, recursive diffs, and the file manager all support
reading files inside a zip file.

Note

Creating a New Color Coding
Profile

1132

The standard operating system open dialog does not support opening files inside a zip file. It's
easiest to use the Open tool window to browse and open files in a zip file.

Part of the "cpp" color coding profile is shown below:

<options>
<colorcoding_profiles n="colorcoding_profiles.cpp" version="2>
<case_sensitive v="1"/>
<idchars v="a-zA-Z_$ 0-9"/>
<styles v="idparenfunction doxygen xmldoc javadoc color_inactive_cpp

embeddedasm"/>
...
<p n="comment,//">

<attrs line_continuation_char="\" color_to_eol="comment"/>
</p>
<p n="k,case"/>
...

</colorcoding_profiles>
</options>

Note

If you use the Slick-C _plugin_get_profile() function to fetch an XML profile, the profile will be
returned in normalized format and not the XML format shown above which is the unnormalized
format stored on disk. See Normalized and Unnormalized Profiles.

A Word About the Color Coding Profile XML Format

You will notice that the "n" attribute of the "p" element contains comma delimited data instead of being
split into multiple attributes. This is done because the configuration engine uses the property name (not a
configurable combination) as the key when diffing profiles. This format was chosen for best diff results.
Only changes to properties are stored in user.cfg.xml. This standardized configuration engine allows
the Dev Team to avoid reinventing the wheel for system/user configuration data which only stores user
changes to modified/added properties. When you update to a newer version of SlickEdit, you
automatically get new property settings that you haven't modified.

Examples:

<p n="comment,//">
<attrs line_continuation_char="\" color_to_eol="comment"/>

</p>
<p n="k,case"/>

Color Coding Profile Format

1133

Property Syntax for Matching Language Elements

The XML property syntax for matching color coding language elements is:

<p n="color,start-delimiter">
[<attrs [flags="flags"]

[end="end-delimiter"]
[nest_start="nest-start" nest_end="nest-end"]
[start_col="start-col" [end_col="end-col"]]
[end_start_col="end-start-col" [end_end_col="end-end-col"]]
[start_color="color"] [end_color="color"]
[color_to_eol="color"] [end_color_to_eol="color"]
[case_sensitive="case-sensitive"]
[escape_char="escape-char"] [doubles_char="doubles-char"]
[order="order"]
[embedded_lexer="embedded-lexer"]

>

[<iattrs
[type="color"]
[start="start-delimiter"]
[flags="flags"]
[end="end-delimiter"]
[nest_start="nest-start" nest_end="nest-end"]
[start_col="start-col" [end_col="end-col"]]
[end_start_col="end-start-col"

[end_end_col="end-end-col"]]
[start_color="color"] [end_color="color"]
[color_to_eol="color"] [end_color_to_eol="color"]
[case_sensitive="case-sensitive"]
[escape_char="escape-char"]

[doubles_char="doubles-char"]
[order="order"]
[embedded_lexer="embedded-lexer"]

>
<iattrs>

]

<attrs>
]

</p>

color - Predefined color. See Color Coding Colors.

start-delimiter - Plain text string or regular expression to match depending on if flags specify regex or
perlre. See Section_Replacing_with_Regular_Expressions for information on tagged expressions and

Color Coding Profile Format

1134

special characters in the replace string.

flags - (Optional)Predefined space delimited flags See Color Coding Flags.

end-delimiter - (Optional) Plain text string or regular expression to match after start-delimiter is found
depending on if flags specify end_regex or end_perlre. See
Section_Replacing_with_Regular_Expressions for information on tagged expressions and special
characters in the replace string.

nest-start - (Optional) Plain text string or regular expression to match after start-delimiter is found
depending on if flags specify end_regex or end_perlre.

start-col and end-col - (Optional) Specifies the columns in which the start-delimiter is considered a
match. Specify a begin and end column to set a range of columns. Leave the end column blank, to
specify that the start delimiter is recognized anywhere after the start column.

end-start-col and end-end-col - (Optional) Specifies the columns in which the end-delimiter is considered
a match. Specify a begin and end column to set a range of columns. Leave the end column blank, to
specify that the end delimiter is recognized anywhere after the start column.

start-color - (Optional) Overrides the default start delimiter color.

end-color - (Optional) Overrides the default end delimiter color.

color-to-eol - (Optional) When non-blank, specifies that color coding continues to end of line (if multiline
flag not specified), end-delimiter (if specified), or end of file (no end-delimiter and multiline flag specified)
after the start delimiter is matched with this predefined color. See Color Coding Colors.

case-sensitive - (Optional) Overrides the default case sensitive defined by the case_sensitive element
(see Other Color Coding Profile Properties).

escape-char - (Optional) Has effect only when end-delimiter is non-blank or color-to-eol is non-blank.
Allows you to define the escape character where the next character is skipped so the end-delimiter can
be correctly found. Many string type constructs support escaping with a character like backlash (some
languages uses a different escape character)

line-continuation-char - (Optional) Has effect only for single line constructs. When this character is found
at the end of the line, coloring will continue to the next line.

order - (Optional) A signed integer which determines the order of evaluation of items. In more complicated
scenarios where there are multiple start-delimiter patterns matching the same text, this is used to
choose which match gets processed. Lower values are matched first and take precedence. Sometimes a
regular expression which is intended to match a longer pattern also exactly matches a shorter duplicate
pattern.

embedded-lexer - (Optional) When non-blank, indicates this item is an embedded language even if it
doesn't match an existing color coding profile. When the start-delimiter is a regular expression,
replacements for tagged expressions and escapes just like a typical search and replace will be
performed. See Section_Replacing_with_Regular_Expressions for information on tagged expressions
and special characters in the replace string.

Color Coding Colors

Color Coding Profile Format

1135

Color is one of the following color names:

• k -- Keyword

• comment -- Comment

• doc_comment -- Document comment

• linenum -- Line number

• string -- String

• pp -- Preprocessing

• pu -- Punctuation

• lib -- Library

• op -- Operator

• user -- User defined color

• modified_line -- Modified line color

• inserted_line -- Inserted line color

• deleted_line -- Deleted line color

• number -- Number color

• float -- Floating point number color

• hex_int -- Hexadecimal integer color

• function -- Function color

• attribute -- Attribute color

• unknown_xml_element or unknown_tag -- Unknown XML or HTML tag color

• xhtml_element_in_xsl -- XHTML element in XSL color

• tag -- Tag color

• xml_character_reference -- XML character reference color

• unknown_attribute -- Unknown attribute color

• doc_comment -- Documentation comment color

• doc_keyword -- Documentation comment keyword color

• doc_punctuation -- Documentation comment punctuation color

Color Coding Profile Format

1136

• doc_attribute -- Documentation comment attribute color

• doc_attr_value -- Documentation comment attribute value color

• identifier -- Identifier color

• identifier2 -- Identifier 2 color

• inactive_code -- Inactive code color

• inactive_keyword -- Inactive code keyword color

• inactive_comment -- Inactive code comment color

• markdown_header -- Markdown header color

• markdown_code -- Markdown code color

• markdown_blockquote -- Markdown blockquote color

• markdown_link -- Markdown link color

• markdown_link2 -- Markdown link 2 color

• markdown_bullet -- Markdown bullet color

• markdown_emphasis -- Markdown emphasis color

• markdown_emphasis2 -- Markdown emphasis 2 color

• css_element -- CSS element color

• css_class -- CSS class color

• css_property -- CSS property color

• css_selector -- CSS selector color

• other -- Other color

Color Coding Flags

flags is a space delimiter list zero or more of the following:

Flag name Description

first_non_blank Specifies that the match must occur as the first non-
blank character. Space or tab characters are
considered blanks. This option can not be used in
combination with the check_first option.

check_first Specifies that the match be checked before

Color Coding Profile Format

1137

Flag name Description

scanning for other matches. This is most useful for
column oriented languages where a character in a
particular column means the entire line is a line
comment (COBOL). This option can not be used in
combination with the first_non_blank option.

regex Specifies that start-delimiter is a SlickEdit regex.

perlre Specifies that start-delimiter is a Perl regex.

end_regex Specifies that end-delimiter is a SlickEdit regex.

end_perlre Specifies that end-delimiter is a Perl regex.

multiline Specifies that color coding continues after start-
delimiter either to the end-delimiter or end of file.

embedded_lexer_prefix_match When specified, the prefix of embedded_lexer is
matched against other color coding profiles (ex
"cppEOF" would match "cpp").

apply_multiline_at_eol Has effect only when multiline flag specified. This
option is typically used for here-document
constructs where the start should be colored as
Other color, then the text until the end of line is
colored as if this construct was never hit, and then
subsequent lines continue with this construct.

end_embedded_at_bol_if_possible When the start-delimiter for an embedded
language construct starts at the end of a line and
the end-delimiter is the first non-blank in a line,
choose this option. That way only lines in between
the start and end delimiters are colored in
embedded language color.

dont_color_as_embedded_if_possible Continue to use the current background color which
may already be embedded.

color_as_embedded_if_found If embedded-lexer is found, switch to the
background to embedded. Otherwise, the current
background color which may already be embedded
is used.

embedded_end_is_token This is useful for interpolated strings where finding

Color Coding Profile Format

1138

Flag name Description

the end-delimiter requires tokenizing the text so
that tokens like strings which could contain the end-
delimiter are skipped. Note that defining an
interpolated string requires the outer string start/end
delimiters to be defined and then an inner start/end
delimiters (often \$\{ and } when start delimiter is a
SlickEdit regular expression) to be defined where
this option is checked. Use iattrs element to add
the sub item for interpolation and set the start/end
delimiters. You may need to set the nest-start and
nest-end to { and }. Scala interpolated strings
require the interpolation to support nested braces
where nest-start and nest-end are { and }
respectively.

Adding Color Coding for HTML/XML Tags, Attributes, and Values

The HTML/XML tag support is designed specifically for these languages and bulletin board tag languages
which are very similar.

First you need to define the multi-line construct used for all tags.

<!-- comment color won't be used if tags are defined -->
<p n="comment,<">

<attrs end=">" flags="multiline"/>
</p>

Add tags like this:

<p n=",<,p," v="id class style title lang dir align onclick ondblclick ..."/>
<p n=",<,/p," v=""/>

The property name must start with a comma. The next item indicates which multi-line construct the tag
should be added to. This is typically '<' but can also be '['. The word that follows is the tag name.

The "v" attribute above defines valid attributes for the tag.

Define valid attribute values like this.

<p n=",<,,align" v="center right left justify char top middle bottom
baseline"/>

Color Coding Profile Format

1139

or like this:

<p n=",<,p,align" v="center right left justify char top middle bottom
baseline"/>

The property name must start with a comma. The next item indicates which multi-line construct the tag
should be added to. This is typically '<' but can also be '['. The word that follows is optionally the tag name
which is only needed if the attribute values depend on a specific tag.

Other Color Coding Profile Properties

The table below lists other properties which are not used for added keywords, comments, tags, attributes,
or attribute values

XML Property syntax Description

<case_sensitive v="[0|1]"/> Defines the case sensitivity for the language. This is
typically near the top of the profile but order of
properties does not matter.

<idchars v="start_id_chars after_id_chars"/> Defines the characters that are the start of a valid
identifier and additional valid characters that may
follow. start_id_chars and after_id_chars must be a
valid SlickEdit syntax regular expression when
enclosed in [] (i.e [start_id_chars] must be a valid
SlickEdit syntax regex). You may use a dash (-)
character to specify a range, for example, A-Z
specifies uppercase letters. To specify a dash or
backslash (\) character as a valid word character,
place a backslash before the character. Many
character classes are supported. See SlickEdit®
Regular Expressions.

<styles v="styles"/> Defines zero or more space delimited styles. See
Color Coding Style Values below for a list of
available styles.

<mn_flags v="mn-flags"/> Defines zero or more space delimited number flags.
See Color Coding Number Flags for a list of
available flags.

<mn_int_suffixes v="suffix-list"/> Space delimited list of supported integer suffixes.
By default, all suffixes are case insensitive. Prefix
the suffix with "\c" to specify a case sensitive suffix.

Color Coding Profile Format

1140

XML Property syntax Description

If your prefix starts with a backslash, uses two
backslashes (ex "\\").

<mn_float_suffixes v="suffix-list"/> Space delimited list of supported floating point
suffixes. By default, all suffixes are case insensitive.
Prefix the suffix with "\c" to specify a case sensitive
suffix. If your prefix starts with a backslash, uses
two backslashes (ex "\\").

<mn_hex_suffixes v="suffix-list"/> Space delimited list of supported hexadecimal
integer suffixes. By default, all suffixes are case
insensitive. Prefix the suffix with "\c" to specify a
case sensitive suffix. If your prefix starts with a
backslash, uses two backslashes (ex "\\").

<mn_digit_separator_char v="digit-
separator-char"/>

Specifies a single character which is allowed
between digits. For example, C++ supports a single
quote character (ex 123'000'000). Perl and many
other languages support an underscore
(123_000_000).

<inherit v="cc_profile"/> Inherits token settings from the specified color
coding profile.

Color Coding Style Values

The table below describes the styles that can be used:

Style Name Description

bbc Enables additional support for BBC language.

cics Enables special support for CICS language.

cobol Enables special support for Cobol

color_inactive_cpp Enabled inactive colors for C++ #if'zeroed code.

css Enables special support for CSS language.

doxygen Adds support for color coding Doxygen keywords in
doc_comment's.

Color Coding Profile Format

1141

Style Name Description

eof Adds a table entry to color everything after 0x1a
(EOF char) as a comment.

heredocument Adds support for generic HERE documents similar
to Perl syntax but primarily backward compatible
with previous versions of SlickEdit. Note that the
Perl color coding definition no longer uses this
option. Instead, more precise Perl specific table
items are defined.

html Enables additional support for HTML language.

idparenfunction An identifier followed by an open parenthesis
indicates a function (like C++ and Java).

idstartnum Indicates that identifiers may start with a number.
Special identifier support for COBOL.

javadoc Adds support for color coding JavaDoc keywords in
doc_comment's.

jcl Special support for JCL

linenum Line numbers may be found as the first non-blank
symbol of a line like BASIC.

markdown Enables special support for Markdown language
syntax.

model204 Enables special support for Model 204 language.

os390asm Enables special support for OS390 assembler

packageimport Language has Java syntax package and import
statement where non-quoted file name follows
package and import keyword.

perl Enables additional support for Perl language.

ppkeywordsanywhere Specifies that preprocessing keywords may appear
anywhere in a line and not just after leading
whitespace.

puppet Enables additional support for puppet language.

Color Coding Profile Format

1142

Style Name Description

ruby Enables additional support for Ruby language.

Scala Enables additional support for Scala language.

Scala Enables additional support for XML language.

xmldoc Adds support for color coding XML Doc keywords in
doc_comment's.

xml_literals Adds support for embedded XML literals.

Color Coding Number Flags

The table below describes the mn_flags that can be used:

Flag Name Description

allow_hex_digits This option is useful for coloring hexadecimal
numbers which start with a digit (no prefix
characters) and may contain hexadecimal digits.
Typically there is a suffix character like 'H' added to
mn_hex_suffixes.

digit_float Indicates floating point starting with a digit (ex. 1.2)
is colored in float point number color.

digit_int Indicates integers starting with a digit (ex. 123) is
colored in number color.

dote_float Indicates floating point numbers allow the exponent
to immediately follow the decimal point (ex 1.e4).

dotp_float Indicates hexadecimal floating point numbers allow
the exponent to immediately follow the decimal
point (ex 1.p4).

dot_float Indicates floating point numbers may start with a
decimal point (ex .123).

d_exponent Indicates floating point numbers also allow the
exponent to be specified with a "D" (ex 1.4D5).

Color Coding Profile Format

1143

Flag Name Description

no_exponent Indicates that floating point numbers do not have an
exponent.

verilog_base_squote_hex Indicates Verilog syntax base single quote numbers
like 16'hFFFF and 16'd1234 are color coded in
number color.

zerob_binary Indicates binary numbers such as 0b1010 is color
coded in number color.

zerod_decimal Indicates whether decimal numbers such as 0d89 is
color coded in number color.

zeroo_octal Indicates octal numbers such as 0o777 is color
coded in number color.

zerox_hex Indicates hexadecimal numbers such as
0x123ABC is color coded in number color.

zerox_p_float Indicates floating point hexadecimal numbers are
colored in floating point number color. Many
languages have adopted this standard syntax for
hexadecimal floating point syntax.

Editing a Key Binding Profile

1144

Editing a Key Binding Profile
If you are creating a new emulation or if you change many key bindings, you might want to edit your key
binding profile instead of using the Key Binding Options screen. Using the dialog is less error prone than
editing a key binding profile. User modified key binding profiles are stored in user.cfg.xml. A sample
profile with a few key binding changes is shown below:

<eventtab_profiles n="eventtab_profiles.emulation-CUA" version="1">
<!-- Change or add Ctrl+F12 and bind it to the insert-docbook-id

command -->
<p n="'C-F12'" v="insert-docbook-id"/>
<!-- Change or add Command+/ and bind it to the cut-word -->
<p n="'M-/'" v="cut-word"/>
<!-- Remove the key binding for Alt+F -->
<d n="'A-F'"/>
<!-- Bind the range of keys Ctrl+0..Ctrl+9 to the alt-bookmark command

-->
<!-- The "d" element above does not support a key range -->
<p n="'C-0'-'C-9'" v="alt-bookmark"/>

</eventtab_profiles>

See Event Names for a list of valid key names. Enter key names in upper case (except in the rare case
where case matters like "'a'"). Property names (the key names) are case sensitive. If you enter a key in
the wrong case, it may bind correctly but the configuration engine will not be able to correctly generate
user differences.

Using the ISPF and XEDIT
Emulations

1145

Using the ISPF and XEDIT Emulations
This section describes the features of the ISPF editor emulation and outlines some XEDIT line
commands.

ISPF Options
The ISPF Emulation options screen is used to tune various ISPF emulation behaviors. To access these
options, SlickEdit must be in ISPF emulation mode. Then, from the main menu, click Tools → Options,
expand Keyboard, and select ISPF Emulation.

The following settings are available:

• Prefix area width - The number of characters to display in the prefix area (default is 6). Note that some
line commands require four characters (e.g. BNDS, TABS, COLS, MASK). To completely remove the
prefix area, set the prefix area width to 0.

• Display prefix area for readonly files - The prefix area is used to enter commands. By default, the
prefix area is not displayed for read-only files since most of the commands cannot be used. When set
to True the following line commands are allowed in read-only mode:

Command Description

ISPF Line Labels Define a label.

ISPF Line Command BNDS Insert a column boundary ruler line.

ISPF Line Command COLS Insert a column ruler line.

ISPF Line Command First Expose one or more lines at the beginning of a

ISPF Options

1146

block of excluded lines.

ISPF Line Command Last Expose one or more lines at the beginning of a
block of excluded lines.

ISPF Line Command Show Expose one or more lines having the leftmost
indentation level in a block of excluded lines.

ISPF Line Command TABS Displays the tab definition line.

ISPF Line Command Exclude Specifies one or more lines to be hidden
(excluded).

ISPF Line Command Select Select a block of lines.

• Enter places cursor in prefix area - When this check box is selected, the Enter key places the cursor
in the prefix area of the next line. When this check box is cleared, the Enter key places the cursor in
column 1 of the next line.

• Right CTRL = Enter/Send - When this check box is selected, the Enter key places the cursor at the
beginning of the next line, and the Right Ctrl key is used to execute line commands. When this check
box is cleared, the Right Ctrl key acts like a normal control key and the Enter key is used to execute
line commands.

• Cursor page up/down - When this check box is selected, the display is scrolled up/down until the line
the cursor is on becomes the last/first line displayed, respectively. If the cursor is already on the top/
bottom display line, the display is scrolled one page. When this check box is cleared, page up/down
always scrolls one page.

• END command saves the file - When this check box is selected, changes to the buffer are saved
automatically when the ispf_end (F3) command is performed. Otherwise, you will be prompted if you
want to save changes before closing the file.

• XEDIT line commands - When this check box is selected, the prefix area will support XEDIT-style line
commands.

• Home places cursor on command line - When this check box is selected, the Home key places the
cursor on the command line. By default, this option is off, and the Home key simply moves the cursor to
the beginning of the line.

More ISPF-related options are available on the language-specific General and Editing options screens
(Tools → Options → Languages → [Language Category] → [Language] → General and Tools →
Options → Languages → [Language Category] → [Language] → Editing). These options include
Auto CAPS mode and editing of boundaries and the truncation column. The Bounds setting is unique to
ISPF. It controls column bounds for specific ISPF commands that operate on column ranges. See Bounds
(Language-Specific) for more information.

ISPF Primary Commands

1147

ISPF Primary Commands
The following table of standard ISPF primary commands are supported in the ISPF emulation mode.
Primary commands are entered by placing the cursor on the command line (see ISPF Command Line and
Text Box Editing for details about command line editing features).

To place the cursor on the command line, either press the Esc key, click on the message line, or use
ispf_retrieve (F12). If configured to do so, the Home key will also place the cursor on the command line.
Once on the command line, you may use the cursor Up/Down keys to retrieve the previous/last command
entered, respectively.

Though primary commands may be typed at the command line explicitly, for convenience you can simply
type the last part of the command name in the command line and it will automatically be mapped to the
ISPF-specific command. For example, to execute the ISPF reset command, simply type reset at the
command line instead of ispf_reset.

Note

Some standard built-in commands conflict with ISPF emulation commands. These conflicts
include copy, cut, delete, find, hex, move, and paste. To access the built-in command, you
may be able to use a menu option or consult the Help for that command for specific instructions.

Command Description

ispf_autosave Turn on or off prompting to save changes.

ispf_bounds Set or reset the left and right edit boundaries.

ispf_bnds Set or reset the left and right edit boundaries

ispf_browse Browse a data set or member.

ispf_cancel Closes the current file or PDS member without
saving changes.

ispf_caps Turn on or off automatic capitalization mode.

ispf_change Replace one string with another within the current
buffer.

ispf_chg Replace one string with another within the current
buffer.

ispf_compare Compare the file you are editing with another file.

ISPF Primary Commands

1148

ispf_copy Insert the contents of a file. This command requires
a full path, and will not work with only a PDS
member name specified.

ispf_create Create a new file or PDS member containing the
contents of the buffer.

ispf_cut Cut lines out of the current buffer and place them in
the clipboard.

ispf_delete Delete lines in the given line range, or the entire
buffer.

ispf_edit This command is identical to the built-in edit
command.

ispf_end Close the current file.

ispf_exclude Hide (exclude) lines that match the given search
string.

ispf_find Find occurrences of the given search string in the
current buffer.

ispf_flip Reverse the exclude status of lines.

ispf_hex Toggle display of the document in Hexadecimal
mode.

ispf_hilite Specify the use of color-coding in the editor.

ispf_locate Find lines with a specific line prefix.

ispf_move Move the contents of a file or PDS member into the
buffer.

ispf_nonumber Turn off numbering mode.

ispf_number Controls line numbering mode. Unlike ISPF, this
command does affect how lines are inserted.

ispf_paste Copy lines from the clipboard to the buffer.

ispf_preserve Controls saving of trailing blanks.

ispf_rchange Repeat the change requested by the most recent

ISPF Primary Commands

1149

change command.

ispf_renumber Immediately update the line numbers in a file.

ispf_replace Save the contents of the current buffer to an
existing file.

ispf_reset Reset the contents of the line prefix area.

ispf_return Close the current file.

ispf_rfind Repeat the last find operation requested.

ispf_save This command is identical to the built-in save
command.

ispf_sort Sort lines of data in a specified order.

ispf_submit Submit the contents of the current buffer for batch
processing.

ispf_swap Switch to the next buffer.

ispf_tabs Define logical tab positions.

ispf_unnumber Blank out the line numbers in a file.

ispf_undo This command is identical to the undo command.

ISPF Line Commands
The table below shows ISPF edit line commands that are supported in the ISPF emulation mode.

Enter line commands by typing over the prefix area (on the left-hand side of the editor control) which
contains either ====== or the line number. To place the cursor in the prefix area, click there, or move the
cursor left or backspace until the cursor in is in the prefix area. In addition, Enter will place the cursor in
the prefix area of the next line, unless an insert or text entry command is executed.

Edit line commands operate on either a single line or a block of lines. The commands that operate on
blocks require you to place the command on both the first and last lines of the block.

Line commands are processed using the ispf_do_lc command when you press Enter, Ctrl+Enter or the
Right Control key, depending on your preferences. Several commands or line labels can be entered and
then processed at one time. The ispf_reset command is used to clear the prefix area.

ISPF Line Commands

1150

Command Description

ISPF Line Labels Define a label.

ISPF Line Command Shift Shift data left or right.

ISPF Line Command A Identify a line after which lines are to be inserted.

ISPF Line Command B Identify a line before which lines are to be inserted.

ISPF Line Command BNDS Insert a column boundary ruler line.

ISPF Line Command Copy S Specify lines to be copied to another location.

ISPF Line Command COL Insert a column ruler line.

ISPF Line Command Delete Delete one or more lines.

ISPF Line Command First Expose one or more lines at the beginning of a
block of excluded lines.

ISPF Line CommandI Insert one or more blank data entry lines.

ISPF Line Command Lowercase Convert all uppercase letter alphabetic characters
in one or more lines to lowercase.

ISPF Line Command Last Expose one or more lines at the beginning of a
block of excluded lines.

ISPF Line Command Move Specify lines to be moved to another location.

ISPF Line Command MASK Display the contents of the mask used with the
insert (I) and text entry (TE) line commands.

ISPF Line Command Make Data Convert one or more no-save lines to data so that
they may be saved when the buffer is saved.

ISPF Line Command Overlay Identify one or more lines over which the copy or
move block is to be overlaid.

ISPF Line Command Repeat Specify lines to be repeated immediately following
this line or block.

ISPF Line Command Show Expose one or more lines having the left-most
indentation level in a block of excluded lines.

ISPF Line Commands

1151

ISPF Line Command TABS Display the tab definition line.

ISPF Line Command TE Insert one or more blank lines to allow power typing
for text entry.

ISPF Line Command TF Reflow paragraphs according to the current column
boundary settings.

ISPF Line Command TJ Join this line with the next line.

ISPF Line Command TS Divide a line so that data can be added.

ISPF Line Command Uppercase Convert all lowercase letter alphabetic characters in
one or more lines to uppercase.

ISPF Line Command Exclude Specify one or more lines to be hidden (excluded).

ISPF Line Command Select Select a block of lines.

ISPF Line Command Documentation

ISPF Line Labels .label

Usage

.label, where label does not start with a z

Remarks

Define a label to be used as a marker to identify the given line. Labels are used to specify a particular
line, such as in the ispf_locate command, or to specify a range of lines for an primary command to
operate on. The following labels are built in to the ISPF emulation:

• .zfirst - The first line in the buffer (abbreviated .zf).

• .zlast - The last line in the buffer (abbreviated .zl).

• .zcsr - The current line the cursor is on (abbreviated .zc).

See Also

ispf_change, ispf_copy, ispf_delete, ispf_exclude, ispf_find, ispf_flip, ispf_locate, ispf_paste,
ispf_reset, ispf_sort

ISPF Shift Lines Left or Right

Usage

ISPF Line Commands

1152

• ([n] - Shift the current line n columns left, default 2

• (([n] - Shift the block of lines n columns left, default 2

•) [n] - Shift the current line n columns right, default 2

•)) [n] - Shift the block of lines n columns right, default 2

• < [n] - Data shift the current line n columns left, default 2

• << [n] - Data shift the block of lines n columns left, default 2

• > [n] - Data shift the current line n columns right, default 2

• >> [n] - Data shift the block of lines n columns right, default 2

Remarks

This set of commands is used for shifting data left or right. The versions using parenthesis shift text
literally, while the other versions attempt to intelligently shift text without disturbing line numbers or
comments. In all cases, the default number of columns that the text is shifted is two.

There are two forms to these commands. The single character forms (,), <, or > specifies that the line
and the subsequent n-1 lines are to be shifted. The two-character block forms are placed on the first and
last lines of the block to be shifted.

Data is shifted only within the columns defined by the current bounds, or if bounds is turned off, but there
is a truncation column, between column 1 and the truncation column. If the shift operation results in data
moving beyond the right or left margins, it is truncated and there is no warning message.

See Also

ispf_bounds

ISPF Insert After A

Usage

A [n]

Remarks

Identifies a line after which copied or moved lines are to be inserted n times. You are allowed to specify
multiple A, B, or O line commands to have the same copy or move block inserted in multiple places.

See Also

ispf_copy, ispf_paste, ISPF Line Command B, ISPF Line Command Copy, ISPF Line Command
Move, ISPF Line Command Overlay

ISPF Insert Before B

Usage

ISPF Line Commands

1153

B [n]

Remarks

Identifies a line before which copied or moved lines are to be inserted ntimes. You are allowed to specify
multiple A, B, or O line commands to have the same copy or move block inserted in multiple places.

See Also

ispf_copy, ispf_paste, ISPF Line Command B, ISPF Line Command Copy, ISPF Line Command
Move, ISPF Line Command Overlay

ISPF Insert Bounds Ruler BNDS

Usage

BNDS

Remarks

Insert a column boundary ruler line. After this line is inserted, the < and > marks may be moved in order to
adjust the column boundaries. Note that if you have multiple bounds lines, and you change one, the
subsequent bounds lines will also be changed.

A column boundary line with one < sign indicates a left boundary and no right boundary (unbounded). A
column boundary with one > sign indicates a single column boundary (left and right bounds are same).

See Also

ispf_bounds, ISPF Line Command Shift, ISPF Line Command Overlay

ISPF Copy Lines C and CC for blocks

Usage

• C [n] - Copy n lines starting with the line with the command.

• CC - Copy a block of lines, must match another CC.

Remarks

Specify lines to be copied to another location. There are two forms to this command. The first form (C [n])
specifies that the line and the subsequent n-1 lines are to be copied. The second (block) form (CC) is
placed on the first and last lines of the block to be copied. There can be only one copy block specified.
Furthermore, you can not have both a move block and a copy block specified at the same time.

See Also

ISPF Line Command A, ISPF Line Command B, ISPF Line Command Move, ISPF Line Command
Overlay

ISPF Insert Columns Ruler COLS or SCALE

ISPF Line Commands

1154

Usage

COLS

SCALE

Remarks

Insert a column ruler line. The column ruler line is read-only.

See Also

ispf_bounds, ispf_tabs, ISPF Line Command BNDS, ISPF Line Command TABS

ISPF Delete Lines D and DD for blocks

Usage

• D [n] - Delete n lines starting with the line with the command.

• DD - Delete a block of lines, must match another DD.

Remarks

Deletes one or more lines. There are two forms to this command. The first form (D [n]) specifies that the
line and the subsequent n-1 lines are to be deleted. The second (block) form (DD) is placed on the first
and last lines of the block to be deleted.

See Also

ispf_delete

ISPF Expose First Lines F and FF

Usage

• F [n] - Unexclude (expose) the first n lines of an excluded block.

• FF - Unexclude (expose) an entire excluded block.

Remarks

Expose one or more lines at the beginning of a block of excluded lines. The FF line command exposes
the entire block of lines and is to F[m] where m is the number of lines in the block of excluded lines.

See Also

ispf_exclude, ispf_reset, ISPF Line Command Last, ISPF Line Command Show, ISPF Line
Command Exclude

ISPF Insert Lines

Usage

ISPF Line Commands

1155

I [n]

Remarks

Insert one or more blank data entry lines.

See Also

ispf_enter, ISPF Line Command TE

ISPF Lowercase Lines LC, LCC and LCLC for blocks

Usage

• LC [n] - Lowercase n lines starting with the line with the command.

• LCC - Lowercase a block of lines, must match another LCCor LCLC.

• LCLC - Lowercase a block of lines, must match another LCCorLCLC.

Remarks

Converts all uppercase letter alphabetic characters in one or more lines to lowercase. This command only
operates on text within the edit boundary columns. There are two forms to this command. The first form
(LC [n]) specifies that the line and the subsequent n-1 lines are to be converted. The second (block) form
(LCLCor LCC) is placed on the first and last lines of the block to be converted.

See Also

ispf_caps, ISPF Line Command Uppercase, lowcase, upcase

ISPF Expose Last Lines L and LL

Usage

• L [n] - Unexclude (expose) the last n lines of an excluded block.

• LL - Unexclude (expose) an entire excluded block (identical to FF).

Remarks

Expose one or more lines at the end of a block of excluded lines. The LL line command exposes the
entire block of lines and is to L[m] where m is the number of lines in the block of excluded lines.

See Also

ispf_exclude, ispf_reset, ISPF Line Command First, ISPF Line Command Show, ISPF Line
Command Exclude

ISPF Move Lines M and MM for blocks

Usage

ISPF Line Commands

1156

• M [n] - Move n lines starting with the line with the command.

• MM - Move a block of lines, must match another MM.

Remarks

Specify lines to be moved to another location. There are two forms to this command. The first form (M [n])
specifies that the line and the subsequent n-1 lines are to be moved. The second (block) form (MM) is
placed on the first and last lines of the block to be moved. There can be only one move block specified.
Furthermore, you cannot have both a move block and a copy block specified at the same time.

See Also

ISPF Line Command A, ISPF Line Command B, ISPF Line Command Copy, ISPF Line Command
Overlay

ISPF Insert Mask Line MASK

Usage

MASK

Remarks

Displays the contents of the mask used with the insert (I) and text entry (TE) line commands. Normally,
when a line is inserted, the line is initially blank. By specifying an insert mask, you can insert a block of
lines with a particular template. The MASK line is editable. Note that if you specify multiple masks in one
file, only the first mask is used.

See Also

ISPF Line Command I, ISPF Line Command TE, ISPF Line Command TS

ISPF Make Data Lines MD, MDD and MDMD for blocks

Usage

• MD [n] - Make n data lines starting with the line with the command.

• MDD - Make a block of lines data, must match another MDDor MDMD.

• MDMD - Make a block of lines data, must match another MDDorMDMD.

Remarks

Converts one or more no-save lines to data so that they may be saved when the buffer is saved. There
are two forms to this command. The first form (MD [n]) specifies that the line and the subsequent n-1
lines are to be converted. The second (block) form (MDMDor MDD) is placed on the first and last lines of
the block to be converted.

See Also

ISPF Line Commands

1157

ISPF Line Commands, ISPF Line Command COLS, ISPF Line Command BNDS, ISPF Line
Command MASK, ISPF Line Command TABS

ISPF Overlay Lines O and OO for blocks

Usage

• O [n] - Overlay n lines starting with the line with the command.

• OO - Overlay a block of lines, must match another OO.

Remarks

Identifies one or more lines over which the copy or move block is to be overlaid. Text is only overlaid
within the column boundaries. If the copy or move block has less lines than the overlay, it is repeated until
it fills the entire overlay block.

There are two forms to this command. The first form (O [n]) specifies that the line and the subsequent n-1
lines are to be overlaid. The second (block) form (OO) is placed on the first and last lines of the block to
be overlaid.

You are allowed to specify multiple A, B, or O line commands to have the same copy or move block
inserted or overlaid in multiple places.

See Also

ispf_copy, ispf_paste, ISPF Line Command A, ISPF Line Command B, ISPF Line Command Copy,
ISPF Line Command Move, ISPF Line Command Overlay

ISPF Repeat Lines

Usage

• R [n] - Repeat the line with the command n times.

• RR [n] - Repeat the block n times, must match another RR.

Remarks

Specify lines to be repeated immediately following this line or block. There are two forms to this
command. The first form (R[n]) specifies that the line is to be repeated n times. The second (block) form
(RR[n]) is placed on the first and last lines of the block to be repeated n times.

See Also

ISPF Line Command A, ISPF Line Command B, ISPF Line Command Copy

ISPF Expose Next Level of Code S and SS

Usage

• S [n] - Unexclude (expose) the first n lines of an excluded block.

ISPF Line Commands

1158

• SS - Unexclude (expose) an entire excluded block.

Remarks

Expose one or more lines having the leftmost indentation level in a block of excluded lines. The SS line
command exposes the entire block of lines and is to S[m] where m is the number of lines in the block of
excluded lines.

See Also

ispf_exclude, ispf_reset, ISPF Line Command First, ISPF Line Command Last, ISPF Line
Command Exclude

ISPF Insert Tabs Ruler TABS or TABL

Usage

TABS

TABL

Remarks

Displays the tab definition line. After this line is inserted, the * marks may be moved in order to adjust the
tab positions. Note that if you have multiple tabs lines, and you change one, the subsequent tabs lines will
also be changed.

See Also

ispf_tabs, tabs

ISPF Insert Text TE

Usage

TE [n]

Remarks

Inserts one or more blank lines to allow power typing for text entry. This command is identical to the insert
(I) command, except that it switches the mode to wrap lines.

See Also

ispf_enter, ISPF Line Command I, ISPF Line Command MASK

ISPF Insert Lines TF

Usage

TF

Remarks

ISPF Line Commands

1159

Reflows paragraphs according to the current column boundary settings.

See Also

reflow_paragraph

ISPF Join Lines TJ

Usage

TJ

Remarks

Join this line with the next line.

See Also

ISPF Line Command TS, join_line

ISPF Split Line TS

Usage

TS

Remarks

Divides a line so that data can be added. The line is split at the column in which the cursor is in when you
press Enter. This command does not support multiple lines.

See Also

ISPF Line Command TJ, split_insert_line

ISPF Uppercase Lines UC, UCC and UCUC for blocks

Usage

• UC [n] - Uppercase n lines starting with the line with the command.

• UCC - Uppercase a block of lines, must match another UCCor UCC.

• UCUC - Uppercase a block of lines, must match another UCCorUCUC.

Remarks

Converts all lowercase letter alphabetic characters in one or more lines to uppercase. This command only
operates on text within the edit boundary columns. There are two forms to this command. The first form
(UC [n]) specifies that the line and the subsequent n-1 lines are to be converted. The second (block) form
(UCUCor UCC) is placed on the first and last lines of the block to be converted.

See Also

ISPF Line Commands

1160

ispf_caps, ISPF Line Command Lowercase, lowcase, upcase

ISPF Exclude Lines X and XX for blocks

Usage

• X [n] - Exclude n lines starting with the line with the command.

• XX - Exclude a block of lines, must match another XX.

Remarks

Specifies one or more lines to be hidden (excluded). There are two forms to this command. The first form
(X [n]) specifies that the line and the subsequent n-1 lines are to be excluded. The second (block) form
(XX) is placed on the first and last lines of the block to be excluded.

See Also

ispf_exclude, ispf_reset, ISPF Line Command First, ISPF Line Command Last, ISPF Line
Command Show

ISPF Select Lines Z and ZZ for blocks

Usage

• Z [n] - Select n lines starting with the line with the command.

• ZZ - Select a block of lines, must match another ZZ.

Remarks

Select a block of lines. There are two forms to this command. The first form (Z [n]) specifies that the line
and the subsequent n-1 lines are to be selected. The second (block) form (ZZ) is placed on the first and
last lines of the block to be selected.

See Also

ispf_cut, ispf_paste

XEDIT Line Commands

The following XEDIT line commands are supported and override the like-named ISPF commands when
there is a conflict. XEDIT commands can be enabled using the ISPF Options dialog box (Tools →
Options → ISPF Options).

XEDIT ISPF Description

/ R Repeat the marked line.

F A Paste text following line.

ISPF Line Commands

1161

XEDIT ISPF Description

A I Add (insert) line(s).

P B Paste text before line.

L LC Make line lowercase.

LL LCC Make block lowercase.

U UC Make line uppercase.

UU UCC Make block uppercase.

Note the following conflicts with standard ISPF edit line commands:

• F conflicts with unexclude first (F).

• A conflicts with paste after (A).

• L conflicts with unexclude last (L).

• LL conflicts with unexclude block (LL).

ISPF Unsupported Primary Commands

The table below shows ISPF primary commands that are not supported in the ISPF emulation mode. The
unsupported commands fall into two categories. First, some ISPF commands are made obsolete by more
powerful features, such as recovery, profile, and setundo. Second, some commands reflect features
that we chose not to implement for the emulation, such as ISPF macros, PDF statistics, model, and pack.

Unsupported Command Description

autolist Control the automatic printing of data to the ISPF
list data set.

builtin Process a built-in command, even if overloaded by
a macro.

define Define a name as an alias or macro.

imacro Save the name of an initial macro in the edit profile.

level Set the modification level number in PDF library
statistics.

ISPF Line Commands

1162

model Copy a model into the buffer or defines a model
class.

notes Control whether the MODEL command display
notes or not.

nulls Control null spaces.

pack Control whether data is to be stored compressed or
not.

profile Display edit profile.

recovery Specify edit recovery options.

rmacro Save a recovery macro in the edit profile.

setundo Control the UNDO mode.

stats Generate library statistics.

version Set the version number in the PDF library statistics.

view Save as browse command but prompts on save.

The following commands are supported in ISPF emulation mode.

Supported Command Description

ispf_bottom Move cursor to the end of the buffer.

ispf_down Move cursor to next page of text.

ispf_enter Handle the Enter key or Right Control key in ISPF
emulation.

ispf_home Place the focus on the command line in ISPF
emulation.

ispf_retrieve Does command line retrieval, getting the next
command line from the list.

ispf_retrieve_back Identical to the ispf_retrieve back command.

ISPF Line Commands

1163

ispf_top Move cursor up to the top of the buffer.

ispf_up Move cursor up to the previous page of text.

ispf_do_lc Immediately process all commands found in the line
prefix area.

Menu Editing

1164

Menu Editing
For information about accessing menus in SlickEdit and associated options, see Accessing Menus.

Creating and Editing Menus
Menus in SlickEdit are easily customized using a Menu Editor that allows you to add, delete, or change
menu entries. Modifications made through this UI will be preserved when you upgrade to a newer version
of SlickEdit.

Warning

SlickEdit menus are controlled by Slick-C macro files. You can customize menus by editing the
corresponding Slick-C files. However any such modifications will be lost when you upgrade to a
newer version of SlickEdit. Only modifications made through the Menu Editor will be preserved.

If you plan to customize your menu items, be sure to back up your configuration directory before
installing any updates or new versions of SlickEdit, as they will overwrite your changes.

To access the Menu Editor dialog, click Macro → Menus from the main menu (or use the open_menu
command). The following buttons are available:

• Open - Opens the menu specified in the combo box for editing with the Menu Editor. If the menu
specified does not already exist, it is created.

• New - Creates a new menu with a unique name for editing with the Menu Editor. The Menu Editor
allows you to change the name of the menu.

• Delete - Deletes the specified menu from the combo box.

• Show - Runs the menu by displaying it as a pop-up. Use this button during macro recording to create a
command which runs a menu by displaying it as a pop-up. If you bind the command to a left or right
button mouse event, the menu will be displayed at the cursor position.

Creating a New Menu Resource

Use the Menu Editor to create a new menu resource. From the main menu, click Macro → Menus (or use
the open_menu command), then click New on the Open Menu dialog. The Menu Editor is displayed. See
Menu Editor Dialog for more information.

To create a command which runs a menu by displaying it as a pop-up, after creating a menu, while macro
recording, click the Show button on the Open Menu dialog box. If you bind the recorded command to a
left or right mouse button event, the menu will be displayed at the cursor position. You DO NOT need to
specify key bindings for menu items because the Menu Editor automatically determines the key bindings
for you. To choose between short and long key names, from the main menu click Tools → Options →
Appearance → Advanced, then change the option Short key names.

Creating and Editing Menus

1165

See the Slick-C® Macro Programming Guide for information on creating forms with menu bars or
advanced information.

Editing Menus

To select a menu for editing, from the main menu click Macro → Menus (or use the open_menu
command). Select the menu to edit from the list, then click Open. The Menu Editor will be displayed. See
Menu Editor Dialog for a list of the available options.

Defining Menu Item Aliases

The Menu Item Alias dialog box allows you to define aliases (which are similar commands) for the
command that is being executed. This dialog box can be accessed by clicking the Alias button on the
Menu Editor. Enter each alias command on a separate line. If one of the alias commands are bound to a
key, that key name will be displayed to the right of the menu item. For example, the e and edit commands
are absolutely identically in function except that the e command requires fewer characters to type. The
gui_open command is identical to the edit command except that it prompts the user with a dialog box,
whereas the edit command prompts for files on the command line. These two examples illustrate the best
reasons for using aliases.

Enabling/Disabling Menu Items

SlickEdit has attributes to enable or disable predefines which you can specify for any command. When
these predefined auto-enabling attributes are not enough, you need to implement a callback which
determines the enable or disable state of the command. See the Slick-C® Macro Programming Guide for
information on enabling and disabling menu items with your own callback.

The Auto Enable Properties dialog box is used for these settings, and can be accessed from the main
menu by clicking Macro → Menus. When the Open Menu dialog box is displayed, click New to display
the Menu Editor. Click the Auto Enable button, and the Auto Enable Properties dialog is displayed.

For descriptions of the options on this dialog, see Auto Enable Properties Dialog .

Emulation Tables

1166

Emulation Tables

CUA Keys

CUA Cursor Movement

Left arrow Cursor left

Right arrow Cursor right

Up arrow Cursor up

Down arrow Cursor down

Ctrl+Home Top of buffer

Ctrl+End Bottom of buffer

Home Begin line

End End line

PgUp Page up

PgDn Page down

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+PgUp Top of window

Ctrl+PgDn Bottom of window

Tab Indent to next tab stop

Shift+Tab Back indent text to previous tab stop

Ctrl+J Go to line

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

CUA Keys

1167

Ctrl+Shift+Alt+Up Add new cursor above current cursor

CUA Inserting Text

Ins Insert/overwrite toggle

Enter Insert a line

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

Ctrl+Q Quote next character typed

CUA Deleting Text

Del Delete char under cursor

Backspace Delete char before cursor

Ctrl+Backspace Cut line

Ctrl+E Cut to end of line

Ctrl+Shift+K Cut word

CUA Searching

Ctrl+F Find

Ctrl+R Replace

Ctrl+G Find next occurrence

Ctrl+Shift+G Find previous occurrence

Ctrl+I Incremental search

CUA Keys

1168

Ctrl+Shift+I Reverse incremental search

Ctrl+Alt+Shift+F2 Stop search or search & replace

CUA Selection

Ctrl+A Select all

Ctrl+B Select block/column

Ctrl+L Select line

F8 Select character/stream

Ctrl+U Deselect

Ctrl+X Cut selection

Backspace, Del Delete selection

Tab Indent selection

Shift+Tab Unindent selection

Shift+F7 Shift selection left

Shift+F8 Shift selection right

Alt+= Execute commands in selection

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Right-Click & Drag Start block/column selection

Shift+Click Extend selection

Ctrl+Right-Click Move selection to cursor

Ctrl+Shift+Right-Click Copy selection to cursor

Double-Click Select word

CUA Keys

1169

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

CUA Clipboard

Ctrl+C, Ctrl+Ins Copy selection to clipboard

Ctrl+Shift+C Append selection to clipboard

Ctrl+K Copy word to clipboard

Ctrl+Shift+V List clipboards and optionally paste one

Ctrl+V, Shift+Ins Paste

Ctrl+Backspace Cut line

Ctrl+E Cut to end of line

Ctrl+Shift+K Cut word

Ctrl+X, Shift+Del Cut selection

Ctrl+Shift+X Append cut selection

CUA Command Line and Text Box Editing

Ctrl+X Cut selection

Ctrl+C Copy selection to clipboard

Ctrl+V Paste

Ctrl+Shift+C Append selection to clipboard

Ctrl+Shift+X Append cut selection

CUA Keys

1170

Ctrl+Shift+V List clipboards and optionally paste one

Esc Cursor to command line toggle

Space Complete argument

? List arguments

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+Shift+U Upcase word

Ctrl+Shift+L Lowcase word

Ctrl+Shift+K Cut word

Ctrl+E Cut to end of line

Ctrl+Backspace Cut line

Ins Insert/overwrite toggle

Ctrl+Q Quote next character

Ctrl+K Copy word to clipboard

Ctrl+X Retrieve previous command

Ctrl+C Retrieve next command

Ctrl+V Start or extend char/stream selection

Ctrl+Shift+C Start char/stream selection

Ctrl+Shift+X Append cut selection

Ctrl+Shift+V List clipboards and optionally paste one

Esc Cursor to command line toggle

CUA Files and Buffers

CUA Keys

1171

F2, Ctrl+S Save current buffer

Ctrl+N Next buffer

Ctrl+P Previous buffer

F7, Ctrl+O Edit a file or find buffer

Ctrl+Shift+B List buffers

F6 File compare

CUA Windowing

Ctrl+H Split window horizontally

Ctrl+Tab, Ctrl+F6 Next window

Ctrl+Shift+Tab, Ctrl+Shift+F6 Previous window

Ctrl+Shift+Z Zoom window toggle

Ctrl+F4 Close window

Alt+F2 Move window edge

Alt+F3 Create window edge

Ctrl+F7 Move

Ctrl+F8 Size

Ctrl+F9 Minimize

Ctrl+F10 Maximize

CUA Compiling and Programming Support

Alt+Dot (Pro only) List symbols

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

CUA Keys

1172

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

Alt+Comma (Pro only) Parameter Info

Ctrl+Space (Pro only) Complete symbol

Ctrl+Dot (Pro only) Push a bookmark and go to the definition
of the symbol at cursor

Ctrl+Alt+Dot (Pro only) Push a bookmark and go to the
declaration of the symbol at cursor

Ctrl+/ (Pro only) Push a bookmark and go to the first
reference to the symbol at cursor

Ctrl+Comma Pop a pushed bookmark

Ctrl+G Find next reference

Ctrl+Shift+G Find previous reference

Ctrl+M (Pro only) Build project

Ctrl+F5 (Pro only) Execute project

F4, Ctrl+Shift+Down Next error

Shift+F4, Ctrl+Shift+Up Previous error

Ctrl+Shift+S Set next error

Ctrl+Shift+E List errors

Shift+F10 (Pro only) Compile current buffer

Alt+1 Cursor to error/include file

F12 Make and load current macro buffer

Ctrl+Shift+M (Pro only) Start concurrent process

Ctrl+Shift+P Expand extension specific alias

Ctrl+Shift+O Expand global alias

CUA Keys

1173

Alt+F7 Project properties

CUA Debugging (Pro only)

F5 Start/continue debugging

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

F9 Toggle breakpoint

Ctrl+F9 Toggle breakpoint enable

Ctrl+Shift+F9 Clear all breakpoints

F10 Step over

F11 Step into

Ctrl+F10 Run to cursor

Alt+PadStar Show next statement

Ctrl+Alt+B, Alt+F9 Activate breakpoints window

Alt+3, Ctrl+Alt+W Activate watch window

Alt+4, Ctrl+Alt+V Activate variables window

Alt+7, Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

CUA Macros

Ctrl+F11 Start/end macro recording

Ctrl+F12 Terminate recording & run last recorded macro

Ctrl+Shift+F12 <key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

CUA Keys

1174

F12 Make and load current macro buffer

Ctrl+Break Halt Slick-C® macro that is prompting for a key with
get_event().

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Use this to
terminate infinite loops.

Ctrl+Shift+Space If running a dialog box, edits current dialog box.
Use this to close a dialog box that won't close. If
editing dialog box or macro, load and run dialog
box/macro.

CUA Miscellaneous

F1 Help for mode or context

Ctrl+F1 Help on word at cursor

Alt+F4 Safe exit

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+Dot Complete next word/variable

Ctrl+Shift+Space Complete more

Esc Cancel or command line toggle

Ctrl+Z, Alt+Backspace Undo

Shift+F9 Undo with cursor motion grouping

Ctrl+Y Redo

Ctrl+Shift+H Hex display toggle

Ctrl+Shift+U Upcase word

Ctrl+Shift+L Lowcase word

Ctrl+Shift+J Go to bookmark

Ctrl+0..Ctrl+9 Set bookmark 0..9

CUA Keys

1175

Ctrl+Shift+N Activate Bookmarks tool window

Ctrl+] Match parenthesis

Ctrl+\ Expand or collapse selective display

Ctrl+Shift+O Expand alias at cursor

Ctrl+D Change directory

Alt+F5 Restore MDI window

Alt+F10 Maximize MDI window

Visual C++ Keys

Visual C++ Cursor Movement

Left arrow Cursor left

Right arrow Cursor right

Up arrow Cursor up

Down arrow Cursor down

Ctrl+Home Top of buffer

Ctrl+End Bottom of buffer

Home Begin line

End End line

PgUp Page up

PgDn Page down

Ctrl+Left Previous word

Ctrl+Right Next word

Visual C++ Keys

1176

Ctrl+PgUp Top of window

Ctrl+PgDn Bottom of window

Tab Indent to next tab stop

Shift+Tab Back indent text to previous tab stop

Ctrl+G Go to line, offset, bookmark, error, definition,
declaration, or reference

Ctrl+J Previous preprocessing condition

Ctrl+K Next preprocessing condition

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

Visual C++ Inserting Text

Ins Insert/overwrite toggle

Enter Insert a line

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

Ctrl+Q Quote next character typed

Visual C++ Deleting Text

Del Delete char under cursor

Backspace Delete char before cursor

Visual C++ Keys

1177

Ctrl+L Cut line

Alt+Shift+L Cut sentence

Visual C++ Searching

Ctrl+F Find

Ctrl+H Replace

F3 Find next occurrence

Shift+F3 Find previous occurrence

Ctrl+I Incremental search

Ctrl+Shift+I Reverse incremental search

Ctrl+Alt+Shift+F2 Stop search or search & replace

Visual C++ Selection

Ctrl+A Select all

Ctrl+B Select block/column

Ctrl+F8 Select line

F8 Select character/stream

Ctrl+Shift+J Select previous preprocessing condition

Ctrl+Shift+K Select next preprocessing condition

Alt+U Deselect

Ctrl+X Cut selection

Backspace, Del Delete selection

Tab Indent selection

Visual C++ Keys

1178

Shift+Tab Unindent selection

Shift+F7 Shift selection left

Shift+F8 Shift selection right

Alt+= Execute commands in selection

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Right-Click & Drag Start block/column selection

Shift+Click Extend selection

Ctrl+Right-Click Move selection to cursor

Ctrl+Shift+Right-Click Copy selection to cursor

Double-Click Select word

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

Visual C++ Clipboard

Ctrl+C, Ctrl+Ins Copy selection to clipboard

Ctrl+Shift+C Append selection to clipboard

Ctrl+Shift+V List clipboards and optionally paste one

Ctrl+V, Shift+Ins Paste

Ctrl+L Cut line

Ctrl+X, Shift+Del Cut selection

Visual C++ Keys

1179

Ctrl+Shift+X Append cut selection

Alt+Shift+L Cut sentence

Visual C++ Command Line and Text Box Editing

Ctrl+X Cut selection

Ctrl+C Copy selection to clipboard

Ctrl+V Paste

Ctrl+Shift+C Append selection to clipboard

Ctrl+Shift+X Append cut selection

Ctrl+Shift+V List clipboards and optionally paste one

Esc Cursor to command line toggle

Space Complete argument

? List arguments

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+Shift+U Upcase word

Ctrl+U Lowcase word

Ctrl+L Cut line

Ctrl+Shift+L Delete line

Ins Insert/overwrite toggle

Ctrl+Q Quote next character

Alt+N Insert buffer name

Up arrow Retrieve previous command

Visual C++ Keys

1180

Down arrow Retrieve next command

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Shift+Click Extend selection

Double-Click Select word

Triple-Click Select line

Visual C++ Files and Buffers

F2, Ctrl+S Save current buffer

Ctrl+O Edit a file or find buffer

Ctrl+Shift+B List buffers

F6 File compare

Visual C++ Windowing

Ctrl+Tab, Ctrl+F6 Next window

Ctrl+Shift+Tab Previous window

Ctrl+F4 Close window

Visual C++ Compiling and Programming Support

Ctrl+Alt+T, Alt+Dot (Pro only) List symbols

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

Ctrl+Shift+Space, Alt+Comma (Pro only) Parameter Info

Visual C++ Keys

1181

Ctrl+Space (Pro only) Complete symbol

F12, Ctrl+Dot (Pro only) Push a bookmark and go to the definition
of the symbol at cursor

Ctrl+Alt+Dot (Pro only) Push a bookmark and go to the
declaration of the symbol at cursor

Shift+F12, Ctrl+/ (Pro only) Push a bookmark and go to the first
reference to the symbol at cursor

Ctrl+Comma Pop a pushed bookmark

F3 Find next reference

Shift+F3 Find previous reference

F4, Ctrl+Shift+Down Next error

Shift+F4, Ctrl+Shift+Up Previous error

F7 (Pro only) Build project

Shift+F10 (Pro only) Compile current buffer

Ctrl+Shift+G Cursor to error/include file

Ctrl+F12 Make and load current macro buffer

Ctrl+Shift+M (Pro only) Start concurrent process

Visual C++ Debugging (Pro only)

F5 Start/continue debugging

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

F9 Toggle breakpoint

Ctrl+F9 Toggle breakpoint enable

Ctrl+Shift+F9 Clear all breakpoints

Visual C++ Keys

1182

F10 Step over

F11 Step into

Ctrl+F10 Run to cursor

Alt+PadStar Show next statement

Ctrl+Alt+B, Alt+F9 Activate breakpoints window

Alt+3, Ctrl+Alt+W Activate watch window

Alt+4, Ctrl+Alt+V Activate variables window

Alt+7, Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

Visual C++ Macros

Ctrl+Shift+R Start/end macro recording

Ctrl+Shift+P Terminate recording & run last recorded macro

Ctrl+F12 Make and load current buffer

Ctrl+Shift+F12,<key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

Ctrl+Break Halt Slick-C® macro that is prompting for a key with
get_event()

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Halt Slick-C
macro that is executing. Use this to terminate
infinite loops.

Ctrl+Shift+Space If running a dialog box, edits current dialog box.
Use this to close a dialog box that won't close. If
editing dialog box or macro, load and run dialog
box/macro.

Visual C++ Miscellaneous

Visual C++ Keys

1183

F1 Help for mode or context

Ctrl+F1 Help on word at cursor

Alt+F4 Safe exit

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+Dot Complete next word/variable

Esc Cancel or command line toggle

Ctrl+Z, Alt+Backspace Undo

Shift+F9 Undo with cursor motion grouping

Ctrl+Y, Ctrl+Shift+Z Redo

Ctrl+Shift+H Hex display toggle

Ctrl+0..Ctrl+9 Set bookmark 0..9

Alt+Shift+F2 Activate Bookmarks tool window

Ctrl+E, Ctrl+] Match parenthesis

Ctrl+Shift+O Expand alias at cursor

Ctrl+D Activates search history

Alt+F5 Restore MDI window

Alt+F10 Maximize MDI window

Ctrl+Up Scroll up

Ctrl+Down Scroll down

Ctrl+Shift+T Transpose words

Alt+Shift+T Transpose lines

SlickEdit® Keys

SlickEdit® Keys

1184

SlickEdit® Cursor Movement

Left arrow, Ctrl+J Cursor left

Right arrow, Ctrl+L Cursor right

Up arrow, Ctrl+I Cursor up

Down arrow, Ctrl+K Cursor down

Ctrl+Home, Ctrl+X Ctrl+U Top of buffer

Ctrl+End, Ctrl+X Ctrl+J Bottom of buffer

Home, Ctrl+U Begin line

End, Ctrl+O End line

PgUp, Ctrl+P Page up

PgDn, Ctrl+N Page down

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+PgUp Top of window

Ctrl+PgDn Bottom of window

Tab Next tab stop

Shift+Tab Previous tab stop

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

SlickEdit® Inserting Text

Ins, Ctrl+X Ctrl+O Insert/overwrite toggle

SlickEdit® Keys

1185

Enter Insert a line

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Alt+N Insert buffer name

Shift+Space Insert a space (no syntax expansion)

Ctrl+X Tab Move text tab

Ctrl+Q Quote next character typed

Alt+S Split line at cursor

SlickEdit® Deleting Text

Del, Ctrl+D Delete char under cursor

Backspace Delete char before cursor

Ctrl+Backspace Cut line

Ctrl+E Cut to end of line

Alt+W Cut word

Alt+J Join line to cursor

SlickEdit® Searching

Ctrl+F Find next occurrence

Ctrl+Shift+F Find previous occurrence

Ctrl+S Incremental search

Ctrl+X Ctrl+Z Resume search and replace (Supports command
line replace command only)

SlickEdit® Keys

1186

Ctrl+X Ctrl+R Reverse incremental search

Ctrl+Alt+Shift+F2 Stop search or search and replace

SlickEdit® Selection

Alt+B Select block/column

Alt+L Select line

Alt+Z Select character/stream

Alt+U Deselect

Alt+C Copy selection to cursor

Alt+K Cut selection

Alt+M Move selection to cursor

Alt+F Fill selection

Shift+F7 Shift selection left

Shift+F8 Shift selection right

Ctrl+F3 Uppercase selection

Ctrl+F4 Lowercase selection

Alt+A Move/overlay block

Alt+O Overlay block selection

Alt+E Go to end of selection

Alt+Y Go to beginning of selection

Ctrl+X Ctrl+P Reflow selection

Alt+= Execute commands in selection

Shift+<Cursor keys> Start or extend char/stream selection

SlickEdit® Keys

1187

Click & Drag Start char/stream selection

Right-Click & Drag Start block/column selection

Shift+Click Extend selection

Ctrl+Right-Click Move selection to cursor

Ctrl+Shift+Right-Click Copy selection to cursor

Double-Click Select word

Triple-Click Select line

SlickEdit® Clipboard

Alt+V, Ctrl+Ins Copy selection to clipboard

Ctrl+X Ctrl+W Copy word to clipboard

Ctrl+X Ctrl+Y List clipboards and optionally paste one

Ctrl+Y, Shift+Ins Paste

Ctrl+Backspace Cut line

Ctrl+E Cut to end of line

Alt+W Cut word

Alt+K, Shift+Del Cut selection

SlickEdit® Command Line and Text Box Editing

The following keys are different in all Text Boxes except the command line if the CUA Text Box check box
is enabled. (Tools > Options > Redefine Common Keys):

Ctrl+X Cut selection

Ctrl+C Copy selection to clipboard

Ctrl+V Paste

SlickEdit® Keys

1188

Alt+A..Alt+Z Taken over by dialog manager for selecting controls

SlickEdit® Command Line Keys

Esc, Ctrl+A Cursor to command line toggle

Space Complete argument

? List arguments

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+F1 Upcase word

Ctrl+F2 Lowcase word

Alt+W Cut word

Ctrl+E Cut to end of line

Ctrl+Backspace Cut line

Alt+V Copy selection to clipboard

Ins Insert/overwrite toggle

Ctrl+Q Quote next character

Ctrl+X Ctrl+W Copy word to clipboard

Ctrl+Y Paste

Ctrl+X Ctrl+Y List clipboards and optionally paste one

Alt+N Insert buffer name

Ctrl+Space Expand alias at cursor. Use alias command to
define aliases.

Up arrow, Ctrl+I Retrieve previous command

Down arrow, Ctrl+K Retrieve next command

SlickEdit® Keys

1189

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Shift+Click Extend selection

Double-Click Select word

Triple-Click Select line

SlickEdit® Files and Buffers

F2, Ctrl+X Ctrl+S Save current buffer

F3, Ctrl+X 'K' Quit current buffer

F8, Ctrl+B Next buffer

Ctrl+F8, Ctrl+V Previous buffer

F4 Save and quit current buffer

F7 Edit a file or find buffer

Ctrl+X Ctrl+B List buffers

Ctrl+X 'B' Find buffer

F6 File compare

SlickEdit® Windowing

Ctrl+X '2' Split window horizontally

Ctrl+W, Ctrl+Tab Next window

Ctrl+Shift+Tab Previous window

Ctrl+Z Zoom window toggle

Ctrl+X '1' One window

SlickEdit® Keys

1190

SlickEdit® Compiling and Programming Support

Alt+Dot (Pro only) List symbols

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

Alt+Comma (Pro only) Parameter Info

Ctrl+H, Ctrl+Dot (Pro only) Push a bookmark and go to the definition
of the symbol at cursor

Ctrl+Alt+H, Ctrl+Alt+Dot (Pro only) Push a bookmark and go to the
declaration of the symbol at cursor

Ctrl+/ (Pro only) Push a bookmark and go to the first
reference to the symbol at cursor

Ctrl+X Ctrl+H, Ctrl+Comma Pop a pushed bookmark

Ctrl+F Find next reference

Ctrl+Shift+F Find previous reference

Ctrl+Space (Pro only) Complete symbol

Ctrl+X 'M' (Pro only) Build project

Ctrl+F5 (Pro only) Execute project

Alt+F10, Ctrl+X Ctrl+N Next error

Ctrl+X 'N' Set next error

Ctrl+F6 (Pro only) Compile current buffer

Alt+1 Cursor to error/include file

Ctrl+X Ctrl+L Make and load current macro buffer

Ctrl+C Stop concurrent process

Ctrl+X Ctrl+M (Pro only) Start concurrent process

SlickEdit® Keys

1191

Ctrl+Shift+P Expand extension specific alias

Ctrl+Shift+O Expand global alias

SlickEdit® Debugging (Pro only)

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

Ctrl+Shift+F9 Clear all breakpoints

F10 Step over

F11 Step into

Ctrl+F10 Run to cursor

Alt+PadStar Show next statement

Ctrl+Alt+B, Alt+F9 Activate breakpoints window

Alt+3, Ctrl+Alt+W Activate watch window

Alt+4, Ctrl+Alt+V Activate variables window

Alt+7, Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

SlickEdit® Macros

Ctrl+R Start/end macro recording

Ctrl+T Terminate recording & run last recorded macro

Ctrl+Shift+T,<key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

Ctrl+X Ctrl+L Make and load current buffer

Ctrl+Break Halt Slick-C® macro that is prompting for a key with

SlickEdit® Keys

1192

get_event()

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Use this to
terminate infinite loops.

Ctrl+Shift+Space If running a dialog box, edits current dialog box.
Use this to close a dialog box that won't close. If
editing dialog box or macro, load and run dialog
box/macro.

Ctrl+X 'E' Run last recorded macro

Ctrl+X '(' Start recording macro

Ctrl+X ')' End recording macro

SlickEdit® Miscellaneous

F1 Help for mode or context

F5 Configuration menu

Alt+X, Ctrl+X Ctrl+C Safe exit

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+Dot Complete next word/variable

Ctrl+Shift+Space Complete more

Esc, Ctrl+G Cancel

F9 Undo

Ctrl+F9 Undo with cursor motion grouping

Shift+F9, Ctrl+X R Redo

Ctrl+Shift+H Hex display toggle

Ctrl+F1 Upcase word

Ctrl+F2 Lowcase word

Shift+F5 Center line

SlickEdit® Keys

1193

Shift+F1 Scroll up

Shift+F2 Scroll down

Shift+F3 Scroll left

Shift+F4 Scroll right

Alt+S Split line

Alt+J Join line

Alt+P Reflow paragraph

Ctrl+Shift+N Activate Bookmarks tool window

Alt+T Match parenthesis

Alt+R Fundamental mode for next key press

Ctrl+X Ctrl+E OS Shell

Ctrl+X Ctrl+D Alias change directory

Brief Keys

Brief Cursor Movement

Left arrow Cursor left

Right arrow Cursor right

Up arrow Cursor up

Down arrow Cursor down

Ctrl+PgUp, Home(3x) Top of buffer

Ctrl+PgDn, End(3x) Bottom of buffer

Home Begin line

Brief Keys

1194

End End line

Alt+G Go to line

Alt+J Go to bookmark

PgUp Page up

PgDn Page down

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+Home, Home(2x) Top of window

Ctrl+End, End(2x) Bottom of window

Tab Insert tab or next tab stop

Shift+Tab Previous tab stop

Shift+Home Left side of window

Shift+End Right side of window

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

Brief Inserting Text

Alt+I Insert/overwrite toggle

Enter Maybe split insert line

Ctrl+Enter No split insert line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Brief Keys

1195

Shift+Space Insert a space (no syntax expansion)

Alt+Q Quote next character typed

Ctrl+A Insert buffer name

Brief Deleting Text

Del Delete char or selection

Backspace Delete char before cursor

PadMinus Cut line or selection

Alt+K Delete to end line

Ctrl+K Delete word

Alt+D Delete line

Ctrl+Backspace Delete previous word

Brief Searching

Alt+S, F5 Search forward

Shift+F5 Search again

Alt+F5, Ctrl+Shift+F5 Search backward

Ctrl+F5 Case sensitivity toggle

Ctrl+F6 Regular expression toggle

Alt+T, F6 Translate forward

Shift+F6 Translate again

Alt+F6, Ctrl+Shift+F6 Translate backward

Ctrl+S Forward incremental search

Brief Keys

1196

Ctrl+Alt+Shift+F2 Stop search or search & replace

Brief Clipboard

Ctrl+E Copy word to clipboard

Ctrl+L Paste recent clipboard

Ins, Ctrl+Y, Shift+Ins Paste

PadPlus, Ctrl+Ins Copy selection to clipboard

PadMinus, Shift+Del Cut line or selection

Brief Command Line and Text Box Editing

The following keys are different in all Text Boxes except the command line if the CUA Text Box check box
is enabled (Tools > Options > Redefine Common Keys):

Ctrl+X Cut selection

Ctrl+C Copy selection to clipboard

Ctrl+V Paste

Alt+A..Alt+Z Taken over by dialog manager for selecting controls

Brief Command Line Keys

F10, Esc Cursor to command line toggle

Space Complete argument

? List arguments

Alt+I Insert/overwrite toggle

Alt+Q Quote next character

Ctrl+E Copy word to clipboard

Brief Keys

1197

Ins, Ctrl+Y Paste

Ctrl+L Paste recent clipboard

Ctrl+A Insert buffer name

Ctrl+Space Expand alias at cursor. Use alias command to
define aliases.

Ctrl+Right Next word

Ctrl+Left Previous word

Ctrl+F1 Upcase word

Ctrl+F2 Lowcase word

Ctrl+F7 Capitalize word

Alt+K Delete to end line

Ctrl+K Delete word

Alt+D Delete line

Ctrl+Backspace Delete prev word

Up arrow Retrieve previous command

Down arrow Retrieve next command

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Shift+Click Extend selection

Double-Click Select word

Triple-Click Select line

Brief Files and Buffers

Alt+W Save current buffer

Brief Keys

1198

Ctrl+Minus Quit current buffer

Alt+E Edit a file or find buffer

Alt+X Safe exit w/write all option

Alt+O Change buffer name

Ctrl+F10 File compare

Alt+B List buffers

Alt+N Next buffer

Alt+Minus Previous buffer

Ctrl+X Save all buffers and exit

Alt+R Read file

Brief Windowing

F1 Change window

F2 Move window edge

F3 Create window edge

F4 Delete window edge

Ctrl+Z Zoom window toggle

Ctrl+J Split window horizontally

Ctrl+W, Ctrl+Tab Next window

Ctrl+Shift+Tab Previous window

Shift+Left Switch to left window

Shift+Right Switch to right window

Shift+Up Switch to window above

Brief Keys

1199

Shift+Down Switch to window below

Brief Compiling and Programming Support

Alt+Dot (Pro only) List symbols

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

Alt+Comma (Pro only) Parameter Info

Ctrl+Dot (Pro only) Push a bookmark and go to the definition
of the symbol at cursor

Ctrl+Alt+Dot (Pro only) Push a bookmark and go to the
declaration of the symbol at cursor

Ctrl+/ (Pro only) Push a bookmark and go to the first
reference to the symbol at cursor

Ctrl+Comma Pop a pushed bookmark

Ctrl+Space (Pro only) Complete symbol

Alt+F9, Ctrl+Shift+F9 (Pro only) Build project

Alt+F10, Ctrl+Shift+F10 (Pro only) Compile current buffer

Ctrl+N Next error

F9 Make and load macro

Ctrl+P List errors

Ctrl+O Stop concurrent process

Ctrl+I (Pro only) Start concurrent process

Ctrl+G List buffer procedures

Ctrl+Shift+P Expand extension specific alias

Brief Keys

1200

Ctrl+Shift+O Expand global alias

Brief Debugging (Pro only)

Ctrl+F9 Toggle breakpoint enable

F10 Step over

F11 Step into

Ctrl+F10 Run to cursor

Alt+PadStar Show next statement

Ctrl+Alt+B, Alt+F9 Activate breakpoints window

Alt+3, Ctrl+Alt+W Activate watch window

Alt+4, Ctrl+Alt+V Activate variables window

Alt+7, Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

Brief Selection

Alt+C Select block/column

Alt+L Select line

Alt+M Inclusive char selection

Alt+A Non-inclusive char selection

Del Delete selection

PadMinus Cut selection

Tab Indent selection

Shift+Tab Unindent selection

Brief Keys

1201

Shift+F8 Shift selection right

Alt+Y Go to beginning of selection

Ctrl+F3 Upcase selection

Ctrl+F4 Lowcase selection

Alt+= Execute commands in selection

Alt+F Fill selection

Click & Drag Start char/stream selection

Right-Click & Drag Start block/column selection

Shift+Click Extend selection

Ctrl+Right-Click Move selection to cursor

Ctrl+Shift+Right-Click Copy selection to cursor

Double-Click Select word

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

Brief Macros

F7 Start/end macro recording

Shift+F7 Pause recording toggle

F9 Make and load macro module

F8 Run last recorded macro

Alt+F7, Ctrl+Shift+F7 List recorded macros

Brief Keys

1202

Alt+F8, Ctrl+Shift+F8 Save last recorded macro

Ctrl+Shift+F12,<key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

Ctrl+Break Halt Slick-C® macro that is prompting for a key with
get_event()

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Use this to
terminate infinite loops.

Ctrl+Shift+Space If running a dialog box, edits current dialog box.
Use this to close a dialog box that won't close. If
editing dialog box or macro, load and run dialog
box/macro.

Brief Miscellaneous

Alt Menu bar

Alt+H Help for mode or context

Ctrl+F Configuration menu

Alt+X Safe exit

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+Dot Complete next word/variable

Ctrl+Shift+Space Complete more

Ctrl+X Write all buffers and exit

Esc Cancel

Alt+H Help for mode or context

Ctrl+F Configuration menu

Ctrl+Shift+H Hex display toggle

Ctrl+T Line to top

Brief Keys

1203

Ctrl+B Line to bottom

Alt+U, PadStar Undo

Ctrl+F9 Undo with cursor motion grouping

Ctrl+U Redo

Shift+F1 Scroll up

Ctrl+D, Shift+F2 Scroll down

Shift+F3 Scroll left

Shift+F4 Scroll right

Ctrl+F1 Upcase word

Ctrl+F2 Lowcase word

Ctrl+F7 Capitalize word

Ctrl+R Repeat next key stroke

Alt+Z Shell to DOS

Alt+V Version

Alt+P Print selection

Ctrl+C Center line

Alt+1, Alt+2, Alt+0 Set bookmark

Alt+Shift+J Activate Bookmarks tool window

Ctrl+Q Fundamental mode for next key press

Ctrl+Shift+O Expand alias at cursor

Alt+/ Alias change directory

Epsilon Keys

Epsilon Keys

1204

Epsilon Cursor Movement

Ctrl+A, Alt+Left Begin line

Ctrl+E, Alt+Right End of line

Left arrow, Ctrl+B Cursor left

Right arrow, Ctrl+F Cursor right

Ctrl+N, Down arrow Next line

Ctrl+P, Up arrow Previous line

Ctrl+V, PgDn Page down

Alt+V, PgUp Page up

Ctrl+Home, Alt+< Top of buffer

Ctrl+End, Alt+> Bottom of buffer

Ctrl+Left, Alt+B Previous word

Ctrl+Right, Alt+F Next word

Home Beginning of window

End End of window

Ctrl+Alt+B Previous level

Ctrl+Alt+F Next level

Alt+) Match parenthesis

Alt+[, Alt+Up Previous paragraph

Alt+], Alt+Down Next paragraph

Alt+M First non blank

Alt+A, Ctrl+Up Previous sentence

Alt+E, Ctrl+Down Next sentence

Epsilon Keys

1205

Ctrl+X, 'G' Go to line

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

Epsilon Inserting Text

Ins Insert/overwrite toggle

Tab, Ctrl+I Indent to previous line or insert tab character

Enter, Ctrl+M, Ctrl+J Insert a line

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

Ctrl+O Split line

Ctrl+Q Insert literal

Epsilon Deleting Text

Alt+\ Delete horizontal space

Ctrl+X Ctrl+O Delete blank lines

Alt+Del Cut previous level

Ctrl+Alt+K Cut level

Ctrl+Backspace Cut line

Ctrl+K Cut to end of line

Epsilon Keys

1206

Alt+D Cut word

Alt+K Cut sentence

Ctrl+Alt+H Cut previous word

Del, Ctrl+D Delete character under cursor

Backspace, Ctrl+H Delete character before cursor

Epsilon Searching

Ctrl+S Incremental search

Ctrl+R Reverse incremental search

Ctrl+Alt+S Regular expression search

Ctrl+Alt+R Reverse regular expression search

Alt+% Search and replace with prompting

Alt+& Search and replace without prompting

Ctrl+Alt+Shift+F2 Stop search or search & replace

Epsilon Selection

Ctrl+2 Select character/stream

Alt+@ Select block/column

Alt+H Select paragraph

Ctrl+X Ctrl+X Exchange point and start selection

Ctrl+X 'W' Write selection to file

Ctrl+Alt+\ Indent selection

Ctrl+X Ctrl+Alt+I Tabify selection

Epsilon Keys

1207

Ctrl+X Alt+I Untabify selection

Shift+F7 Shift block selection left

Shift+F8 Shift block selection right

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Right-Click & Drag Start block/column selection

Shift+Click Extend selection

Ctrl+Right-Click Move selection to cursor

Ctrl+Shift+Right-Click Copy selection to cursor

Double-Click Select word

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

Epsilon Clipboard

Ctrl+W, Shift+Del Cut selection

Ctrl+Y, Shift+Ins Paste

Alt+Y Select clipboard to insert

Alt+W, Ctrl+Ins Copy selection to clipboard

Ctrl+X Ctrl+A Copy word

Ctrl+K Cut to end of line

Alt+D Cut word

Epsilon Keys

1208

Alt+K Cut sentence

Alt+Del Cut previous level

Ctrl+Alt+K Cut level

Ctrl+Alt+H Cut previous word

Ctrl+Alt+W Append next clipboard

Epsilon Files and Buffers

Ctrl+X Ctrl+S Save current buffer

Ctrl+X 'K' Quit buffer

Ctrl+X 'B' Select buffer

Ctrl+X Ctrl+F Edit a file or find buffer

Ctrl+X Ctrl+W Save and rename buffer

Ctrl+F7 Write buffer to file

Ctrl+F2, Ctrl+X 'C' Compare windows

Ctrl+X Ctrl+B, Ctrl+X Alt+B List buffers

Ctrl+X Ctrl+V Replace buffer with a file on disk

Ctrl+X 'I' Insert file

Ctrl+X 'W' Write selection to file

Ctrl+X 'D' Directory edit mode

Epsilon Windowing

Ctrl+X '2' Split window horizontally

Ctrl+X '1' One window

Epsilon Keys

1209

Ctrl+X 'O', Alt+PgDn Next window

Ctrl+X 'P', Alt+PgUp Prev window

Ctrl+X Ctrl+D Delete window

Home Cursor to beginning of window

End Cursor to end of window

Ctrl+PgDn Shrink window

Ctrl+PgUp Expand window

Epsilon Compiling and Programming Support

Alt+Dot (Pro only) List symbols

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

Alt+Comma (Pro only) Info

Ctrl+Space (Pro only) Complete symbol

Ctrl+X 'M' (Pro only) Build project

Ctrl+F5 (Pro only) Execute project

Ctrl+X Ctrl+N, Alt+F10 Next error

Alt+F6 (Pro only) Compile current buffer

Ctrl+C Stop concurrent process

Ctrl+X Ctrl+M (Pro only) Start concurrent process

Ctrl+X Comma, Ctrl+Dot (Pro only) Push a bookmark and go to the definition
of the symbol at cursor

Ctrl+Alt+Dot (Pro only) Push a bookmark and go to the
declaration of the symbol at cursor

Epsilon Keys

1210

Ctrl+X Ctrl+H, Ctrl+Comma Pop a pushed bookmark

Ctrl+X Dot Go to definition

Ctrl+X Alt+Comma Context Tagging® - Tag Files dialog box

F3 Make and load current macro buffer

Ctrl+Shift+P Expand extension specific alias

Ctrl+Shift+O Expand global alias

Epsilon Debugging (Pro only)

F5 Start/continue debugging

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

F9 Toggle breakpoint

Ctrl+F9 Toggle breakpoint enable

Ctrl+Shift+F9 Clear all breakpoints

F10 Step over

F11 Step into

Ctrl+F10 Run to cursor

Alt+PadStar Show next statement

Ctrl+Alt+B, Alt+F9 Activate breakpoints window

Alt+3, Ctrl+Alt+W Activate watch window

Alt+4, Ctrl+Alt+V Activate variables window

Alt+7, Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

Epsilon Keys

1211

Epsilon Macros

Ctrl+X 'E' Run last recorded macro

F3 Make and load current buffer

Ctrl+X Alt+N Save last recorded macro

Ctrl+X '(' Start/end macro recording

Ctrl+X ')' End macro recording

Ctrl+Shift+F12,<key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

Ctrl+Break Halt Slick-C® macro that is prompting for a key with
get_event()

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Halt Slick-C
macro that is executing. Use this to terminate
infinite loops.

Ctrl+Shift+Space If running a dialog box, edits current dialog box.
Use this to close a dialog box that won't close. If
editing dialog box or macro, load and run dialog
box/macro.

Epsilon Command Line and Text Box Editing

The following keys are different in all Text Boxes except the command line if the CUA Text Box check box
is enabled (Tools > Options > Redefine Common Keys):

Ctrl+X Cut selection

Ctrl+C Copy selection to clipboard

Ctrl+V Paste

Alt+A..Alt+Z Taken over by dialog manager for selecting controls

Epsilon Command Line Keys

F2, Alt+X Cursor to command line toggle

Epsilon Keys

1212

Ctrl+D Delete character

Ctrl+H, Backspace Delete previous character

Tab, Ctrl+I Insert tab character

Ctrl+J, Enter, Ctrl+M ENTER argument

Space Complete argument

? List arguments

Ins Insert toggle

Alt+\ Delete horizontal space

Ctrl+Q Quote next character

Ctrl+Space Expand alias at cursor. Use alias command to
define aliases.

Ctrl+K Cut to end of line

Ctrl+Alt+H Cut previous word

Alt+D Cut word

Ctrl+W, Shift+Del Cut selection

Ctrl+Y, Shift+Ins Paste

Alt+Y Paste recent clipboard

Ctrl+Alt+W Append next clipboard

Alt+C Capitalize word

Alt+L Lowcase word

Alt+U Upcase word

Ctrl+T Transpose characters

Alt+T Transpose words

Epsilon Keys

1213

Ctrl+N, Down Retrieve previous argument (cmdline only)

Ctrl+P, Up Retrieve next argument (cmdline only)

F2, Alt+X Complete and enter argument (cmdline only)

Ctrl+D Start or extend char/stream selection

Ctrl+H, Backspace Start char/stream selection

Tab, Ctrl+I Extend selection

Ctrl+J, Enter, Ctrl+M Select word

Space Select line

Epsilon Miscellaneous

F1, Alt+?, Ctrl+- Help for mode or context

Alt+P Configuration menu

Ctrl+X Ctrl+C Safe exit

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+Dot Complete next word/variable

Ctrl+Shift+Space Complete more

Ctrl+G Cancel

F9, Ctrl+X 'U' Undo

Shift+F9, Ctrl+X 'R' Redo

Ctrl+F9 Undo w/cursor grouping

Ctrl+Shift+H Hex display toggle

Ctrl+T Transpose characters

Alt+T Transpose words

Epsilon Keys

1214

Ctrl+X Ctrl+T Transpose lines

Alt+U Upcase word

Alt+L Lowcase word

Alt+C Capitalize word

Ctrl+X 'F' Set margins

Alt+Q Reflow paragraph

Alt+S Center line within margins

Alt+) Find matching start paren

Ctrl+L Center line within window

Ctrl+Shift+O Expand alias at cursor

Ctrl+X / Alias change directory

F8, Ctrl+F8 Set macro variable

F4 Bind to key

F6 What is

F7 Change directory

Ctrl+X Ctrl+E Shell

Ctrl+X Ctrl+Z Resume

Ctrl+X '=' Display information on cursor position

Ctrl+X 'L' Count lines

Alt+~ Modify toggle

Alt+Z Scroll down

Ctrl+Z Scroll up

Epsilon Keys

1215

Epsilon Argument/Repeating a Key

Ctrl+U Select number of times to invoke a command. Sets
argument-count.

Ctrl+K Cuts argument-count complete lines

Ctrl+X Ctrl+O Change number of blank lines at or before cursor to
argument-count

Ctrl+X Ctrl+I, Ctrl+X Tab Indent or unindent selected lines by argument-count
characters

Alt+0..Alt+9 Select argument-count 0..9

Vim Keys
For a complete list of supported EX command, see Vim EX commands.

Differences Between SlickEdit Vim and gvim

SlickEdit Vim emulation does not support all Vim EX commands. Some are probably not worth adding.
Others haven't been done yet.

Note

Please post changes/enhancements you would like to see for SlickEdit's Vim emulation on the
forum.

Some more significant differences are listed below:

\%V, \%#, \%'m, \%l, \%c, \%V, \%[], \ze, \z1..\z9,
\z*(\)

Not yet supported in Vim regex syntax.

| Not supported in EX command line. Vim uses this
to add additional commands.

Vim Cursor Movement

Left arrow, Ctrl+J Cursor left

Vim Keys

1216

Right arrow, Ctrl+L Cursor right

Up arrow, Ctrl+I Cursor up

Down arrow, Ctrl+K Cursor down

Ctrl+Home, Ctrl+X Ctrl+U Top of buffer

Ctrl+End, Ctrl+X Ctrl+J Bottom of buffer

Home Begin line

End, Ctrl+O End line

PgUp, Ctrl+B Page up

PgDn, Ctrl+F Page down

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+PgUp Top of window

Ctrl+PgDn Bottom of window

Tab Indent to next tab stop

Shift+Tab Indent to previous tab stop

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

Vim Cursor Movement - Normal Mode Only

gj Down screen line (different when lines wrap)

gk Up screen line (different when lines wrap)

- Begin previous line

Vim Keys

1217

^ Begin text

0 Begin line

$ End line

G, gg Go to line

| Go to column

w Next word

W Next non-white space word

b Previous word

B Previous non-white space word

ge Backward to end of word

gE Backward to end of non-white space word

e End of word

E End of non-white space word

(Previous sentence

) Next sentence

{ Previous paragraph

} Next paragraph

[[Previous section

]] Next section

% Find matching paren

N % Move N % down a buffer

H Move to upper-left corner of window

M Move to middle of window

Vim Keys

1218

L Move to lower-left corner of window

' Jump to bookmarked line

~ Jump to bookmarked column

gm Move to middle of window on the current line

Vim Cursor Movement - Visual Mode Only

aw Select a word

iw Select inner word

aW Select |WORD|

iW Select inner |WORD|

as Select a sentence

is Select inner sentence

ap Select a paragraph

ip Select inner paragraph

ab Select a block

ib Select inner block

aB Select a Block

iB Select inner Block

Vim Inserting Text

Ins Insert/overwrite toggle

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

Vim Keys

1219

Vim Inserting Text - Normal Mode Only

i Insert text

I Insert text at beginning of line

a Append text

A Append text after end of line

o Insert text below current line

O Insert text above current line

Vim Deleting Text

Del Delete character under cursor

Ctrl+E Cut to end line

Ctrl+Backspace Cut line

Vim Deleting Text - Normal Mode Only

x Delete character under cursor

(visual) x Delete selection

X Delete character before cursor

(visual) d Delete selection

d Delete text

D Delete to end of line

Vim Searching

Command+F Find dialog

Ctrl+R (insert mode only) Replace dialog

Vim Keys

1220

Command+G Find next occurrence

Ctrl+Shift+G, Command+Shift+G Find previous occurrence

Ctrl+I Incremental search

Ctrl+Shift+I Reverse incremental search

Ctrl+Alt+Shift+F2 Stop search or search & replace

Vim Searching - Normal Mode Only

/ Search forward (accommodates multipliers)

? Search backward (accommodates multipliers)

n Forward repeat last search

N Backward repeat last search

f Forward character search

F Backward character search

t Move cursor up to character

T Move cursor backward after character

Semicolon (;) Repeat character search

Comma (,) Reverse repeat character search

m Set bookmark

Vim Selection

Ctrl+L Select line

Shift+F7 Shift block selection left

Shift+F8 Shift block selection right

Vim Keys

1221

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Right-Click & Drag Start block/column selection

Shift+Click Extend selection

Ctrl+Right-Click Move selection to cursor

Ctrl+Shift+Right-Click Copy selection to cursor

Double-Click Select word

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

Vim Selection - Normal Mode Only

v Character visual mode

V Line visual mode

Ctrl+V Block visual mode

o Move cursor to beginning (or end) of selection

Vim Clipboard

Ctrl+C, Command+C Copy selection to clipboard

Ctrl+K Copy word to clipboard

Ctrl+Shift+V List clipboards and optionally paste one

Ctrl+V, Command+V, Shift+Ins Paste

Vim Keys

1222

Ctrl+Backspace Cut line

Ctrl+E Cut to end of line

Ctrl+X (Insert mode only), Command+X, Shift+Del Cut selection

Vim Clipboard - Normal Mode Only

p Paste text after cursor

]p Paste text after cursor (adjust indent)

gp Paste text after cursor (leave cursor after new text)

(visual) p Paste clipboard contents over selection

P Paste text before cursor

[p Paste text before cursor (adjust indent)

gP Paste text before cursor (leave cursor after new
text)

y Copy text to clipboard

(visual) y Copy selection to clipboard

Y Copy line to clipboard

Vim Command Line and Text Box Editing

The following keys are different in all Text Boxes except the command line if the CUA Text Box check box
is enabled (Tools > Options > Redefine Common Keys):

Ctrl+X Cut selection

Ctrl+C Copy selection to clipboard

Ctrl+V Paste

Alt+A..Alt+Z Taken over by dialog manager for selecting controls

Vim Keys

1223

Vim Command Line and Text Box Editing - Normal Mode Only

Ctrl+Q Cursor to command line toggle

Space Complete argument

? List arguments

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+Shift+U Upcase selection

Ctrl+Shift+L Lowcase selection

Ctrl+E Cut to end of line

Ctrl+Backspace Cut line

Ins Insert/overwrite toggle

Ctrl+V Paste

Ctrl+K Copy word to clipboard

Ctrl+Shift+V List clipboards and optionally paste one

Ctrl+Space Expand alias at cursor. Use the alias command to
define aliases or the Ex command :abbr.

Up arrow, Ctrl+I Retrieve previous command

Down arrow, Ctrl+K Retrieve next command

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Shift+Click Extend selection

Double-Click Select word

Triple-Click Select line

Vim Keys

1224

Vim Files and Buffers

F2, Ctrl+S, Command+S Save current buffer

F3 Quit current buffer

F8 Next buffer

Ctrl+F8 Previous buffer

F4 Save and quit current buffer

F7, Ctrl+O, Command+O Open a file or find buffer

Ctrl+Shift+B List buffers

F6 File compare

Vim Files and Buffers - Normal Mode Only

:w Save current buffer

:q When in "One file per window mode" close window
and buffer. When in "Multiple files share window"
mode, close tile without closing buffer or close
buffer if only one tile left.

:clo[se], :bdelete When in "One file per window" mode close window
and buffer. When in "Multiple files share window"
mode, close buffer.

:bn[ext] Next buffer. When in "One file per window" mode,
switches to next window. When in "Multiple files
share window" mode, switches to next buffer within
the current window.

:bp[revious] Previous buffer. When in "One file per window"
mode, switches to previous window. When in
"Multiple files share window" mode, switches to
previous buffer within the current window.

:buffers List buffers.

:e[dit] filename Open file specified

Vim Keys

1225

:wq Save and quit current buffer

:q! Quit current buffer without saving

:wa[ll] Write all buffers

:qa[ll] Quit all buffers

:wqa[ll] Write and quit all buffers

:qa[ll]! Quit all buffers without saving

:xa[ll]! Write all changed buffers and exit

Vim Windowing

Ctrl+Tab Next window

Ctrl+Shift+Tab Previous window

Ctrl+Shift+Z Zoom window toggle

Vim Windowing - Normal Mode Only

:b[uffer] [buffer-id] Edits the file corresponding to the buffer id
specified.

:sb[uffer] [buffer-id] Split window horizontally. If [buffer-id] is specified,
the file corresponding to [buffer-id] is opened.

:sb[uffer] [file] Split window horizontally. If [file] is specified, file is
opened.

:sp[lit] [file] Split window horizontally. If [file] is specified, [file] is
opened.

:vs[plit] [file] Split window vertically. If [file] is specified, [file] is
opened.

Ctrl+w] Split window and jump to symbol under cursor

Ctrl+w f Split window and edit file name under the cursor

Vim Keys

1226

Ctrl+w n Split window with empty new window

Ctrl+w o Make current window the only visible window

Ctrl+w j Move cursor to window below

Ctrl+w k Move cursor to window above

Ctrl+w Ctrl+w Move cursor to window below (wrap)

Ctrl+w W Move cursor to window above (wrap)

Ctrl+w t Move cursor to top window

Ctrl+w b Move cursor to bottom window

Vim Compiling and Programming Support

Alt+Dot (Pro only) List symbols

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

Alt+Comma (Pro only) Parameter Info

Ctrl+Space (Pro only) Complete symbol

Ctrl+Dot (Pro only) Push a bookmark and go to the definition
of the symbol at cursor

Ctrl+Alt+Dot (Pro only) Push a bookmark and go to the
declaration of the symbol at cursor

Ctrl+/ (Pro only) Push a bookmark and go to the first
reference to the symbol at cursor

Ctrl+Comma Pop a pushed bookmark

Ctrl+M (Pro only) Build project

Ctrl+Shift+Down Next error

Vim Keys

1227

Ctrl+Shift+Up Previous error

Ctrl+Shift+S Set next error

Ctrl+F5 (Pro only) Execute project

Shift+10 (Pro only) Compile current buffer

Alt+1 Cursor to error

F12 Make load current macro buffer

Ctrl+Shift+M (Pro only) Start concurrent process

Ctrl+Shift+P Expand extension specific alias

Ctrl+Shift+O Expand global alias

Vim Debugging (Pro only)

F5 Start/continue debugging

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

F9 Toggle breakpoint

Ctrl+F9 Toggle breakpoint enable

Ctrl+Shift+F9 Clear all breakpoints

F10 Step over

F11 Step into

Ctrl+F10 Run to cursor

Alt+PadStar Show next statement

Alt+F9 Activate breakpoints window

Ctrl+Alt+W Activate watch window

Vim Keys

1228

Ctrl+Alt+V Activate variables window

Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

Vim Macros

Ctrl+F11 Start/end macro recording

F12 Make and load current macro buffer

Ctrl+Shift+F12,<key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

Ctrl+Break Halt Slick-C® macro that is prompting for a key with
get_event()

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Use this to
terminate infinite loops.

Ctrl+Shift+Space If editing dialog box or macro, load and run dialog
box/macro.

Vim Macros - Normal Mode Only

Dot Repeat last insert or delete

q{a-zA-Z0-9} Recording keyboard macro to clipboard(register) id
that follows. Press 'q' again to end recording.

@{a-zA-Z0-9} Playback keyboard macro for clipboard(register) id
that follows.

Vim Miscellaneous

Alt+F4, Command+Q, Command+F4 Safe exit

F1 Help for mode or context

Command+, Configuration menu

Vim Keys

1229

Ctrl+Shift+H Hex display toggle

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+Dot Complete next word/variable

Ctrl+Shift+Space Complete more

Esc Cancel

Ctrl+Z (insert mode only), Command+Z,
Alt+Backspace

Undo

Shift+F9 Undo with cursor motion grouping

Ctrl+Y (insert mode only), Command+Shift+Z Redo

Ctrl+A (command or visual mode only) Increment number

Ctrl+X (command or visual mode only) Decrement number

Ctrl+Shift+U Upcase selection

Ctrl+Shift+L Lowcase selection

Ctrl+] Match parenthesis

Ctrl+\ Expand or collapse selective display

Ctrl+Shift+O Expand alias at cursor

Alt+/, Command+/ Alias change directory

Vim Miscellaneous - Normal Mode Only

u Full undo

(visual) u Change selected text to lowercase

U Undo with cursor motion grouping

(visual) U Change selected text to uppercase

~ Toggle the case of current character

Vim Keys

1230

(visual) ~ Toggle the case of the selected text

c Change text

C Change to end of line

(visual) c, C Change text in selection

r Overstrike character(s)

(visual) r Replace text in selection

R Overstrike text

s Substitute character(s)

S Substitute line

< Shift text left

> Shift text right

J Join line (insert spaces)

(visual) J Join the selected lines (insert spaces)

(visual) gJ Join the selected lines (no spaces)

: EX command mode

Q EX editor mode

& Repeat last SUBSTITUTE

Esc, Ctrl+[Normal mode

Vim EX command line

Many Vim EX commands take the following form:

:[range]ex-cmd

range can either be a single range specifier (see table below) or a two comma (or semicolon) delimited
range specifies (as in 1,$).

Vim Keys

1231

Vim EX range specifiers

{number} Absolute line number.

. Current line.

$ Last line of file.

% Same as 1,$ which specifies the entire file.

't Line number corresponding to book mark specified.

'< Line number corresponding to first line of selection.

'> Line number corresponding to last line of selection.

/pattern[/] Next line which matches pattern. Pattern defaults to
Vim regular expression syntax (see Vim Regular
Expressions).

?pattern[?] Previous line which matches pattern. Pattern
defaults to Vim regular expression syntax (see Vim
Regular Expressions).

Vim EX commands

:!external-program Run external-program specified.

:[range]!external-program Filter line(s) specified with external-program
specified.

:[range]<[NumLines] Unindents line or NumLines specified by syntax
indent width or "shiftwidth" setting. You may specify
multiple less thans to unindent by a multiple of the
syntax indent. For example << unindents by syntax
indent*2.

:[range]>[NumLines] Indents line or NumLines specified by syntax indent
width or "shiftwidth" setting. You may specify
multiple greater thans to indent by a multiple of the
syntax indent. For example >> indents by syntax
indent*2.

:bd[elete] When in "One file per window" mode close window
and buffer. When in "Multiple files share window"

Vim Keys

1232

mode, close buffer.

:bn[ext] Next buffer. When in "One file per window" mode,
switches to next window. When in "Multiple files
share window" mode, switches to next buffer within
the current window.

:bp[revious] Previous buffer. When in "One file per window"
mode, switches to previous window. When in
"Multiple files share window" mode, switches to
previous buffer within the current window.

:bufdo cmd Execute cmd for each buffer.

:b[uffer] [buffer-id] Edits the file corresponding to the buffer id
specified.

:buffers List buffers.

:cd [path] Change directory to path if given or display current
directory.

:clo[se] When in "One file per window" mode close window
and buffer. When in "Multiple files share window"
mode, close buffer.

:[range]co[py] destLine Copy line(s) after destLine

:[range]d[elete] Delete line(s) specified

:e[dit] filename Open file specified

:f[ile] Displays file info which includes filename, current
line number, and number of lines in the file

:[range]g[lobal] /pattern/ [cmd] Mark lines with occurrences of pattern in the line
range specified. Apply cmd to all marked lines.
partern defaults to Vim regular expression syntax
(see Vim Regular Expressions). cmd defaults to
":print" if not specified.

:[range]g[lobal]! /pattern/ [cmd] Same as :global except lines without occurrences
of pattern are marked.

:h[elp] [vim-help-item] Provides help on the vim-help-item specified.
Currently supports EX commands and range

Vim Keys

1233

specifiers. For example, :help :s will display help
on the :substitute EX command. Help with no
parameters displays start of Vim emulation keys
section which provides a link to a list of the
supported EX commands.

:[range]j[oin] [NumLines] Join NumLines specified to current line. If a range is
specified, NumLines is ignored and lines in range
are joined to first line of range.

:k{a-z} Set bookmark with the specified name. Note that in
normal mode '' goes to the next bookmark which is
different than gvim.

:[range]l[ist] [NumLines] Displays the line(s) specified with a $ at the end of
each line. Same as :print but appends $ to the end
of each line.

:[range]m[ove] destLine Moves line(s) after destLine

:n[ext] Switches to next buffer.

:noh[lsearch] Clears highlighted search strings.

:[range]nu[mber] [NumLines] Displays the line(s) specified with a line number at
the beginning of each line. Same as :print but line
number is displayed at the beginning of each line.

:p[rint] [NumLines] Displays the line(s) specified.

:[range]pu[t] [x] Paste clipboard or text specified after the last line or
range specified. x can either be a
clipboard(register) name (a-z0-9+), ="text", ="\text\",
or =mathematical_expression (ex. =0x4a+0x20).

:q[uit] When in "One file per window mode" close window
and buffer. When in "Multiple files share window"
mode, close tile without closing buffer or close
buffer if only one tile left.

:q[uit]! Same as :quit but doesn't prompt to save changes.

:qa[ll] Close all buffers

:[range]r[ead] file Insert file specified after the last line of range
specified.

Vim Keys

1234

:[range]r[ead] !external-program Insert output from external-program specified after
the last line ofr range specified.

:red[o] Undoes an undo operation.

:reg[isters] Display all named and unnamed clipboards
(registers).

:rew[ind][!] Revert the current buffer to the contents on disk.
When ! is specified, buffer is reverted without
prompting whether to discard changes.

:sb[uffer] [buffer-id] Split window horizontally. If [buffer-id] is specified,
the file corresponding to [buffer-id] is opened.

:sb[uffer] [file] Split window horizontally. If [file] is specified, file is
opened.

:[range]s[ubstitute]/pattern/string/[options] Replace occurrences of pattern with occurrences of
string in the line range specified. By default, pattern
is interpreted as a Vim regular expression (see Vim
Regular Expressions). options is a string of one or
more options.

Options Description

c Confirm each
substitution. 'y' to
substitute match. 'l' to
substitute match and
then quit, 'n' to skip
match, Esc to quit
substituting, 'a' to
substitute remaining
matches, and 'q' to quit
substituting.

g Replace all occurrences
in the line. With this
option, only the first
occurrence in each line
is matched.

i Case insensitive
matching.

Vim Keys

1235

Options Description

I Case sensitive
matching.

e Case sensitive
matching.

< If found, place cursor at
beginning of word.

> If found, place cursor at
end of word.

r Interpret search pattern
as a SlickEdit® regular
expression.

l Interpret pattern as a
Perl regular expression.

~ Interpret pattern as a
Vim regular expression.

n Interpret pattern as
literal text (plain text
search) and not any
regular syntax.

u Interpret pattern as a
Perl regular expression.
Unix syntax regular
expressions are no
longer supported.

p Print current line after
substitution.

w Limit search to words.
Used to search for
variables.

v Preserve case. When
specified, each
occurrence found is
checked for all

Vim Keys

1236

Options Description

lowercase, all
uppercase, first word
capitalized, or mixed
case. The replace string
is converted to the same
case as the occurrence
found except when the
occurrence found is
mixed case (possibly
multiple capitalized
words). In this case, the
replace string is used
without modification.

:se[t] Display list of supported option settings.

:se[t] option=value Set option to value.

:sh[ell] Runs the default shell. The shell command
executed is specified in the 'shell' option.

:sp[lit] [file], :sbuffer [file] Split window horizontally. If [file] is specified, file is
opened.

:[range]t Synonym for copy.

:ta[g] [tag] If tag is specified, navigates to tag specified and
pushes a bookmark at the previous location.
Otherwise, bookmark is popped and cursor is
placed on the previous location.

:u[ndo] [tag] Undo last change.

:[range]v[global] /pattern/ [cmd] Same as :global!.

:ve[rsion] Displays product help about information.

:vs[plit] [file] Split window vertically. If [file] is specified, file is
opened.

[range]:w[rite][!] Save lines specified to current buffer. If ! is
specified, prompting to replace existing file is

Vim Keys

1237

suppressed.

:[range]w[rite][!] file Save specified lines to file specified. If ! is specified,
prompting to replace existing file is suppressed.

:[range]w[rite][!] >>file Append specified lines to file specified. If ! is
specified, prompting to replace existing file is
suppressed.

:wa[ll] Write all buffers

:wq Save the current buffer and quit.

:wqa[ll] Save and quit all buffers

:xa[ll]! Save all changed buffers and exit

:x Same as :wq.

:[range]y[ank] [x] Copy specified line(s) to the clipboard(register)
specified.

:[range]z [NumLines] Displays NumLines that follow the last line of the
range specified.

GNU Emacs Keys

GNU Emacs Cursor Movement

Alt+G Go to line

Ctrl+A Begin line

Ctrl+E End of line

Left arrow, Ctrl+B Cursor left

Right arrow, Ctrl+F Cursor right

Ctrl+N, Down arrow Next line

Ctrl+P, Up arrow Previous line

GNU Emacs Keys

1238

Ctrl+V, PgDn Page down

Alt+V, PgUp Page up

Home, Alt+< Top of buffer

End, Alt+> Bottom of buffer

Alt+Left, Ctrl+Left, Alt+B Previous word

Alt+Right, Ctrl+Right, Alt+F Next word

Ctrl+Alt+B Previous level

Ctrl+Alt+F Next level

Alt+) Match parenthesis

Alt+[, Alt+Up Previous paragraph

Alt+], Alt+Down Next paragraph

Alt+M First non blank

Alt+A, Ctrl+Up Previous sentence

Alt+E, Ctrl+Down Next sentence

Ctrl+X, 'G' Go to line

Alt+Home Top of file in next window

Alt+End End of file in next window

Alt+PgDn Page down next window

Alt+PgUp Page up next window

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

GNU Emacs Keys

1239

GNU Emacs Inserting Text

Ins Insert/overwrite toggle

Tab, Ctrl+I Indent to previous line or insert tab character

Enter, Ctrl+M, Ctrl+J Insert a line

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

Ctrl+O Split line

Ctrl+Q Insert literal

GNU Emacs Deleting Text

Alt+\ Delete horizontal space

Ctrl+X Ctrl+O Delete blank lines

Alt+Del Cut previous word

Ctrl+Alt+K Cut level

Ctrl+Backspace Cut previous word

Ctrl+K Cut to end of line

Alt+D Cut word

Alt+K Cut sentence

Ctrl+Alt+H Cut previous word

Del, Ctrl+D Delete character under cursor

Backspace, Ctrl+H Delete character before cursor

GNU Emacs Keys

1240

GNU Emacs Searching

Ctrl+S Incremental search

Ctrl+R Reverse incremental search

Ctrl+Alt+S Regular expression search

Ctrl+Alt+R Reverse regular expression search

Alt+% Search and replace with prompting

Alt+& Search and replace without prompting

Ctrl+Alt+Shift+F2 Stop search or search & replace

GNU Emacs Selection

Ctrl+Shift+2 Select character/stream

Alt+@ Select next word

Alt+H Select paragraph

Ctrl+X Ctrl+X Exchange point and start selection

Ctrl+X 'W' Write selection to file

Ctrl+Alt+\ Indent selection

Ctrl+X Ctrl+Alt+I Tabify selection

Ctrl+X Alt+I Untabify selection

Shift+F7 Shift block selection left

Shift+F8 Shift block selection right

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Right-Click & Drag Start block/column selection

GNU Emacs Keys

1241

Shift+Click Extend selection

Ctrl+Right-Click Move selection to cursor

Ctrl+Shift+Right-Click Copy selection to cursor

Double-Click Select word

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

GNU Emacs Clipboard

Ctrl+W, Shift+Del Cut selection

Ctrl+Y, Shift+Ins Paste

Alt+Y Select clipboard to insert

Alt+W, Ctrl+Ins Copy selection to clipboard

Ctrl+X Ctrl+A Copy word

Ctrl+K Cut to end of line

Alt+D Cut word

Alt+K Cut sentence

Alt+Del Delete previous word

Ctrl+Alt+K Cut level

Ctrl+Alt+H Cut previous word

Ctrl+Alt+W Append next clipboard

GNU Emacs Keys

1242

GNU Emacs Files and Buffers

Ctrl+X Ctrl+S Save current buffer

Ctrl+X 'K' Quit buffer

Ctrl+X 'B' Select buffer

Ctrl+X Ctrl+F Edit a file or find buffer

Ctrl+X Ctrl+W Save and rename buffer

Ctrl+F7 Write buffer to file

Ctrl+F2, Ctrl+X 'C' Compare windows

Ctrl+X Ctrl+B, Ctrl+X Alt+B List buffers

Ctrl+X Ctrl+V Replace buffer with a file on disk

Ctrl+X 'I' Insert file

Ctrl+X 'W' Write selection to file

Ctrl+X 'D' Directory edit mode

GNU Emacs Windowing

Ctrl+X '2' Split window horizontally

Ctrl+X '1' One window

Ctrl+X 'O' Next window

Ctrl+X 'P' Prev window

Ctrl+PgDn Shrink window

Ctrl+PgUp Expand window

GNU Emacs Compiling and Programming Support

GNU Emacs Keys

1243

Alt+Dot (Pro only) List symbols

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

Alt+Comma (Pro only) Parameter Info

Ctrl+Space (Pro only) Complete symbol

Ctrl+X 'M' (Pro only) Build project

Ctrl+F5 (Pro only) Execute project

Ctrl+X Ctrl+N, Alt+F10 Next error

Alt+F6 (Pro only) Compile current buffer

Ctrl+C C Stop concurrent process

Ctrl+X Ctrl+M (Pro only) Start concurrent process

Ctrl+X Comma, Ctrl+Dot (Pro only) Push a bookmark and go to the definition
of the symbol at cursor

Ctrl+Alt+Dot (Pro only) Push a bookmark and go to the
declaration of the symbol at cursor

Ctrl+X Ctrl+H, Ctrl+Comma Pop a pushed bookmark

Ctrl+X Dot Go to definition

Ctrl+X Alt+Dot Make tag file

Ctrl+X Alt+Comma Select tag file

F3 Make and load current macro buffer

Ctrl+Shift+P Expand extension specific alias

Ctrl+Shift+O Expand global alias

GNU Emacs Debugging (Pro only)

GNU Emacs Keys

1244

F5 Start/continue debugging

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

F9 Toggle breakpoint

Ctrl+F9 Toggle breakpoint enable

Ctrl+Shift+F9 Clear all breakpoints

F10 Step over

F11 Step into

Ctrl+F10 Run to cursor

Alt+PadStar Show next statement

Ctrl+Alt+B, Alt+F9 Activate breakpoints window

Alt+3, Ctrl+Alt+W Activate watch window

Alt+4, Ctrl+Alt+V Activate variables window

Alt+7, Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

GNU Emacs Macros

Ctrl+X 'E' Run last recorded macro

F3 Make and load current buffer

Ctrl+X Alt+N Save last recorded macro

Ctrl+X '(' Start/end macro recording

Ctrl+X ')' End macro recording

Ctrl+Shift+F12,<key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

GNU Emacs Keys

1245

Ctrl+Break Halt Slick-C® macro that is prompting for a key with
get_event()

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Halt Slick-C
macro that is executing. Use this to terminate
infinite loops.

Ctrl+Shift+Space If running a dialog box, edits current dialog box.
Use this to close a dialog box that will not close. If
editing dialog box or macro, load and run the dialog
box/macro.

GNU Emacs Command Line and Text Box Editing

The following keys are different in all Text Boxes except the command line if the CUA Text Box check box
is enabled (Tools > Options > Redefine Common Keys):

Ctrl+X Cut selection

Ctrl+C Copy selection to clipboard

Ctrl+V Paste

Alt+A..Alt+Z Taken over by dialog manager for selecting controls

GNU Emacs Command Line Keys

F2, Alt+X Cursor to command line toggle

Ctrl+D Delete character

Backspace Delete previous character

Tab, Ctrl+I Insert tab character

Ctrl+J, Enter Ctrl+M ENTER argument

Space Complete argument

? List arguments

Ins Insert toggle

GNU Emacs Keys

1246

Alt+\ Delete horizontal space

Ctrl+Q Quote next character

Ctrl+Space Expand alias at cursor. Use alias command to
define aliases.

Ctrl+K Cut to end of line

Ctrl+Alt+H Cut previous word

Alt+D Cut word

Ctrl+W, Shift+Del Cut selection

Ctrl+Y, Shift+Ins Paste

Alt+Y Paste recent clipboard

Ctrl+Alt+W Append next clipboard

Alt+C Capitalize word

Alt+L Lowcase word

Alt+U Upcase word

Ctrl+T Transpose characters

Alt+T Transpose words

Ctrl+N, Down Retrieve previous argument

Ctrl+P, Up Retrieve next argument

ESC, Ctrl+[Complete and enter argument

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Shift+Click Extend selection

Double-Click Select word

GNU Emacs Keys

1247

Triple-Click Select line

GNU Emacs Miscellaneous

F1, Alt+?, Ctrl+- Help for mode or context

Ctrl+H GNU Emacs Help

Alt+P Configuration menu

F10 Main menu for mode

Ctrl+X Ctrl+C Safe exit

Ctrl+Shift+Comma Select from cursor to beginning of buffer

Ctrl+Shift+Dot Select from cursor to end of buffer

Ctrl+Shift+Space Complete more

Ctrl+G Cancel

Ctrl+/, F9, Ctrl+X 'U' Undo

Shift+F9 Redo

Ctrl+F9 Undo w/cursor grouping

Ctrl+Shift+H Hex display toggle

Ctrl+T Transpose characters

Alt+T Transpose words

Ctrl+X Ctrl+T Transpose lines

Alt+U Upcase word

Alt+L Lowcase selection

Alt+C Capitalize word

Ctrl+X 'F' Set margins

GNU Emacs Keys

1248

Alt+Q Reflow paragraph

Alt+S, Pad5 Center line within margins

Ctrl+Shift+F2 Activate Bookmarks tool window

Alt+) Find matching start paren

Ctrl+L Center line within window

Ctrl+Shift+O Expand alias at cursor

Ctrl+X / Alias change directory

F8, Ctrl+F8 Set macro variable

F4 Bind to key

F6 What is key

F7 Change directory

Ctrl+X Ctrl+E Shell

Ctrl+X Ctrl+Z Minimize editor

Ctrl+X '=' Display information on cursor position

Ctrl+X 'L' Count lines

Alt+~ Modify toggle

Alt+Z Zap to char

Ctrl+Z Iconize MDI window

GNU Emacs Argument/Repeating a Key

Ctrl+U Select number of times to invoke a command. Sets
argument-count.

Ctrl+X Ctrl+O Change number of blank lines at or before cursor to
argument-count

GNU Emacs Keys

1249

Ctrl+X Ctrl+I, Ctrl+X Tab Indent or unindent selected lines by argument-count
characters

Alt+0..Alt+9 Select argument-count 0..9

Ctrl+0..Ctrl+9 Select argument-count 0..9

ISPF Keys

ISPF Cursor Movement

Left arrow Cursor left, if in first column, cursor moves into
prefix area

Right arrow Cursor right, if at end of prefix area, moves to first
column of line

Up arrow Cursor up

Down arrow Cursor down

Ctrl+Home Top of buffer

Ctrl+End Bottom of buffer

Home Begin line

End End line

PgUp Page up

PgDn Page down

F7 Page up

F8 Page down

F10 Page left

F11 Page right

Ctrl+Left Previous word

ISPF Keys

1250

Ctrl+Right Next word

Ctrl+PgUp Top of window

Ctrl+PgDn Bottom of window

Tab Indent or move to next tab stop

Shift+Tab Move to previous tab stop, or if in first column,
move to prefix area

Ctrl+J Go to line

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

ISPF Line Prefix Commands

.label Define line prefix label

bnds Insert left and right boundary ruler line

tabs Insert tabs ruler line

cols Insert column ruler line

ISPF Inserting Text

Ins Insert/overwrite toggle

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

Ctrl+Q Quote next character typed

ISPF Keys

1251

ISPF Inserting Text - Line Prefix Commands

i [n] Insert n lines after this line

te [n] Insert n lines for word-wrap text entry

tj Join line

ts Split line

mask Insert new line mask

d [n] Delete n lines

dd Delete a block of lines

ISPF Deleting Text

Del Delete char under cursor

Backspace Delete char before cursor

Ctrl+Backspace Cut line

Ctrl+E Cut to end of line

Ctrl+Shift+K Cut word

ISPF Deleting Text - Line Prefix Commands

d [n] Delete n lines

dd Delete a block of lines

ISPF Searching

Ctrl+F Find

Ctrl+R Replace

ISPF Keys

1252

Ctrl+G Find next occurrence

Ctrl+Shift+G Find previous occurrence

F5 Find next occurrence

F6 Repeat last change

Ctrl+I Incremental search

Ctrl+Shift+I Reverse incremental search

Ctrl+Alt+Shift+F2 Stop search or search & replace

ISPF Selection

Ctrl+A Select all

Ctrl+B Select block/column

Ctrl+L Select line

Ctrl+U Deselect

Ctrl+X, Shift+F1 Cut selection

Backspace, Del, Shift+F4 Delete selection

Tab Indent selection

Shift+Tab Unindent selection

Shift+F7 Shift selection left

Shift+F8 Shift selection right

Alt+= Execute commands in selection

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Right-Click & Drag Start block/column selection

ISPF Keys

1253

Shift+Click Extend selection

Ctrl+Right-Click Move selection to cursor

Ctrl+Shift+Right-Click Copy selection to cursor

Double-Click Select word

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

ISPF Selection - Line Prefix Commands

([n], (([n] Shift block n columns left

) [n],)) [n] Shift block n columns right

< [n], << [n] Shift data n columns right

> [n], >> [n] Shift data n columns right

c [n] Copy n lines

cc Copy a block of lines

m [n] Move n lines

mm Move a block of lines

z [n] Select n lines

zz Select a block of lines

ISPF Clipboard

Ctrl+C, Ctrl+Ins, Shift+F2 Copy selection to clipboard

ISPF Keys

1254

Ctrl+Shift+C Append selection to clipboard

Ctrl+K Copy word to clipboard

Ctrl+Shift+V List clipboards and optionally paste one

Ctrl+V, Shift+Ins, Shift+F3 Paste

Ctrl+Backspace Cut line

Ctrl+E Cut to end of line

Ctrl+Shift+K Cut word

Ctrl+X, Shift+Del, Shift+F1 Cut selection

Ctrl+Shift+X Append cut selection

ISPF Clipboard - Line Prefix Commands

a [n] Insert block after, repeat n times

b [n] Insert block before, repeat n times

o [n] Overlay n lines

oo Overlay a block of lines

r [n] Repeat a line n times

rr [n] Repeat a block n times

z [n] Select n lines

zz Select a block of lines

ISPF Command Line and Text Box Editing

Ctrl+X Cut selection

Ctrl+C Copy selection to clipboard

ISPF Keys

1255

Ctrl+V Paste

Ctrl+Shift+C Append selection to clipboard

Ctrl+Shift+X Append cut selection

Ctrl+Shift+V List clipboards and optionally paste one

Esc Cursor to command line toggle

Space Complete argument

? List arguments

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+Shift+U Upcase word

Ctrl+Shift+L Lowcase word

Ctrl+Shift+K Cut word

Ctrl+E Cut to end of line

Ctrl+Backspace Cut line

Ins Insert/overwrite toggle

Ctrl+Q Quote next character

Ctrl+K Copy word to clipboard

Up arrow Retrieve previous command

Down arrow Retrieve next command

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Shift+Click Extend selection

Double-Click Select word

ISPF Keys

1256

Triple-Click Select line

F12 Retrieve previous command from command line

Shift+F12 Retrieve next command from command line

ISPF Files and Buffers

F2, Ctrl+O Edit a file or find buffer

F3, F4 Save (if autosave is on) and quit current buffer

F3, Ctrl+S Save current buffer

Ctrl+N Next buffer

Ctrl+P Previous buffer

F9 Next buffer or window

Shift+F9 Previous buffer or window

Ctrl+Shift+B List buffers

ISPF Windowing

Ctrl+H Split window horizontally

Ctrl+Tab, Ctrl+F6 Next window

Ctrl+Shift+Tab, Ctrl+Shift+F6 Previous window

Ctrl+Shift+Z Zoom window toggle

Ctrl+F4 Close window

Alt+F2 Move window edge

Alt+F3 Create window edge

Ctrl+F7 Move

ISPF Keys

1257

Ctrl+F8 Size

Ctrl+F9 Minimize

Ctrl+F10 Maximize

ISPF Compiling and Programming Support

Alt+Dot (Pro only) List symbols

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

Alt+Comma (Pro only) Parameter Info

Ctrl+Space (Pro only) Complete symbol

Ctrl+Dot (Pro only) Push a bookmark and go to the definition
of the symbol at cursor

Ctrl+Alt+Dot (Pro only) Push a bookmark and go to the
declaration of the symbol at cursor

Ctrl+/ (Pro only) Push a bookmark and go to the first
reference to the symbol at cursor

Ctrl+Comma Pop a pushed bookmark

Ctrl+G Find next reference

Ctrl+Shift+G Find previous reference

Ctrl+M (Pro only) Build project

Ctrl+F5 (Pro only) Execute project

Ctrl+Shift+Down Next error

Ctrl+Shift+Up Previous error

Ctrl+Shift+S Set next error

ISPF Keys

1258

Ctrl+Shift+E List errors

Shift+F10 (Pro only) Compile current buffer

Alt+1 Cursor to error/include file

Ctrl+Shift+M (Pro only) Start concurrent process

Ctrl+Shift+P Expand extension specific alias

Ctrl+Shift+O Expand global alias

ISPF Debugging (Pro only)

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

F9 Toggle breakpoint

Ctrl+F9 Toggle breakpoint enable

Ctrl+Shift+F9 Clear all breakpoints

F10 Step over

F11 Step into

Ctrl+F10 Run to cursor

Alt+PadStar Show next statement

Ctrl+Alt+B, Alt+F9 Activate breakpoints window

Alt+3, Ctrl+Alt+W Activate watch window

Alt+4, Ctrl+Alt+V Activate variables window

Alt+7, Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

ISPF Macros

ISPF Keys

1259

Ctrl+F11 Start/end macro recording

Ctrl+F12 Terminate recording & run last recorded macro

Ctrl+Break Halt Slick-C® macro that is prompting for a key with
get_event()

Ctrl+Shift+F12,<key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Use this to
terminate infinite loops.

Ctrl+Shift+Space If running a dialog box, edits current dialog box.
Use this to close a dialog box that will not close. If
editing a dialog box or macro, load and run the
dialog box/macro.

ISPF Selective Display

x [n] Exclude n lines

xx Exclude a block of lines

f [n] Expose first n lines of excluded block

l [n] Expose last n lines of excluded block

s [n] Expose n lines at first indentation level

ISPF Miscellaneous

F1 Help for mode or context

Ctrl+F1 Help on word at cursor

Alt+F4 Safe exit

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+Dot Complete next word/variable

Ctrl+Shift+Space Complete more

ISPF Keys

1260

Esc Cancel or command line toggle

Ctrl+Z, Alt+Backspace Undo

Ctrl+Y Redo

Ctrl+Shift+H Hex display toggle

Ctrl+Shift+U Upcase word

Ctrl+Shift+L Lowcase word

Ctrl+Shift+J Go to bookmark

Ctrl+0..Ctrl+9 Set bookmark 0..9

Ctrl+Shift+N Activate Bookmarks tool window

Ctrl+] Match parenthesis

Ctrl+\ Expand or collapse selective display

Ctrl+Shift+O Expand alias at cursor

Ctrl+D Change directory

Alt+F5 Restore MDI window

Alt+F10 Maximize MDI window

Enter Execute line prefix commands or, if there are none,
go to the next line.

Ctrl+Enter Execute line prefix commands

Right-Ctrl Alternate key for executing line prefix commands

ISPF Miscellaneous - Line Prefix Commands

lc [n] Lowcase n lines

lclc, lcc Lowcase block of lines

md [n] Make n data lines

ISPF Keys

1261

mdmd, mdd Make data lines

uc [n] Upcase n lines

uclc, ucc Upcase block of lines

tf Reflow paragraph

CodeWarrior Keys

CodeWarrior Cursor Movement

Left arrow Cursor left

Right arrow Cursor right

Up arrow Cursor up

Down arrow Cursor down

Ctrl+Home Top of buffer

Ctrl+End Bottom of buffer

Home Begin line

End End line

PgUp Page up

PgDn Page down

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+PgUp Top of window

Ctrl+PgDn Bottom of window

Tab Indent to next tab stop

CodeWarrior Keys

1262

Shift+Tab Back indent text to previous tab stop

Ctrl+G Go to line

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

CodeWarrior Inserting Text

Ins Insert/overwrite toggle

Enter Insert a line

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

Ctrl+Q Quote next character typed

CodeWarrior Deleting Text

Del Delete char under cursor

Backspace Delete char before cursor

Ctrl+Backspace Cut line

Ctrl+E Cut to end of line

Ctrl+Shift+K Cut word

CodeWarrior Searching

Alt+F4, Ctrl+F Find

CodeWarrior Keys

1263

Ctrl+R, Ctrl+= Replace

F3 Find next occurrence

Shift+F3 Find previous occurrence

Ctrl+I Incremental search

Ctrl+Shift+I Reverse incremental search

Ctrl+Alt+Shift+F2 Stop search or search & replace

CodeWarrior Selection

Ctrl+A Select all

Ctrl+L Select line

F8 Select character/stream

Ctrl+U Deselect

Ctrl+X Cut selection

Backspace, Del Delete selection

Tab Indent selection

Shift+Tab Unindent selection

Shift+F7 Shift selection left

Shift+F8 Shift selection right

Alt+= Execute commands in selection

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Right-Click & Drag Start block/column selection

Shift+Click Extend selection

CodeWarrior Keys

1264

Ctrl+Right-Click Move selection to cursor

Ctrl+Shift+Right-Click Copy selection to cursor

Double-Click Select word

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

CodeWarrior Clipboard

Ctrl+C, Ctrl+Ins Copy selection to clipboard

Ctrl+Shift+C Append selection to clipboard

Ctrl+K Copy word to clipboard

Ctrl+Shift+V List clipboards and optionally paste one

Ctrl+V, Shift+Ins Paste

Ctrl+Backspace Cut line

Ctrl+E Cut to end of line

Ctrl+Shift+K Cut word

Ctrl+X, Shift+Del Cut selection

Ctrl+Shift+X Append cut selection

CodeWarrior Command Line and Text Box Editing

Ctrl+X Cut selection

Ctrl+C Copy selection to clipboard

CodeWarrior Keys

1265

Ctrl+V Paste

Ctrl+Shift+C Append selection to clipboard

Ctrl+Shift+X Append cut selection

Ctrl+Shift+V List clipboards and optionally paste one

Esc Cursor to command line toggle

Space Complete argument

? List arguments

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+Shift+U Upcase word

Ctrl+Shift+L Lowcase word

Ctrl+Shift+K Cut word

Ctrl+E Cut to end of line

Ctrl+Backspace Cut line

Ins Insert/overwrite toggle

Ctrl+Q Quote next character

Ctrl+K Copy word to clipboard

Up arrow Retrieve previous command

Down arrow Retrieve next command

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Shift+Click Extend selection

Double-Click Select word

CodeWarrior Keys

1266

Triple-Click Select line

CodeWarrior Files and Buffers

F2, Ctrl+S Save current buffer

Ctrl+N Next buffer

Ctrl+P Previous buffer

F4 Save and quit current buffer

F7, Ctrl+O Edit a file or find buffer

Ctrl+Shift+B List buffers

F6 File compare

CodeWarrior Windowing

Ctrl+H Split window horizontally

Ctrl+Tab, Ctrl+F6 Next window

Ctrl+Shift+Tab, Ctrl+Shift+F6 Previous window

Ctrl+Shift+Z Zoom window toggle

Ctrl+F4 Close window

Alt+F2 Move window edge

Ctrl+F7 Move

Ctrl+F8 Size

Ctrl+F9 Minimize

Ctrl+F10 Maximize

CodeWarrior Compiling and Programming Support

CodeWarrior Keys

1267

Alt+Dot (Pro only) List symbols

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

Alt+Comma (Pro only) Parameter Info

Ctrl+Space (Pro only) Complete symbol

Ctrl+Dot (Pro only) Push a bookmark and go to the definition
of the symbol at cursor

Ctrl+Alt+Dot (Pro only) Push a bookmark and go to the
declaration of the symbol at cursor

Ctrl+/ (Pro only) Push a bookmark and go to the first
reference to the symbol at cursor

Ctrl+Comma Pop a pushed bookmark

F3 Find next reference

Shift+F3 Find previous reference

Ctrl+M (Pro only) Build project

Ctrl+F5 (Pro only) Execute project

Ctrl+Shift+Down Next error

Ctrl+Shift+Up Previous error

Ctrl+Shift+S Set next error

Ctrl+Shift+E List errors

Ctrl+F7 (Pro only) Compile current buffer

Alt+1, Ctrl+D Cursor to error/include file

F12 Make and load current macro buffer

Ctrl+Shift+M (Pro only) Start concurrent process

CodeWarrior Keys

1268

Ctrl+Shift+P Expand extension specific alias

Ctrl+Shift+O Expand global alias

CodeWarrior Debugging (Pro only)

F5 Start/continue debugging

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

F9 Toggle breakpoint

Ctrl+F9 Toggle breakpoint enable

Ctrl+Shift+F9 Clear all breakpoints

F10 Step over

F11 Step into

Ctrl+F10 Run to cursor

Alt+PadStar Show next statement

Ctrl+Alt+B, Alt+F9 Activate breakpoints window

Alt+3, Ctrl+Alt+W Activate watch window

Alt+4, Ctrl+Alt+V Activate variables window

Alt+7, Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

CodeWarrior Macros

Ctrl+F11 Start/end macro recording

Ctrl+F12 Terminate recording & run last recorded macro

CodeWarrior Keys

1269

F12 Make and load current macro buffer

Ctrl+Shift+F12,<key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

Ctrl+Break Halt Slick-C® macro that is prompting for a key with
get_event()

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Use this to
terminate infinite loops.

Ctrl+Shift+Space If editing dialog box or macro, load and run dialog
box/macro.

CodeWarrior Miscellaneous

F1 Help for mode or context

F10 Menu bar

Ctrl+F1 Help on word at cursor

Alt+F4 Safe exit

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+Dot Complete next word/variable

Ctrl+Shift+Space Complete more

Esc Cancel or command line toggle

Ctrl+Z, Alt+Backspace Undo

Shift+F9 Undo with cursor motion grouping

Ctrl+Y Redo

Ctrl+Shift+H Hex display toggle

Ctrl+Shift+U Upcase word

Ctrl+Shift+L Lowcase word

CodeWarrior Keys

1270

Ctrl+Shift+J Go to bookmark

Ctrl+0..Ctrl+9 Set bookmark 0..9

Ctrl+Shift+T Activate Bookmarks tool window

Ctrl+B Match parenthesis

Ctrl+Shift+O Expand alias at cursor

Alt+F5 Restore MDI window

Alt+F10 Maximize MDI window

CodeWright Keys

CodeWright Cursor Movement

Left arrow Cursor left

Right arrow Cursor right

Up arrow Cursor up

Down arrow Cursor down

Ctrl+Home Top of buffer

Ctrl+End Bottom of buffer

Home Begin line

End End line

PgUp Page up

PgDn Page down

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+PgUp Page left

CodeWright Keys

1271

Ctrl+PgDn Page right

Tab Indent to next tab stop

Shift+Tab Back indent text to previous tab stop

Ctrl+J Go to line

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

CodeWright Inserting Text

Ins Insert/overwrite toggle

Enter Insert a line

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

Ctrl+Q Quote next character typed

CodeWright Deleting Text

Del Delete char under cursor

Backspace Delete char before cursor

Ctrl+Backspace Delete previous word

Ctrl+Del Delete to end of line

Shift+Backspace Delete word

CodeWright Keys

1272

CodeWright Searching

Ctrl+F Find

Ctrl+H Replace

Ctrl+Shift+S, Ctrl+G Find next occurrence

Ctrl+Shift+Q Quick search

Ctrl+I Incremental search

Ctrl+Shift+R Repeat last replace

Ctrl+Shift+I Reverse incremental search

Ctrl+Alt+Shift+F2 Stop search or search & replace

CodeWright Selection

Ctrl+A Select all

Ctrl+B Select block/column

Ctrl+L Select line

Ctrl+I Inclusive character

Ctrl+M Non-inclusive character selection

Ctrl+W Save selection

Ctrl+X Cut selection

Backspace, Del Delete selection

Tab Indent selection

Shift+Tab Unindent selection

Shift+F7 Shift selection left

Shift+F8 Shift selection right

CodeWright Keys

1273

Alt+= Execute commands in selection

Shift+Cursor keys Start or extend char/stream selection

Click & Drag Start char/stream selection

Right-Click & Drag Start block/column selection

Shift+Click Extend selection

Ctrl+Right-Click Move selection to cursor

Ctrl+Shift+Right-Click Copy selection to cursor

Double-Click Select word

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

CodeWright Clipboard

Ctrl+C, Ctrl+Ins Copy selection to clipboard

Ctrl+Shift+C Append selection to clipboard

Ctrl+K Copy word to clipboard

Ctrl+Shift+V List clipboards and optionally paste one

Ctrl+V, Shift+Ins Paste

Ctrl+X, Shift+Del Cut selection

CodeWright Command Line and Text Box Editing

Ctrl+X Cut selection

CodeWright Keys

1274

Ctrl+C Copy selection to clipboard

Ctrl+V Paste

Ctrl+Shift+C Append selection to clipboard

Ctrl+Shift+V List clipboards and optionally paste one

F9 Toggle command line

Space Complete argument

? List arguments

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+Shift+U Upcase word

Ctrl+Shift+D Lowcase word

Ctrl+Del Delete to end of line

Shift+Backspace Delete word

Ctrl+Backspace Delete previous word

Ctrl+D Delete line

Ins Insert/overwrite toggle

Ctrl+Q Quote next character

Ctrl+K Copy word to clipboard

Up arrow Retrieve previous command

Down arrow Retrieve next command

Shift+Cursor keys Start or extend char/stream selection

Click & Drag Start char/stream selection

Shift+Click Extend selection

CodeWright Keys

1275

Double-Click Select word

Triple-Click Select line

CodeWright Files and Buffers

F2, Ctrl+S Save current buffer

Ctrl+Shift+N Next buffer

Ctrl+Shift+P Previous buffer

Ctrl+O Edit a file or find buffer

F6 File compare

Ctrl+N Open new file or create new project

Ctrl+Shift+F Insert file at cursor

CodeWright Windowing

Ctrl+Tab, Ctrl+F6 Next window

Ctrl+Shift+Tab, Ctrl+Shift+F6 Previous window

Ctrl+Shift+Z, Alt+F2 Zoom window toggle

Ctrl+F4 Close window

Alt+F3 Create window edge

Ctrl+F7 Move

Ctrl+F8 Size

CodeWright Compiling and Programming Support

Alt+Dot (Pro only) List symbols

CodeWright Keys

1276

Alt+Comma, Alt+F1 (Pro only) Parameter Info

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

Ctrl+Space (Pro only) Complete symbol

Ctrl+Dot (Pro only) Push a bookmark and go to the definition
of the symbol at cursor

Ctrl+Alt+Dot (Pro only) Push a bookmark and go to the
declaration of the symbol at cursor

Ctrl+/ (Pro only) Push a bookmark and go to the first
reference to the symbol at cursor

Ctrl+Comma Pop a pushed bookmark

Ctrl+G, Ctrl+Shift+S Find next reference

Ctrl+F9, Ctrl+M (Pro only) Build project

Ctrl+F10, Shift+F10 (Pro only) Compile current buffer

Ctrl+F5 (Pro only) Execute project

Ctrl+Shift+Down Next error

Ctrl+Shift+Up Previous error

Ctrl+Shift+S Set next error

Ctrl+Shift+E List errors

Alt+1 Cursor to error/include file

F12 Make and load current macro buffer

Ctrl+Shift+M (Pro only) Start concurrent process

CodeWright Debugging (Pro only)

CodeWright Keys

1277

F5 Start/continue debugging

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

Ctrl+Shift+F9 Clear all breakpoints

F10 Step over

F11 Step into

Alt+PadStar Show next statement

Ctrl+Alt+B, Alt+F9 Activate breakpoints window

Alt+3, Ctrl+Alt+W Activate watch window

Alt+4, Ctrl+Alt+V Activate variables window

Alt+7, Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

CodeWright Macros

F7, Ctrl+F11 Start/end macro recording

F8, Ctrl+F12 Terminate recording & run last recorded macro

F12 Make and load current macro buffer

Ctrl+Shift+F12,<key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

Ctrl+Break Halt Slick-C® macro that is prompting for a key with
get_event()

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Use this to
terminate infinite loops.

Ctrl+Shift+Space If running a dialog box, edits current dialog box.
Use this to close a dialog box that won't close. If
editing dialog box or macro, load and run dialog

CodeWright Keys

1278

box/macro.

CodeWright Miscellaneous

F1 Help for mode or context

Ctrl+F1 Help on word at cursor

Alt+Shift+Left Back (like web browser)

Alt+Shift+Right Forward (like web browser)

Alt+F4 Safe exit

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+Dot Complete next word/variable

Ctrl+Shift+Space Complete more

Esc Cancel

Ctrl+T Line to top

F9 Line toggle

Ctrl+Shift+G Show functions headings

Ctrl+U, Ctrl+Z Undo

Shift+F9 Undo with cursor motion grouping

Ctrl+Y, Alt+Ins Redo

Ctrl+Shift+H Hex display toggle

Ctrl+Shift+U Upcase word

Ctrl+Shift+D Lowcase word

Ctrl+Shift+J Set bookmark

Ctrl+0..Ctrl+9 Set bookmark 0..9

CodeWright Keys

1279

Ctrl+Shift+B Activate Bookmarks tool window

Ctrl+] Find matching parenthesis

Ctrl+\ Expand or collapse selective display

Ctrl+Shift+K Show matching parenthesis

Alt+F5 Restore MDI window

Alt+F10 Maximize MDI window

Xcode Keys

Xcode Cursor Movement

Shift + Tab Back indent text to previous tab stop

Command+Left arrow Begin line

Command+Down arrow Bottom of buffer

Ctrl+PgDn Bottom of window

Down arrow Cursor down

Left arrow Cursor left

Right arrow Cursor right

Up arrow Cursor up

End End line

Command+L Go to lineI

Tab Indent to next tab stop

Alt+Right Next word

PgDn Page down

PgUp Page up

Xcode Keys

1280

Alt+Left Previous word

Command+Down arrow Top of buffer

Ctrl+PgUp Top of window

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

Xcode Inserting Text

Enter Insert a line

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

Ins Insert/overwrite toggle

Ctrl+Q Quote next character types

Xcode Deleting Text

Ctrl+Backspace Cut line

Ctrl+Shift+K Cut word

Backspace Delete char before cursor

Del Delete char under cursor

Xcode Selection

Xcode Keys

1281

Ctrl+Shift+Right+Click Copy selection to cursor

Command+X Cut selection

Backspace, Del Delete selection

Ctrl+U Deselect

Command+= Execute commands in selection

Shift+Click Extend selection

Tab Indent selection

Ctrl+Right-Click Move selection to cursor

Command+A Select all

F8 Select character/stream

Ctrl+L Select line

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

Double-Click Select word

Shift+F7 Shift selection left

Shift+F8 Shift selection right

Right-Click & Drag Start block/column selection

Click & Drag Start char/stream selection

Shift+<Cursor keys> Start or extend char/stream selection

Shift+Tab Unindent selection

Xcode Keys

1282

Xcode Searching

Command+F Find

Alt+Command+F Find in files

Command+G Find next occurrence

Command+Shift+G Find previous occurrence

Ctrl+R Replace

Xcode Command Line and Text Box Editing

Ctrl+Shift+X Append cut selection

Ctrl+Shift+C Append selection to clipboard

Space Complete argument

F3, Command+C Copy selection to clipboard

Ctrl+K Copy word to clipboard

Esc Cursor to command line toggle

Ctrl+Backspace Cut line

Command+X Cut selection

Ctrl+Shift+K Cut word

Shift+Click Extend selection

Ins Insert/overwrite toggle

? List arguments

Ctrl+Shift+V List clipboards, optionally paste one

Ctrl+Shift+L Lowcase word

Alt+Right Next word

Xcode Keys

1283

Command+V Paste

Alt+Left Previous word

Ctrl+Q Quote next character

Down arrow Retrieve next command

Up arrow Retrieve previous command

Triple-Click Select line

Double-Click Select word

Command+E Set search string

Click & Drag Start char/stream selection

Ctrl+Shift+U Upcase word

Xcode Files and Buffers

F7, Command+O Edit a file or find buffer

F6 File compare

Ctrl+Shift+B List buffers

Alt+Command+Right arrow Next Buffer

Command+N New File

Alt+Command+Up arrow Open associated file

Alt+Command+Left arrow Previous buffer

F4 Save and quit current buffer

F2, Command+S Save current buffer

Xcode Clipboard

Xcode Keys

1284

Ctrl+Shift+X Append cut selection

Ctrl+Shift+C Append selection to clipboard

Command+C Copy selection to clipboard

Ctrl+K Copy word to clipboard

Ctrl+Backspace Cut line

Command+X, Shift+Del Cut selection

Ctrl+Shift+K Select next condition

Ctrl+Shift+V List clipboards, optionally paste one

Command+V Paste

Xcode Macros

Ctrl+Shift+Space Edit current dialog box if running a dialog box.
Close dialog box that won't close. Load and run
dialog box/macro if editing dialog box or macro.

Ctrl+Shift+F12,<key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

Ctrl+Break Halt Slick-C® macro prompting for a key with
get_event()

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Terminate
infinite loops.

F12 Make and load current macro buffer

Ctrl+F11 Start/end macro recording

Ctrl+F12 Terminate recording, run last recorded macro

Xcode Miscellaneous

Esc Cancel or command line toggle

Xcode Keys

1285

Ctrl+Shift+Space Complete more

Ctrl+Shift+Dot Complete next word/variable

Ctrl+Shift+ Complete previous word/variable

Ctrl+Shift+O Expand alias at cursor

Command+D Go to bookmark

Ctrl+Shift+D Activate Bookmarks tool window

F1 Help for mode or context

Ctrl+Shift+H Hex display toggle

Ctrl+Shift+L Lowcase word

Ctrl-] Match parenthesis

Command+F10 Maximize MDI window

Command+F7 Move MDI window

Command+Shift+Z Redo

Command+F5 Restore MDI window

Command+Q Safe exit

Command+F1 Help on word at cursor

Ctrl+0..Ctrl+9 Set bookmark 0..9

Alt+F8 Size MDI window

Command+Z, Alt+Backspace Undo

Shift+F9 Undo with cursor motion grouping

Ctrl+Shift+U Upcase word

Command+F7 Move MDI window

BBEdit Keys

1286

BBEdit Keys

BBEdit Cursor Movement

Shift+Tab Back indent text to previous tab stop

Command+Left arrow Begin line

Command+Down arrow Bottom of buffer

Down arrow Cursor down

Ctrl+PgDn Bottom of window

Left arrow Cursor left

Right arrow Cursor right

Up arrow Cursor up

End End line

Command+J Go to line

Tab Indent to next tab stop

Alt+Right Next word

PgDn Page down

PgUp Page up

Alt+Left Previous word

Command+Down arrow Top of buffer

Ctrl+PgUp Top of window

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

BBEdit Keys

1287

BBEdit Inserting Text

Enter Insert a line

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

Ins Insert/overwrite toggle

Ctrl+Q Quote next character typed

BBEdit Deleting Text

Ctrl+Backspace Cut line

Ctrl+Shift+K Cut word

Backspace Delete char before cursor

Del Delete char under cursor

BBEdit Selection

Ctrl+Shift+Right-Click Copy selection to cursor

Command+X Cut selection

Backspace, Del Delete selection

Command+Shift+A Deselect

Command+= Execute commands in selection

Shift+Click Extend selection

Tab Indent selection

BBEdit Keys

1288

Ctrl+Right-Click Move selection to cursor

Command+A Select all

F8 Select character/stream

Command+L Select line

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

Command+Shift+L Select paragraph

Double-Click Select word

Shift+F7 Shift selection left

Shift+F8 Shift selection right

Right-Click & Drag Start block/column selection

Click & Drag Start char/stream selection C

Shift+<Cursor keys> selection Start or extend char/stream

Shift+Tab Unindent selection

BBEdit Searching

Command+F Find

Alt+Command+F Find in files

Command+G Find in next occurrence

Command+Shift+G Find previous occurrence

Ctrl+R Replace

BBEdit Keys

1289

BBEdit Command Line and Text Box Editing

Ctrl+Shift+X Append cut selection

Ctrl+Shift+C Append selection to clipboard

Space Complete argument

F3, Command+C Copy selection to clipboard

Ctrl+K Copy word to clipboard

Esc Cursor to command line toggle

Ctrl+Backspace Cut line

Command+X Cut selection

Ctrl+Shift+K Cut word

Shift+Click Extend selection

Ins Insert/overwrite toggle

? List arguments

Ctrl+Shift+V List clipboards, optionally paste one

Ctrl+Shift+L Lowcase word

Alt+Right Next word

Command+V Paste

Command+Shift+V Paste previous clipboard

Alt+Left Previous word

Ctrl+Q Quote next character

Down arrow Retrieve next command

Up arrow Retrieve previous command

BBEdit Keys

1290

Triple-Click Select line

Double-Click Select word

Command+E Set search string

Click & Drag Start char/stream selection

Shift+<Cursor keys> selection Start or extend char/stream selection

Ctrl+Shift+U Upcase word

BBEdit Files and Buffers

F7, Command+O Edit a file or find buffer

F6 File compare

Ctrl+Shift+B List buffers

Alt+Command+Right arrow Next buffer

Command+N New file

Alt+Command+Shift+N New file from clipboard

Command+Shift+N New file from selection

Ctrl+Tab Open associated file

Alt+Command+Left arrow Previous buffer

F4 Save and quit current buffer

F2, Command+S Save current buffer

BBEdit Clipboard

Ctrl+Shift+X Append cut selection

Ctrl+Shift+C Append selection to clipboard

BBEdit Keys

1291

Command+C Copy selection to clipboard

Ctrl+K Copy word to clipboard

Ctrl+Backspace Cut line

Command+X, Shift+Del Cut selection

Ctrl+Shift+K Cut word

Ctrl+Shift+V List clipboards, optionally paste one

Command+V Paste

BBEdit Windowing

Command+W, Ctrl+F4 Close window

Alt+Command+W Close All Windows

Command+F10 Maximize

Command+M Minimize

Command+F2 Move window edge

Ctrl+F6 Next window

Ctrl+Shift+F6 Previous window

Command+F8 Size

Command+Shift+® Split window horizontally

Command+/ Zoom window toggle

BBEdit Compiling and Programming Support

Ctrl+M (Pro only) Build project

Shift+F10 (Pro only) Compile current buffer

BBEdit Keys

1292

Ctrl+Dot, F5, Alt+Esc (Pro only) Complete symbol

Commad+D Cursor to error/include file

Ctrl+F5 (Pro only) Execute project

Ctrl+Shift+P Expand extension specific alias

Ctrl+Shift+O Expand global alias

Command+G Find next reference

Command+Shift+G Find previous reference

Ctrl+Shift+E List errors

Command+Dot (Pro only) List symbols

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

F12 Make and load current macro buffer

Alt+Command+Down arrow Next error

Alt+Comma (Pro only) Parameter Info

Command+Comma Pop a pushed bookmark

Alt+Command+Up arrow Previous error

Command+Dot Push a bookmark, go to definition of symbol at
cursor

Shift+Command+/ Push a bookmark, go to first reference to symbol at
cursor

Ctrl+Shift+S Set next error

Ctrl+Shift+M (Pro only) Start concurrent process

BBEdit Debugging (Pro only)

BBEdit Keys

1293

Alt+Command+B Activate breakpoints window

Command+7, Ctrl+Alt+C Activate call stack

Ctrl+Command+H Activate threads window

Command+4 Activate variables window

Command+3, Ctrl+Alt+W Activate watch window

Ctrl+Shift+F9 Clear all breakpoints

Ctrl+Shift+F5 Restart debugging

Ctrl+F10 Run to cursor

Command+PadStar Show next statement

F5 Start/continue debugging

Command+Shift+I Step into

Command+Shift+T Step out

Command+Shift+O Step over

Shift+F5 Stop debugging

Alt+Command+/ Toggle breakpoint enable

Command+/ Toggle breakpoint

BBEdit Macros

Ctrl+Shift+Space Edit current dialog box if running a dialog box.
Close dialog box that won't close. Load and run
dialog box/macro if editing dialog box or macro.

Ctrl+Shift+F12,<key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

Ctrl+Break Halt Slick-C® macro prompting for a key with
get_event()

BBEdit Keys

1294

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Terminate
infinite loops.

F12 Make and load current macro buffer

Ctrl+F11 Start/end macro recording

Ctrl+F12 Terminate recording, run last recorded macro

BBEdit Miscellaneous

Esc Cancel or command line toggle

Ctrl+Shift+Space Complete more

Ctrl+Shift+Dot Complete next word/variable

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+O Expand alias at cursor

Command+D Go to bookmark

F1 Help for mode or context

Ctrl+Shift+H Hex display toggle

Ctrl+Shift+L Lowcase word

Ctrl+B Match parenthesis

Command+F10 Maximize MDI window

Command+F7 Move MDI window

Command+Shift+Z Redo

Command+F5 Restore MDI window

Command+Q Safe exit

Command+F1 Help on word at cursor

Ctrl+0..Ctrl+9 Set bookmark 0..9

BBEdit Keys

1295

Alt+F8 Size MDI window

Command+Z, Alt+Backspace Undo

Shift+F9 Undo with cursor motion grouping

Ctrl+Shift+U Upcase word

Visual Studio Default Keys

Visual Studio Cursor Movement

Left arrow Cursor left

Right arrow Cursor right

Up arrow Cursor up

Down arrow Cursor down

Ctrl+Home Top of buffer

Ctrl+End Bottom of buffer

Home Begin line

End End line

PgUp Page up

PgDn Page down

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+PgUp Top of window

Ctrl+PgDn Bottom of window

Tab Indent to next tab stop

Visual Studio Default Keys

1296

Shift+Tab Back indent text to previous tab stop

Ctrl+G Go to line, offset, bookmark, error, definition,
declaration, or reference

Ctrl+J Previous preprocessing condition

Ctrl+Shift+\ Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

Visual Studio Inserting Text

Ins Insert/overwrite toggle

Enter Insert a line

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

Ctrl+Q Quote next character typed

Visual Studio Deleting Text

Del Delete char under cursor

Backspace Delete char before cursor

Ctrl+L Cut line

Visual Studio Searching

Ctrl+F Find

Visual Studio Default Keys

1297

Ctrl+H Replace

F3 Find next occurrence

Shift+F3 Find previous occurrence

Ctrl+I Incremental search

Ctrl+Shift+I Reverse incremental search

Ctrl+Shift+F Find in Files

Ctrl+Shift+H Replace in Files

Ctrl+Alt+Shift+F2 Stop search or search & replace

Visual Studio Selection

Ctrl+A Select all

Ctrl+F8 Select line

F8 Select character/stream

Ctrl+Shift+J Select previous preprocessing condition

Ctrl+Shift+K Select next preprocessing condition

Alt+U Deselect

Ctrl+X Cut selection

Backspace, Del Delete selection

Tab Indent selection

Shift+Tab Unindent selection

Shift+F7 Shift selection left

Shift+F8 Shift selection right

Alt+= Execute commands in selection

Visual Studio Default Keys

1298

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Right-Click & Drag Start block/column selection

Shift+Click Extend selection

Ctrl+Right-Click Move selection to cursor

Ctrl+Shift+Right-Click Copy selection to cursor

Double-Click Select word

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

Visual Studio Clipboard

Ctrl+C, Ctrl+Ins Copy selection to clipboard

Ctrl+Shift+C Append selection to clipboard

Ctrl+Shift+V List clipboards and optionally paste one

Ctrl+V, Shift+Ins Paste

Ctrl+L Cut line

Ctrl+X, Shift+Del Cut selection

Ctrl+Shift+X Append cut selection

Alt+Shift+L Cut sentence

Visual Studio Command Line and Text Box Editing

Visual Studio Default Keys

1299

Ctrl+X Cut selection

Ctrl+C Copy selection to clipboard

Ctrl+V Paste

Ctrl+Shift+C Append selection to clipboard

Ctrl+Shift+X Append cut selection

Ctrl+Shift+V List clipboards and optionally paste one

Esc Cursor to command line toggle

Space Complete argument

? List arguments

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+Shift+U Upcase word

Ctrl+U Lowcase word

Ctrl+L Cut line

Ctrl+Shift+L Delete line

Ins Insert/overwrite toggle

Ctrl+Q Quote next character

Alt+N Insert buffer name

Up arrow Retrieve previous command

Down arrow Retrieve next command

Shift+<Cursor keys> Start or extend char/stream selection

Click & Drag Start char/stream selection

Shift+Click Extend selection

Visual Studio Default Keys

1300

Double-Click Select word

Triple-Click Select line

Visual Studio Files and Buffers

F2, Ctrl+S Save current buffer

Ctrl+O Edit a file or find buffer

Ctrl+N Open new file or create new project

Ctrl+Shift+B List buffers

Ctrl+Shift+PadMinus Next document. Next window if in one file per
window mode (default). Otherwise, next buffer.

Ctrl+PadMinus Previous document. Previous window if in one file
per window mode (default). Otherwise, previous
buffer.

F6 File compare

Visual Studio Windowing

Ctrl+Tab, Ctrl+F6 Next window

Ctrl+Shift+Tab Previous window

Ctrl+F4 Close window

Alt+Shift+Enter Fullscreen mode toggle

Visual Studio Compiling and Programming Support

Ctrl+Alt+T, Alt+Dot (Pro only) List symbols

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

Visual Studio Default Keys

1301

Ctrl+Shift+Space, Alt+Comma (Pro only) Parameter Info

Ctrl+Space (Pro only) Complete symbol

F12, Ctrl+Dot, Ctrl+F12 (Pro only) Push a bookmark and go to the definition
of the symbol at cursor

Ctrl+Alt+Dot (Pro only) Push a bookmark and go to the
declaration of the symbol at cursor

Shift+F12, Ctrl+/ (Pro only) Push a bookmark and go to the first
reference to the symbol at cursor

Ctrl+Comma Pop a pushed bookmark

F3 Find next reference

Shift+F3 Find previous reference

Ctrl+Alt+J Activate Symbols tool window

F4, Ctrl+Shift+Down Next error

Shift+F4, Ctrl+Shift+Up Previous error

Ctrl+Shift+B (Pro only) Build project

Shift+F10, Ctrl+F7 (Pro only) Compile current buffer

Ctrl+Shift+G, Alt+1 Cursor to error/include file

Ctrl+Alt+A, Ctrl+Shift+M (Pro only) Activate Build tool window

Ctrl+Alt+L Activate Projects tool window

Alt+Shift+A Add current file to project

Ctrl+Shift+N Create new workspace

Ctrl+Shift+O Open workspace

Visual Studio Debugging (Pro only)

F5 Start/continue debugging

Visual Studio Default Keys

1302

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

F9, Ctrl+B Toggle breakpoint

Ctrl+F9 Toggle breakpoint enable

Ctrl+Shift+F9 Clear all breakpoints

F10 Step over

F11 Step into

Ctrl+F10 Run to cursor

Alt+PadStar Show next statement

Ctrl+Alt+B, Alt+F9 Activate breakpoints window

Alt+3 Activate watch window 1

Ctrl+Alt+W [1..4] Activate watch window N

Ctrl+Alt+G Activate registers tool window

Ctrl+Alt+M [1..4] Activate memory window N

Alt+4, Ctrl+Alt+V A Activate Autos variables window

Ctrl+Alt+V L Activate Locals variables window

Ctrl+Alt+V T Activate Members variables window

Alt+7, Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

Visual Studio Macros

Ctrl+Shift+R Start/end macro recording

Ctrl+Shift+P Terminate recording & run last recorded macro

Visual Studio Default Keys

1303

Ctrl+Shift+F12 <key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

Ctrl+Break Halt Slick-C® macro that is prompting for a key with
get_event()

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Halt Slick-C
macro that is executing. Use this to terminate
infinite loops.

Ctrl+Shift+Space If running a dialog box, edits current dialog box.
Use this to close a dialog box that won't close. If
editing dialog box or macro, load and run dialog
box/macro.

Visual Studio Miscellaneous

F1 Help for mode or context

Ctrl+F1 Help on word at cursor

Alt+F4 Safe exit

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+Dot Complete next word/variable

Esc Cancel or command line toggle

Ctrl+Z, Alt+Backspace, Shift+Backspace Undo

Ctrl+Y, Ctrl+Shift+Z, Alt+Shift+Backspace Redo

Ctrl+0..Ctrl+9 Set bookmark 0..9

Ctrl+], Ctrl+Shift+] Match parenthesis

Ctrl+D Activates search history

Alt+F5 Restore MDI window

Alt+F10 Maximize MDI window

Ctrl+Up Scroll up

Visual Studio Default Keys

1304

Ctrl+Down Scroll down

Ctrl+T Transpose characters

Ctrl+Shift+T Transpose words

Alt+Shift+T Transpose lines

Ctrl+K Ctrl+N Go to next bookmark

Ctrl+K Ctrl+P Go to previous bookmark

Ctrl+K Ctrl+L Clear all bookmarks

Ctrl+K Ctrl+K Toggle bookmark

Ctrl+K Ctrl+W Activate Bookmarks tool window

Ctrl+M Ctrl+P Show all

Ctrl+M Ctrl+U Show selection

Ctrl+M Ctrl+H Hide selection

Ctrl+R Ctrl+W Toggle viewing of whitespace

Ctrl+Alt+O Activate Output tool window

Ctrl+Alt+R Go to URL

macOS Keys

macOS Cursor Movement

Shift + Tab Back indent text to previous tab stop

Command+Left arrow, Ctrl+A Begin line

Command+Down arrow, Ctrl+End Bottom of buffer

Ctrl+PgDn Bottom of window

macOS Keys

1305

Down arrow Cursor down

Left arrow Cursor left

Right arrow Cursor right

Up arrow Cursor up

End, Ctrl+E End line

Ctrl+J Go to lineI

Tab Indent to next tab stop

Option+Right, Ctrl+Right Next word

PgDn Page down

PgUp Page up

Option+Left, Ctrl+Left Previous word

Ctrl+Home, Command+Up arrow Top of buffer

Ctrl+PgUp Top of window

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

macOS Inserting Text

Enter Insert a line

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

macOS Keys

1306

Ins Insert/overwrite toggle

Ctrl+Q Quote next character types

macOS Deleting Text

Ctrl+Backspace Cut line

Ctrl+K Cut to end of line

Ctrl+Shift+K Cut word

Backspace Delete char before cursor

Del Delete char under cursor

macOS Selection

Command+X Cut selection

Backspace, Del Delete selection

Ctrl+U Deselect

Shift+Click Extend selection

Tab Indent selection

Ctrl+Right-Click Move selection to cursor

Command+A Select all

F8 Select character/stream

Ctrl+L, Command+L Select line

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

macOS Keys

1307

Ctrl+Double-Click Add selection of words

Ctrl+W, Double-Click Select word

Command+] Indent selection

Command+[Unindent selection

Shift+F7 Shift selection left

Shift+F8 Shift selection right

Right-Click & Drag Start block/column selection

Click & Drag Start char/stream selection

Shift+<Cursor keys> Start or extend char/stream selection

macOS Searching

Command+F Find

Shift+Command+F Find in files

Command+E Use selection for find

Command+G Find next occurrence

Command+Shift+G Find previous occurrence

Ctrl+R Replace

Ctrl+Shift+R Replace in files

macOS Command Line and Text Box Editing

Ctrl+Shift+X Append cut selection

Ctrl+Shift+C Append selection to clipboard

Option+Command+Comma Complete argument

macOS Keys

1308

Command+C, Ctrl+C Copy selection to clipboard

Esc Cursor to command line toggle

Ctrl+Backspace Cut line

Command+X Cut selection

Ctrl+Shift+K Cut word

Shift+Click Extend selection

Ins Insert/overwrite toggle

Ctrl+Shift+V List clipboards, optionally paste one

Ctrl+Shift+L Lowcase selection

Option+Right Next word

Command+V, Ctrl+V Paste

Option+Left, Ctrl+Left Previous word

Ctrl+Q Quote next character

Down arrow Retrieve next command

Up arrow Retrieve previous command

Triple-Click Select line

Double-Click Select word

Command+E Use selection for search

Click & Drag Start char/stream selection

Ctrl+Shift+U Upcase word

macOS Files and Buffers

Command+O, Ctrl+O Edit a file or find buffer

macOS Keys

1309

Ctrl+= File compare

Ctrl+Shift+B List buffers

Ctrl+N Next Buffer

Command+N New File

Ctrl+Backtick Open associated file

Ctrl+P Previous buffer

Command+S, Ctrl+S Save current buffer

macOS Clipboard

Ctrl+Shift+X Append cut selection

Ctrl+Shift+C Append selection to clipboard

Command+C, Ctrl+C Copy selection to clipboard

Ctrl+Backspace Cut line

Ctrl+K Cut to end of line

Command+X, Ctrl+X Cut selection

Ctrl+Shift+Command+Right Select next expression

Ctrl+Shift+V List clipboards, optionally paste one

Command+V Paste

macOS Windowing

Option+Tab Next window

Option+Shift+Tab Previous window

Command+M Minimize window

macOS Keys

1310

Command+Backtick Cycle through application windows

macOS Macros

Ctrl+Shift+Space Edit current dialog box if running a dialog box.
Close dialog box that won't close. Load and run
dialog box/macro if editing dialog box or macro.

Ctrl+Option+Command+S Halt Slick-C® macro prompting for a key with
get_event()

Ctrl+Option+Command+T Halt Slick-C macro that is executing. Terminate
infinite loops.

F4, F12 Make and load current macro buffer

Shift+F4 Start/end macro recording

Ctrl+F12 Terminate recording, run last recorded macro

macOS Miscellaneous

Esc Cancel or command line toggle

Ctrl+Shift+Space Complete more

Ctrl+Shift+Period Complete next word/variable

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+O Expand alias at cursor

Ctrl+Shift+J Toggle bookmark

Ctrl+Shift+N Activate Bookmarks tool window

F1 Help for mode or context

Ctrl+Shift+H Hex display toggle

Ctrl+Shift+L Lowcase selection

macOS Keys

1311

Ctrl+Shift+U Upcase word

Ctrl+] Match parenthesis

Ctrl+\ Expand or collapse selective display

Option+F10, Command+F10 Maximize MDI window

Command+F7 Move MDI window

Command+Shift+Z Redo

Option+F5 Restore MDI window

Command+Q Safe exit

Ctrl+0..Ctrl+9 Set bookmark 0..9

Command+Z, Option+Backspace Undo

Eclipse Keys

Eclipse Cursor Movement

Left arrow Cursor left

Right arrow Cursor right

Up arrow Cursor up

Down arrow Cursor down

Ctrl+Home Top of buffer

Ctrl+End Bottom of buffer

Home Begin line

End End line

PgUp Page up

PgDn Page down

Eclipse Keys

1312

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+PgUp Top of window

Ctrl+PgDn Bottom of window

Tab Indent to next tab stop

Shift+Tab Back indent text to previous tab stop

Ctrl+L Go to line

Ctrl+| Add multiple cursors

Ctrl+Shift+Alt+Down Add new cursor below current cursor

Ctrl+Shift+Alt+Up Add new cursor above current cursor

Eclipse Inserting Text

Ins Insert/overwrite toggle

Enter Insert a line

Ctrl+Enter Open a new line below current line

Ctrl+Shift+Enter Open a new line above current line

Shift+Enter Insert a line (no syntax expansion)

Shift+Space Insert a space (no syntax expansion)

Eclipse Deleting Text

Del Delete char under cursor

Backspace Delete char before cursor

Ctrl+D Delete line

Eclipse Keys

1313

Ctrl+Del Delete word

Ctrl+Backspace Delete previous word

Ctrl+Shift+Del Delete to end of line

Eclipse Searching

Ctrl+F Find

Ctrl+R Replace

Ctrl+K Find next occurrence

Ctrl+Shift+K Find previous occurrence

Ctrl+J Incremental search

Ctrl+Shift+J Reverse incremental search

Ctrl+Shift+J Reverse incremental search

Ctrl+Shift+U Find all occurrences of word at cursor excluding
comments and strings

Ctrl+Alt+Shift+F2 Stop search or search & replace

Eclipse Selection

Ctrl+A Select all

Ctrl+U Deselect

Ctrl+X Cut selection

Backspace, Del Delete selection

Tab Indent selection

Shift+Tab Unindent selection

Shift+F7 Shift selection left

Eclipse Keys

1314

Shift+F8 Shift selection right

Alt+= Execute commands in selection

Click & Drag Start char/stream selection

Right-Click & Drag Start block/column selection

Shift+Click Extend selection

Ctrl+Right-Click Move selection to cursor

Ctrl+Shift+Right-Click Copy selection to cursor

Double-Click Select word

Triple-Click Select line

Ctrl+Click Add cursor or selection

Shift+Right-Click Add multiple partial line characters selections based
on a block/column selection.

Ctrl+Double-Click Add selection of words

Eclipse Clipboard

Ctrl+C, Ctrl+Ins Copy selection to clipboard

Ctrl+Shift+V List clipboards and optionally paste one

Ctrl+V, Shift+Ins Paste

Ctrl+X, Shift+Del Cut selection

Eclipse Command Line and Text Box Editing

Ctrl+X Cut selection

Ctrl+C Copy selection to clipboard

Ctrl+V, Shift+Ins Paste

Eclipse Keys

1315

Ctrl+Shift+V List clipboards and optionally paste one

Esc Cursor to command line toggle

Space Complete argument

? List arguments

Ctrl+Left Previous word

Ctrl+Right Next word

Ctrl+Shift+X Upcase word or selection

Ctrl+Shift+Y Lowcase word or selection

Ctrl+D Delete line

Ctrl+Del Delete word

Ctrl+Shift+Del Delete to end of line

Ctrl+Backspace Delete previous word

Ins Insert/overwrite toggle

Ctrl+X Cut selection

Ctrl+C Copy selection to clipboard

Ctrl+V, Shift+Ins Paste

Esc Cursor to command line toggle

Eclipse Files and Buffers

Ctrl+S Save current buffer

Ctrl+PgDn Next buffer

Ctrl+PgUp Previous buffer

Ctrl+N New project

Eclipse Keys

1316

Ctrl+Shift+E, Ctrl+F6 List buffers

Ctrl+Shift+F4 Close all

Eclipse Windowing

Ctrl+Shift+Tab Previous window

Ctrl+Shift+Z Zoom window toggle

Ctrl+W, Ctrl+F4 Close window

Alt+F2 Move window edge

Alt+F3 Create window edge

Ctrl+F7 Next view

Eclipse Compiling and Programming Support

Alt+Dot, F2 (Pro only) List symbols

Alt+Comma (Pro only) Parameter Info

Ctrl+PgUp/Ctrl+PgDn When listing symbols. Next/previous definition

Shift+PgUp/Shift+PgDn When listing symbols. Page up/down argument list
section.

Ctrl+Space (Pro only) Complete symbol

Ctrl+Dot, F3 (Pro only) Push a bookmark and go to the definition
of the symbol at cursor

Ctrl+Alt+Dot (Pro only) Push a bookmark and go to the
declaration of the symbol at cursor

Ctrl+Shift+G (Pro only) Push a bookmark and go to the first
reference to the symbol at cursor

Ctrl+Comma Pop a pushed bookmark

Eclipse Keys

1317

Ctrl+K Find next reference

Ctrl+Shift+K Find previous reference

Ctrl+B Complete symbolBuild all

Ctrl+F5, Ctrl+F11 (Pro only) Execute project

Ctrl+Shift+D Open javadoc editor

Ctrl+Shift+F Beautify selection

Ctrl+Shift+M Add import

Ctrl+Shift+O Organize imports

Shift+F10 (Pro only) Compile current buffer

Ctrl+H Activate find symbol tool window

Ctrl+I Reindent current line

Ctrl+= Display diff dialog

Alt+1 Cursor to error/include file

F12 Make and load current macro buffer

Ctrl+Shift+I Expand extension specific alias

Ctrl+O Activate Outline tool window

F4 Activate Class tool window

Ctrl+` Edit associated file. Edit .h file if editing .cpp file or
.cpp file if editing .h file.

Eclipse Debugging (Pro only)

F5 Debug step into

F6 Debug step over

F7 Debug step out

Eclipse Keys

1318

F8 Debug continue out

F10 Step over

F11 Start/continue debugging

Shift+F5 Stop debugging

Ctrl+Shift+F5 Restart debugging

F9 Toggle break point

Ctrl+F9 Toggle breakpoint enable

Ctrl+Shift+F9 Clear all breakpoints

Ctrl+R Run to cursor

Alt+PadStar Show next statement

Ctrl+Alt+B, Alt+F9 Activate breakpoints window

Alt+3, Ctrl+Alt+W Activate watch window

Alt+4, Ctrl+Alt+V Activate variables window

Alt+7, Ctrl+Alt+C Activate call stack

Ctrl+Alt+H Activate threads window

Eclipse Macros

Alt+F11 Start/end macro recording

Alt+F12 Terminate recording & run last recorded macro

Ctrl+Shift+F12,<key> Stops macro recording and binds macro to <key>
(which can be 0-9, A-Z, or F1-F12).

F12 Make and load current macro buffer

Ctrl+Break Halt Slick-C® macro that is prompting for a key with
get_event().

Eclipse Keys

1319

Ctrl+Alt+Shift+F2 Halt Slick-C macro that is executing. Use this to
terminate infinite loops.

Ctrl+Shift+Space If running a dialog box, edits current dialog box.
Use this to close a dialog box that won't close. If
editing dialog box or macro, load and run dialog
box/macro.

Eclipse Miscellaneous

F1 Help for mode or context

Ctrl+F1 Help for word at cursor

Alt+F4 Safe exit

Ctrl+Shift+Q Toggle modified line display

Ctrl+Shift+R Open file

Ctrl+Shift+Comma Complete previous word/variable

Ctrl+Shift+Dot Complete next word/variable

Ctrl+Shift+Space Complete more

Esc Cancel or command line toggle

Ctrl+Z, Alt+Backspace Undo

Shift+F9 Undo with cursor motion grouping

Ctrl+Y Redo

Ctrl+Shift+X Upcase word or selection

Ctrl+Shift+Y Lowcase word or selection

Ctrl+Shift+N Activate bookmarks tool window

Ctrl+0..Ctrl+9 Set bookmark 0..9

Ctrl+] Match parenthesis

Eclipse Keys

1320

Ctrl+\ Expand or collapse selective display

Alt+F5 Restore MDI window

Alt+F10 Maximize MDI window

Eclipse Keys

1321

1322

Slick-C® Macro Programming Guide

Note

Many of the Slick-C macro programming features described here are only available in the Pro
edition and not the Standard or Community editions. The Standard and Community editions have
very limited macro programming capabilities. These editions support limited macro recording and
some configuration batch macros (like vusrdefs.e (UNIX: vunxdefs.e)) but not much else. If you
want to do significant macro programming such as writing dialog boxes or sophisticated macros
you can share with others, you need the Pro edition. Dialog boxes written in Slick-C will run on all
platforms SlickEdit supports.

This guide contains the following topics:

• Introduction

• Differences Between Slick-C® and C++

• Four Ways to Use Slick-C®

• Language Constructs

• Types

1323

• Mathematical Operators

• Declarations

• Statements

• Functions

• Preprocessing

• Defining Controls

• Defining Events and Event Tables

• Event-Driven Dialog Boxes

• Module Initializations

• Compiling and Loading Macros

• Debugging Macros

• Error Handling and the rc Variable

• Dialog Editor

• Creating Dialog Boxes

• Clipboard Inheritance®

• Objects and Instances

• Using Functions as Methods

• Built-in Controls

• Menus

• Common Macro Dialog Boxes

• String Functions

• Search Functions

• Selection Functions

• Writing Selection Filters

• Unicode and SBCS or DBCS Macro Programming

• Shelling Programs from a Slick-C® Macro

• Interfacing With Other Languages (DLL)

• Command Line Interface

1324

• Hooking Startup and Exit

• State File Caching

• Windows Data Structure

• Tutorials

• Events

Introduction

1325

Introduction
Slick-C® is a macro programming language that blends object-oriented features from C++, Java, and
Python. Much of the code in the SlickEdit® editor is written in Slick-C, which covers many of the actions
normally performed in a code editor including navigation and buffer modification. The Slick-C source is
provided when SlickEdit is installed. You can use Slick-C to modify the look and feel of the editor, write
macros to perform custom operations, add new language support, and essentially extend the editor's
functionality until it is completely customized according to your preferences.

Working with the Slick-C® Source Code
After SlickEdit® is installed, the Slick-C macro files are located in the macros subdirectory of your
installation directory.

Slick-C macros are stored in files ending in the .e extension. The Slick-C macro translator compiles these
files to byte code which is saved in a corresponding file with the .ex extension.

Slick-C follows a C-style linking model with the distinction that macros can be loaded and reloaded
dynamically. Compiled macros and dialog box templates are stored in the state file vslick.sta, which
is located in your configuration directory.

Slick-C is preprocessed like C. Slick-C header files use the .sh extension. All Slick-C source files
#include slick.sh.

Slick-C® Naming Conventions
The table below outlines Slick-C naming conventions.

Type Example Name Details

Namespaces se.example Lowercase, with an underscore or
dot to separate multiple words.

Classes ExampleName Mixed case, first letter must be
capitalized, all caps only
acceptable for acronyms like
"FTP".

Interfaces IExampleName Like class names, but with "I"
prefix.

Enums ExampleName Like class names (idea of "E"
prefix rejected).

Enum Flags ExampleFlags Like enums, but ends with "Flags"

Working with the Slick-C®
Source Code

1326

Type Example Name Details

(idea of "F" prefix rejected).

Member Funcs exampleName Mixed case with the first letter
lowercase.

Member Vars m_exampleName Mixed case, first letter lowercase,
and an "m_" prefix.

Properties m_exampleName Same as member variables
(should not distinguish from var).

Class Vars s_exampleName Mixed case, first letter lowercase,
and an "s_" prefix.

Namespace Vars g_exampleName Like member vars except with a
"g_" prefix.

Namespace Funcs example_name Lowercase with words separated
with underscores.

Global Vars <anything> No rules.

Global funcs <anything> No rules.

Typedefs <anything> No rules.

Differences Between Slick-C®
and C++

1327

Differences Between Slick-C® and C++

Structures
• Space for structure member variables is allocated when you access the member.

• Structure data is not continuous. This is obvious for string, array, and hash table member variables that
contain variable size data. However, even other types are sometimes stored elsewhere.

• There is not a sizeof function that tells you the size of a structure in bytes.

Arrays
• Space for array elements is allocated when you index into the array.

• You cannot use pointer variables to traverse array elements.

• You cannot limit the number of elements that the array may contain.

• Specifying an array variable without the []operator does not return a pointer to the first element. Instead
it refers to the entire array. This allows you to copy one array to another or define a function that returns
a copy of an array.

• There is not a sizeof function that tells you the size of the array in bytes. There is a _length method
that tells you the number of elements in the array.

Example:

struct PHONERECORD {
_str name;
_str PhoneNumber;

};

void defmain()
{

PHONERECORD list[]; // No size limit is allowed here.

// Allocate space for 0 index and name member.
list[0].name=Joe;
// Allocate space for PhoneNumber member.
list[0].PhoneNumber="555-1234";

PHONERECORD list2[];
list2=list; // Copy the entire array into list2.
t=list2; // Now copy the entire array into a container variable.

Structures

1328

}

Hash Tables
Slick-C® provides a :[] hash table operator that is similar to the array operator [] except that hash tables
are indexed with a string type or by class objects. See Hash Tables for more information.

Assignment Statement
Assignment statements in Slick-C® are not as shallow as C++. Array, hash table, and structure types are
recursively traversed. Pointers are not traversed.

Example:

struct {
int a[];

} s1,s2;
s1.a[0]=1;
s2=s1; // Copy structure and all elements of array.

Comparison Operator
The == and != operators support comparing container types, arrays, hash tables, and structures. Complex
types are traversed recursively, like the assignment statement. Strings within an array, hash table, or
struct must match exactly (spaces matter).

Preprocessing
Preprocessing expressions can use string and floating point expressions.

switch Statement
The switch statement supports string expressions and integer expressions.

enum
Slick-C® also supports enum_flags where bit flags are automatically generated. Specifying a type for
enum (enum myenum:long) is not yet supported. Scoped enums (enum class or enum struct) are not yet
supported.

Hash Tables

1329

Example:

enum COLOR {
RED,
YELLOW=4,
GREEN,

}
enum_flags OptionFlags {

FLAG1=0x4,
FLAG2, // 0x8
FLAG3, // 0x10
FLAGS_ALL=FLAG1|FLAG2|FLAG3};

Const
The use of the const keyword is very different than C++. The const keyword is used to define global
string or numeric constants. Currently const doesn't support a type (const int VALUE=4;) or making any
variable read-only. const is intended as a better alternative to using a #define to define a constant.

const GL_MODE="GL";
const GL_VALUE= 1.4;

Labeled Loops
The break and continue statements accept an optional label parameter so that you can break a specific
loop (like Java).

Example:

outerlabel:
for (;;) {

for (;;) {
if () break outerlabel;
if () continue outerlabel;

}
}

Variable Argument Functions
An arg function allows you to define functions that accept a variable number of arguments. The arg

Const

1330

function can be used on the left side of an assignment statement.

Example:

void defmain()
{

p(Param1,2,x);
}
void p()
{

messageNwait("Called with arg() arguments");
for (i:=1;i<=arg();++i) {

messageNwait("arg("i")="arg(i));
}
// All undeclared variable parameters are passed by reference so when
// a variable is passed, we can change the contents of the callers

variable.
arg(3)=... // New value for x;

}

Built-in Graphics Primitives
You can define dialog box resources and menu resources. There are primitives for defining event
handlers for dialog boxes and declaring control types. This allows the Slick-C® linker to detect a
reference to a control that does not exist on a dialog box before you execute the code.

Clipboard Inheritance®
Clipboard Inheritance provides inheritance specifically for dialog boxes. This feature enables the copying
of parts of existing dialog boxes to the clipboard and pasting them elsewhere, and the original code still
runs. New code can be attached to the new controls without affecting the original controls, and to affect
both instances of the controls (inheritance). Creating inheritance for parts of dialog boxes is very natural
because the Slick-C® language has been designed for this feature. See Clipboard Inheritance® for more
information.

End of Statement Semicolon
Slick-C® assumes that the end of line is a semicolon except under a few conditions. Expressions may
extend across line boundaries if the line ends in a binary operator or if the line ends with a backslash, and
expressions in parentheses may extend across line boundaries.

Type Checking

Built-in Graphics Primitives

1331

Type checking in Slick-C® is identical to C++ except for the following:

• The typeless type is compatible with ALL other types.

• String constants are automatically converted to numeric types where necessary.

• Integer types are automatically converted to string types.

• Functions do not require prototypes. However, when a prototype is given, strict type checking is
enforced like you would expect. A #pragma option to require prototypes will eventually be added.

• Classes and Interfaces are defined using a Java-style syntax.

Capabilities not Supported by Slick-C®
• Only one syntax is currently supported for making a call with a pointer to a function variable. The

pfn(p1,p2,) syntax is not supported. This limitation is necessary for container variables because the
compiler does not know the type of the variable.

• char and short types are not available.

• Template classes are not supported. Container variables are sometimes a more powerful mechanism
for accomplishing much of what is done with template classes. However, container variables lack the
speed and additional type checking of template classes.

• Function overloading is not supported.

• Slick-C only supports the less ambiguous C-style type casting.

• Because Slick-C does not allow low level manipulation of memory, you cannot do things like type cast
an int * to a long *.

• There are no character constants defined using single quote characters. Slick-C currently allows the
use of single quotes to define strings. Single quoted strings are much more readable for file names or
regular expressions that require the use of backslashes.

• goto is not supported. (Slick-C supports labeled loops.)

Capabilities not Supported by
Slick-C®

1332

Four Ways to Use Slick-C®
There are four ways to extend the SlickEdit® code editor using Slick-C:

• Recording Slick-C® Macros

• Key Bindable Command

• Event-Driven Dialog Boxes

• Batch Macros

Recording Slick-C® Macros
When using macro recording, Slick-C source code is created for a key bindable command. To create a
recorded macro, complete the following steps:

1. From the main menu, select Macro → Record Macro.

2. Perform the actions that you want the macro to repeat.

3. When finished, select Macro → Stop Recording.

The macro is saved as Slick-C source code and you can edit the recorded macro through the user
interface. Recorded macros are saved in the vusrmacs.e file in the user configuration directory.

Key Bindable Command
A key bindable command is the most common way to extend the editor. Command macros can be bound
to keys or invoked from a menu. To create a Slick-C® command named hello, complete the following
steps:

1. Place the macro code below into a new file named test.e:

_command void hello()
{

message("Hello World");
}

2. With the file still open, press F12 or use the load command to compile and load the macro. Or, from
the main menu, click Macro → Load Module, then browse and select the macro to load.

Now you can type hello in the command line and the message Hello World is displayed.

The hello command can be bound to a key. To bind the hello command to Alt +5 , complete the following
steps:

Recording Slick-C® Macros

1333

1. From the main menu, click Tools → Options → Keyboard and Mouse → Key Bindings.

2. In the Search by command combo box, type hello.

3. Click Add.

4. Press Alt+5.

5. Click Bind.

6. Click OK on the Options dialog.

7. Now press Alt+5. The message Hello World is displayed.

Event-Driven Dialog Boxes
Slick-C® includes a dialog editor that allows you to create event-driven forms using a predefined set of
controls.

This section describes:

• Creating a Simple Event-Driven Dialog Box

• Loading Code and Displaying Dialog Boxes

• Binding Commands to Keys for Dialog Box Display

For more information, see also Creating Dialog Boxes.

Creating a Simple Event-Driven Dialog Box

To create a simple event-driven dialog box, complete the following steps:

1. From the main menu, select Macro → New Form.

2. In the dialog editor Properties dialog box, double-click Insert Button Control.

Event-Driven Dialog Boxes

1334

3. Double-click Insert Text Cox Control in the dialog editor Properties dialog box.

4. Move the command button or the text box so that they do not overlap. Click on the object with the left
mouse button, hold it, and drag to move the object.

Event-Driven Dialog Boxes

1335

5. Double-click on the command button that appears on the form (not the bitmap in the dialog editor
Properties dialog box). The Select An Event dialog box appears with lbutton_up displayed in the
combo box.

6. Press Enter to select the event.

7. The Open dialog box is displayed for a new file that is to contain the source code for this dialog box.
Type form1.e and press Enter. A file is displayed named form1.e with the following lines of code:

#include "slick.sh"

defeventtab form1;
void ctlcommand1.lbutton_up()
{

}

Event-Driven Dialog Boxes

1336

8. If the previous lines of code are not displayed, then a form1.e file might already exist. If so, modify
the existing form1.e file to contain the previous lines of code.

9. Modify the code to add the following statement: ctltext1.p_text="Hello World";

Example:

#include "slick.sh"

defeventtab form1;
void ctlcommand1.lbutton_up()
{

// Set the p_text property of the text box control
ctltext1.p_text="Hello World";

}

1
0.

From the main menu, select Macro → Load Module.

Loading Code and Displaying Dialog Boxes

To load the dialog box, and then display it, complete the following steps:

1. Right-click on the form and select Load and Run Form.

2. Click ctlcommand1. Hello World is displayed in the text box.

3. To close the Form1 dialog box, press the close button on the title bar of the window.

4. Type show form1 to display this dialog box from the command line.

5. To display the dialog box modally, type show -modal form1 on the command line.

The dialog source is saved in the vuserdefs.e file in the user configuration directory, My SlickEdit
Config. Press Ctrl+Shift+Space while any dialog box is running to edit it (including the Properties dialog
box).

Binding Commands to Keys for Dialog Box Display

To bind a command to a key that displays a dialog box, use the following example to write the necessary
command:

#include "slick.sh"
_command void run_form1()
{

show("-modal form1");
}

Event-Driven Dialog Boxes

1337

See Key Bindable Command for more information about binding a command to a key.

Batch Macros
Slick-C® allows you to write batch macros. Batch macros are macros that can be run, much like shell
scripts, from within the editor. They do not need to be loaded, and they do not remain resident in the
editor after they have been run.

Use a batch macro when working with Slick-C® primitives that you want to share among multiple users.
Batch macros cannot be bound to a key; however, you can execute a batch macro from the command
line or a menu item.

1. Open an empty buffer and type the following code:

#include "slick.sh"
void defmain()
{

message("Hello World");
}

2. Save the file as hellow.e, then press Esc to open the SlickEdit® command line.

Note

To be able to run a batch macro without specifying the full path, save the file in a directory listed
in the VSLICKPATH environment variable. Otherwise, you will need to include an absolute or
relative (to the current directory) path to run your batch macro. For more information, see
Environment Variables.

3. Type xcom hellow, and press Enter.

Note

You can type hellow instead of xcom hellow to run the batch macro as long as internal
command doesn't have the same name. On non-Windows platforms, it's best to always prefix
external batch macros with "xcom" because a leading "/" will be interpreted as a find command
and not a path separator.

4. The status line displays the message Hello World is displayed.

Batch programs must be saved before they are executed so that the macro can compile. Also, batch
programs are automatically compiled if there is no corresponding .ex file, or if the date of the source file
is newer than the date of the .ex file.

Batch Macros

1338

Language Constructs
The Slick-C® language is rooted in the C language. Slick-C contains some constructs from REXX and a
dialog system usually found only in languages such as Microsoft® Visual Basic®. Slick-C also blends in
object-oriented features from C++, Java, and Python.

Topics in this section:

• Identifiers

• Comments

• String Literals

• Numeric Literals

• Defining Constants

• Namespaces

Identifiers
A variable or identifier may contain any of the characters "A-Za-z$_0-9" and must start with one of the
characters "A-Za-z_$".

See Reserved Words and Keywords for a list of reserved words and keywords.

All identifiers starting with p_ are reserved to be used as Slick-C property names.

Comments
Slick-C® supports both of the C++ comment styles.

• Use // to declare that the rest of the line is a comment

• Use /* to open a block comment and */ to close a block comment.

• Block comments can be nested.

Example:

i=1; //this is a comment
/* this is a /* nested */ comment */

String Literals

Identifiers

1339

Strings can be surrounded with single or double quotes. Double-quoted strings are identical to C++ string
literals.

A backslash followed by a character has special meaning, as outlined in the table below.

Characters Meaning

\a Bell character (7)

\b Backspace character (8)

\f Form feed character (12)

\n New line character (10)

\r Carriage return (13)

\t Tab character (9)

\v Vertical tab character (11)

\? Question mark character

\' Single quote character

\" Double quote character

\\ Backslash character

\x hh Hexadecimal character code

\ ooo Octal character code

If single quotes are used, two single quotes consecutively represent one single quote character. If double
quotes are used, a backslash followed by a double quote represents one double quote character. The
operator :== used in the example below compares two strings for exact equality. The Slick-C® language
does have an operator ==. However, this operator strips leading and trailing spaces and tabs from both
operands.

Examples:

"abc" :== 'abc'
"Can't find file" :== 'Can''t find file'
"\t" :== _chr(9)
\t :== _chr(9)

String Literals

1340

" spaces " == "spaces"

A backslash (not inside quotation marks) followed by a character or a number has the special meaning,
as shown in the table below.

Characters Meaning

\a Bell character (7)

\b Backspace character (8)

\f Form feed character(12)

\n New line (10)

\r Carriage return (13)

\t Tab character (9)

\v Vertical tab character (11)

\x dd Hexadecimal character code dd

\ ddd Decimal character code ddd

Caution

Using the above feature is not recommended. Use a quoted string.

Numeric Literals
The Slick-C® language supports integer constants in both decimal and hexadecimal formats.
Hexadecimal numbers are defined using 0x[hexdigits] just like they are in C.

The Slick-C language supports floating point numbers. The mantissa is limited to 32 digits and the
exponent is limited to nine digits. When precision is lost, the result is rounded. Overflow and underflow
are detected. Floating point numbers have the following syntax:

[+|-] digits [.][digits][E[+|-]digits]

or

[+|-] [.][digits][E[+|-]digits]

Numeric Literals

1341

There may be blank spaces before and after the leading sign.

Example:

4.04
4e2
4e2
4E-2
4E-2

Defining Constants
There are multiple ways to define constants.

Defining Constants Using #define

Slick-C® supports the #define preprocessor directive. The #define directive is for defining constants or
in-line functions. Use the following syntax to define the constant or in-line function:

#define name[(param1,param2,)] value

Use a backslash at the end of a line to indicate that the value text continues to the next line. Any
occurrence of name is replaced with the text value before the source is compiled.

Caution

When value represents an expression, place parentheses around it to make sure that there is not
a problem with operator precedence.

Example:

#define MAXLINES 15
#define MAXLINESP1 (MAXLINES+1)
#define max(a,b) (((a) >= (b)) ? (a) : (b))
#define min(a,b) (((a) <= (b)) ? (a) : (b))

defmain() {
x=MAXLINES;
y=MAXLINESP1;
a=max(x,y);

}

Defining Constants

1342

Defining Constants Using const

A const declaration is used to define a constant. A constant can be scoped within a class, namespace, or
globally. The advantage to using const instead of #define is that const constants are pure constants and
can be introspected using find_index() and name_info(), but a #define is just a lexical substitution. For
consistency, we recommend that constants use all uppercase identifiers, optionally using underscores to
separate words.

Examples:

const MAXLINES = 15;
const MAXLINESP1 = (MAXLINES+1);
const SEARCHKEY = "<Search>";
static const MY_LIMIT = INFINITY;

A few notes about constants:

• The const declaration works with Slick-C classes and namespaces.

• Constants support type inference so that the compiler can tell ints from booleans from strings.

• Constant names and values are stored in the state file in order to allow introspection.

• Static constant names are local to the current module, and are not stored in the state file (and do not
allow introspection).

• Context Tagging® recognizes the const declaration correctly.

Defining Constants Using Enumerators

Slick-C® also allows you to define constants using enumerators. Enumerated types share the advantages
of const declarations. They are discussed in more detail in the section Enumerated Types.

Namespaces
Slick-C® supports namespaces which allow you to partition functions and classes into independent areas
in order to organize your code better, and to better isolate your code from name conflicts. Slick-C
namespaces use "." instead of "::". Slick-C does not allow un-named namespace declarations. Slick-C
supports two types of namespace declarations, as shown in the following code:

// Module-wide (like Java).
namespace slickedit.tagging;

// Scoped namespace declaration (like C++ and C#).
namespace slickedit.search {

. . .

Namespaces

1343

}

Namespace imports use the C++-style using syntax:

// Pull all symbols from slickedit.tagging into current scope.
using namespace slickedit.tagging;

// Pull one symbol from slickedit.search into scope.
using slickedit.search.Regex;

// Qualified access to a symbol in the namespace.
slickedit.diff.Diff(f1, f2);

Slick-C includes the default; namespace, which will return you to the "default" global namespace.

Types

1344

Types
Slick-C® types are similar to the types in C. The following types are available in Slick-C:

• Strings - Slick-C has a built-in string type _str.

• Enumerated Types - Slick-C supports C-style enumerated types. In addition, Slick-C supports bit-flag
style enumerated types (enum_flags).

• Arrays - Array types are declared like C arrays, but cannot have a size limit. Array elements are always
dynamically allocated.

• Hash Tables - Slick-C provides a :[] hash table operator which is similar to the array operator [], except
that hash tables are indexed with a string type.

• Structs and Unions - Slick-C supports C-style structs and unions. Static structure members are not
supported.

• Classes and Interfaces - Slick-C supports Java-style classes and interfaces. Static class member
variables are not supported.

• Pointers - Slick-C provides pointer and reference types in the same manner as in the C language.

• Typeless - Typeless variables are declared using the typeless type. A typeless variable can be
assigned to or from any type, including structs, arrays, and hash tables.

• Numeric types - The numeric types are int, long, and double. All numeric types are signed. Slick-C
does not support char, short, or float types.

• Boolean type - The built-in Slick-C Boolean type is bool.

• Void type - void is only permitted as the return type of a function.

• Typedefs - Slick-C supports C-style typedef type declaration statements.

Strings
String variables are declared using the _str type. You can get the length of the string using the length
built-in.

Slick-C® has additional string operators so that the compiler always knows whether to perform a string or
numeric operation. The + operator always means add two numbers, and the concatenation operator :+
always means concatenate two strings. The :+= operator can be used to append to the end of a string.

See also Implicit Conversion to Strings.

Enumerated Types

Strings

1345

Slick-C® enumerated types are very much like C enumerated types, with the exception of also having a
form of enumerated type for bit flags. By default, Slick-C enumerated types have very relaxed type
checking with respect to assignment, arithmetic, and bit operations. However, when strict error checking
is enabled (see strictenums), the type checking is more like C++11 with respect to assignment, arithmetic,
and bit operatons.

enum BasicOptions {
OPTION1=1,
OPTION2,
OPTION3,

};

Slick-C® enumerated types support operators ++ and --, making is easy to iterate over a set of
enumerators using a for loop.

In addition, Slick-C enumerated types introduce enumerated type flags, a convenient way to create a set
of bit flags.

enum_flags OptionFlags {
FLAG1=0x4,
FLAG2, // 0x8
FLAG3, // 0x10
FLAGS_ALL=FLAG1|FLAG2|FLAG3

};

Slick-C® enumerated type flags support all bitwise arithmetic operations, as well as boolean ! and non-
zero test.

Arrays
Array types are declared like C arrays, but cannot have a size limit. Array elements are always
dynamically allocated.

Use array variables to keep a list of items. To define an array variable, use the following syntax:

[static] TypeName variable1[][={e1 ,e2 , ...}] , variable2[][={e1 ,e2 ,
...}] ...;

The first element of an array starts at 0. Use more than one set of brackets ([]) for multi-dimensional
arrays. Do not define the maximum number of elements in the array, because array elements are
allocated when you access them. The maximum number of elements that can be placed in an array is
approximately 2 billion. Use the _length() method to determine the number of elements in an array. The
syntax for using this method is variable._length().

Arrays

1346

To empty an array, use the following statements:

array._makeempty(); // Empty the array.
array=null; // Empty the array. Same as above.

You can delete and insert items into an array using the _deleteel() and _insertel() built-in methods,
respectively.

A Slick-C® class instance can be indexed using array syntax provided that the class implements the
sc.lang.IIndexable interface. This is similar to overloading operator [] in C++.

Differences from C++

• Space for array elements is allocated when you index into the array.

• You cannot use pointer variables to traverse array elements.

• You cannot limit the number of elements that the array may contain.

• Specifying an array variable WITHOUT the [] operator does not return a pointer to the first element.
Instead, it refers to the entire array. This allows you to copy one array to another, or define a function
which returns a copy of an array.

• There is no sizeof function which tells you the size of the array in bytes. There is a _length method
which tells you the number of elements in the array.

• You can append an element to the end of an array using the built-in :+= operator.

• Array initializers are not supported for local variables.

Example:

int gai[]={1, 7, 12};
int gaai[][]={{1},{1,2},{1,2,3}}; // Two dimensional array.
_str gastring1[]={"Value1", "Value2"};
typeless gat[]={"String", 1, 2.4};

void defmain()
{

t=gai; // Copy all the array elements
// into a local container variable.

t[t._length()]=45; // Add another array element.
t :+= 46; // Add another array element (shorthand).
for (i:=0;i<t._length();++i) {

messageNwait("t["i"]="t[i]);
}

}

Hash Tables

1347

Hash Tables
Hash tables are declared similar to array types and indexed with a string :[] operator. Use the following
syntax to define a hash table variable:

[static] TypeName variable1:[] [= {s1=>e1, s2=>e2, ...}],
variable2:[] [= {s1=>e1, s2=>e2, ...}] ...;

You can delete an item from a hash table using _deleteel(). Hash table initializers are not supported for
local variables.

Hash tables support indexing by class objects. The class must implement the getHashKey() member of
the IHashable interface. For example:

#include "slick.sh"
#import "stdprocs.e"
#import "sc/lang/IHashable.e"

class FileName : sc.lang.IHashable {
private _str m_file;
_str getHashKey() {

return m_file;
}
_str getExtension() {

return get_extension(m_file);
}
_str getPath() {

return _strip_filename(m_file,'N');
}
_str getFileName() {

return _strip_filename(m_file,'P');
}
void makeAbsolute(_str toDir=null) {

m_file = absolute(m_file, toDir);
}
_str getRelative(_str toDir) {

return relative(m_file,toDir);
}
FileName(_str fname=null) {

m_file = fname;
}
_str get() {

return m_file;
}
void set(_str fname) {

Hash Tables

1348

m_file = fname;
}

};

void defmain() {
bool ht:[];
FileName a("C:\\temp\\test.txt");
FileName b("C:\\Program Files\\");
FileName c("F:\\Public\\xkcd108.jpg");
ht:[a] = true;
ht:[b] = false;
ht:[c] = true;
FileName i;
foreach (i => auto v in ht) {
_assert(i instanceof FileName);
say("i="i.getHashKey()" v="v);

}
}

A Slick-C® class instance can be indexed using hash table syntax provided that the class implements the
_hash_el(_str key) function of the sc.lang.IHashIndexable interface. This is somewhat similar to
overloading operator [] in C++. See Overloading Array Index Operators for an example of using
IHashIndexable.

Structs
Structures (structs) are typically used to logically group data. For example, a record in a database might
have a name, address, and phone number. This can be logically grouped into a ContactInfo structure
which is more convenient to use than accessing the fields individually. Structures can also have the
added effect of reducing the number of global variables.

Slick-C® supports C-style structs. Slick-C structs cannot have member functions.

For consistency, we recommend that structs use initial caps (camel case) identifiers.Use the following
syntax for defining a struct:

[static] struct StructName {
member-variable-decl1;
member-variable-decl2;
} ([variable1[={e1,e2, ...}] , variable2[={e1,e2, ...}], ...];)

The struct declaration provides the option of defining your own type called StructName and to declare
one or more variables. The syntax of member-variable-decls is identical to declaring other variables,
except that static structure members are not supported. Use the following syntax for accessing a member

Structs

1349

of a struct variable:

variable.member_name

Example:

struct PHONERECORD { // Define a type called PHONERECORD.
_str Name;
_str PhoneNumber;

} gPhoneRecord; // Declare a variable of that type.

PHONERECORD gPR={ // Declare a variable of type PHONERECORD.
"Steve","555-1346"

};
PHONERECORD gRecordArray[]; // See arrays below.
struct PHONERECORD2 { // Define a type called PHONERECORD2.

_str Name;
_str PhoneNumber;
_str FaxNumber;

};

void defmain()
{

messageNwait("Name="gPR.Name" PhoneNumber="gPR.PhoneNumber);
typeless t = gPR; // Copy phone record data into a local container

variable.
// Container variables can access structure

elements
// as an array.

messageNwait("Name="t[0]" PhoneNumber="t[1]);
}

Slick-C structs support designated initializers:

struct PhoneRecord {
_str name;
_str phoneNumber;

};

PhoneRecord shouldHaveKnown = {
.phoneNumber = "867-5309",
.name="Jenny"

};

Differences from C++

Structs

1350

• There is no sizeof operator like in C++. Since the Slick-C® interpreter stores all types as container
variables, the sizeof operator has no meaning.

• Space for structure elements is allocated when you access the element.

• Structure data is not contiguous. The Slick-C interpreter stores all types as container variables,
including the members of a struct.

Unions
Slick-C® supports C-style unions. Unions are typically used in place of a struct in the case where you
have mutually exclusive member variables. In this case, a union requires less memory than a struct.
Memory is only allocated for one member variable at a time. The syntax for defining a union is shown in
the following example:

[static] union [UnionName] {
member-variable-decl1;
member-variable-decl2;

} [variable1[={e1}] , variable2[={e1}], ...];

The union declaration provides the option to define your own type named UnionName and to declare one
or more variables. The syntax of member-variable-decls is identical to declaring other variables, except
that static union members are not supported. The syntax for accessing a member union variable is
variable.member_name.

Example:

union {
int i;
_str s;
double d;

} gu={1}; // Type checking here is with first member variable.

#define KIND_INT 1
#define KIND_STRING 2
#define KIND_DOUBLE 3
void defmain()
{

struct {
int kind;
// Here we are nesting a union inside a struct.
// This union only requires space for one of these members at a

time.
union {

Unions

1351

int i;
_str s;
double d;

} u;
} x;

x.kind=KIND_INT;
x.u.i=1;

...
switch (x.kind) {
case KIND_INT:

messageNwait("x.u.i="x.u.i);
break;

case KIND_STRING:
messageNwait("x.u.s="x.u.s);
break;

case KIND_DOUBLE:
messageNwait("x.u.d="x.u.d);
break;

}
}

Anonymous Unions

An anonymous union is a union member variable that is not named. This saves you from having to type
the union member variable name.

Example:

void defmain()
{

struct {
int kind;
union {

int i;
_str s;
double d;

}; // No name for this union member variable.
} x;
x.kind=KIND_INT;
x.i=1;

}

Interfaces

Interfaces

1352

Interfaces use Java-like syntax. They do not allow constructors, destructors, or member variables; only
prototypes. Interfaces can inherit from other interfaces. All the prototypes in an interface are implicitly
public.

Example:

interface ICommunicationDevice {
void talk();
void hangup();

};

Classes
Classes use a Java-like syntax. For example:

class Phone : ICommunicationDevice {

protected typeless m_dialer = null;
private typeless m_line = null;
private static typeless s_operator = null;

Phone(_str number="") {
}
~Phone() { }
void talk() {
}
void hangup() {
}
static void getOperator() {
}

};

For consistency, Slick-C® class names should be in camel case. Member variables within classes should
start with "m_". Static member variables should start with "s_". Finally, methods should be lowercase. If a
method name contains multiple words, the trailing words should be camel case.

A few notes about Slick-C classes:

• A class can extend or inherit from only one other class.

• A class can implement multiple interfaces.

• Use the instanceof operator to test if a class instance derives from a specific class or interface.

• Member variables can have constant initializer expressions.

Classes

1353

• All member variables must be initialized, either using initializers or in the class constructor.

• All member variables must be declared before the constructor.

• There are no extends or implements keywords.

• Classes are not allowed to derive from struct types.

• The default access level is public. There is a public keyword, but it essentially does nothing.

• Class members support protected and private.

• There is no concept of a package scope like there is in Java.

• Member functions are virtual by default, except for static member functions.

• static member variables may have initializers.

• extern member function prototypes are implemented in a DLL.

• A class is allowed one and only one constructor.

• If a class constructor takes arguments, they must have defaults.

• No explicit calls to new or delete (no new or delete keywords).

• No function overloading.

• No operator overloading.

• No friend relationships.

• No templates or generics.

• No final and no const.

• No C#-style properties or delegates.

• No default root "object" class.

• No static constructors.

The life-span of a Slick-C class instance is identical to that of a similar Slick-C struct. There are no new or
delete operators.

// Construct an instance of a class, like C++.
C1 a;
C1 b;

// Assign a class instance to another (deep copy).
a = b;

Classes

1354

// An array of class instances. Constructor not called here.
C1 array[];
// Constructor called with no args followed by deep copy.
array[1] = a;

See the following topics in this section for more information:

• Introspection

• Implicit Conversion to Strings

• Overloading Comparison and Assignment Operators

• Overloading Array Index Operators

Introspection

Slick-C® supports introspection of struct and class instances through the built-in functions shown below.
In each of the functions, "index" can be either an integer index or a string containing the field or method
name.

• v._callmethod(index) - Call a class method.

• v._construct() - Construct an instance of a class.

• v._fieldindex(name) - Find the position of a class field.

• v._fieldname(i) - Get the name of a class field.

• v._findmethod(name) - Find a class method.

• v._getfield(index) - Get a reference to a class field.

• v._instanceof(name) - Return true if variable is instance of or derives from the given class.

• v._length - Return the number of fields in a class.

• v._setfield(index,value) - Modify a class field.

• v._typename() - Return the name of variables type.

The C++ API for Slick-C includes the following functions:

• vsHvarTypename(hvar)

• vsHvarFieldIndex(hvar,name)

• vsHvarFieldName(hvar,i)

• vsHvarGetField(hvar,index)

• vsHvarGetFieldByName(hvar,name)

Classes

1355

• vsHvarSetField(hvar,index,value)

• vsHvarSetFieldByName(hvar,name,value)

• vsHvarFindMethod(hvar,name)

• vsHvarCallMethod(hvar,index,args)

• vsHvarCallMethodByName(hvar,name,args)

• vsHvarInstanceOf(hvar,name)

• vsHvarConstruct(name,args)

Implicit Conversion to Strings

Slick-C provides the interface IToString for implicit string conversion (see Strings). If a class implements
sc.lang.IToString, then an instance of that class can be implicitly converted to a string, without explicitly
calling the toString() method.

Overloading Comparison and Assignment Operators

By default, Slick-C® class instances are compared using a deep member-wise equality test. To override
the default comparison methods for a class, Slick-C provides the interfaces sc.lang.IEquals and
sc.lang.IComparable. If a class implements sc.lang.IEquals, an instance of that class can be compared
to another instance using operator == or operator != as defined by the equals() method. If a class
implements sc.lang.IComparable, then instances of the class can be compared using the standard
comparison operators, as defined by the compare() method. If a class implements IComparable, it does
not have to implement IEquals to support equality and inequality tests.

Overloading Array Index Operators

Slick-C® supports the overloading of the [] and :[] operators. For more information, see Hash Tables.

Below is an example of IIndexable:

#import "sc/lang/IIndexable.e"

class PerfectSquares : sc.lang.IIndexable {
typeless _array_el(int i) {

return i*i;
}

};

void defmain()
{

PerfectSquares ps;
say("defmain: 3^2="ps[3]);
say("defmain: 16^2="ps[16]);

Classes

1356

}

Below is an example of IHashIndexable:

class PhoneBook : sc.lang.IHashIndexable {
_str m_numbers:[];
void loadNumbers() {

m_numbers:["Brittany"] = "555-3825";
m_numbers:["Vanessa"] = "555-1024";

}
typeless _hash_el(_str name) {

return m_numbers:[name];
}

};
void defmain()
{

PhoneBook pb;
pb.loadNumbers();
say("defmain: Brittany's number is " pb:["Brittany"]);
say("defmain: Vanessa's number is " pb:["Vanessa"]);

}

Overloading Assignment/Copy Semantics

By default, Slick-C® class instances are copied using a deep, member-wise copy. To override this
behavior, a class can implement the sc.lang.IAssignTo interface and implement a custom copy()
method.

Overloading Iteration Semantics

A Slick-C® class can be customized to work seamlessly in a foreach loop by implementing the
sc.lang.IIterable interface. The sc.lang.Range class, which is included in the Slick-C class library, is an
excellent example of how to implement and use IIterable.

SlickEdit® Class Libraries

SlickEdit ships with a small but growing core of Slick-C® classes and interfaces to build upon. There are
two top-level namespaces: sc (Slick-C) and se (SlickEdit). The sc namespace encompasses general
purpose classes that support programming in Slick-C and are application-independent. It can be
compared to java.lang and java.util in Java, the System namespace in C#, or the std namespace in
C++ with respect to its purpose (not feature-by-feature). The se namespace includes the foundations and
implementations of select features of the SlickEdit editor. Not all SlickEdit features use Slick-C classes.

Differences from C++ and Java

• Slick-C® uses per-member access specifiers like Java rather than the grouping syntax employed by
C++.

Classes

1357

• Slick-C supports destructors, just like C++ (Java does not have destructors).

• Slick-C has no new or delete.

• Slick-C does not support overloaded methods or const methods.

• Like C++, Slick-C class instances are passed by value, unless you specifically pass them by pointer or
reference.

• Like Java, this is a reference to the current class instance, not a pointer as it is in C++.

Additionally:

• No function overloading.

• No operator overloading.

• No friend relationships.

• No templates or generics.

• No final and no const.

• No C#-style properties or delegates.

• No default root "object" class.

• No static constructors.

Pointers

Pointers to Variables

Pointer variables are declared using the following syntax:

[static] TypeName *variable1[=&v1] , *variable2[=&v2] ...;

The unary & operator is used to return the address of a variable. The unary * operator is used to
dereference a pointer. Use the operator -> (for example, p->m-variable) to access members of a pointer
to a structure.

Caution

When a module is reloaded, static variable addresses change. Make sure you reinitialize global
pointer variables which point to static (module scope) variables.

Pointers to Functions

Pointers

1358

Function pointer variables are useful for callback functions. The syntax for function pointers is:

[static] TypeName (*variable1)([ArgDecl1, ArgDecl2,...]){=function_name};

Where ArgDecl has the almost the same syntax as a variable declarations, except static is not supported
and the ampersand (&) operator is used to specify call by reference parameters. Call by reference array
and hash table parameters require parentheses around the ampersand (&) and id.

The syntax for calling a pointer to function variable is:

(*pfn)([e1, e2,...])

If accessing an invalid function pointer, the Slick-C® macro stops.

Caution

When a module is reloaded, static function addresses change. Make sure you reinitialize global
function pointer variables which point to static (module scope) functions.

Typeless
A typeless variable can be assigned to or from any type, including structs, arrays, and hash tables.

Typeless container variables can be declared using the typeless type. A typeless container can be
passed to a function using the var type. The container variable can store the contents of any typed
variable. This is easy for the interpreter since all typed variables are stored as container variables. At run
time, the interpreter must check the current type of the container variable (and sometimes convert it) to
perform an operation.

The compiler performs (double) floating point arithmetic on container variables. Currently, there is only a
very small difference in speed between arithmetic operations on integer type variables and container
variables, because the Slick-C® language has been optimized for string and container operations.

Note that there is no sizeof operator. Since the Slick-C interpreter currently stores all types as container
variables, the sizeof operator has no meaning.

Example:

typeless t;
t=1; // Store an integer.

// Convert the contents of the variable t to a
// floating point number (double type) and add 1.
// NOTE: The interpreter is smart and will only perform
// integer arithmetic here.

t=t+1;
// Since + always means addition, the compiler converts

Typeless

1359

// string constants to the smallest possible numeric type.
t=t+"1";

// Declare string variable.
_str s;
s=1; // Compiler will convert int to string.
t=1.2;
// Must cast string type to int or compiler will complain.
t=(int)t+(int)s; // Result is 2, not 2.2, because of the cast of t to

int.

// Destroy the integer and make an array.
// Also make the 0 element an integer.
t[0]=1;
t[1]=2; // Add another element.

t2=t; // Copy the array and all its elements.
struct {

int x;
int y;

} st;
st.x=1;
st.y=2;
t=st;
// Print out the elements of the structure.
for (i:=0;i<t._length();++i) {

messageNwait("t["i"]="t[i]);
}

Mathematical Operators

1360

Mathematical Operators
Slick-C® uses the operator precedence of C. The table below contains the unary operators that an
expression can use.

Operator Description

! e1 Logical NOT. Result is true if e1 evaluates to false
or 0. Otherwise the result is true.

~ e1 Bitwise complement.

- e1 Negation.

+ e1 No change.

++ v1 Increments the variable v1 and returns the result.

v1 ++ Returns the value of v1 and then increments the
variable v1.

-- v1 Decrements the variable v1 and returns the result.

v1 -- Returns the value of v1 and then decrements the
variable v1.

The binary and ternary operators for the Slick-C language are listed in the table below. In addition to the
operators listed in the previous table, string concatenation is implied. If a binary operator does not exist
between two unary expressions, concatenation is automatically performed.

All numeric operators, except bitwise operators, support floating point numbers. Bitwise operators support
32-bit integers and 64-bit long integers for all platforms. Bitwise operators also support enumerated flag
types (enum_flags).

Operator Description

= Assign right operand to left operand.

:= Declare new variable with type matching right
operand and assign it the value of the right
operand.

+= Add left operand to right operand and assign to left
operand.

Mathematical Operators

1361

Operator Description

-= Subtract right operand from left operand and assign
to left operand.

/= Divide left operand by right operand and assign to
left operand.

*= Multiply left operand with right operand and assign
to left operand.

|= Bitwise OR left operand with right operand and
assign to left operand.

^= Bitwise XOR left operand with right operand and
assign to left operand.

&= Bitwise AND left operand with right operand and
assign to left operand.

e1 ? e2 : e3 If expression e1 is TRUE (not the string 0),
expression e2 is returned. Otherwise, expression
e3 is returned.

&& Logical AND. If left hand expression is false, right-
hand expression is not evaluated.

|| Logical OR. If left hand expression is true, right-
hand expression is not evaluated.

| Bitwise OR.

^ Bitwise XOR.

& Bitwise AND.

== Equal. Performs a numeric or string comparison
depending on the operands. This function is NOT
identical to the C strcmp function (see :== operator
below). If both operands are numbers, a numeric
comparison is performed. Otherwise a string
comparison is performed. In any case, leading and
trailing spaces and tabs are stripped before the
comparison is performed.

> Greater than. Performs a numeric or string

Mathematical Operators

1362

Operator Description

comparison depending on the operands. See ==
operator.

>= Greater than or equal. Performs a numeric or string
comparison depending on the operands. See ==
operator.

< Less than. Performs a numeric or string comparison
depending on the operands. See == operator.

<= Less than or equal. Performs a numeric or string
comparison depending on the operands. See ==
operator.

!= Not equal. Performs a numeric or string comparison
depending on the operands. See == operator.

:== Exactly equal. Always performs string comparison.
This is equivalent to the C expression:
(strcmp(a,b)==0)

:!= Not exactly equal. Always performs string
comparison.

:<= Exactly less than or equal. Always performs string
comparison.

:< Exactly less than. Always performs string
comparison.

:>= Exactly greater than or equal. Always performs
string comparison.

:> Exactly greater than. Always performs string
comparison.

instanceof Can be used to test if a class instance derives from
a specific class or interface. It can be used in two
ways: x instanceof MYCLASS, or x instanceof
"MYCLASS". "MYCLASS" does not need to be a
constant string, and x may be a typeless container
variable. Slick-C's instanceof is slightly more
powerful than Java's, since the right operand can
be a string value rather than just a class name.

Mathematical Operators

1363

Operator Description

Otherwise, it is essentially the same concept.

:+ Concatenation.

:+= If the left operand is a string type, append right
operand (string) to the end of the left operand and
assign to the left operand. This is similar to the
built-in strappend() function, but more convenient
to use.

If the left operand is an array type, append the right
operand to the end of the array. The statement a
:+= b; is equivalent a[a._length()] = b.

<< Bitwise shift left.

>> Bitwise shift right.

+ Addition.

- Subtraction.

/ Division with possible floating point result.

intdiv Division with integer result.

* Multiplication.

% Modulo (integer remainder).

Two sets of comparison operators exist. The operators <, >, =, !=, <=, and >= perform a numeric
comparison if both string expressions are valid numbers. The operators :<, :>, :==, :!=, :<=, and :>=
always perform a string comparison.

Select the appropriate comparison operator for performing a string or numeric comparison. Expressions
may extend across line boundaries if the line ends in a binary operator or if the line ends with a
backslash.

The table below shows examples of math operators in Slick-C.

Example Operator

(1.0==1) == true

Mathematical Operators

1364

Example Operator

(1e2==100) == true

(1e2:==100) == false

(" abc "=="abc") == true

(" abc ":=="abc") == false

(" abc ":!="abc") == true

(" 1 "==1) == true

(" 1 ":==1) == false

("abc":<"def") == true

1 2 :=="12"

1 (2) :=="12"

pow(4,2) ==16

5%2 ==1

5/2 ==2

5/2.0 ==2.5

5 intdiv 2.0 ==2

5&2 ==0

5|2 ==7

(10<7) == false

(10:<7) == true

Declarations

1365

Declarations
Variables and functions are declared in Slick-C® the same way they are defined in C.

This section contains the following topics:

• Scoping and Declaring Variables

• Simple Variables

• Implicit Local Variables

• Declaring Local Variables With :=

• Declaring Variables With auto

Scoping and Declaring Variables
The Slick-C® language supports global, namespace, static (module), and local scope variables. Global
variables can be accessed by any module. The scope of static and local variables are limited to the
module in which they are defined. Variables are declared the same way that they are defined in C++. See
Types for a list of types available in Slick-C.

Namespace level variables are visible within the current namespace but can be accessed from another
namespace if they are qualified with the namespace name or imported with the using directive.

Simple Variables
The syntax for defining a simple variable is:

[static] TypeName variable1[=expression1] , variable2[=expression2] ...;

The comma is used to declare more than one variable of the same type. Local variables do not have to be
defined. Using a variable not already defined as global or constant declares the variable to be a local
typeless variable. However, you should declare variables within the scope of a function to ensure that the
variable will be local even if the name is declared elsewhere as a global or constant.

Example:

// Declare a global integer.
int gi=1;
// Declare a module scope integer.
static int si=2+4;
// Declare some global string variables.
_str gstring1="Value1", gstring2="Value2";

Scoping and Declaring Variables

1366

// Declare a global large floating point variable.
double gd=1.4;
// Declare a global typeless variable.
typeless gt="xyz";
void defmain()
{

_str s="ess";
// Declare a local string variable and initialize it to "ess".
t=gi;
// Copy gi into local container variable t.
message("t="t"s="s);

}

Details About Variable Initializations

The following are some details about variable initializations:

• Global and static numeric variables, which include bool, int, long, double, and enumerated types, are
initialized to 0 when there is no specified value provided. Local variables of any type are not initialized.

• Global and static variables declared as typeless or _str are initialized with "" (a zero length string)
when there is no initialization value provided.

• Global, static, and local variables declared as array, hash tables, and structure types are initialized as
null when there is no initialization value provided.

• Global, static, and local variables of class type are initialized by running their constructor with default
arguments. Global, static, and local variables of interface type are initialized to null.

• Local numeric, string, enumerated, and typeless variables require initialization.

Example:

bool globalbool=true;
int globalint;
double globaldouble;
void defmain()
{

// Will print message "globalbool=1 globalint=0 globaldouble=0".
message("boolean="globalbool" globalint="globalint"

globaldouble="globaldouble);
}

Type Casting

Slick-C® enforces string type checking on everything except typeless variables. However, there are times
when you need to convert an expression from its actual type to another. Type casting helps communicate
that to the compiler. Note that some type conversions can change the value of an expression. The syntax

Simple Variables

1367

for type casting is as follows:

(TypeName) expression

Some casts are not permitted in Slick-C. For example, you cannot cast a struct type to another struct
type. Also, Slick-C does not support the C++ function style cast mechanism, and does not permit pointer
types to be cast.

Example:

void defmain()
{

int i;
double d;
d=1.7;
i=(int)d; // i gets the value 1, NOT 1.7
typeless t;
t=1.2;
i=t; // Here i gets 1.2 BUT
bool b;
b= i!=0; // Can't use cast here.
i=(int)b; // Need cast here.

}

Implicit Local Variables
Local variables do not have to be declared. Using a variable not already declared as global or constant
declares the variable to be a local typeless variable. However, you should declare variables within the
scope of a function to ensure that the variable will be local even if the name is declared elsewhere as a
global or constant. Turning on any of the compiler pragmas autodeclvars, strict, or pedantic will flag
implicit local variables as errors.

Example:

_str cheese1 = "provolone";
_str cheese2 = "cheddar";
temp = cheese2; // Same as typeless temp = cheese2;
cheese2 = cheese1;
cheese1 = temp;

Declaring Local Variables With :=
Slick-C® supports type inference using the := operator, which both declares, and initializes a local

Implicit Local Variables

1368

variable with inferred type. This syntax provides you with the syntactic convenience of implicit local
variables without sacrificing strong type checking.

In the following statement, id is declared as a local variable with the same type as expr:

id := expr;

Examples:

b := false; // bool b = false;
i := 0; // int i = 0;
j := i; // int j = i;
s := "test"; // _str s = "test";
p := &s; // _str *p = &s;
c := _process_comment(line); // COMMENT_TYPE c=_process_comment(line);
p := &obj; // Object *p = &obj;
fp := func; // int (*fp)() = func;
x := y := 0; // int x=0; int y=0;
for (a:=1; a<10; ++a); // count to 10

Declaring Variables With auto
Slick-C® supports type inference using the auto keyword. The syntax for auto variable declarations is:

[static] auto variable1[=expression1] , variable2[=expression2] ...;

Like the := operator, auto variable declarations use type inference to assign a type to the variable being
declared and initializes the variable with the specified expression. Auto declarations are allowed in both
local and global scopes, whereas := can only be used inside functions for local declarations.

Examples:

auto b=false; // bool b=false;
auto x=0, y=1; // int x=0; int y=0;
auto i=x+1, s="test"; // int i=x+1; _str s="test";

You can also use auto to introduce a new local variable when calling a function that takes an "out"
argument by reference, or with the parse statement. You can think of this identical to using implicitly
declared variables, except that you prefix the variable with the auto keyword to introduce it. The type of
the variable will be inferred from the point of use. In a parse statement, it will become a string type. In a
function call, it will acquire the type of the formal argument from the function prototype. The advantage of
using auto for output-only pass by reference variables is that, when coding a function call, you do not
have to backtrack to declare the variable, you can just introduce it at its point of use and keep coding.

Examples:

Declaring Variables With auto

1369

struct Position {
double x,y,z;
// ...

};
struct SpaceTimeContinuum {

_str timeVal;
// ...

};
void warp(SpaceTimeContinuum &stc)
{

// ...
}
void travelFast(Position destinations[])
{

warp(auto stc);
parse stc.timeVal with auto realPart '+' auto imaginaryPart;
// ...
foreach (auto p in destinations) {

// ...
}

}

Statements

1370

Statements
Slick-C® statements are constructed in the same manner as the statements in the C language.

Topics in this section:

• Assignment Operator

• if Statement

• Block Statement

• Loops

• parse Statement

• switch Statement

Assignment Operator
The simple assignment statement has the syntax variable=expression. For example:

i=1;
i=i+1;

Assignment statements can be cascaded (x=y=z). Assignment statements within if and while conditions
are not allowed. The compiler flags assignments within if and while statements as an error. See
Declaring Local Variables With := for more information.

if Statement
The syntax for an if statement is the following:

if (expression) statement [else statement]

statement can be a C-style statement block which contains multiple statements. For more information,
see Block Statement.

Caution

CAUTION The value 0 for all types is false. All other values are true. Like C++, Slick-C® uses the
value 0 for null pointers. For the string type, only a one-byte length string where the first character
is an ASCII 0 is false. A 0 length string ("") is true when used in a boolean expression. Slick-C

Assignment Operator

1371

also considers an empty (=null) pointer variable or class instance as false.

Example:

if (x<y) a==1;
if (x=="a") {

y=1;
} else if (x=="b") {

y=2;
} else if (x=="c") {

y=3;
} else if (x=="d") {

y=4;
}

Block Statement
A statement block is typically used to allow multiple statements within an if or loop construct. However, it
can also be used to declare a new local scope. A statement block has the following syntax, where
statement may declare local variables:

{
statement1;
statement2;
...
}

Example:

int i=0;
if (i<1) {

int x=1;
{

int x;
// Can do the assignment here.
x=3;

}
// The variable x will be 1 here and not 3.

}

Loops

Block Statement

1372

Slick-C® supports C-style do, for, and while loops. In addition, Slick-C also supports Java/C#-style
foreach loops and the Ada-style loop statement. You can use break and continue with all styles of loops.

do

The do loop executes statement first and then evaluates condition_exp. If expression is true (not the
value 0), the statement continues to be executed until expression becomes false (0) or a break statement
is reached.

Example:

[label:] do statement while (condition_exp);

for

The C-style for loop is free-form. The expressions before the first semicolon of the for loop are executed
before entering the loop. The condition_exp expression is checked before entering the for loop also. If
condition_exp is true (not the value 0), the statement is executed. The statement continues to be
executed until condition_exp becomes false (0) or a break statement is reached. When the bottom of the
for loop is reached, but before condition_exp is checked again, the expressions after the second
semicolon are executed.

The syntax of for is:

[label:] for (b4e1 ,b4e2b4e3]; [condition_exp] ;
{cont_e1,cont_e2 ... ,cont_e3]) statement

Examples:

// The following loops are equivalent.
loop1:

for (i=1;i<10;++i) {
messageNwait("i="i);

}

loop2:
i=1;
for (;i<10;) {

messageNwait("i="i);
++i;

}

loop3:

Loops

1373

for (i=1;i<10;++i) messageNwait("i="i);

loop4:
i=1;
while (i <10) {

messageNwait("i="i++);
}

loop5:
i=1;
do {

messageNwait("i="i);
} while (i<10);

foreach

The foreach statement works with arrays, hash tables, strings (same as Bourne shell), structs (iterates
over the fields of the struct), and classes (if instance of sc.lang.llterable, otherwise like structs). The
syntax of foreach is:

foreach ([k =>] v in a) {
statements;

}

Example:

void printStats(int (&statistics):[])
{

foreach (auto name => auto count in statistics) {
say("testForeach: "name"="count);

}
int i,j=0;
foreach (i in range(10, 20, 2)) {

say("printStats: sequence["j++"]="i);
}

}

There is an optional key which is useful for hash tables. The value can be omitted (key=> . in ht):

foreach(key => value in ht) {
statements;

}

Both value and index can be auto-declared using the auto keyword. If value is auto-declared, its type

Loops

1374

will be inferred from the type of the collection. The implementation uses _nextel().

loop

The generic loop statement is similar to that found in the Ada and D languages. The following statements
are equivalent:

for(;;) { ... }
loop { ... }

Example:

status := search(":","@");
loop {

if (status) break;
get_line(line);
messageNwait("found match line="line);
status = repeat_search();

}

Another example:

defmain()
{

i:=0;
j:=0;
loop {

say("test, i="i);
i++;
if (i>1000) {

break;
}
inner: loop {

say("defmain: j="j);
if (j++ > 750) break inner;

}
say("defmain: H1");
if (i < 500) {

continue;
}
say("defmain: H2");

}
}

Loops

1375

while

The while loop evaluates condition_exp first and then executes statement if condition_exp is true (not the
value 0). The statement will continue to be executed until condition_exp becomes false (0) or a break
statement is reached.

Example:

[label:] while (condition_exp) statement

break

Loops are exited with the break primitive. The break primitive supports an optional label argument (like
Java™). If specified, the label must match the label of one of the loops that you are currently using.

continue

The continue primitive can be used to skip to the top of a loop. Using continue on a for loop causes the
expressions after the second semicolon to be executed before condition_exp is checked. When continue
is used on a do statement, the condition_exp is not checked and execution resumes at the top of the
loop.

Loops can also be exited with the continue primitive. The continue primitive supports an optional label
argument (like Java). If specified, the label must match the label of one of the loops that you are currently
using.

Example:

outerloop:
for (i=1;i<3;++i) {

for (j=1;;++j) {
if (j==2) continue outerloop; // Exit inner loop.
if (j==3) break outerloop; // Exit both loops.
messageNwait("i="i);

}
}

parse Statement
The syntax for parse is parse string with template. This statement parses string as specified by template.

The table below shows what template may contain.

parse Statement

1376

Item Description

variable_name Output variable.

. Null output variable.

nnn Number specifying new parse column.

+ nnn Amount to increment parse column relative to start
of last string found or last column setting.

- nnn Amount to decrement parse column relative to start
of last string found or last column setting.

'text'[,search_options] String constant to search for. If found, parse column
becomes first character after text. Otherwise parse
column becomes first character after length of string
being parsed. search_options is an optional
expression that may evaluate to a string of one or
more of the option letters U, R, B, I, and Y:

• R Specifies SlickEdit regular expressions.

• L Specifies Perl regular expressions.

• ~ Specifies Vim regular expressions.

• U Specifies Perl regular expressions. Unix syntax
regular expressions are no longer supported.

• B Specifies Perl regular expressions. Brief syntax
regular expressions are no longer supported.

• & specifies wildcard regular expressions.

• I Specifies a case insensitive search.

• Y Specifies a binary which search allows
positions in the middle of a DBCS character (only
affects Japanese operating systems).

See the topic "regular expressions" in the
SlickEdit® Help system for more information.

(expression)[,search_options] String expression to search for. If found, parse
column becomes first character after text.
Otherwise parse column becomes first character
after length of string being parsed. See above for a
description of the search options.

parse Statement

1377

Item Description

The rules for parse column are:

• The parse column is initialized to column 1.

• If a column or column increment specifies a column greater than the length of the string being parsed,
the parse column is set to the length of the string being parsed plus one.

• If a column decrement specifies a column less than the length of the string being parsed, the parse
column is set to column 1.

The rules for setting output variables are:

• Output variables are set in groups. An output variable group is defined to be consecutive variables with
no search or column specifiers between them.

• Before variables of an output variable group can be set, the end parse column within the source string
must be found. In the case the end parse column is set by a search, the end parse column for this
output variable group becomes the first character to the left of the text found. In the case the end parse
column is set by a column or column increment the end parse column becomes the first character to
the left of the column. The start parse column is the current parse column as specified by the template.

• A word parse of the text between the start and end columns is performed to set the variables in an
output variable group if the group contains more than one variable. Otherwise the one output variable is
set to the text between the start and end columns of the source string. Each variable set by a word
parse will have no leading or trailing tabs/spaces except for the last output variable which is set to the
rest of the sub-string.

• If the start column is greater than the end column the variables in the output group are set to null.

Wildcard regular expressions are supported for parse. You can also use the auto keyword to auto-
declare the output string variables in a parse statement. For example, the following statement declares
"firstword" and "secondword" as strings:

parse s with auto firstword auto secondword;

Examples of parse:

// Results are a=='1', b=='2', c=='3'.
parse '1 2 3' with a b c;

// Results are a=='1', b=='2', c=='3'. Note that tab and space
characters are stripped.

parse '1 '\t' 2 '\t' 3' with a b c;

parse Statement

1378

// Results are a=='1', b=='3'.
parse '1 2 3' with a . b;

// Results are a=='1', b=='2', c=='3', d=='4', e=='5'.
parse 'xxx1 2 3yyy 4 5' with 'xxx' a b c 'yyy' d e;

// Results are a=='1 2 3', b==' 4 5'.
parse 'xxx1 2 3yyy 4 5' with 'xxx' a 'yyy' b;

// Results are a=='xxx1 2 3', b=='yyy 4 5'.
parse 'xxx1 2 3yyy 4 5' with 'xxx' +0 a 'yyy' +0 b;

// Results are delim=='/', s1=='x', s2=='y', options=="".
parse 'c/x/y' with 2 delim +1 s1 (delim) s2 (delim) options;

switch Statement
Slick-C® supports the C switch statement. The Slick-C switch supports integers and string types. The
switch statement uses the following syntax:

switch (expression) {
[case expression:
statements
]
[case expression:
statements
]
...
[default:
statements
]
}

The switch expression is evaluated and compared against all the case expressions. After a match is
found, ALL statements below the case are executed, including those statements found in the next case
and the default, until a break statement is reached.

Example:

outerloop:
for (i=1;;++i) {

switch (i) {
case 1:
case 2:

messageNwait("i=1 or i=2");

switch Statement

1379

break;
// Done with these cases.

case 3:
break outerloop;

}
}

Functions

1380

Functions
A function can be called from the macro language. Slick-C® has five kinds of functions: procedures,
commands, class methods, library functions, and built-ins. These are described in the following sections:

• Defining a Procedure

• Defining a Command

• Class Methods

• Function Prototypes

• Differences Between Commands, Built-ins, and Defs

Defining a Procedure
Procedures and functions are the basic building blocks for most modern, imperative languages. Slick-C®
procedures cannot be bound to keys. A procedure name must be a valid Slick-C identifier (same as C
identifier). Use the following syntax to define a procedure:

[static] [TypeName] id(TypeName1 [&] id1, TypeName2 [&] id2, ...])
{

statement1;
statement2;
...

}

TypeName specifies the return type of the function. For more information, see Types. If the return type is
not specified, the function will return typeless. When the void type is used, a value cannot be specified to
the return statement. The return statement is used to specify the result of the function call and exit the
function.

The optional static keyword is used to limit the scope of a procedure to the module in which it is defined.
By default, procedures are global and can be accessed by any module. Procedures are called by
specifying the name followed by comma delimited arguments, if any, in parentheses.

[result =] id(expr1, expr2, ...);

In the above example, expr1 matches the type of id1 and expr2 matches the type of id2, etc.

Example:

Defining a Procedure

1381

int increment(int x)
{

return x+1;
}
bool proc(int &p1, _str p2, _str (&list)[], int (*pfn)(int))
{

return(true)
}
void defmain()
{

p1 := 0;
p2 = "Hello world";
if (proc(p1, p2, auto list, increment)) {

// ...
}

}

Note

The list and p1 parameters are call by reference parameters. Like C++, list parameter requires
parentheses around the & reference operator and the name, because the [] operator would
otherwise be processed first. The pfn parameter is a pointer to a function.

Argument Declarations

The syntax for an argument declaration is the same as for declaring a variable, except that the static
keyword cannot be used. An ampersand (&) before the id declares a call by reference parameter. Call by
reference array and hash table parameters require parentheses around the & and id.

The last argument in the declaration list may be an ellipsis to indicate that the function accepts more
arguments of any type. Use the arg function to access these optional arguments.

TypeName specifies the return type of the function. For more information, see Types. If the return type is
not specified, the function will return typeless. When the void type is used, a value cannot be specified to
the return statement. The return statement is used to specify the result of the function call and exit the
function.

The optional static keyword is used to limit the scope of a procedure to the module in which it is defined.
By default, procedures are global and can be accessed by any module. Procedures are called by
specifying the name followed by comma delimited arguments, if any, in parentheses.

Example:

bool proc(int &p1,_str p2,_str (&list)[],int (*&pfn)(int))
{

Defining a Procedure

1382

return(true)
}

Note

The list, p1, and pfn parameters are call by reference parameters. Like C++, the list parameter
requires parentheses around the & reference operator and the name, because the [] operator
would otherwise be processed first. This avoids deviating much from C++ syntax. The command
pfn is a reference to a pointer to a function.

Procedures can have up to 15 arguments defined. The procedure can be called with more arguments
than defined by the procedure declaration. These extra arguments and the arguments defined in the
procedure declaration can be retrieved by the arg function. Calling the arg function with no parameters
returns the number of parameters with which the function was called. The minimum number of arguments
with which the procedure may be called is defined by the procedure heading. A parameter of type var
specifies a typeless variable passed by reference.

Default Arguments

Defining arguments with default values instead of using the arg function makes your code more
understandable. The assignment operator has special meaning in an argument declaration. It defines a
default value for an argument. The default value is used if the caller does not specify the parameter.
Default arguments must always be specified in the function definition. Unlike C++, default arguments in
prototypes do not have an effect on the compiled code.

Example:

static int proc2()
{

return("before");
}
int proc(_str p1=proc2():+"after",int p2=2)
{

return(p1:+p2);
}
void defmain()
{

proc(); // Use defaults ("beforeafter" ,2).
proc("param1"); // Use the second default value.
proc("param1",3); // Specify both values.
proc(,3); // This is not allowed.

}

Named Arguments

Defining a Procedure

1383

When calling a function, the formal parameter name can optionally be specified for each actual
parameter. Using named arguments can make code more directly understandable. Named arguments
can also be used to skip ahead over default arguments and only specify the most pertinent arguments in
a function call. When using a named argument, the argument name must match the formal parameter
name in the function prototype. Named arguments must be specified in the same order the parameters
are specified in the function prototype. ... : can be used to specify the start of a function's variable
argument list as a named argument.

Example:

int proc(_str p1,int p2=2,_str p3="after")
{

return(p1:+p2:+p3);
}
void defmain()
{

proc("before"); // Uses default args: proc("before"
,2, "after")

proc("before", p2:32); // Use default for p3:
proc("before", 32, "after")

proc(p1:"[",p3:"]"); // Use default for p2: proc("[", 2,
"]")

proc(p1:"(",32,p3:")"); // All args specified: proc("(", 32,
")")

proc(p2:300); // Not allowed (first parameter has no
default)

proc(p3:"/",p1:"/"); // Not allowed (parameters out of
order)

proc("before",5,p4:null); // Not allowed (no parameter named
'p4')

// illustrates how named arguments can make function call
self-documenting

ext := _get_extension(p_buf_name, returnDot:true);
}

Defining a Command
The _command primitive is used to define a new command with argument completion. A command can
be invoked by typing its name on the SlickEdit® command line, selecting it from a menu item definition,
pressing a key, calling it in a Slick-C® function, or typing its name followed by arguments in parentheses
in a Slick-C expression. Command procedures always have global scope and can be bound to a key with
the Key Bindings option screen (Tools → Options → Keyboard and Mouse → Key Bindings).

The syntax for defining a command is:

Defining a Command

1384

_command [TypeName | void] name1[,name2 [,name3...]([ArgDecl1,
ArgDecl2, ...])

[name_info(const_exp)]
{

statements
}

TypeName specifies the return type of the command (see Types). If TypeName or void is not specified,
the return type is typeless. When the void type is used, a value cannot be specified to the return
statement. The return statement is used to specify the result of the function call and exit the function.

The syntax for ArgDecls is the same as for declaring a variable, except that the static keyword may not
be used. In addition, an & before the id declares a call by references parameter. Call by reference array
and hash table parameters require parentheses around the & and the id. However, all typed or named
arguments must have a default value.

The last argument in the declaration list can be an ellipsis to indicate that the function accepts more
arguments of any type. Use the arg function to access these optional arguments.

The name of a command may be a valid Slick-C identifier, or a string constant of a length of one, such as
"/". SlickEdit uses the slash to define a search command.

Example:

// Allow command in read only mode.
// Use ellipsis because this accesses arguments.
_command int goto_line(...)

name_info(','VSARG2_READ_ONLY|VSARG2_REQUIRES_EDITORCTL)
{

param=arg(1);
if (param=="" || ! isinteger(param)) {

message('Please specify line number');
return(1);

}
p_line=param;
return(0);

}
_command void mycommand(_str filename="") name_info(FILE_ARG)
{

if (filename=="") {
_message_box("No filename specified");

}
message("filename="filename);

}

Commands receive unnamed command line arguments by calling the arg function. When a command is

Defining a Command

1385

invoked from the command line, the expression arg(1) contains the rest of the command line after the
name with leading spaces removed. For example, invoking the edit command e file1file2 calls the e
command with file1 file2 in arg(1). The parse built-in is an excellent function for parsing a command line
string (see the Help system for more information on parsing). When another macro calls a command,
more than one argument string can be passed. Calling the arg function with no parameters returns the
number of parameters with which the command or procedure was called.

name_info Attributes

The optional name_info expression is used to specify command argument completion rules and restricts
when the command may be executed.

const_exp is a single constant expression. A comma (,) character in the string indicates the end of an
argument.

The first argument in const_exp indicates the type of word arguments the command accepts and is used
for argument completion purposes. For a list of already defined argument types, look in the slick.sh file
for constants that end in _ARG. const_exp may contain one or more of the _ARG constants. Separate
each _ARG constant with a space. An asterisk (*) character may be appended to the end of a completion
constant to indicate that one or more of the arguments may be entered. The second argument (after the
quoted comma) specifies when the command should be or disabled. One or more of the flags in the table
below can be specified and ORed together with the bitwise OR (|) operator.

Flag Description

VSARG2_CMDLINE Command supports the command line.
VSARG2_CMDLINE allows a fundamental mode
key binding to be inherited by the command line.

VSARG2_MARK ON_SELECT event should pass control on to this
command and not deselect text first. Ignored if
command does not require an editor control.

VSARG2_QUOTE Indicates that this command must be quoted when
called during macro recording. Needed only if
command name is an invalid identifier or keyword.

VSARG2_LASTKEY Command requires last_event value to be set
when called during macro recording.

VSARG2_MACRO This is a recorded macro command. Used for
completion.

VSARG2_TEXT_BOX Command supports any text box control.
VSARG2_TEXT_BOX allows a fundamental mode
key binding to be inherited by a text box.

VSARG2_NOEXIT_SCROLL Do not exit scroll caused by using scroll bars.

Defining a Command

1386

Flag Description

Ignored if command does not require an editor
control.

VSARG2_EDITORCTL Command allowed in editor control.
VSARG2_EDITORCTL allows a fundamental
mode. Key binding to be inherited by a non-MDI
editor control.

VSARG2_NOUNDOS Do not automatically call _undo('s'). Require macro
to call _undo('s') to start a new level of undo.

VSARG2_READ_ONLY Command allowed when editor control is in strict
read only mode. Ignored if command does not
require an editor control

VSARG2_ICON Command allowed when editor control window is
iconized. Ignored if command does not require an
editor control.

VSARG2_REQUIRES_EDITORCTL Command requires an editor control.

VSARG2_REQUIRES_MDI_EDITORCTL Command requires MDI editor control.

VSARG2_REQUIRES_AB_SELECTION Command requires selection in active buffer.

VSARG2_REQUIRES_BLOCK_SELECTION Command requires block/column selection in any
buffer.

VSARG2_REQUIRES_CLIPBOARD Command requires editorctl clipboard.

VSARG2_REQUIRES_FILEMAN_MODE Command requires active buffer to be in fileman
mode.

VSARG2_REQUIRES_TAGGING Command requires <ext>_proc_search/find-tag
support.

VSARG2_REQUIRES_SELECTION Command requires a selection in any buffer.

VSARG2_REQUIRES_MDI Command requires MDI interface maybe because it
opens a new file or uses _mdi object. Commands
with this attribute are removed from pop-up menus
in which the MDI interface is not available (editor
control OEMs).

Defining a Command

1387

Example:

#include "slick.sh"
// This command supports completion where the first argument
// is a filename and the second argument is an environment variable.
_command test1(...) name_info(FILE_ARG" "ENV_ARG)
{

parse arg(1) with file_name env_name;
message("file_name="file_name" env_name="env_name);

}
// This command is enabled only when the target is an editor control
// which has a selection.
_command void gui_enumerate()

name_info(','VSARG2_REQUIRES_EDITORCTL|VSARG2_REQUIRES_AB_SELECTION)
{

...
}
// This command supports completion on multiple filenames.
_command int e,edit(...)

name_info(FILE_ARG'*,'VSARG2_CMDLINE|VSARG2_REQUIRES_MDI)
{

...

The edit command allows any number of file name arguments to be given. When the user is presented
with a selection list of file names, many files may be selected with the spacebar key. If an asterisk (*) is
appended to the end of a completion constant, that command must support a space-delimited list of
strings. Double quotes are placed around arguments with embedded spaces.

The value of const_exp may be retrieved by the built-in function name_info.

OnUpdate Functions

A Slick-C® command can have a corresponding _OnUpdate_commandname function. This function is
used to provide more precise control over the enabling and disabling of a command than the name_info
command can provide.

Example:

int _OnUpdate_linehex(CMDUI &cmdui,int target_wid,_str command)
{

if (!target_wid || !target_wid._isEditorCtl()) {
return(MF_GRAYED);

}
if (p_UTF8) {

return(MF_UNCHECKED|MF_GRAYED);
}

Defining a Command

1388

if (p_hex_mode==2) {
return(MF_CHECKED|MF_ENABLED);

}
return(MF_UNCHECKED|MF_ENABLED);

}

Class Methods
Slick-C® classes can contain methods which implement the class behaviors. Slick-C supports static class
methods. These methods may be called without having an instance of the class available. Like Java, all
other Slick-C class methods are virtual. Unlike Java and C++, Slick-C class methods do not support
overloading. A class method may have up to 14 arguments. Like Java and C++, the first argument is
hidden and contains the class instance (this) for virtual methods.

Example:

namespace outer;

interface IShape {
double area();
void draw();

};
class Rectangle : IShape {

int m_w=0;
int m_h=0;
double area() {

return m_w*m_h;
}
void draw() {

// Draw box.
}

};
class Circle : IShape {

int m_r=0;
double area() {

return m_r*m_r*3.1459;
}
void draw() {

// Draw round thing.
}

};
class Factory {

static IShape makeShape(int x, int y, _str type, ...)
{

switch (type) {

Class Methods

1389

case "Rectangle":
// ...

case "Circle":
// ...

}
return null;

}
};
namespace default;
void draw_car()
{

body := outer.Factory.makeShape(0, 10, "Rectangle", 40, 10);
cab := outer.Factory.makeShape(10, 10, "Rectangle", 20, 10);
axl1 := outer.Factory.makeShape(5, 5, "Circle", 5);
axl2 := outer.Factory.makeShape(30, 5, "Circle", 5);

outer.IShape car[];
car[car._length()] = body;
car[car._length()] = cab;
car[car._length()] = axl1;
car[car._length()] = axl2;
double area = 0.0;
foreach (auto s in car) {

area += s.area();
}
foreach (s in car) {

s.draw();
}

}

Function Prototypes
Function prototypes provide the compiler with type information about a function without providing any
code. Slick-C® reduces the need for prototypes by performing some argument checks at link time. When
the linker finds an uninitialized variable error, it recommends that you add a function prototype to your
source so the compiler can find your error. You might need a function prototype if you want to use the
function address in an expression. Prototypes are not allowed for event functions.

The syntax for defining a function prototype is identical to defining a function except that a semicolon (;) is
placed after the closing parentheses of the parameter list. Unlike C++, default arguments in prototypes
have no effect on the compiled code. No code or name_info is given.

The need for function prototypes is also mitigated in Slick-C because of the #import directive which
allows the compiler to import declarations from another Slick-C module. This is more convenient than
C++, where you need to put declarations in a header file to support calling functions across modules. It is
also more convenient that Java, because #import gets declarations directly from the source code, so the
imported module does not need to be compiled to be imported. This simplifies compiling modules with

Function Prototypes

1390

circular dependencies.

Example:

int proc(_str s,_str list[]); // Function prototype.
int (*pfn)(_str s,_str list[])=proc; // Pointer to function.
_command void command1(...); // Function prototype.
_command void command1(...) { // Must have ... here to match

prototype.
// Use arg function here to get or

set
// arguments.

}

Library Functions

A library function is a function that was implemented in a dynamically loaded library and was not written in
the Slick-C® language. A library function must follow Slick-C calling conventions and be registered with
the interpreter. Prototypes for library functions should use the extern keyword to indicate that they are
implemented outside of Slick-C code.

Built-in Functions

A built-in function is a function that was implemented in the interpreter and was not written in the Slick-C®
language.

Finding Functions

There are over 1200 documented functions and 200 properties. There are two ways to find the function
that you seek. First, you can use the menu item Help → Macro Functions by Category, which displays
smaller lists of these functions by category. Second, you can view source code for existing commands. If
you do not know the name of the command but you do know the key that invokes the command, use the
what_is command or Help → What Is Key to find the name of the command that is executed. Then, use
the find_proc command or Macro → Find Slick-C Proc to display the macro source code.

Differences Between Commands, Built-ins, and Defs
• A command definition looks like a procedure that starts with the _command primitive, and has an

optional name_info construct after the arguments. Built-ins are not defined.

• Commands always have global or namespace scope. Built-ins always have global scope. Procedures
can have static (module), global scope, or namespace scope.

• Commands can be bound to keys. Built-ins and procedures cannot.

• Commands can be invoked from the command line or the execute function. Built-ins and procedures
cannot.

Differences Between
Commands, Built-ins, and Defs

1391

• A command may be given the same name as a built-in. However, this limits how the command may be
called within a macro (use the execute function). None of the commands have the same name as a
built-in so you can call any command just like any other function.

• Only commands may be given non-alphanumeric single character names such as +, =, !, @, #, $, etc.
However, this limits how the command can be called within a macro (place the command in quotes or
use the execute function).

There are several differences between defining a procedure and defining a command with the
_command primitive:

• The scope of a procedure can be limited to a module.

• Command functions are invoked by typing the name on the SlickEdit® command line, from a menu item
definition, by using the execute function, or by typing the command name followed by arguments in
parentheses in a Slick-C® expression. Procedures can only be called by the latter method and cannot
be bound to keys.

• A procedure name must be a valid Slick-C identifier (same as C identifier). The name of a command
can be a string constant containing a single character such as "/" (SlickEdit uses the slash to define a
search command).

defmain: Writing Slick-C® Batch Files

A batch macro contains a special function named defmain. Slick-C batch files have the extension .e.
Batch macros can be invoked by typing the name (extension not required) followed by arguments on the
SlickEdit® command line, quoting the name in a macro, or by using the execute function. If the batch
macro needs to be recompiled, the Slick-C translator is invoked before the batch macro is executed. Do
not use the load command to load a batch program, because defmain is not invoked and an error will
result. If you load a batch program that you do not want, use the unload command to unload it. When a
batch program is executed, the defmain procedure is called after the procedure definit is called. For
more information, see Module Initializations.

The syntax of the defmain function is:

[TypeName | void] defmain()
{
statement
statement
...

}

TypeName specifies the return type of the function. If TypeName or void is not specified, the return type
is typeless. When the void type is used, a value cannot be specified to the return statement. The return
value of defmain is placed in the predefined rc global variable.

Note

Differences Between
Commands, Built-ins, and Defs

1392

The execute function only supports returning an int type. Check the global rc variable for other
types.

The arg function is used to retrieve the command line arguments passed to the defmain procedure. All of
the command line arguments will be in arg(1). Use the parse statement to easily parse multiple space
delimited arguments.

The following example displays the arguments given to the macro on the SlickEdit message line. If you
define a procedure in a batch program, use the static keyword to conserve memory. SlickEdit stores the
names of global procedures and variables in a names table.

int defmain()
{

messageNwait("Arguments given: "arg(1));
parse arg(1) with word1 word2 .;
messageNwait("word1="word1" word2="word2);
return(0);

}

Extending the editor with a batch macro has the advantage of conserving memory and reducing the size
of the state file. Also, batch macros can be easily shared between multiple users. The editor keeps the
batch macro loaded only while it is executing. External batch macro names and arguments are not
supported by completion. To provide completion, you must define a command with the _command
primitive and have it call the external batch program. If you name the command the same name as the
batch program (without the extension), use the xcom command to bypass internal command searching.
There are two ways to invoke a Slick-C batch macro:

• Type the name of the module followed by arguments on the SlickEdit command line.

• Type vs -p program at the shell prompt, where program is the name of the batch program and vs is the
name of the editor. Alternatively, you may use the -r option to have SlickEdit remain resident after the
batch program completes.

For the above methods, SlickEdit invokes the translator to compile the source code file if the source code
file exists and its date is later than the date of the .ex file.

Preprocessing

1393

Preprocessing
Preprocessing in Slick-C® is identical to C/C++. Preprocessing allows you to conditionally compile source
code or define textual replacements.

This chapter includes the following topics:

• #if

• #pragma

• #region and #endregion

• Including Header Files

• Importing Slick-C Modules

#if
The syntax of the Slick-C® language conditional if block is any of the following examples:

#if expression
[statements]
{#elif expression
[statements]}
[#else
statements]]
#endif

There may be nothing more than space or tab characters preceding a #. Text on the same line following
#else or #endif is not permitted. The expression specified MUST be valid. To display an error message
and end the compile, use the #error directive: #error expression.

Usually, preprocessing is used to write macros that operate on multiple operating systems or
environments. The table below shows the constants that are automatically defined by the Slick-C
translator.

Note

The following platform-specific constants are deprecated. Using them will result in a Slick-C
compilation error if you are using #pragma option(pedantic,on) or #pragma
option(deprecation,on). Use the machine() built-in function, or the _isUnix(), _isWindows() or
_isMac() built-in functions instead.

#if

1394

Constant Description

__PCDOS__ Deprecated. Use the built-in _isWindows() function
instead.

Non-zero if the current operating system is
Windows. Use machine() built-in function to
determine at run time which of these operating
systems you are running.

__UNIX__ Deprecated. Use the built-in _isUnix() function
instead.

Non-zero if current operating system is UNIX
compatible.

__NT__ Deprecated. Use the built-in _isWindows() function
instead.

Non-zero if the current operating system is
Microsoft Windows NT® compatible.

__MACOSX__ Deprecated. Use the built-in _isMac() function
instead.

Non-zero if the current operating system is macOS.

__VERSION__ Version number of SlickEdit®.

__COLUMN__ Number of characters from start of current line.

__FILE__ Current file name.

__LINE__ Current line number.

__PATH__ Current file name and path.

__DATE__ Current date.

__TIME__ Current time.

Use the Slick-C translator -d option to define a constant for use by preprocessing. To test if a constant
has been defined, use the defined() function.

Example:

#if

1395

#if !defined(my_constant)
#define my_constant "default value"

#endif
#if __PCDOS__

name="c:\util\myprog"
#elif __UNIX__

name="/usr/bin/myprog"
#else

#error "Don't know what to do for this OS"
#endif

The above example could be written as follows (without using deprecated preprocessor constants).

const my_constant = "default value";

if (_isWindows()) {
name="c:\util\myprog"

} else if (_isUnix()) {
name="/usr/bin/myprog"

} else {
_message_box("Don't know what to do for this OS");

}

#pragma
The #pragma preprocessor directive is used to change various options during the course of a compile.
The syntax is:

#pragma option(OptionName [, (on | off)])

Slick-C® options (OptionName) are shown in the table below.

Note

• For each option, if the second argument is not given, the value is restored to the command line
invocation value.

• All #pragma options may be specified by command line compiler options. Run vst.exe
(UNIX: vst) with no arguments to view compiler options. You can use the VST environment
variable to specify compiler options for all of your macros.

#pragma

1396

OptionName Default Value Description

autodecl On Enables autodeclvars and
autodeclctls. See those options
for more information.

autodeclctls On When enabled, the compiler
attempts to automatically declare
control variables. This option is
automatically enabled when
autodecl, pedantic, strict, or
strict2 is enabled.

autodeclvars On When enabled, the compiler
attempts to automatically declare
typeless variables when an
assignment is made. This option
is automatically enabled when
autodecl is enabled. This option
is automatically disabled when
pedantic, strict, or strict2 is
enabled.

deprecation Off Allows you to configure properties
and built-in functions as
deprecated. When enabled, the
Slick-C compiler catches when a
deprecated item is used and flags
it as an error. A function is
considered as deprecated if it has
a Javadoc function comment
containing the @deprecated tag.
Deprecation is automatically
enabled when pedantic is
enabled. Note that using the
deprecation pragma may result
in your macro not loading when
you upgrade to a new release of
SlickEdit if the code calls a
function that becomes
deprecated.

pedantic Off Enabling this option automatically
enables all existing and future
strict syntax and type-checking
options. Unlike other Slick-C
pragmas, the meaning of

#pragma

1397

OptionName Default Value Description

pedantic could be augmented in
future releases of SlickEdit. This
means that if you use the
pedantic pragma in your own
macros, they may not load when
you upgrade to a new release of
SlickEdit if, for example, a
function it is using becomes
deprecated or stricter type
checking reveals a problem.

redeclvars Off This is used to generate code for
variables without having the type
information. When enabled, any
variable can be redeclared as a
typeless variable.

strict Off This option is used to turn on a
high level of type checking and
syntax enforcement in the Slick-C
translator. It automatically enables
autodeclctls, autodeclvars,
strictnumbers, strictparens,
strictsemicolons, and
strictstrings. We recommend
using #pragma option(strict,on)
in user-written macros because it
gives the best combination of high
level of error checking and
forward compatibility.

strict2 Off Second generation of strict Slick-
C compilation checks.
Automatically enables all options
that strict enables, plus
strictarglists, strictincludes,
and twopass.

strictarglists Off When disabled, a function can
have implicitly typeless
arguments. When enabled, formal
parameter lists for functions and
prototypes must have types. The
example illustrates an error case:

#pragma

1398

OptionName Default Value Description

void first_char(_str s) {
return substr(s,1,1);

}

This option is automatically
enabled when pedantic or strict2
is enabled.

strictboolean Off When enabled, Slick-C variables
with boolean types cannot be
assigned to integers without using
a cast. This means, for example,
that the following would be
flagged as an error:

bool b = 0;

This option is automatically
enabled within classes and
namespaces.

strictpointers Off When enabled, Slick-C variables
with pointer types can only be
assigned to compatible pointer
types or null. This means, for
example, that the following would
be flagged as an error:

int *p = 0;

The correct code would be:

int *p = null;

This option is automatically
enabled within classes and
namespaces.

strictenums Off When enabled, Slick-C variables
with enumerated types cannot be
assigned to integers without using
a cast. This means, for example,
that the following would be
flagged as an error:

#pragma

1399

OptionName Default Value Description

enum MyOptions {O1, O2,
O3};
MyOptions e = 0;

The correct code would be:

enum MyOptions {O_DEF=0,
O1, O2, O3};
MyOptions e = O_DEF;

strictellipsis Off When enabled, the ellipsis must
be given as the last argument to a
function or prototype for type
checking to succeed when calling
function with extra arguments.
This option is automatically
enabled when pedantic or strict2
is enabled.

strictincludes Off When enabled, verifies that all
#import and #include statements
precede any real code in the
current module. This is required
for twopass compilation. This
option is automatically enabled
when pedantic or strict2 is
enabled.

strictnames Off When enabled, enforces naming
conventions for symbols declared
in Slick-C classes, namespaces,
and enumerated types. See Slick-
C® Naming Conventions for more
information. This option is
automatically enabled when
pedantic is enabled.

strictnumbers Off When enabled, Slick-C numeric
constants are treated strictly as
integer or double precision
floating point types, rather than
typeless variables. This makes it

#pragma

1400

OptionName Default Value Description

possible to use precise type
inference with integer types, like i
:= 0;. This option is automatically
enabled when pedantic is
enabled. It is also automatically
enabled within classes and
namespaces.

strictparens Off Use this pragma for more
readable code. When enabled,
parentheses must be given on all
built-in functions. This option is
automatically enabled when
pedantic, strict, or strict2 is
enabled.

strictprotos Off When enabled, all function calls
require the function to be
previously declared or imported.
When disabled, when the Slick-C
compiler encounters a function
call to a previously undefined
function, it assumes that the
function is a global function. The
function call is resolved at link
time, and an error will show up at
run time if the function does not
exist or is not provided enough
parameters. This option is
automatically enabled within
classes and namespaces.

strictreturn On When enabled, and an explicit
return type is given to a function,
the compiler will flag an error if a
return statement is potentially
missing.

strictsemicolons Off Use this pragma so that smart
editing features work, and to
prevent compilation errors. When
enabled, semicolons must
terminate all statements. This
option is automatically enabled
when pedantic, strict, or strict2

#pragma

1401

OptionName Default Value Description

is enabled.

strictstrings Off When enabled, Slick-C string
constants are treated strictly as
string types, rather than typeless
variables. This means, for
example, that you can no longer
assign "0" to an integer variable.
This option is automatically
enabled when pedantic, strict, or
strict2 is enabled.

twopass Off When enabled, the Slick-C
compiler does a two-pass
compilation. This allows the
compiler to verify all function call
signatures even for functions that
are declared later in the file. This
option is automatically enabled
when pedantic or strict2 is
enabled.

metadata Undefined The metadata #pragma is
specified in Slick-C header files to
indicate that a header file (.sh) is
strongly associated with a
particular compilation unit.
Normally, when a header file is
included by a Slick-C module, the
metadata for struct, class, enum,
and const declarations is
compiled into that module.
However, the metadata #pragma
is given, it indicates that the
metadata should only be compiled
in for the specified module. This is
done to reduce code size.

#region and #endregion
The #region directive lets you specify a block of code that you can expand or collapse when using
Selective Display. The #endregion directive marks the end of a #region block. A #region block must be
terminated with #endregion. The syntax of these directives is:

#region and #endregion

1402

#region name
#endregion name

The name parameter (optional) is used to indicate the name of the region. This name is displayed in the
editor window when the region is collapsed.

Example:

#region Region_1
void Test() {}
void Test2() {}
void Test3() {}
#endregion Region_1

void defmain()
{
}

Including Header Files
The syntax of the include statement is:

#include string_constant

This statement includes the file specified by string_constant for compiling. If string_constant does not
specify a path, the Slick-C® translator will look in the same directory of the main source file. Otherwise,
the path specified by string_constant is searched. If the file is not found, the Slick-C translator looks for
the include file in the directories specified by the VSLICKINCLUDE and VSLICKPATH environment
variables (see "environment variables" in Help → Index). Include files may be nested.

Unlike C++, Slick-C header files do not require guards. Our preprocessor automatically guards against
recursive header file inclusion, and will never include the same header file twice for a single module
either.

Importing Slick-C Modules
#import is a preprocessing directive but it is more than a #include in that it does the following:

• Imports all public declarations from a Slick-C® module.

• Uses an implicit header guard to prevent recursive or multiple importation of the same module.

Including Header Files

1403

#imports are not recursive. If you #import a module (abc.e) that #imports another module (def.e), you
will not get the declarations from def.e. This is an important consideration for compilation performance
and to minimize inter-module dependencies.

#require is a preprocessing directive, like #import, but it is recursive. If you want a module to always pull
in another required module when it is #imported, use the #require directive. For example, a class (Abc)
that derives from another class (Def) should #require the parent class module (Def.e). That way when
another module #imports Abc.e, it will also have the declaration for the parent class Abc. As a general
rule, a module needs to use #require when its classes or function signatures use types that are declared
in another module. Use #import when your code (within function bodies) needs to call functions or use
classes and global variables from other modules.

When processing a #import, the following rules are in effect:

• All function definitions are treated as prototypes.

• Global variable definitions are treated as declarations.

• Static globals are ignored.

• Forms, menus, event tables, and event handlers are ignored.

• #includes continue to be treated as part of the #import.

Examples:

#import "stdcmds.e"
#import "slickedit/stringutil.e"
#import "slickedit/search.sh"

Defining Controls

1404

Defining Controls
Usually, you do not need to communicate with the compiler about a control to which you refer; however
there are a couple of cases in which you must declare a control. This can happen when the compiler
cannot safely assume that you are referring to a control, or when the compiler cannot find the location of
the dialog box of the control that you are trying to access. The compiler needs to tell the linker which
dialog box is supposed to contain your control. The syntax for declaring a control variable is:

[_nocheck] ObjectName ControlName;

Or you can use:

[_nocheck] _control ControlName;

ObjectName can be one of the following:

• _check_box

• _combo_box

• _command_button

• _gauge

• _hscroll

• _image

• _label

• _list_box

• _picture_box

• _radio_button

• _text_box

• _vscroll

The _nocheck keyword tells the compiler not to check if the control exists on the current dialog box.

The [_nocheck] ObjectNameControlName; declaration is only permitted outside the scope of a function.
The [_nocheck] _control ControlName; declaration already supports local procedure scope.

Example:

Defining Controls

1405

// Create a form with a command button named ctlcancel, and gauge named
ctlgauge1.

// Set the cancel and default properties of the command button to true.
//
#include "slick.sh"
static bool gcancel;
_command void test()
{

// Need to tell compiler ctlgauge1 is a control because
// the form1_wid.ctlgauge1 is too ambiguous.
_control ctlgauge1;

// Show the form modeless so there is no modal wait.
form1_wid=show("form1");
// Disable all forms except form1_wid.

disabled_wid_list=_enable_non_modal_forms(0,form1_wid);
gcancel=0;
for (i:=1;i<=100;++i) {

// Read mouse, key, and all other events until none are left or
// until the variable gcancel becomes true.
process_events(gcancel);
if (gcancel) {

break;
}
// Do work here. Replace the delay below with the operation you

want to do.
delay(10);

form1_wid.ctlgauge1.p_value=i;
}
// Enable all forms that were disabled.
_enable_non_modal_forms(1,0,disabled_wid_list);
form1_wid._delete_window();

}
defeventtab form1;
ctlcancel.lbutton_up()
{

gcancel=1;
}

Defining Events and Event
Tables

1406

Defining Events and Event Tables
Event tables are used for describing event or key bindings by source code, creating event-driven dialog
boxes, and describing inheritance.

def Primitive
The def primitive is used to bind a key sequence or event to a command or procedure and is not typically
used when creating event-driven dialog boxes. The defeventtab primitive selects the active event table
that the def primitive sets the bindings to. If there is no defeventtab declaration before the first def
primitive, the default_keys event table is used. The default_keys event table defines the event handlers
for Fundamental mode. The source code representing the bindings is translated and then the event tables
are loaded either by the load command or by executing the module as a batch program. For more
information on batch programs, see defmain: Writing Slick-C® Batch Files. Even though executing the
module as a batch program unloads the module when the defmain function terminates, the event table
changes remain present. The following syntax is used for defining a key:

def {prefix_key} event [- event] [, event [- event]] ... = [command];

command can be either a command (defined with _command) or global procedure. If command is not
specified, the existing event is unbound. The words prefix_key and event may be any valid event name.
Some event names do not need to be enclosed in quotes.

Example:

def "A-x"=safe_exit;
// Note that "A-a" is different than "A-A" which
// requires the Alt and Shift keys to be pressed.
def "A-?"=help;
def "C-X" "b"=list_buffers;
def \0 - \255= nothing;

The defeventtab primitive is used to define a new event table. The syntax for defining a an event table is:

defeventtab name;

name may contain a period (.) character. The period is used to separate the form name from the control
name. The def primitive changes the binding of events of the last event table defined. If no event table is
defined, the default_keys event table is used. The default keyword may be used in place of name to end
the scope of the current event table and reset back to the default event table.

Example:

defeventtab c_keys;

def Primitive

1407

def " "=c_space;
def "ENTER"=c_enter;

Event tables are global in scope. When an event table is loaded by the load command or by executing
the module as a batch program, the new bindings replace the event bindings of the existing event table. If
the event table specified by defeventtab does not exist, a new one is created.

Event-Driven Dialog Boxes

1408

Event-Driven Dialog Boxes
Event tables are for creating event-driven dialog boxes and inheritance. The event table definition code is
automatically inserted by the dialog editor. To begin working with event tables, see Creating Dialog
Boxes. To attach an event table to a form (dialog box outer window) or form control, define an event table
with the same name (p_name property) as the form. Dot the form name with the control name if you want
to specify inheritance for an event table that is attached to a control.

Example:

defeventtab form_name[.control_name] [_inherit [etab_name]];

Using the _inherit primitive, you can link one event table to another. This makes it possible to perform
Clipboard Inheritance® (see Clipboard Inheritance®). If no name follows the _inherit keyword, the
inheritance is unlinked. To add event handlers using the def primitive or by defining an event handler
function, use the following syntax:

[ReturnType] ctl_name.event [- event] [, event [- event]] ...([ArgDecl1,
ArgDecl2,...])

{
statements

}

If ctl_name is the same name as the last event table form name (name before dot), the event handler is
attached to an event table named form_name. Otherwise, the event handler is attached to an event table
named form_name.ctl_name.

The word event in the previous code can be any valid event name. Some event names do not need to be
enclosed in quotes. It is a best practice to always enclose the event names in quotes.

The syntax for ArgDecls is the same as is the syntax for declaring a variable except that the static
keyword may not be used. An ampersand (&) before the id declares a call by references parameter. Call
by reference array and hash table parameters require parentheses around the ampersand and id.

The following is an example of a form with a text box and OK button:

#include "slick.sh"
// Define an event table for the dialog box window.
defeventtab form1;

// Since this is the first event handler defined for this control
// and the name of this control does not match the last defined event, the
// table, the Slick-C translator automatically defines the event table
// form1.ctlcommand1 and defines the lbutton_up event handler within
// this new event table.

Event-Driven Dialog Boxes

1409

void ctlcommand1.lbutton_up()
{

// Set the p_text property of the text box control.
ctltext1.p_text="Hello World";

}

When the above code is loaded with the load command (Macro → Load Module), the editor attaches the
form1.ctlcommand1 event table to a control named ctlcommand1 on form1. A form1 event table is not
created because an event handler for this event table was defined. When you save the configuration,
event tables that are not used are deleted.

Module Initializations

1410

Module Initializations
The Slick-C® language provides two module initialization functions called definit and defload. If the two
are present, the procedures definit and defload are called when a module is loaded. The definit module
is called before defload. When the module is saved by the write_state command, the definit procedure
is invoked each time the editor is invoked. This gives your module an opportunity to perform initializations
such as creating a temporary file, or allocating a selection, or bookmark. The following syntax is used for
defining the special functions definit and defload:

definit()
{

statements
}
defload()
{

statements
}

The return value of these functions is always void. You cannot specify an argument to the return
statement. To enhance the performance of SlickEdit®, use the defload primitive instead of the definit
primitive. The definit primitive forces a module to be loaded when the editor is invoked. When definit is
called, the expression arg(1) indicates whether the module was loaded with the load command or when
the editor initialized. When a module is loaded, arg(1) returns L. Otherwise arg(1) returns a null string
("").

Example:

int gmarkid= -1;
definit()
{

// If this is an editor invocation,
if (arg(1)!="L") {

gmarkid=-1; // indicate no mark is allocated.
}

}

There are two subtle points to this example when assuming that the gmarkid variable is used to contain
an allocated mark id (also called selection handle). First, the variable gmarkid is scoped as global and
not static. This is because the mark needs to remain allocated when this module is reloaded. When the
module is reloaded, an unload of the module occurs first and the _free_selection built-in is not called to
free a mark already allocated (there is no defunload primitive). Modules with static variables (module
scope) lose their value when reloaded. Second, the value of arg(1) is used to make sure that the variable
gmarkid is initialized only when the editor is invoked and not when the module is loaded. Use this as a
template for creating a temporary buffer in the hidden window.

Module Initializations

1411

Example:

#include "slick.sh"
void definit()
{

get_view_id(view_id);
activate_view(HIDDEN_VIEW_ID);
status=find_view(".bookmark");
if (status) {

/* Create a buffer and view in hidden window. */
status=load_files("+c +t");
if (status) {

// The nls function may be used for national language support
// in the future.
_message_box(nls('Could not create bookmark buffer'))
return;

}
p_buf_name=".bookmark";_delete_line();
p_buf_flags= THROW_AWAY_CHANGES|HIDE_BUFFER|KEEP_ON_QUIT;

}
// Note: ELSE case cannot empty bookmark buffer unless mark ids
// are freed. Might as well leave them.
get_view_id(bookmark_view_id);
activate_view(view_id);

}

Compiling and Loading Macros

1412

Compiling and Loading Macros
The commands st and load are used to compile Slick-C® modules from within the editor. The st
command translates the module specified into binary code. When a module is not specified, the current
buffer is translated. The load command (F12 or Macro → Load Module) translates the module specified
if necessary, and loads the resulting byte code. When a module is not specified, the current buffer is
saved, translated, and loaded. If a module is loaded that has already been loaded, it is replaced. Both the
commands invoke the external program vstw.exe (UNIX: vstw) to translate the source module into byte
code. DO NOT use the load command on batch programs. After doing so, you are no longer able to
execute the batch program until you use the unload command (Macro → Unload Module).

A module that is loaded with the load command can be unloaded using the unload command (Macro →
Unload Module). However, the symbol table or the names table still contains the names of globally
scoped variables, procedures, and commands until you save the configuration. The configuration is
automatically saved when you exit the editor. You can invoke the save_config command from the
command line to save the configuration at any time.

Debugging Macros

1413

Debugging Macros
The Slick-C® translator vstw.exe (UNIX: vstw) enables debug messages to be inserted into the code
and compiled. Use the messageNwait function to display a message and wait until a key is pressed. The
_message_box function can be used to display a dialog box with a message and wait until you press
Enter to proceed. Useful defs tab .e extension aliases are listed in the table below.

Alias Name Value

m messageNwait(%\n: %\c);

mb _message_box(%\n: %\c);

The following sections will help you debug and work on Slick-C macros:

• Finding Procedures

• Finding Run-Time Errors

• Performance Profiling

• Slick-C® Debugger

Finding Procedures
The find_proc command (Macro → Go to Slick-C Definition) finds Slick-C® source code or Help for a
Slick-C symbol name that you specify. Use this function if you are browsing a macro and you want to find
out more about a function. You can find the procedure at the cursor by pressing Ctrl+Dot. The syntax of
the find_proc command is:

find_proc proc_name

Tip

Instead of find_proc, use the command fp, which is a shortcut. It functions exactly the same as
find_proc.

The table below shows some examples of using find_proc on the command line.

Command Description

find_proc find_proc Finds the source code for find_proc.

Finding Procedures

1414

Command Description

find_proc cursor_up Finds the source code for cursor_up.

find_proc substr Displays Help on substr built-in.

Finding Run-Time Errors
When a Slick-C® error occurs, a dialog box with the title "Slick-C Error" is displayed. Usually the Slick-C
Stack tool window is displayed listing the call stack at the time of the error. Double-click in this tool
window to view source for a call stack entry. The find_error command (Macro → Find Slick-C Error)
finds the last Slick-C interpreter run-time error. The module with the error is loaded and the cursor is
placed on the line causing the error.

Performance Profiling
The Slick-C® interpreter supports performance profiling. This is useful to identify bottlenecks or other
inefficiencies in Slick-C code. The profiler does not affect performance when it is inactive, and there is
only a minimal effect on performance when it is collecting data.

To use this feature, invoke the profile command on the SlickEdit® command line with the following
options:

• profile on - Starts profiling data collection (also resets counters).

• profile off - Stops profiling data collection.

• profile view - Displays profiling data (also stops collection).

• profile command args - Executes the specified Slick-C command with the specified arguments, then
displays the profiling data. For example, to profile a CVS update, type profile cvs-gui-mfupdate.

• profile save - Saves the profiling data for loading/viewing at a later time.

• profile load - Loads previously saved profiling data for viewing.

Prior to displaying the profiling data, the applicable Slick-C source files are scanned in order to resolve
the names of static functions. Then the Slick-C Profiler dialog is displayed showing the data in multi-
column, non-modal tree format. Each line represents one function, which is either a Slick-C function or an
exported DLL function, depending on what was called when the profiling data was collected. All times are
displayed in milliseconds.

Finding Run-Time Errors

1415

The profiling data can be sorted by clicking any sortable column. Double-click on any function to open the
associated file in SlickEdit, with the cursor at the function location.

The Slick-C Profiler displays the following columns:

• Function - Name of the function called.

• Module - Name of the module from which the function comes.

• Offset - The P-code offset of the function within the module.

• Calls - Number of calls to the function.

• F+D Time - Total time spent in the function and its descendants.

• Percent - Percentage of the total time spent in the function and its descendants.

• Avg F+D - Average time spent in the function and its descendants.

• Min F+D - Minimum time spent in the function and its descendants.

• Max F+D - Maximum time spent in the function and its descendants.

• Func Time - Total time spent in the function only.

• Percent - Percentage of the total time spent in the function.

• Avg Time - Average time spent in the function.

• Min Time - Minimum time spent in the function.

• Max Time - Maximum time spent in the function.

Slick-C® Debugger
The Slick-C Debugger helps you trace Slick-C code. The debugger has no effect on performance when it
is inactive, and only a minimal effect on performance when it is running.

Slick-C® Debugger

1416

To activate the Slick-C Debugger, from the main menu, click Macro → Start Slick-C® Debugger, or use
the slickc_debug_start command on the SlickEdit® command line.

When you start the debugger, a separate instance of SlickEdit launches in debug mode (the "debugger
instance") and attaches to the original instance of SlickEdit (the "debuggee"). In the debugger instance,
you can set breakpoints, step through code, inspect globals and properties, and more.

Use the Debug menu items or key bindings to perform debug operations. See "debugging" in the Help
system (Help → Index) for more information about how to use the debugger in SlickEdit and other
options that are available.

You can also use the slickc_debug command on the SlickEdit command line to perform various actions:

• Step into commands - Use slickc_debug command, where command is the SlickEdit command you
want to step into. The debugger terminates when the command completes. For example, use
slickc_debug list_tags to launch the debugger and step into the list_tags command, which scans the
current buffer for tags and displays them in a selection list.

• Debug batch macros - Use slickc_debug PathToBatchMacro to activate the debugger for the
specified batch macro. For example, use slickc_debug C:TEMP\bm164.e to open the batch macro file
bm164.e in the editor and start the debug session.

• Enable remote attachment - Use slickc_debug on to enable debugging so that someone else can
attach to your instance of SlickEdit remotely. Use the slickc_debug off to disable debugging.

To stop the debugging session, from the debug instance main menu, click Debug → Stop Debugging.
This detaches the debugger instance and closes it.

The debugger instance connects to the debuggee using a lightly extended version of JDWP (Java Debug
Wire Protocol), although there is no JVM (Java Virtual Machine) involved. By default, it attaches to port
8003.

In order to run in a safe, clean environment, the Slick-C Debugger creates and uses its own configuration
directory, named SCDebug, located in the user config. Additionally, an empty workspace is created and
stored in the debug config which is used thereafter each time the debugger is run. This workspace,
SCDebug.vpw, is used to store breakpoints that you set in the debug instance. It also stores the list of
open files and watch expressions.

The Loaded Classes tool window is a useful tool for examining the state of the debuggee with respect to
Slick-C. It shows all the loaded modules and loaded classes, all global variables, all MISC_TYPE
variables, and loaded event tables. Many of these items are found under the imaginary "sc.lang.*"
namespaces. The Loaded Classes tool window is not active by default in debugging mode. To display it,
from the main menu, click Debug → Windows → Loaded Classes. See "Loaded Classes tool window"
in the Help system (Help → Index) for more information.

Error Handling and the rc
Variable

1417

Error Handling and the rc Variable
The rc variable is a predefined global variable that is accessible from all loaded modules. The following
functions require that you use the rc variable for error handling: buf_match and get_env.

By convention, functions that use integer error codes return negative error codes that correspond to the
error codes in rc.sh. For these functions, 0 means success and positive codes means the error code is
not in rc.sh.

Some functions display an error message on the message line. Use the clear_message function to clear
the message.

Example:

// Cause a message.
_deselect();
_copy_to_cursor();
// Clear the message.
clear_message();

Dialog Editor

1418

Dialog Editor
The dialog editor is used to create dialog boxes: It provides controls to build the text boxes, combo boxes,
radio buttons, image controls, menu items, and forms for a dialog box.

Microsoft Visual Basic and Slick-C®
Creating event-driven dialog boxes (see Event-Driven Dialog Boxes) in Slick-C is similar to Microsoft
Visual Basic except that the language has C++-style syntax. The following list contains some of the
differences between Slick-C and Microsoft Visual Basic:

• When an event is sent to a control or dialog box, the object receiving the event MUST be the active
object (not necessarily the same as the system focus). This is a major difference between Slick-C and
Microsoft Visual Basic. If a button control receives an event and executes a statement such as this:
p_caption=New button caption, the caption on the button is changed and NOT the caption for the
dialog box.

• Built-in properties all start with the prefix p_ to avoid these keywords from conflicting with their own
identifiers.

• A more general method of object instance referencing is used.

• Almost all properties that can be accessed at design time can also be accessed at run time. For
example, the p_name property for a control or dialog box may be set after the dialog box is displayed.

• Event tables are used to group event handlers for controls. Event tables in Slick-C are used in a similar
fashion to classes in C++.

• Slick-C has sophisticated and powerful Dialog Box Inheritance Order. For more information, see Dialog
Box Inheritance Order.

• Parent, child, next, and previous (p_parent, p_child, p_next, p_prev) creation order relationships are
all maintained when dialog boxes are created.

• Event tables can be linked together. One event table can inherit the event handlers of another event
table. The event table links can be changed at run time.

• The dialog editor allows event tables to be transferred through the clipboard. Controls from the same or
different dialog boxes may reference the same event tables. There is no need for control arrays. For
more information, see Clipboard Inheritance®.

• Functions can be used as methods that operate on an instance of an object.

Microsoft Visual Basic and
Slick-C®

1419

Creating Dialog Boxes
This chapter contains the following topics:

• Dialog Editor Summary

• Adding and Deleting Controls

• Setting Properties

• Aligning Controls

• Sizing Controls

• Moving Controls

• Miscellaneous Assignments When the Form is Active

• Miscellaneous Menu Items

• Creating a Form

• Saving a Form

• Adding Event Handlers

• Inherited Code Found Dialog Box

• Loading and Running the Form

• Modal and Modeless Dialog Boxes

• Dialog Box Parent Window

Dialog Editor Summary
To edit a dialog box that is being run, press Ctrl+Shift+Space or right-click on the top of a form and
select Edit. If you press Ctrl+Shift+Space while the Properties dialog box is active, you edit the
Properties dialog box. Double-click the system menu to close the edited Properties form. Some UNIX
window managers do not close windows when you double-click on the system menu.

Adding and Deleting Controls
The bitmaps on the left of the Properties dialog box are used to create controls. Hover over a bitmap to
display the function of a bitmap. There are two methods for creating a control. The first method is to
double-click the left mouse button on the bitmap of the control that you want to create. This places a new
control in the middle of the selected form.

The Picture Box and Frame controls enable you to place controls inside of them. To do so, select

Dialog Editor Summary

1420

Window → Properties or, use the show_properties command.

To use the other method for creating a control, complete the following steps:

1. Single-click on the Text Box bitmap.

2. Move your mouse so that it appears on top of the form that you are editing. If you cannot see the form
that you are editing, display it by selecting Window → Selected Form.

3. To create the text box control, click the left mouse button, and, while holding it down, move the mouse
pointer to the right to create a dotted rectangle. When you release the mouse, the text box control is
displayed within the rectangle.

To delete a control, select the control(s) to remove, then press Backspace or Delete.

Setting Properties

Setting Properties

1421

To set properties, complete the following steps:

1. Select the control. Left-click the mouse button on the property in Properties list box.

2. Type the new value in Properties combo box. Press Enter when the Properties list box is active to set
the property.

3. Select the control. Double-click the left mouse button on the property in the Properties list box to go to
the next value of the property. For color and picture properties, a dialog box is displayed.

Aligning Controls
Select the control with which you want to align the other controls. Select the other controls with Shift+
LButton. Double-click the left mouse button on one of the properties x or y to align the controls in the x or
y direction. Press Enter on the value in the Properties combo box.

Sizing Controls
To size controls, use one of the following methods:

• To size a single control, select the control and click and drag one of the selection handles with the left
mouse button.

• To size multiple controls, select the controls and set the width or height property.

• To size multiple controls, select the controls and press Shift+Left, Shift+Right, Shift+Up, or
Shift+Down to move the lower right corner of the selected controls by one pixel.

Moving Controls
To move controls, use one of the following methods:

• Select the control(s), then click and drag with the left mouse button.

• Select the control(s), then set the x or y property.

• Select the control(s), then press the Left, Right, Up, or Down arrow key to move the selected controls
by one pixel.

Miscellaneous Assignments When the Form is Active
The table below shows a list of miscellaneous button and key assignments that can be used when the
form is active.

Aligning Controls

1422

Assignment Action

Right mouse click Displays menu with various dialog editor
commands.

Ctrl+Shift+Space Loads form and Slick-C® code. Runs dialog box. If
you accidentally press Ctrl+Shift+Space when in
the Properties dialog box, you will be editing the
Properties dialog box. Double-click on the system
menu to close the edited Properties form. Some
UNIX window managers do not close windows
when you double-click on the system menu.

Ctrl+S Loads form and saves into state file. Under UNIX,
this may just list source for the form that can be
executed.

Ctrl+L Loads form.

Ctrl+C Copies selected controls.

Ctrl+V Pastes controls from the clipboard.

Ctrl+X Cuts selected controls.

Ctrl+A Selects all controls with same parent as the already
selected control(s).

Tab Deselects all controls and selects next control in tab
order (p_tab_index).

Shift+Tab Deselects all controls and selects previous control
in tab order.

Left mouse click Double-click (on control) displays Select an Event
Function dialog box for adding or modifying event
handlers.

Miscellaneous Menu Items
The table below shows the miscellaneous menu items.

Miscellaneous Menu Items

1423

Menu Item Description

System Box of form, Show Properties Display Properties dialog box.

Window → Properties Display Properties dialog box.

Window → Selected Form Display selected form (form being edited).

Macro → New Form Creates a new dialog box with a default name.

Macro → Open Form Open existing dialog box or create new dialog box.

Macro → Grid Sets the distances between the dots on edited form.

Creating a Form
A form is the outer window of a dialog box. The objects within the dialog box are called controls. The form
also refers to the entire dialog box. A new form can be created by using one of the following methods:

• Use the New Form menu item (Macro → New Form).

OR

• Use the Open Form menu item (Macro → Open Form) and specify the name of a new form.

Saving a Form
Click on the form being edited and press Ctrl+S.

Inserting a Form
You can insert a form's definition into a file by using the Insert Form or Menu Source... menu item
(Macro → Insert Form or Menu Source...). Select the dialog you want to insert, and the selected item's
source will be inserted into the current file. This command inserts the dialog source only, which defines
the object's properties. It will not insert any event tables that have been defined for the object. You do not
need to insert the source into a file to use the dialog, as it is automatically saved in your configuration.
This command is useful when you want to share your dialog with another user.

Adding Event Handlers
Set the form name and the control names (name property in Properties list box) before adding code to

Creating a Form

1424

the dialog box because these names are referenced in the code. Prefix your control names using the
letters ctl so that they are easily recognizable. To add an event handler, complete the following steps:

1. Double-click on the control in the dialog box for which you want to add code (not the bitmap in the
Properties dialog box). The Select An Event dialog box is displayed.

2. Select an event and click OK. If this is the first event handler for this dialog box, you will be prompted
with an Open dialog box for a new file to contain the source code for this dialog box.

3. Type a unique file name. Usually this file name is derived from the name of the dialog box you are
creating, such as form1.e.

After performing the above steps, the dialog editor inserts an event function definition into your source file
and places your cursor in the function.

Inherited Code Found Dialog Box
This dialog box is displayed when there is no code for the event you have chosen and the control is using
an inherited event table. You will see this dialog box if you copy a control with existing code, paste
elsewhere and then double-click on the new instance of the control.

The following options are available on the dialog:

• Inherit code - When this option is selected, a statement which links a new event table to an inherited
event table (event table not belonging to the control and possible copied through the clipboard). This
affects user level 1 inheritance code (p_eventtab) only.

• Go to inherited code - When this option is selected, no code is inserted. The cursor is placed on the
existing inherited event handling code.

• Don't inherit code - Select this option when you do not want to inherit the existing user level 1
inheritance code (p_eventtab). Sometimes when you copy a control with existing code to the clipboard,
you will not want to inherit the existing event handlers.

Loading and Running the Form
To run the current dialog box that you are editing, click Macro → Load and Run Form or use the
run_selected command. This loads the code, loads the dialog box, and runs the dialog box. To close the
dialog box, double-click on the system menu (some UNIX window managers do not close windows when
you double-click on the system menu) or press Ctrl+Shift+Space (in the running version of your dialog
box and not the edited copy). Press Ctrl+Shift+Space when any dialog box is running to edit it (this
includes the Properties dialog box).

Display the dialog box from the command line by typing show <FormName>. To display the dialog box
modally enter show -modal <FormName> on the command line. For more information about this
command, see Displaying Dialog Boxes. Dialog box templates and compiled macros are stored in the
state file vslick.sta.

Inherited Code Found Dialog
Box

1425

The example code below shows how to write a command that displays a dialog box. This is used when
binding a command to a key that displays a dialog box.

#include "slick.sh"
_command void run_form1()
{

// The -modal option displays other windows
// while the dialog box is displayed.
show("-modal form1");

}

Adding a Cancel Button

To add a Cancel button, complete the following steps:

1. Double-click Insert Button Control.

2. Set the caption property to Cancel.

3. Set the cancel property to TRUE by double-clicking the left mouse button on the cancel property in the
Properties list box.

4. Set the name property of a control (never the form) to "" if you are not going to reference the control by
name.

5. Clicking Cancel when your dialog box is running will close the dialog box even though you have not
written any code. If you do add code to your Cancel button, you must close the dialog box by typing
the following in the command line: p_active_form._delete_window();

Adding an OK Button and Closing a Dialog Box

To add an OK button and close a dialog box, complete the following steps:

1. Create a command button control by double-clicking Insert Button Control in the Properties dialog
box.

2. Set the caption property to OK, set the default property to TRUE, and set the name property to ctlok.

3. Double-click on the command button control in the dialog box for which you want to add code (not the
bitmap in the Properties dialog box). The Select An Event dialog box is displayed.

4. Choose the lbutton_up event and click OK.

5. If this is the first event handler for this dialog box, the Open dialog box for a new file to contain the
source code for this dialog box is displayed. Type a unique file name. Usually this file name is derived
from the name of the dialog box that you are creating, such as form1.e.

After completing the previous steps, the dialog editor inserts an event function definition into your source
file and places your cursor in the function. Add the code as shown in the following example:

Loading and Running the Form

1426

#include "slick.sh"
defeventtab form1
// Code for OK button.
void ctlok.lbutton_up()
{

// Close the dialog box and return a value. The _delete_window
// function allows modal dialog boxes to return a value. For
// more information, see "Displaying Dialog Boxes" below. Each

object
// in the dialog box will receive an on_destroy event.
// NOTE: If "" is a valid return value. Return 1 here and store
// your results in the global _param1 variable.
p_active_form._delete_window("return value");
// Statements after closing a dialog box are executed.

}

Before closing a dialog box, review the following information:

• First, if a modal dialog box returns a value, the value "" (zero length string) MUST be returned to
indicate that the dialog box has been canceled. This convention is used so that when running a dialog
box, you can press Ctrl+Shift+Space to safely cancel and edit the dialog box.

• Use the global container variables_param1.._param10 to return multiple strings. Alternately, you can
make an array or structure and place it in _param1. If you do place your string results in the global
variables _param1.._param10, make sure your dialog box returns 1 (or any value other than "") to
indicate that the dialog box was not canceled.

Displaying Dialog Boxes

The show command is called in function-style syntax from within a macro. It can also be invoked from the
command line or a menu item.

The command line call syntax is:

show cmdline

cmdline is a string in the format:

[option] form_name

The function call syntax is:

show (cmdline [,arg1 [,arg2 ... [argN]]])

Loading and Running the Form

1427

option can be one of the options in the table below.

Option Description

-mdi Keep the form on top of the MDI window.

-app Keep the form on top of the SlickEdit® application
window. This allows the MDI window to be
displayed on top of the form.

-xy Restore the previous x,y position of the dialog box.
If the old position cannot be found, the dialog box is
centered. When the dialog box is closed, the x,y
position is automatically saved (the dialog manager
calls _save_form_xy).

-hidden Do not make the form visible. Run the form modally.
All other forms are disabled. Control returns to the
caller when the form window is deleted with
_delete_window.

-nocenter Do not center the form.

-new Normally, when a form is already displayed, the
existing form is given focus. This option allows for
multiple instances of a form to be displayed.

-reinit (UNIX only) This option causes the
_delete_window function to make the form
invisible instead of deleting the form. The destroy
events are dispatched even though no windows are
actually destroyed. Next time show is called for the
same dialog box, the invisible dialog box is made
visible, some properties are reinitialized, and the
create events are sent. Be careful when using this
option. Not all dialog boxes can use this option
without minor modifications. The form_parent()
function does not work because the next time the
form is used, the parent is not changed to the new
parent specified.

-hideondel (UNIX only) This option is the same as the -reinit
option except no properties are reinitialized when
the invisible dialog box is shown again.

form_name specifies a form or menu resource. If it is an integer, it must be a valid index into the names

Loading and Running the Form

1428

table of a form or menu. Otherwise, it should be the name of an existing form or menu that can be found
in the names table.

on_create and on_load Events

The array of args (arg1...argN) is passed to on_create.When a dialog box and all its objects are created,
each object receives an on_create event. The on_create event receives the arg1, arg2,...,argN
arguments given to the show function. After the on_create events are sent, the form receives an
on_load event. You CANNOT set the final focus in an on_create event. Use the _set_focus function
during the on_load event to set the initial focus to a control other than the control with lowest tab index
(p_tab_index) that is enabled and visible.

Return Value of show

If the -modal option is given, the return value given to _delete_window is returned. "" is returned if the
dialog box is edited or destroyed during an on_create event. Use the global variables
_param1..._param10 to return more than one string value. Alternately, you can make an array or
structure and place it in _param1 for non-string return types.

If the -modaloption is not given, the form window id is returned if successful. Otherwise, a negative error
code is returned.

Example:

// This example requires that you create a form called form1 with a
// command button and load this file.
#include "slick.sh"
_command void mytest()
{

result := show("-modal form1");
if (result=="") {

return(COMMAND_CANCELLED_RC);
}
message("_param1="_param1" _param2="_param2);

}

defeventtab form1;
void ctlcommand1.on_create()
{

// Global variable _param1.._param10 are defined in "slick.sh"
to

// allow for multiple strings to be returned in separate
variables.

// Alternatively, if the return strings do not contain spaces,
you

// could concatenate them together with a space and use the
parse

// built-in to easily separate them.
_param1="string1";

Loading and Running the Form

1429

_param2="string2";
// Close the dialog box and indicate that the dialog box was not

canceled.
// Each object in the dialog box will receive an on_destroy

event.
p_active_form._delete_window(1);

}

Example:

// This example requires that you create a form called
// form1 with a command button and load this file.
#include "slick.sh"
_command void mytest()
{

show("-modal form1","param1 to on_create", "param2 to
on_create");

}

defeventtab form1;
void ctlcommand1.on_create(_str arg1="", _str arg2="")
{

_str tmpArg1, tmpArg2;
tmpArg1=arg(1);
tmpArg2=arg(2);
_message_box("arg1="arg1" arg2="arg2);
_message_box("tmpArg1="tmpArg1" tmpArg2="tmpArg2);

}

Example:

#include "slick.sh"
int defmain()
{

index=find_index("form1",oi2type(OI_FORM));
if (!index) {

messageNwait("form1 not found");
return(1);

}
// Can specify name table index instead of name. When show is

called
// without the "-modal" option, the positive window id (instance

handle)
// of the form created is returned.
form_wid=show("-hidden -nocenter "index);
if (form_wid<0) {

Loading and Running the Form

1430

return(1);
}
// Place the form at the top left corner of the display.
form_wid.p_x=form_wid.p_y=0;
// Make the form visible.
form_wid.p_visible=true;
return(0);

}

Modal and Modeless Dialog Boxes
If you do not want the MDI window or any other form to get focus when your dialog box is displayed,
specify the -modaloption to the show command (see Displaying Dialog Boxes). When the -modal option
is given, other forms, including the MDI window, are disabled (p_enabled=false) until the form is closed.
In addition, the _delete_window function can be used to return a value (see the previous example).

Modeless example:

#include "slick.sh"
int defmain()
{

// When show is called without the "-modal" option, the positive
// window id (instance handle) of the form created is returned.
form_wid=show("-hidden -nocenter form1");
if (form_wid<0) {

return(1);
}
// Place the form at the top left corner of the display.
form_wid.p_x=form_wid.p_y=0;
// Make the form visible.
form_wid.p_visible=true;
return(0);

}

If you need to display a status dialog box during processing, you might require a modeless dialog box so
control is returned to you. However, it is a best practice to disable all other dialog boxes including the MDI
window during processing.

Advanced modeless example:

#include "slick.sh"
static typeless gcancel;
_command void test()
{

// Show the form modeless so there is no modal wait.

Modal and Modeless Dialog
Boxes

1431

form1_wid=show("form1");
// Disable all forms by the one with p_window_id==form_wid. A space-
// delimited string of disabled form window ids is returned.
disabled_wid_list=_enable_non_modal_forms(0,form_wid);
gcancel=0;
for (;;) {

// Read mouse, key, and all other events until none are left
// or until the variable gcancel becomes true.
process_events(gcancel);
if (gcancel) break;
// Do your processing here.

}
// Enable the forms that were disabled.
enable_non_modal_forms(1,0,disabled_wid_list);
form1_wid._delete_window();

}
defeventtab form1;
void ctlcancel.lbutton_up()
{

gcancel=1;
}

Dialog Box Parent Window
The parent window of a dialog box form has two uses. First, the dialog box remains on top of the parent
window. Use the show command and specify the -app option if you want to allow a modeless dialog box
be displayed behind the MDI window. The -mdi option of the show command can be used to make sure
a dialog box stays on top of the MDI window.

Command line examples:

show -app _calc_form
show -mdi -new _calc_form

Second, the parent window is used by some dialog boxes (such as the Print and Spelling dialog boxes) to
determine on which buffer to operate. This permits the dialog boxes to support the editor control. To do
this, they call the _form_parent function during an on_create event to get the window id of the window
which contains the buffer to be operated on. These dialog boxes only support certain parent windows. For
example, the Print dialog box will not run correctly if the -app option of the show command is used.

Remembering a Dialog Box's Previous Position

The show command centers the dialog box to the current form or MDI window. Usually this is fine, but
sometimes it is helpful for a dialog box to reappear in the same position that it was in when the user
closed the dialog box. To do this, specify the -xy option to the show command. This adds the
IS_SAVE_XY flag to the p_init_style property. When the dialog box is closed, the x and y position of the

Dialog Box Parent Window

1432

dialog box is stored and later saved in the auto restore file (vrestore.slk by default) when you exit the
editor. The form is centered if the old x,y position information cannot be found.

Clipboard Inheritance®

1433

Clipboard Inheritance®
This section contains the following topics:

• Clipboard Inheritance® Overview

• Clipboard Inheritance® Example

• Dialog Box Inheritance Order

Clipboard Inheritance® Overview
Clipboard Inheritance enables the transferring of objects from one place to another using the clipboard to
create new instances that inherit the code of the original objects. Code for the new instances can be
added that affects only the new instances, and code of the original instances can be modified, affecting
both instances.

For example, you may want to create a group of controls that are needed by the SlickEdit® File Open
dialog to allow the user to specify the various supported file formats. SlickEdit supports the following file
formats:

• DOS - Each line is separated with a carriage return, followed by linefeed.

• Macintosh® - Each line is separated with a carriage return only.

• UNIX - Each line is separated with a linefeed only.

• Record width - A user-specified number of bytes placed in each line.

• Separator character - A single user-specified line separator character.

The following partial dialog box can be used to handle the file formats of SlickEdit.

Example:

// The names of the controls do not need to be declared.
//

Clipboard Inheritance®
Overview

1434

// The names of the radio button controls are
// ctlopendos, ctlopenmac, ctlopenunix, ctlopenauto.
//
// The first text box is named ctlopenlinesep and
// the text box below it is named ctlopenwidth.

defeventtab form1;

// Define the lbutton_up event for the DOS radio button. This function
will

// get called when any of the radio buttons get turned on. The event
// table automatically created here is called form1.ctlopendos.
ctlopendos.lbutton_up()
{

// Set the text displayed in both text boxes to nothing so the users
// knows that the radio button format has been chosen.
ctlopenlinesep.p_text="";
ctlopenwidth.p_text="";

}

static void zap_radio_buttons()
{

ctlopendos.p_value=0;
ctlopenmac.p_value=0;
ctlopenunix.p_value=0;
ctlopenauto.p_value=0;

}

// Define the on_change event for the first text box. For a text box,
the

// on_change event gets called when the user modifies the text in the
text box.

// The event table automatically created here is form1.ctlopenlinesep.
ctlopenlinesep.on_change()
{

if (p_text!="") {
ctlopenwidth.p_text=""; // Clear out the other text boxes text.
zap_radio_buttons(); // Turn off all the radio buttons.

}
}
// Define the on_change event for the second text box. The event table
// automatically created here is form1.ctlopenwidth.
ctlopenwidth.on_change()
{

if (p_text!="") {
ctlopenlinesep.p_text=""; // Clear out the other text boxes text.
zap_radio_buttons(); // Turn off all the radio buttons.

Clipboard Inheritance®
Overview

1435

}
}

Only the first radio button ctlopendos has an event handler defined. The other radio buttons use the
form1.ctlopendos event table. This can be accomplished in the dialog editor using Clipboard Inheritance
or, if the radio buttons are already created, you can set the p_eventtab property of the other radio buttons
to form1.ctlopendos.

To use Clipboard Inheritance:

1. Write the lbutton_up event code for the DOS radio button.

2. Copy the DOS radio button to the clipboard.

3. Paste it back onto the dialog box within the frame.

4. Set the p_caption property for the new radio button to MAC.

Either of these methods can be used to fill an event table. When the ctlopendos.lbutton_up() function
gets called, it gets and sets the properties of controls that exist on this dialog box.

Clipboard Inheritance® Example
For the Open dialog, Clipboard Inheritance® was created by copying controls to the clipboard and pasting
them.

Clipboard Inheritance® Example

1436

The Open File dialog box has the form name _edit_form. This dialog box is created by copying the
_open_form dialog box (code links and all) to the clipboard, pasting it, and then adding the Find File
button and the advanced controls. The _open_file form can be thought of as the base File Open dialog
box class. It is used for all other File Open and Save As operations except for opening files for editing
which requires additional controls. The inherited code from the base class File Open dialog required no
changes except for the OK button. For this, the OK button code was replaced with new code. The Find
File displays a dialog box which has all of the same advanced controls. The advanced controls were
taken from the Open File dialog box (_edit_form) and all its related controls, and copied onto the Find
File dialog box. The only additional code required was for the OK button, which was needed to return the
results of the advanced options to the caller.

The following statement highlights the syntax for linking one event table to another:

defeventtab dlgbox2.textbox1 _inherit dlgbox1.textbox1

Dialog Box Inheritance Order
Each control in Slick-C® has two properties, called p_eventtab and p_eventtab2. The p_eventtab
property defines the user level 1 inheritance. User level 1 inheritance permits the modification of the event

Dialog Box Inheritance Order

1437

handlers for one specific instance of a control without affecting any other (except when Clipboard
Inheritance® is used). The dialog editor automatically inserts the necessary function declaration code so
that you need to only add statements within the function. After you write the event handler and load the
new code, the p_eventtab property displayed in the Properties list box is updated to reflect that you
have defined a user level 1 event table.

The p_eventtab2 property defines the user level 2 inheritance. User level 2 inheritance is typically used
to affect all controls of a specific type. Normally, the dialog editor sets these properties for you when a
control is created. For example, when you create a combo box control with the dialog editor, the
p_eventtab2 property is automatically set to _ul2_combobx. The _ul2_combobx event table defines the
default processing used by every combo box. The user level 1 event handler receives an on_change
event (sent from the user level 2 code) when the text in the combo box changes.

SlickEdit® uses a pre-defined inheritance order called Dialog Box Inheritance Order. When a control
receives an event, the following search begins to determine which event handler should get control:

1. IF and ONLY if the event SlickEdit® is searching for is a key event, check the dialog box user level 1
inheritance on the frame of the dialog box.

2. Check current control's user level 1 inheritance.

3. Check current control's user level 2 inheritance.

4. Check automatic inheritance. Only the text box, combo box, and editor window can have any automatic
inheritance. This is how your emulation is supported in these controls.

5. Check the dialog box frame user level 1 inheritance.

6. Check the dialog box frame user level 2 inheritance.

7. Check dialog manager inheritance.

As soon as an event handler is found, the search stops and the event handler is executed. Each
inheritance level can have up to 20 linked event tables. This limit is only to avoid infinite event table link
loops. At run time it is possible, but unusual, to change all inheritance links and event tables for any
object. The eventtab_inherit function can be used to get or set an event table inheritance link.

Objects and Instances

1438

Objects and Instances
Every object instance can be uniquely identified by a window id (also called instance handle). Slick-C®
treats objects and windows the same. However, some objects, such as image control, have a window id
but do not allocate an operating system resource known as a window.

Topics in this section are:

• Active Object

• Active Form

• Instance Expressions

Active Object
When an object receives an event, that object is the active object. More specifically, the p_window_id
property is set to the instance handle of that object. You can change the active object by setting the
p_window_id property to the window id of another object. Accessing a property without specifying a
control name or instance handle accesses the property of the active object and not the active form.

Note

Changing the active object does NOT change the focus. Use the _set_focus method to change
the focus.

Active Form
Slick-C® has a p_active_form property that returns an instance handle to the current form. The Slick-C
interpreter actually does not keep track of what form is active. The active form is found by traversing
through the parents (p_parent) of the active object until the form is reached.

Instance Expressions
The examples below display common instance expressions.

ctltext1.p_text="test"; // Assuming ctltext1 has been declared globally
or locally,

// lookup the ctltext1 control of the active
form to get

// the window id, and set the p_text property.
x=_control ctltext1; // Put the window id of the "ctltext1" control

of the active

Active Object

1439

// form in the variable x.
// The variable x does not have to be declared.

There are
// cases where the control keyword is not

needed. It is
// better to always use it so you don't have to

worry.
x.p_text="test"; // Set the p_text property of the object

referenced by the
// instance expression x.

(x+1-1).p_text="test"; // Same as previous statement. This shows that
any valid

// Slick-C language expression may be used to
get the

// window id.
x.(x+1-1).x.p_text="test";

// Same as the previous statement but wastes
more

// code space.
// This shows that multiple dots (".") may be

used in an
// instance expression.

form_wid=p_active_form; // Get the window id of the active form.
form_wid.ctltext1.p_text="test";

// Lookup ctltext1 as if the object referred to
by the

// variable form_wid was the active object.
p_next.p_next.p_prev.p_prev.p_text="test";

// Waste some code space and access the p_text
property of

// the active object.
p_window_id=_control ctltext1;

// Make the ctltext1 control the active object.
p_text="test"; // Access the p_text property of the active

object.
_cmdline.p_text="test"; // _cmdline is a constant window id defined in

"slick.sh".
// Set the command line p_text property to

"test". Cool!!

Using Functions as Methods

1440

Using Functions as Methods
A command or procedure can be called as a method without any additional declaration data. The sample
Slick-C® source below is an example of this feature.

#include "slick.sh"
void defmain()
{

// Call the tbupcase function as a method to operate on the SlickEdit
// command line. _cmdline is a constant instance handle defined in

slick.sh.
_cmdline.tbupcase();

}

// This function uppercases the text in a text box or combo box input
field

// and has been written to operate on the current object.
void tbupcase()
{

// The p_text property is used to get and set the contents of a text
box

// or combo box input field.
p_text=upcase(p_text);

}

The tbupcase is not defined to be a method of a particular class. This feature permits macros written in
SlickEdit® text mode to be converted into SlickEdit macros and used as methods. Also, most functions
are written to operate on the current object, meaning you have access to many methods. Using functions
as methods is useful when writing dialog box event handlers. If a function is called and a statement within
the function is not valid for the current object, the macro is stopped, and a dialog box is displayed
indicating the error. The find_error command (Macro → Find Slick-C Error) can then be used to locate
the source of the error.

Built-in Controls

1441

Built-in Controls
Topics in this chapter:

• Label Control

• Spin Control

• Text Box Control

• Editor Control

• Frame Control

• Command Button Control

• Radio Button Control

• Check Box Control

• Combo Box Control

• List Box Control

• Scroll Bar Controls

• Drive List Control

• File List Box Control

• Directory List Box Control

• Picture Box Control

• Gauge Control

• Image Control

• Adding Dialog Box Retrieval

Label Control
The label control is used to display text in any font. A common use of a label control is to place it to the
left of a text box to tell the user about what goes in the text box.

Labels can be aligned left or right, or centered horizontally and/or vertically. If you do not need to align the
label, set the p_auto_size property to TRUE to ensure that the text fits inside the window. To center the
label to a text box, select the label control and use the Up, Down, Left, and Right arrow keys.

On the Dialog Editor, click the Insert Label Control button to place a label control on a form.

Label Control

1442

For a complete list of label control properties, methods, and events, from the main menu, select Help →
Macro Functions by Category.

Spin Control
The most common use of a spin control is to increment or decrement a number displayed in a text box.
This can be performed WITHOUT writing any code, by making the tab_index property of the text box one
less than the tab_index property of the spin control. An error is displayed if there is no text box with a tab
index one less than the spin control, unless the increment property of the spin control is set to zero. To
create a spin control, complete the following steps:

1. Create the text box and then create the spin control.

2. Turn off the auto_size property of the text box so you can make the height of the text box larger than
the font.

3. Use the spin control to increment or decrement the value in a gauge or scroll bar control or increment
or decrement a hexadecimal number displayed in a text box. The default increment is 1. Set the
increment property of the spin control to zero and process the on_spin_up and on_spin_down
events. The on_change event is called with a reason set to CHANGE_NEW_FOCUS, before an
on_spin_up or on_spin_down event, to allow you to return the window ID of the control you want to
get focus, after spinning is completed. Return an empty string ('') if you do not want to change the
event.

Example:

#include "slick.sh"

// This example requires form name form1 with a text box and spin
control.

// The spin control should be named ctlspin1 and the increment property
// should be zero. The tab index of the text box MUST be one less than
// the spin control. This code does not reference the name of the text

box
// so that you can use Clipboard Inheritance(R) to create multiple

working
// copies of a spin control capable of incrementing/decrementing the

value in
// a text box control without writing any new code.
defeventtab form1;
ctlspin1.on_change(int reason)
{

if (reason==CHANGE_NEW_FOCUS) {
return(p_prev);

}
}
ctlspin1.on_spin_up()

Spin Control

1443

{
new_dec_value=hex2dec(p_prev.p_text)+1;
p_prev.p_text=dec2hex(new_dec_value);

}
ctlspin1.on_spin_down()
{

new_dec_value=hex2dec(p_prev.p_text)-1;
p_prev.p_text=dec2hex(new_dec_value);

}

For a complete list of spin control properties, methods, and events, from the main menu, select Help →
Macro Functions by Category.

Text Box Control
The text box control enables the user to enter a single line of text. Editor control determines the number of
lines that can be entered. Text boxes support completion with the spacebar and question mark keys. Set
the completion property of the text box.The FILE_ARG completion type is the most common. It provides
completion on file names. New commands can be written that operate in all text boxes, edit windows, and
editor controls.

Example:

#include "slick.sh"
_token void upcase_line()

name_info(','VSARG2_TEXT_BOX|VSARG2_REQUIRES_EDITORCTL)
{

init_command_op();
get_line(line);
replace_line(upcase(line));
retrieve_command_results();

}

Bind the upcase_line command in the previous example to Alt+F12. This command works in all text
boxes, edit windows, and editor controls. The key binding might not work in a text box if you bind the
upcase_line to one of the CUA keys Alt+A, Alt+Z, Ctrl+X, Ctrl+C, or Ctrl+V. Use the Redefine Common
Keys dialog box (Tools → Options → Keyboard and Mouse → Redefine Common Keys) to allow all
key bindings to be inherited into text box controls.

For a complete list of text box control properties, methods, and events, from the main menu, select Help
→ Macro Functions by Category.

Editor Control
Editor control is used to enter multiple lines, view clipboards, to work with the calculator, and for version

Text Box Control

1444

control comments. Almost all of the key bindings for an MDI edit window work in an editor control even
when the emulation is changed. Use macro recording to write a new command that works in an edit
window and editor control. Mark the Allow in non-MDI editor control check box when you finish
recording the macro.

For a complete list of editor control properties, methods, and events, from the main menu, select Help →
Macro Functions by Category.

Frame Control
Frame control is used to group a set of related controls. Radio buttons are placed inside of a frame
control to indicate to the dialog manager that only one of the radio buttons in the group can be turned on
at a time. There are two ways to place a control inside of a frame control:

• Click the left mouse button on the bitmap in the Properties dialog box of the control that you want to
place inside the frame. Click and drag with the left mouse button inside the frame control to create the
control with the size of the rectangle displayed.

• Copy or cut the control you want to place inside the frame to the clipboard. Select the frame control and
press Ctrl+V to paste the control inside the frame control.

For a complete list of frame control properties, methods, and events, from the main menu, select Help →
Macro Functions by Category.

Command Button Control
The command button control is most typically used to create an OK, Cancel, or Help button.

For a complete list of command button control properties, methods, and events, from the menu, select
Help → Macro Functions by Category.

Radio Button Control
Radio buttons must be grouped. When one radio button is enabled, the other radio buttons in the same
group are not available. Radio buttons are considered in the same group if they have the same parent.
Usually, radio buttons are grouped by placing them inside a picture box or frame control. A picture box
can have its border_style property set to BDS_NONE to display that the picture box control does not
exist. Use one of the methods described under Frame Control to place a radio button inside a frame.

For a complete list of radio button control properties, methods, and events, from the main menu, select
Help → Macro Functions by Category.

Check Box Control
A check box is used to set up a true or false option. Check boxes can be displayed to the left or right of

Frame Control

1445

the caption.

For a complete list of check box control properties, methods, and events, from the main menu, select
Help → Macro Functions by Category.

List Box Control
A list box provides a way to select from a fixed set of items. Multiple items from the list can be selected at
one time by setting the multi_select property to MS_SIMPLE_LIST or MS_EXTENDED (used by Open
dialog box). A list box receives an on_change event, with a reason argument set to
CHANGE_SELECTED, when items are selected or deselected because of a key press or mouse event.
None of the _lbxxx functions cause an on_change event. Use the _find_longest_line() function to find
the longest line in a list box.

The following example requires a form named "form1", a command button named "ok", and a list box
named "ctllist1":

#include "slick.sh"
defeventtab form1;
ctllist1.on_change(int reason)
{

// Check the reason value. In the future we may add more reason
values

// for the list box.
if (reason==CHANGE_SELECTED) {

// IF any items in the list box is selected.
if (p_Nofselected) {

ctlok.p_enabled=true; // Enable the OK button.
} else if(!ctlok.p_enabled){

ctlok.p_enabled=false; // Disable the OK button.
}

}
}

The following example illustrates how to resize a dialog box based on the longest item in a list box:

#include "slick.sh"
defeventtab form1;
ctllist1.on_create()
{

_lbadd_item("Line1");
_lbadd_item("This is a longer line2");
_lbadd_item("This is the longest item in the list box");
longest=_find_longest_line();

List Box Control

1446

// Add on a little to account for the left and right borders of the
// list box. Have to convert client width because it's in pixels.
list_width=longest+ p_width-_dx2lx(p_xyscale_mode,p_client_width);
form_wid=p_active_form;

// Again we have to account for the left and right borders.
// Multiply p_x of list box by two to show equal amounts of spacing

on
// each side of the list box.
form_width=2*p_x + list_width+ form_wid.p_width -
_dx2lx(form_wid.p_xyscale_mode,form_wid.p_client_width);

p_width = list_width;
form_wid.p_width = form_width;

// Now make sure the whole dialog box can be seen on screen.
form_wid._show_entire_form();

}

The example below illustrates adding pictures to a list box.

#include "slick.sh"
#define PIC_LSPACE_Y 60 // Extra line spacing for list box.
#define PIC_LINDENT_X 60 // Indent before for list box bitmap.

defeventtab form1;
ctllist1.on_create()
{

// Add some extra line height.
p_pic_space_y = PIC_LSPACE_Y;
// _pic_xxx arguments are global variables defined in "slick.sh"

which are
// name table indexes to pictures. You can create and load your own

pictures.
// All the bitmaps are shipped with the editor. Use the bitmap file
// "_drremov.bmp" as a template for creating your own bitmap for a

list box.
// You can load your own bitmap files with the _update_picture

function.
_lbadd_item("a:",PIC_LINDENT_X,_pic_drremov);
_lbadd_item("b:",PIC_LINDENT_X,_pic_drremov);
_lbadd_item("c:",PIC_LINDENT_X,_pic_drfixed);
// The p_picture property must be set to indicate that this list box

is
// displaying pictures and to provide a scaling picture for the
// p_pic_point_scale property. The p_pic_point_scale property allows

the

List Box Control

1447

// picture to be resized for fonts larger or smaller than the value
of the

// p_pic_point_scale point size. If p_pic_point_scale is 0, the
picture is

// not scaled.
p_picture = picture;
p_pic_point_scale = 8;

}

Finally, the example below illustrates how to disable a list box and make the items in the list box appear
grayed.

#include "slick.sh"
defeventtab form1;
ctllist1.on_create()
{

_lbadd_item("item1");
_lbadd_item("item2");
p_no_select_color=true;
p_enabled=false;
p_forecolor=_rgb(80,80,80);

}

For a complete list of list box control properties, methods, and events, from the main menu, select Help
→ Macro Functions by Category.

Combo Box Control
A combo box is used in place of a text box for combo box retrieval, when only a fixed set of responses is
permitted, or when a common set of responses are known and a different response may be typed in.
Combo box retrieval is a mechanism in that the combo list box displays the previous responses entered in
the text box of the combo box. The combo box has two style properties:

• The PSCBO_NOEDIT style is used when only a fixed set of responses are allowed. Combo boxes
support completion with the spacebar and question mark keys. Set the completion property of the
combo box if there is an existing completion type that suits the needs.

• The FILE_ARG completion type is the most common. It provides completion on file names.

The following example illustrates combo box retrieval. The example requires a form named "form1", an
OK button named "ctlok", and combo box named "ctlcombo1":

defeventtab form1;
ctlok.lbutton_up()
{

Combo Box Control

1448

// When the OK button is pressed,
// you need to save combo box retrieve information.
_append_retrieve(_control ctlcombo1,ctlcombo1.p_text);

}
ctlok.on_create()
{

// Fill in the combo box list.
ctlcombo1._retrieve_list();

}

A combo box consists of four controls: the root window, text box, picture box, and list box. The properties
and methods of the sub-controls may be accessed individually with the p_cb, p_cb_text_box,
p_cb_picture, p_cb_list_box instance handle properties. The p_cb_picture property is only available
when the control is displayed.

Example:

defeventtab form1;
ctlcombo1.on_create()
{

// To make the loop a little more efficient,
// activate the list box of the combo box control
p_window_id=p_cb_list_box;
for (i:=1;i<=100;++i){

// Add an item to the active list box.
_lbadd_item("line="i);

}
// Activate the root window of the combo box.
p_window_id=p_cb;

}

Example:

#include "slick.sh"
defeventtab form1;
ctlcombo1.on_create()
{

// Show a picture which indicates that clicking on the picture box
// button displays a dialog box. _pic_cbdots is a global
// variable defined in "slick.sh" which is a handle to a picture.
vp_cb_picture.p_picture=_pic_cbdots;

}
ctlcombo1.lbutton_down()
{

// Check if the left mouse button was clicked inside the picture box

Combo Box Control

1449

// of the combo box.
if (p_cb_active==p_cb_picture) {

result=show("-modal form2");
// Process result here.
return("");

}
// Skip user level 1 inheritance and execute the default event

handler
// defined by user level 2 inheritance.
call_event(p_window_id,LBUTTON_DOWN,2);

}

The following example requires a form named "form1", command button named "ctlok", a combo box
named "ctlcombo1", and another command button named "ctlcommand1":

#include "slick.sh"
defeventtab form1;
ctlok.lbutton_up()
{

// Check if text in combo box text is valid. You might think you
could

// use a non-editable style combo box. However, many users prefer
typing

// in names using completion rather than using the mouse to select
an item

// out of a list box.
status=ctlcombo1._cbi_search("","$");
if (status) {

_message_box("Combo box contains invalid input");
return("");

}
// Have valid input.

}
ctlcommand1.lbutton_up()
{

// Add some items to the combo box list.
ctlcombo1.p_cb_list_box._lbadd_item("Hello")
ctlcombo1.p_cb_list_box._lbadd_item("Open");
ctlcombo1.p_cb_list_box._lbadd_item("New");
// Make the correct item in the combo box list current so combo box
// retrieval works better. _cbi_search searches for p_text in the

combo
// list box. The "$" specifies that an exact match should be found

and
// not a prefix match.
int status=ctlcombo1._cbi_search("","$");
if (!status) {

Combo Box Control

1450

messageNwait("Found it!");
// Select the line in the combo box so that an up or down arrow
// selects the line above or below and not the current line.
ctlcombo1.p_cb_list_box._lbselect_line();

}
}

A combo box receives an on_change event with a reason argument under the circumstances listed in the
table below.

Reason Description

CHANGE_OTHER The p_text property changed, probably because of
typing.

CHANGE_CLINE The p_text property changed because selected line
in list box changed and the list was visible.

CHANGE_CLINE_NOTVIS The p_text property changed because a key was
pressed which scrolls the list (Up, Down, PgUp,
PgDn) while the list was invisible.

CHANGE_CLINE_NOTVIS2 Same as CHANGE_CLINE_NOTVIS. Sent to user
level 2 inheritance only. User level 2 inheritance will
receive the CHANGE_CLINE_NOTVIS reason as
well if the user level 1 inheritance does not catch
the on_change event.

The on_drop_down event is sent to a combo box with a reason argument. The reason argument
specifies one of the conditions listed in the table below.

Reason Description

DROP_UP After combo list box is made invisible.

DROP_DOWN Before combo list box is made visible.

DROP_INIT Before retrieve next/previous. Used to initialize list
box before it is accessed.

DROP_UP_SELECTED Mouse released while on valid selection in list box
and list is visible.

Example:

Combo Box Control

1451

#include "slick.sh"
defeventtab form1;
ctlcombo1.on_drop_down(int reason)
{

if (reason==DROP_INIT) {
if (p_user=="") {

p_user=1; // Indicate that the list box has been filled.
// Insert a lot of items.
p_cb_list_box._insert_name_list(COMMAND_TYPE);
p_cb_list_box._lbsort();
p_cb_list_box._lbtop();

}
}

}

For a complete list of combo box control properties, methods, and events, from the main menu, select
Help → Macro Functions by Category.

Scroll Bar Controls
There are two scroll bar controls that operate similarly: vscroll and hscroll (vertical and horizontal,
respectively). The scroll bar controls are used to provide the user an avenue for selecting an integer that
has a fixed range or a way for displaying the completion status of a process. Set the min, max,
small_change, and large_change properties to define the minimum integer value, maximum integer
value, increment/decrement that occurs when arrows are pressed, and increment/decrement that occurs
when you click the left button between the arrow and thumb box respectively.

The on_change event is sent after dragging the thumb box is completed. The p_value property contains
the new scroll position and will be in the range p_min..p_max.

The on_scroll event is sent while you click and drag the thumb box of a scroll bar.

Example:

#include "slick.sh"
defeventtab form1;
ctlvscroll1.on_scroll()
{

message("on_scroll p_value="p_value);
}
ctlvscroll1.on_change()
{

message("on_change p_value="p_value);
}

Scroll Bar Controls

1452

For a complete list of scroll bar control properties, methods, and events, from the main menu, select Help
→ Macro Functions by Category.

Drive List Control
The drive list is a combo box that allows selection of different disk drives. The Open dialog box uses this
control.

The drive list control receives an on_change event with a reason argument of CHANGE_DRIVE when
the drive is changed by selecting a different drive from the combo list box.

Example:

#include "slick.sh"
defeventtab form1;
ctlcombo1.on_change(int reason)
{

if (reason==CHANGE_DRIVE) {
message("Item selected from list. Current drive is now

":+_dvldrive());
}

}

For a complete list of drive list control properties, methods, and events, from the main menu, select Help
→ Macro Functions by Category.

File List Box Control
The file list box control displays a list of files. Multiple files can be selected by setting the multi_select
property to MS_SIMPLE_LIST or MS_EXTENDED used by Open dialog box. A file list box receives an
on_change event with a reason argument under the circumstances listed in the table below.

Reason Description

CHANGE_SELECTED Occurs when items are selected or cleared because
of a key press or mouse event. None of the _lb???
functions cause an on_change event.

CHANGE_FILENAME The _filename() function was called which changed
the file names listed.

Example:

Drive List Control

1453

#include "slick.sh"
defeventtab form1;
ctlcommand1.lbutton_up()
{

ctllist1._flfilename("*.bat","c:\\");
}
ctllist1.on_change(int reason)
{

if (reason==CHANGE_FILENAME) {
message("File list display directory "_flfilename());

}
}

For a complete list of file list box control properties, methods, and events, from the main menu, select
Help → Macro Functions by Category.

Directory List Box Control
The directory list box control displays a list of directories. A file list box receives an on_change event with
one of the reason arguments listed in the table below.

Reason Description

CHANGE_SELECTED Occurs when items are selected or cleared because
of a key press or mouse event. None of the_lb???
functions cause an on_change event.

CHANGE_PATH The _dlfilename() function was called which
changed the file names listed, the left mouse button
was double-clicked, or Enter was pressed.

The following example requires a form named "form1", a text box named "ctltext1", and a directory list box
named "ctllist1":

#include "slick.sh"
defeventtab form1;
ctllist1.on_change(int reason)
{

if (reason==CHANGE_PATH) {
// Set the text in the text box to current directory. Changing
// directories with the directory list box control changes the
// editor's current directory.
ctltext1.set_command(_dlpath(),1);

}

Directory List Box Control

1454

}

For a complete list of directory list box control properties, methods, and events, from the main menu,
select Help → Macro Functions by Category.

Picture Box Control
The picture box is used to place other controls inside of it, like the frame control. The picture box is
capable of displaying bitmaps, displaying bitmap buttons, and all the features of the image control. To
display bitmaps and bitmap buttons, use the image control feature described in the topic Image Control.

For a complete list of picture box control properties, methods, and events, from the menu item select Help
→ Macro Functions by Category.

Gauge Control
Gauge control is typically used to indicate the completion status of a process.

Example:

// Create a form with a command button named ctlcancel, and gauge named
// ctlgauge1. Set the cancel and default properties of the command

button
// to true.
#include "slick.sh"

static bool gcancel;
_command test()
{

// Need to tell compiler ctlgauge1 is a control because the
// form1_wid.ctlgauge1 is too ambiguous.
_control ctlgauge1;

// Show the form modeless so there is no modal wait.
form1_wid=show("form1");
// Disable all forms except form1_wid.

disabled_wid_list=_enable_non_modal_forms(0,form1_wid);
gcancel=0;
for (i:=1;i<=100;++i) {

// Read mouse, key, and all other events until none are left or
until

// the variable gcancel becomes true.
process_events(gcancel);
if (gcancel) {

break;

Picture Box Control

1455

}
// Do work here. Replace the delay below with the operation you

want to do.
// The delay makes this example look more real.
delay(10);

form1_wid.ctlgauge1.p_value=i;
}
// Enable all forms that were disabled.
_enable_non_modal_forms(1,0,disabled_wid_list);
form1_wid._delete_window();

}
defeventtab form1;
ctlcancel.lbutton_up()
{

gcancel=1;
}

For a complete list of gauge control properties, methods, and events, from the main menu, select Help →
Macro Functions by Category.

Image Control
Image control is for creating bitmap buttons or toolbar buttons. The image control performs a subset of
the features of the picture box control.

Adding a Bitmap Command Button or Check Box

Perform the steps below to add a bitmap button to a dialog box. The same steps can also be used to add
a check box.

1. Create a new form for editing. From the main menu, select Macro → New.

2. Create an image control. Double-click the Image Control bitmap.

3. Set the p_picture property to bbfind.bmp. Make sure that you specify the full path (the default path
used by the installation program is c:\vslick\bitmaps on Windows or /
usr/lib/vslick/bitmaps on UNIX). In this step you enter the bbfind.bmp bitmap as an
example.

4. Set the p_command property to gui_find. The Down arrow of the combo box displays all the editor
commands.

5. Set the p_message property to Searches for a string you specify.

6. Set the p_style property to PSPIC_FLAT_BUTTON or PSPIC_BUTTON.

Tip

Image Control

1456

The bb prefix indicates that this is a bitmap that can be used by a toolbar. You can edit the
bbfind.bmp file with Paintbrush (pbrush.exe). Use bbblank.bmp as a template for creating
your own bitmap buttons.

The following example illustrates how to load your own picture like a toolbar button:

#include "slick.sh"
defeventtab form1;
ctlimage1.on_create()
{

index=_update_picture(-1,bitmap_path_search("bbfind.bmp"));
if (index<0) {

if (index==FILE_NOT_FOUND_RC) {
_message_box("Picture bbfind.bmp was not found");

} else {
_message_box("Error loading picture

bbfind.bmp\n\n":+get_message(index));
}
return("");

}
p_picture=index;
p_command="gui_find";
p_message="Searches for a string you specify";
p_style=PSPIC_FLAT_BUTTON;

}

The following example illustrates how to give the appearance of a button being pushed in. While you can
do this by setting styles, here you can see how some other functions accomplish this task. For this
example, create a form named "form1" and an image control named "ctlimage1".

#include "slick.sh"
defeventtab form1;
ctlimage1.on_create()
{

index=_update_picture(-1,bitmap_path_search("bbfind.bmp"));
if (index<0) {

if (index==FILE_NOT_FOUND_RC) {
_message_box("Picture bbfind.bmp was not found");

} else {
_message_box("Error loading picture

bbfind.bmp\n\n":+get_message(index));
}
return("");

}
p_picture=index;

Image Control

1457

p_command="gui_find";
p_message="Searches for a string you specify";
p_style=PSPIC_BUTTON;

}
ctlimage1.lbutton_down()
{

// Reset the button counter so we don't get double and triple
click events.

get_event('B');
mou_mode(1)
mou_capture();
done:=false;
event:=MOUSE_MOVE;
for (;;) {

switch (event) {
case MOUSE_MOVE:

mx=mou_last_x("m"); // "m" specifies mouse position in
current scale mode

my=mou_last_y("m");

if (mx>=0 && my>=0 && mx<p_width && my<p_height) {
if (!p_value) {

p_value=1; // Show the button pushed in.
}

} else {
if (p_value) {

p_value=0; // Show the button up.
}

}
break;

case LBUTTON_UP:
case ESC:

p_value=0; // Restore the button state.
done=true;
break;

}
if (done) break;
event=get_event();

}
mou_mode(0);
mou_release();
say('out');
return("");

}

Adding Dialog Box Retrieval

Adding Dialog Box Retrieval

1458

Dialog box retrieval enables previous responses for check boxes, radio buttons, spin boxes, text boxes,
and combo boxes to be retrieved. Press F7 to retrieve the previous response, and F8 to retrieve the next
response. For example, the Insert Literal dialog box contains a spin box that is used to enter the character
code of the character to insert. If you use it to enter a Hex value of 0xAE (to insert a registered trademark
symbol), then later use it to enter a Hex value of 0x99 (to insert an unregistered trademark symbol), the
next time you use the dialog you can press F7 to retrieve the previous entry of 0xAE, and then F8 to
retrieve the next entry of 0x99.

The responses to dialog boxes are saved for the next session when you exit the editor and auto-restore is
enabled.

The example below illustrates how to add dialog box retrieval to your own dialog boxes. Create a form
named "form1", a text box (any name), a check box (any name), and a command button named "ok".

#include "slick.sh"
defeventtab form1;
ctlok.on_create()
{

// Retrieve the previous response to this dialog box.
_retrieve_prev_form();

}
ctlok.lbutton_up()
{

_save_form_response();
p_active_form._delete_window(1);

}

Menus

1459

Menus
You can create a new menu and change or add menu items by using the Menu Editor dialog box (Macro
→ Menus, select a menu to edit or click New). Or, to create a new menu, use the Open Menu dialog box
(Macro → Menus) and click New. A quick way to bind a pop-up menu to a mouse click is to use the
Show button on the Open Menu dialog box while recording a macro. When you are finished recording the
macro, the Key Bindings option screen (Tools → Options → Keyboard and Mouse → Key Bindings) is
displayed which enables the binding of the new macro to a mouse click.

This section describes macro programming details about menus for advanced menu item enabling and for
writing macros that manage menus. Topics are:

• Menu Editor Dialog Box

• Menu Item Alias Dialog Box

• Auto Enable Properties Dialog Box

• Creating and Editing Menu Resources

Menu Editor Dialog Box
The Menu Editor dialog is used for editing menu resources. Use the Menu Editor to modify the SlickEdit
MDI menu bar or an existing menu resource which can be displayed as a pop-up or menu bar.

To access this dialog, from the main SlickEdit® menu, select Macro → Menus, then click Open to open a
menu for editing, or New to create a new menu. The New button on the Open Menu dialog box creates a
new menu resource and places you in the Menu Editor so you can add menu items. After creating a
menu, you can use the Show button on the Open Menu dialog box while macro recording to create a
command which runs a menu by displaying it as a pop-up. If you bind the recorded command to a left or
right button mouse event, the menu will be displayed at the cursor position.

You DO NOT need to specify key bindings for menu items because our Menu Editor automatically
determines the key bindings for you. Use the Advanced Appearance option screen (Tools → Options →
Appearance → Advanced) to choose between short and long key names.

For information about each field and option on the Menu Editor dialog, see "Menu Editor dialog" in the
SlickEdit Help → Index. See Creating and Editing Menu Resources for information on creating forms with
menu bars or advanced information.

Menu Item Alias Dialog Box
When you click the Alias button on the Menu Editor Dialog Box, the Menu Item Alias dialog is displayed.
This dialog box allows you to define aliases (similar commands) for the command that is being executed.
Enter each alias command on a separate line. If one of the alias commands is bound to a key, that key
name will be displayed to the right of the menu item. For example, the e and edit commands are
absolutely identically in function except that the e command requires fewer characters to type. The

Menu Editor Dialog Box

1460

gui_open command is identical to the edit command except that it prompts the user with a dialog box,
whereas the edit command prompts for files on the command line. These two examples illustrate the best
reasons for using aliases. See also "aliases" in the SlickEdit Help → Index for more information.

Auto Enable Properties Dialog Box
For convenience, SlickEdit® has some predefined enable/disable attributes which you can specify for any
command. When these predefined auto-enabling attributes are not enough, then you need to implement a
callback which determines the enable/disable state of the command. See Creating and Editing Menu
Resources for information on enabling and disabling menu items with your own callback. For information
about each field and option on the dialog, see "Auto Enable Properties dialog" in the SlickEdit Help →
Index.

Creating and Editing Menu Resources
Modified menus are stored in the state file vslick.sta file. The easiest way to create or change a menu
is to use the Open Menu dialog box (Macro → Menus). After you select the menu, the Menu Editor
Dialog Box is displayed and you can edit the menu resource. After the menu is created, use the show,
mou_show_menu, or _menu_show function to run the menu by displaying it as a pop-up window. The
_menu_set method may be used to create a menu bar on a form. Another way to create or change a
menu is to define or modify a menu resource. See the following topics:

• Defining a Menu Resource

• Predefined Attributes for Auto-Enabling Commands

• Macro Callbacks for Enabling Commands

• Placing a Menu Bar on a Form

• Displaying a Menu as a Pop-Up

Defining a Menu Resource

Use the insert_object command to insert macro source code for a menu into the current buffer. Edit the
resource properties and then run the macro to apply the resource changes. Ignore the message No main
entry point if it is displayed. Changing a menu resource does not change any menu bars. Menu bars
represent menu resources that have been loaded. A menu definition has the following format:

_menu menu_name {
submenu menu_item, help_command, help_message, categories {

menu_item, command, categories, help_command, help_message
}
submenu
}endsubmenu

}

Auto Enable Properties Dialog
Box

1461

The table below contains the menu items and their definitions:

Menu item Definition

menu_item Menu item name in double quotes. Use & to choose
selection character.

command Any editor command. Places the cursor on the
command line and press ? to list all editor
commands.

help_command Command to be executed when F1 is pressed.
Usually it is a help or popup_imessage command.

categories Specifies zero or more help categories in double
quotes. Multiple help categories are separated with
| (pipe).

help_message A single line message in double quotes displayed
on message line.

Example of a menu definition:

_menu mymenu {
submenu "&File", "Help file menu", "Displays File drop-down menu",

"ncw" {
"&New", "new", "ncw" , "help new", "Creates a new file to edit";
"&Open\tCtrl+O", "gui_open", "help gui_open", "Open a file";

}
submenu "&Edit", "Help edit menu", "Displays Edit drop-down

menu","ncw" {
"Cu&t", "cut", "sel|nrdonly", "help cut", "Deletes the selection

and copies it to the clipboard";
}

}

Predefined Attributes for Auto-Enabling Commands

Predefined enabling or disabling attributes can be specified for any command. Specify these attributes in
the name_info of a command definition. Auto-enabling attributes affects the enable/disable state for a
command placed in a menu or in a toolbar. The following command is disabled when there is no editor
control on which to operate:

#include "slick.sh"

Creating and Editing Menu
Resources

1462

_command void top_of_buffer()
name_info(',' VSARG2_READ_ONLY| VSARG2_REQUIRES_EDITORCTL)

{

}

Macro Callbacks for Enabling Commands

If the auto-enable attributes do not provide the features that you want, you can define the enable and
disable callback for the command. The name of the callback function you define is based on the name of
the command as shown in the following example:

#include "slick.sh"

static bool gSomeOtherState;
/*

This function gets called if your command is used in a menu or
toolbar.

You must return a combination of the MF_ flags ORed together.

BEWARE: If an _OnUpdate callback causes a Slick-C run-time error,
you

may not see the error. In addition, the timer used for toolbars,
Context Tagging(R), AutoSave, and some other features may be
automatically terminated. Exit and restart the editor to restart
this timer. Use the "say" function to debug your _OnUpdate
callback.

*/
int _OnUpdate_mycommand(CMDUI &cmdui,int target_wid,_str command)
{

//say('h1');
// Lets assume this command requires the target to be an editor

control
// with a selection.
// IF the target is not an editor control:
if (!target_wid || !target_wid._isEditorCtl()) {

//say('disabled at h2');
return(MF_GRAYED);

}
//say('h3');
// IF the editor control does not have a selection:

if (!target_wid.select_active2()) {
//say('disabled at h4');
return(MF_GRAYED);

}
//say('h5');

Creating and Editing Menu
Resources

1463

if (gSomeOtherState) {
//say('disabled at h6');
return(MF_GRAYED);

}
//say('enabled at h7')
return(MF_ENABLED);

}
_command void mycommand() name_info(','VSARG2_REQUIRES_EDITORCTL)
{

// Some code here...
}
// This command affects the enable/disable of mycommand.
_command void mycommand2(_str argument="0")
{

gSomeOtherState=(argument)?1:0;

// Indicate that the enable state of the toolbar buttons must be
updated.

// The _tbSetRefreshBy function is very fast. Toolbars will be
updated

// after the macro terminates and the user stops typing fast.
_tbSetRefreshBy(VSTBREFRESHBY_USER);

}

Placing a Menu Bar on a Form

The following sample code shows how to add a menu on a form as a menu bar:

#include "slick.sh"

// Create a form called form1 and set the border style to anything BUT
// BDS_DIALOG BOX. Windows does not allow forms with a dialog box

style
// border to have menu bars.
defeventtab form1;
form1.on_load()
{

// Find index of MDI menu resource.
index=find_index(def_mdi_menu,oi2type(OI_MENU));
// Load this menu resource.
menu_handle=p_active_form._menu_load(index);
// _set_menu will fail if the form has a dialog box style border.
// Put a menu bar on this form.
_menu_set(menu_handle);
// You DO NOT need to call _menu_destroy. This menu is destroyed

when
// the form window is deleted.

Creating and Editing Menu
Resources

1464

}
form1.on_init_menu()
{

// Gray out all menu items that are not allowed when there are no
child windows.

_menu_set_state(p_menu_handle,!ncw,MF_GRAYED,C);
}

Displaying a Menu as a Pop-Up

If the show or mou_show_menu function meets your needs, use one of them. The following sample
code shows how to display a menu as a pop-up:

#include "slick.sh"
defmain()
{

// Low-level code to display menu bar as pop-up.
// Could just use show or mou_show_menu function.
index=find_index(_mdi_menu,oi2type(OI_MENU))
if (!index) {

message("Can't find _mdi_menu");
}
menu_handle=_menu_load(index,P);
// Display this menu in the menu of the screen.
x=_screen_width()/2;y=_screen_height()/2;
flags=VPM_CENTERALIGN|VPM_LEFTBUTTON;
_menu_show(menu_handle,flags,x,y);
_menu_destroy(menu_handle);

}

Common Macro Dialog Boxes

1465

Common Macro Dialog Boxes
There are several important macro dialog box forms and functions that you can use in your own macros.
The table below lists the general purpose forms and dialog box functions.

Form Description

_textbox_form Displays a variable number of text boxes or combo
boxes.

_sellist_form Displays a list box, an optional combo box, and a
variable number of command buttons.

_select_tree_form Displays a list using a tree control, an optional
combo box, and a variable number of command
buttons. Invoked using the select_tree() function.

_open_form Used to open and save files that does not have the
advanced controls.

_edit_form Used to open and save files that has the advanced
controls used for the File → Open dialog box.

_font_form Used to prompt for a font.

_choose_font (Non-UNIX platforms only) Dialog box built-in to
operating system used to prompt for a font.

_printer_setup (Non-UNIX platforms only) Dialog box built-in to
operating system used for printer setup.

If a key displays a dialog box, you can find out the command the key executes by using the Key Bindings
options screen (Tools → Options → Key Bindings).

String Functions

1466

String Functions
The table below describes commonly used string functions. See Help → Macro Functions by Category
→ String Functions for a complete list.

See also documentation for the parse Statement.

Function Description

_str center (_str string ,int width [,-str pad_ch]) Returns string padded evenly on left and right with
spaces or a character you choose with the optional
argument pad_ch.

_ dec2hex (long number [,int base]) Returns number converted to base specified.

_str expand_tabs (_str string [,int start [,int count
[,_str option]]])

Very similar to substr function except that this
function supports tab characters very well.

_str field(_str string ,int width) Returns string padded with trailing spaces to width
characters.

long hex2dec(_str number [,int base]) Returns number converted to base specified.

_str indent_string(int width) If indent with tabs is on, a string of tabs of length
width is returned. Otherwise, a string of spaces of
length width is returned.

bool isalnum(_str ch) Returns non-zero value if ch is a numeric or
alphabetic character.

bool isalpha(_str ch) Returns non-zero value if ch is an alphabetic
character.

bool isdigit(_str ch) Returns non-zero value if ch is a numeric character.

bool isinteger(_str string) Returns non-zero value if string is a valid int. If
string is floating point number, 0 is returned.

bool isnumber(_str string) Returns non-zero value if string is a valid double
(floating point number).

_str last_char(_str string) Returns last character of string. If string is null, the
space character is returned.

int lastpos(_str needle [,_str haystack [,int start
[,_str options]]])

Returns the position (1..length(haystack)) of the
last occurrence of needle in haystack. If needle is

String Functions

1467

Function Description

not found, 0 is returned. Regular expressions are
supported.

int length(_str string) Returns the number of characters in string.

_str lowcase(_str string) Returns string converted to lowercase.

_str number2onoff(_str number) Returns off if number==0. Otherwise on is
returned.

_str number2yesno(_str number) Returns N if number==0. Otherwise Y is returned.

parse expr with template Breaks apart the expression expr given into
variables that appear in template, and much more.
See parse Statement for more information.

bool parseoption(_str & cmdline ,_str option_ch) Strips + or - option from cmdline. Returns non-zero
number if option_ch was found.

int pos(_str needle [,_str haystack [,int start [,_str
options]]])

Returns the position (1..length(haystack)) of the
first occurrence of needle in haystack. If needle is
not found, 0 is returned. Regular expressions are
supported.

bool setonoff(_str & name ,_str value) Sets name to 1 or 0 corresponding to value=on or
value=off. Returns 0 if input value is valid. Displays
message if value is not on or off.

bool setyesno(int & name ,_str value) Sets name to 1 or 0 corresponding to value=Y,Yes
or value=N,No. Returns 0 if input value is valid.
Displays message if value is not Y or Yes, N or No.

_str stranslate(_str string , _str replace_string
,_str search_string , _str search_options)

Returns string with all occurrences of search_string
replaced with replace_string.

_str strieq(_str string1 ,_str string2) Returns true if string1 matches string2 when case is
ignored.

_str strip(_str string ,_str ltb [,_str strip_char]) Returns string stripped of leading and/or trailing
strip_char.

_str strip_filename(_str filename , 'P'|'D'|'E'|'N') Returns filename with part stripped. P=Path,
D=Drive, E=Extension, N=Name.

_str strip_last_word(_str & line) Returns the last space delimited word in line. The

String Functions

1468

Function Description

last word and trailing spaces are deleted from line.

_str strip_options(_str cmdline ,_str & options) Returns cmdline without words that start with the
characters -, +, or [. options variable is set to
stripped option words.

_str substr(_str string ,int start [,int length [,_str
pad]])

Returns length characters of string beginning at
start. By default, length defaults to rest of string. If
length is greater than length of string, the return
string is padded with blanks or pad character if
specified.

_str translate(_str string [,_str output_table [,_str
input_table [,_str pad]]])

Returns string with characters translated according
to arguments.

_str upcase(_str string) Returns string converted to uppercase.

int verify(_str string , _str reference [, M| [,int start
]])

Returns the position (1..length(string))of first
character not matching or matching a character in
reference. 0 is returned on failure.

_str word(_str string ,int Nth) Returns the Nth space or tab-delimited word in
string. Is returned if the Nth word does not exist.

Search Functions

1469

Search Functions
Two levels of search functions exist: high level functions that provide user interfacing and multiple file
searching, and built-in functions that are used without affecting the high level search commands such as
the find_next command. The built-in functions are not affected by the global editor search options.

The table below shows a list of commonly used search functions. For a complete list, see Help → Macro
Functions by Category → Search Functions.

Function Description

gui_find Displays Find and Replace tool window open to the
Find tab, and performs search using the find or
_mffind functions.

gui_replace Displays Find and Replace tool window open to the
Replace tab, and performs search using
gui_replace2 or _mfreplace functions.

gui_replace2 Performs a search and replace based on
arguments given. This function is very similar to the
replace function, except that this function uses a
dialog box to prompt the user where to replace.

find_next Searches for next occurrence of search string used
by any of these high-level search functions. This
function is not affected by previous searches done
with low-level built-in functions.

find Performs search based on arguments given.

replace Performs a replace based on arguments given. The
user is prompted where to replace through the
message line.

_mffind Performs a multiple file and buffer search based on
the arguments given.

_mfreplace Performs a multiple file and buffer search based on
the arguments given.

search Performs a search, or search and replace, based
on arguments given. Does not support wrapping to
top or bottom of file. When performing a replace,
the user is not prompted at all.

Search Functions

1470

Function Description

repeat_search Searches for the next occurrence of search string
used by last call to the search built-in.

The following example searches for lines that contain a particular search string and places the lines in
another window and buffer:

void defmain()
{

orig_wid := p_window_id;

// The +w option forces a new window to be created. The +t options
// force a new buffer to be created.
status := edit("+w +t");
if (status) {

_message_box("Unable to create temp window and buffer\n\n":+
get_message(status));

}

delete_line(); // Delete the blank line.
output_wid := p_window_id;

p_window_id = orig_wid;
top(); // Place the cursor at the top in column 1.
status=search("if","w@"); // Case-insensitive word search for if @

specifies
// no string not found message.

loop
{

if (status) {
break;

}

// Place the cursor at the end of the line so no
// more occurrences can be found on this line.
get_line(auto line);

_end_line();
output_wid.insert_line(line);
status=repeat_search();

}

// Make the output window active so we can see the results.

Search Functions

1471

p_window_id = output_wid;
}

The next example is very similar to the example above except that the output data is placed in a view and
buffer. The only advantage in using a view and buffer is that the output can be displayed in a list box
without the user having to see a new window created.

#include "slick.sh"

void defmain()
{

// Create a temporary view and buffer within the current window.
// Each window can store multiple cursor positions (views) to any

buffer.
orig_view_id := _create_temp_view(auto temp_view_id);
if (orig_view_id=="") {

return("");
}
activate_view(orig_view_id);

top(); // Place the cursor at the top in column
1.

status := search("if","w"); // Case sensitive word search for if.

for (;;) {
if (status) {

// Clear the pending message caused by built-in search failing.
clear_message();
break;

}

get_line(auto line);

// Place the cursor at the end of the line so no more occurrences
// can be found on this line.
_end_line();

activate_view(temp_view_id);
insert_line(' 'line); // Insert a space at the beginning of the

line
// because this will be inserted into a

listbox.

activate_view(orig_view_id);
status=repeat_search();

}

Search Functions

1472

// Display the buffer in a list box.
// The _sellist_form dialog box will delete the temp view and buffer.
// The original view must be activated before showing the

_sellist_form or
// the dialog box will operate strangely.
activate_view(orig_view_id);
result=show("_sellist_form -mdi -modal",

"Sample Selection List",
// Indicate next argument is view_id.
SL_VIEWID|SL_SELECTCLINE,
temp_view_id,
"OK",
"", // Help item.
"", // Use default font.
"" // Call back function.
);

if (result) {
message("Selection list cancelled");

} else {
message("Item selected is "result);

}
}

Selection Functions

1473

Selection Functions
SlickEdit® supports multiple selections; however, only one selection can be active or visible. Selections
are specified by handles. Most selection functions accept a selection handle. A handle of '' specifies the
active selection or selection showing, that is always available.

The table below describes some common selection functions.

Function Description

_alloc_selection Returns a handle to a selection.

_free_selection Frees a selection associated with the selection
handle given. Note that it cannot free the active
selection. To free the active selection, use
_show_selection first.

_show_selection Used to make another selection the active
selection.

_duplicate_selection() Returns the actual handle number of the active
selection.

Example:

// Duplicate the current line.
mark_id=_alloc_selection();
if (mark_id<0) {

message(get_message(mark_id));
return(rc);

}
_select_line(mark_id);
_copy_to_cursor(mark_id);

// This selection can be freed because it is not the active selection.
_free_selection(mark_id);

// This code copies selected text and keeps the
// resulting selection on the source text instead of
// the destination text.
if (_select_type()=="") {

message(get_message(TEXT_NOT_SELECTED_RC));
return(1);

}
mark_id=_duplicate_selection()

Selection Functions

1474

// Make a copy of the active selection.
_copy_to_cursor();

// Save the selection id.
old_active_mark_id= duplicate_selection();

// Must make another mark active before the old active mark can be freed.
show_selection(mark_id));

// Make copy of visible mark active.
free_selection(old_active_mark_id));

For more information about selection functions, from the main menu, select Help → Macro Functions by
Category, then click Selection Functions.

Writing Selection Filters

1475

Writing Selection Filters
The module markfilt.e provides the procedure filter_selection for filtering selected text. Define a
global procedure that accepts a string and returns a string. Then pass the name of the procedure to the
filter_selection procedure.

The following batch program converts the marked text into hexadecimal ASCII codes. Each hexadecimal
ASCII code is separated by a comma. One possible use of this function could be to convert a binary font
file into hexadecimal ASCII codes to be compiled into a C program.

#include "slick.sh"

_str hex_filt(_str string);

void defmain()
{

if (_select_type()=="") {
message(get_message(TEXT_NOT_SELECTED_RC));
return(TEXT_NOT_SELECTED_RC);

}
// Underscores must be converted to dashes.
return(filter_selection(hex_filt));

}

_str hex_filt(_str string)
{

line:="";
for (i :=1;i<=length(string);++i) {

line=line:+dec2hex(_asc(substr(string,i,1))):+",";
}
return(line);

}

Unicode and SBCS or DBCS
Macro Programming

1476

Unicode and SBCS or DBCS Macro Programming
The following information applies for Unicode users only. When the code editor is running in UTF-8 mode
(by default, vs.exe for Windows runs in this mode), buffers can contain either SBCS/DBCS data or UTF-
8 data depending on how a buffer is loaded. To make it easier for macros to support these two buffer data
formats, almost all macro functions accept and return UTF-8 strings. This allows most macros to
automatically work. Macros that use or set column positions often do not work correctly for both buffer
data formats. The solution is to call raw functions.

Example:

// This will not work if the current buffer is an SBCS/DBCS buffer,
// word is a UTF-8 string (that this example assumes), and word
// contains characters above 127.
p_col=p_col+length(word);
// This will work.
p_col=p_col+_rawLength(word);
// This works too.
word=_rawText(word);
p_col=p_col+length(word);

Example:

// This will not work if the current buffer is an SBCS/DBCS buffer and
// the current line contains characters above 127.
get_line(line);

string=expand_tabs(line,p_col);
// This works.
get_line_raw(line);

string=expand_tabs(line,p_col);
// This works too, but is less efficient if all operations on line
// can support raw data.
get_line(line);
string=expand_tabs(_rawText(line),p_col);

The _UTF8() macro function indicates if the code editor is in UTF-8 mode. The p_UTF8 property tells you
whether the current buffer contains UTF-8 data. The p_encoding property indicates what format the
buffer will be saved in by default.

Like typical programming languages (Java, C++), Slick-C® source files are code page dependant. Strings
are converted from the current code page to UTF-8. This is important if you enter characters above 127.
All of the macro functions and properties accept and return UTF-8. The Slick-C functions in the table
below DO NOT accept or return UTF-8 data.

Unicode and SBCS or DBCS
Macro Programming

1477

Function Definition

_default_option(VSOPTIONZ_SPECIAL_CHAR_
XLAT_TAB)

All other options for this function are UTF-8.

All seek functions: goto_point(), _QROffset(),
_GoToROffset, _nrseek(), point(), and seek()

All seeking is done on raw data. Buffers need to be
loaded in the same raw format so that seek
functions work.

All _rawXXX() or XXX_raw() functions Unlike the C API, the Slick-C functions get_text()
and _expand_tabsc() return UTF-8 data.

The p_display_xlat Slick-C property DOES NOT accept or return UTF-8 data.

The following are the Slick-C raw functions:

• _expand_tabsc_raw()

• get_line_raw()

• get_text_raw()

• insert_line_raw()

• _insert_text_raw()

• replace_line_raw()

• _rawLength()

• _rawSubstr()

• _rawText()

The table below shows the raw functions that optionally support raw data.

Function Description

pos() When p_rawpos appended to options argument.

lastpos() When p_rawpos appended to options argument.

upcase() When p_UTF8 property given as second argument.

lowcase() When p_UTF8 property given as second argument.

parse When p_rawpos appended to options of search
argument.

Unicode and SBCS or DBCS
Macro Programming

1478

Function Description

The following are the Slick-C new UTF-8 functions:

• _MultiByteToUTF8()

• _UTF8()

• _UTF8Asc()

• _UTF8Chr()

• _UTF8ToMultiByte()

The following C API functions DO NOT accept or return UTF-8 data:

• The functions vsGetText(), vsGetRText(), vsExpandTabsC(), vsQSelectedTextLength(),
vsGetSelectedText() - These functions always return raw data. Use the vsUTF8() function or check
the VSP_XLAT property to determine if you need to translate the buffer data. Since these API functions
assume that the maximum buffer length is the same as the read length, it would be useless for these
functions to return translated data.

• All seek functions (vsQOffset, vsQROffset, vsGoToPoint, and vsGoToROffset) - All seeking is done
on raw data. Since the Context Tagging® database stores seek positions, buffers need to be loaded in
the same raw format so that seek works.

• All vsXXXRaw() functions.

Shelling Programs from a Slick-
C® Macro

1479

Shelling Programs from a Slick-C® Macro
To execute another program from a Slick-C macro, use the shell built-in, the dos command, or the
execute built-in. The latter method is similar to executing a command on the command line, and enables
the creation of expressions that execute Slick-C internal commands, Slick-C batch programs, or external
programs. If you are only interested in executing an external program, use the shell built-in or the dos
command.

Example:

// Capture the output of Slick GREP and process the error messages.
dos("-e sgrep DEBUG *.c");
// Redirect the output of sgrep to a file.
shell("sgrep DEBUG *.c >junk");
// Run the DOS dir command and wait for a key to be pressed before
// closing command shell window.
shell("dir *.c >junk","w");
// Display the Calculator dialog box. Show is an internal command.
execute("show _calc_form");

Interfacing With Other
Languages (DLL)

1480

Interfacing With Other Languages (DLL)
SlickEdit products have a DLL interface for Windows. Use the Slick-C® macro language instead of the
DLL interface except when you need an interface to the DLL in another program, when better speed is
needed, or when the Slick-C macro language is missing a function that you want.

After a DLL function is added, call it from a Slick-C macro just like any other Slick-C function. DLL
functions can be used for timer call backs and any place a Slick-C function is used.

To get started using the DLL interface, edit the simple.c file located in the samples\simple
subdirectory of your installation directory. The VSAPI functions have the prefixvs.

Command Line Interface

1481

Command Line Interface
This section describes how to write macros using the command line interface.

Command Line Arguments
When a command is invoked, the expression arg(1) contains the rest of the command line after the name
with leading spaces removed. Alternatively, the command can declare a named argument whose value is
the same as arg(1). For example, invoking the edit command e file1 file2 calls the e command with file1
file2 in arg(1). The parse built-in is an excellent function for parsing a command line string. When
another macro calls a command, more than one argument string can be passed. Calling the arg function
with no parameters returns the number of parameters with which the command or procedure was called.

Example:

#include "slick.sh"
// This command supports completion on a filename followed by an
// environment variable argument.
_command void test1() name_info(FILE_ARG","ENV_ARG)
{

parse arg(1) with file_name env_name;
message("file_name="file_name" env_name="env_name);

}

The string constant expression given to the name_info keyword is used for argument completion,
restricting when the command can be executed, and a few other options.

get_string Procedure
The get_string procedure reads a single argument from the user.

Example:

#include "slick.sh"
_command void test2()
{

if (get_string(file_name,"Filename: ",FILE_ARG";Help message")) {
return(1); // Cancel key pressed.

}
if (get_string(env_name,"Environment variable name: ",

ENV_ARG";Help message","PATH")) {
return(1); // Cancel key pressed.

}

Command Line Arguments

1482

message("file_name="file_name" env_name="env_name);
}

Single Argument Prompting with Support for Prompt Style
Use the prompt procedure to write a command that accepts one command line argument, or prompts for
the argument if it is not given. If the user presses Esc while being prompted for the argument, file
execution does not continue.

Example:

// This command supports completion on an environment variable argument.

#include "slick.sh"
_command void test3() name_info(ENV_ARG)
{

// If the user selects to abort, the prompt procedure stops
execution.

env_name=prompt(arg(1),"Environment variable name: ");
message("env_name="env_name);

}

Single Argument Prompting with
Support for Prompt Style

1483

Hooking Startup and Exit

Invoking a Macro on Startup
To invoke any macro command defined by typing _command or an external program when the editor
initializes, use the -# invocation option. For example, invoking the command vs makefile -
#bottom_of_buffer loads the file makefile and executes the bottom_of_buffer command. To invoke a
command with parameters, place the command and parameters inside double quotes. Another method
for getting macro code to start without changing any invocation options is to create a module with a
definite entry point.

Invoking a Macro on Exit
If you want a function to be invoked when the editor exits, create a macro procedure with a name that has
the prefix _exit_. To automatically invoke a macro when exiting SlickEdit®, use the following code:

void _exit_cleanup_stuff()
{

messageNwait("Got here");
}

Invoking a Macro on Startup

1484

State File Caching
By default, a module, event, dialog box template, or picture from vslick.sta is not loaded until it is
referenced. Using the definit primitive forces a module to be loaded when the editor is invoked. The
default state file cache is about 200 K. You can set this size with the -st invocation option or with the
Virtual Memory option screen (Tools → Options → Application Options → Virtual Memory). When the
state file cache becomes full, the least recently used module, dialog box template, event table, or picture
is removed from memory to reduce the cache size.

You might have critical modules that you want permanently stored in memory. Place the
no_code_swapping keyword at the top of the module to force the module to be loaded and permanently
stored in memory on startup; then, if a critical disk failure occurs while reading the state file, the product is
protected. A few modules that provide basic editing capabilities remain permanently in memory.

Windows Data Structure

1485

Windows Data Structure
The following diagram shows startup with two files loaded (buffers b2 and b3) and two windows (w1 and
w2) viewing those files:

The extra window, w0, is a hidden window used to allow quick switching to system buffers such as
.command and .killed. If you attempt to leave the hidden window active, another window is made active
when the editor refreshes the screen. Since window w1 is active, you currently see window w1 of buffer
b2. You might be able to see window w2 of buffer b3 if the window w1 does not overlap window w2.

A ring of buffers and a ring of windows are maintained, where each window may contain a ring of views.
However, by convention, all windows except the hidden window contain one view. Some macros
temporarily create extra views in other windows, but they delete them before they terminate.

The tables in the following sections show some of the buffer and windowing built-ins that are available.

The built-ins _next_buffer and _prev_buffer activate the next and previous buffers. _next_window and
_prev_window move around the window ring. _next_view and _prev_view move around the active view
ring. The built-in function load_files inserts views, windows, and/or buffers. The command
_delete_buffer removes the active buffer from the buffer ring and activates the previous non-hidden
buffer. _quit_view removes the active view from the active windows view ring. The previous view
becomes the new active view. When _quit_view is executed and only one view exists in the active
window, the window is removed and the previous window becomes active. The hidden window cannot be
deleted.

A view holds the information necessary for the editor to remember the location and scroll position in a

Windows Data Structure

1486

buffer. A view also contains a window id and a buffer id. Activating a view with the activate_view built-in
activates the window and buffer specified by the view as well as selecting the cursor location/scroll
position.

Each buffer maintains a non-active view. When a buffer is activated by one of the built-ins _next_buffer,
_prev_buffer, _delete_buffer or load_files (assuming you do not use an option that overrides this), the
active view information is saved in the non-active view of the buffer, and the buffer's new non-active view
information is copied into the active view.

The following sections describe the contents of each structure.

Window Properties

Window Property Description

p_window_x, p_window_y Top left coordinates of window.

p_tile_id Indicates that windows are part of a tile window
group and whether a window is zoomed. Windows
of a tiled window group have the same tile_id. A
zoomed window has a negative tile_id.

p_x The top left x position of window.

p_y The top left y position of window.

p_height Window height.

p_width Window width.

p_view_id Pointer to active view.

p_next (_next_window) Window id of next window.

p_prev (_prev_window) Window id of previous window.

p_child Window id of child window.

View Properties

View Property Description

block,line within block Accessible via point and goto_point.

Window Properties

1487

View Property Description

p_line Line number of current line.

p_col Column position within current line (1..2 billion).

p_left_edge Column scroll position.

p_cursor_x Text cursor x position.

p_cursor_y Text cursor y position.

p_window_id Window id.

p_buf_id Buffer id.

Buffer Properties

Buffer Property Description

p_buf_name Name of buffer.

p_buf_flags Indicates whether a buffer is hidden and may
specify other buffer options.

p_Noflines Number of lines in file.

p_modify Non-zero indicates buffer has been modified.

p_margins String containing left, right, and new paragraph
margins (1..2 billion).

p_tabs String containing up to 2 billion tab stops.

p_mode_name Name of current mode.

Buffer Properties

1488

Tutorials
This chapter contains the following sections:

• Defining Stack Routines

• Searching for a String Within a Current Function

• Reading and Modifying Buffers

• Working with Existing Macros

Defining Stack Routines
These examples show you what can be done in a language that supports typed variables and untyped
container variables. The following example code shows how to define a set of stack routines in Slick-C®
that support any type of element:

void stacknew(typeless &stack)
{

stack._makeempty(); // Destroy current contents of stack.
stack[0]=0; // Make an array and use first element as top

count.
}

void stackpush(typeless &stack, typeless &value)
{

stack[++stack[0]]=value;
}

typeless stackpop(typeless &stack)
{

if (stack[0]<=0) return("");

// Make a copy of the element.
result=stack[stack[0]--];

// Free space allocated by value and delete array element. _deleteel
is a

// built-in method which operates on arrays and hash tables.
stack._deleteel(stack[0]+1);
return(result);

}

defmain()
{

Defining Stack Routines

1489

// The above routines can handle variables of any type, including
// string constants.
struct RECORD {

int i;
_str s;

};

// You can't make a limit on the number of elements in an array.
// We will add support for initially allocating a specific number of

elements.
RECORD arecord[];
arecord[0].i=4;
arecord[0].s="element 0";

RECORD symboltable:[]; // Declare a hash table/associative
array.

symboltable:["name1"].i=1;
symboltable:["name1"].s="element 0";

stacknew(stack);
stackpush(stack,arecord); // Push an array onto the stack.
stackpush(stack,symboltable); // Push a hash table/associative array

onto
// the same stack.

stackpush(stack,"string"); // Push a string constant onto the
same stack.

}

The following example shows how a container variable can access structure members as an array:

/*
Read lines of a file which contains tab-delimited data into an array

of
structures. Each line represents an array structure element.

The tab-delimited data on each line represents fields in the
structure.

We will assume the file contains valid data for filling this
structure.

*/
int ReadTable(_str filename,typeless (&table)[])
{

// Use an editor buffer to open and cache the file. Data is read
// in blocks from the file only. We don't need this much power, but
// Slick-C needs a few more non-editor file I/O functions.
status=_open_temp_view(filename,temp_view_id,orig_view_id);

Defining Stack Routines

1490

if (status) return(status);

top();up(); // Place cursor on line 0 before first line of file.
for (j=0;;++j) {

if (down()) break;
get_line(line);
if (line:=="") continue;

rest=line;
p= &table[j]; // Make p point to this structure element.
// Here we access structure members as an array of elements.
p->[0]="";

// Note that loop supports fields which are strings of length 0.
for (i=0;;++i) {

if (rest:=="" && i) break;

// Parse is similar to REXX. We were unable to come up with a
// satisfactory function syntax so with went with a REXX-style

syntax.
// Place text up to but not including tab character into value

variable.
// Place tab character and rest of data in rest variable.
parse rest with value "\t" +0 rest;
if (substr(rest,1,1):=="\t") {

rest=substr(rest,2);
}
p->[i]=value;

}
}

_delete_temp_view(temp_view_id);
activate_view(orig_view_id);
return(0);

}

struct TABLE_ENTRY {
_str name;
int value;

};

// defmain is the main entry pointer for a Slick-C batch/script macro.
defmain()
{

// Table file should exist.
// NOTE: (TABLE_ENTRY []) is type compatible with (typeless []).
TABLE_ENTRY table[];
status=ReadTable("table",table);

Defining Stack Routines

1491

if (status) {
_message_box("Failed to read table file");
return(1);

}

_message_box("First record: name=":+table[0].name:+"
value=":+table[0].value);

}

Searching for a String Within a Current Function
This macro can be used with many languages. It searches the current procedure or function for a
specified string, with specified options. Use this macro in cases where references do not work, such as
searching for a partial identifier name.

Several useful aspects of this macro, aspects that can be reused in other macros, are that it prompts the
user for a string, it selects the current procedure, and it performs a search within the selection.

See the following sections:

• Creating the Macro

• Analyzing the Macro

• Command Line Search Options

Creating the Macro

Complete the following steps:

1. Enter the macro code below into a file called procsearch.e.

2. To load the module, from the main menu, select Macro → Load Module.

3. Bind the command proc_search to a key. To use the macro, press the appropriate key.

4. In the Search string text box, enter the text to search for, and in the Options text box, enter the
search options (see Command Line Search Options).

Contents of procsearch.e:

#include "slick.sh"
_command int proc_search(...) name_info(','VSARG2_READ_ONLY|

VSARG2_REQUIRES_EDITORCTL|
VSARG2_MARK)

{
// Save the original cursor position to restore later.
save_pos(auto original_position);

Searching for a String Within a
Current Function

1492

// Prompt the user for a search string, and search options.
_str result = show('-modal _textbox_form',

'Search Function', // Dialog box caption.
TB_RETRIEVE_INIT, // Flags.
"", // Use default text box width.
"", // Help item.
"", // Button list.
'procsearch', // Retrieve name.
'Search string:', // First prompt.
'Options:ixcs'); // Second prompt and default.

if (result=="") {
// If the user clicked the Cancel button, just return.
return(COMMAND_CANCELLED_RC);

}

// The results from the text boxes.
_str search_string=_param1;
_str search_options=_param2;

int status=select_proc(); // Select the current proc.
if (status) {

// In rare cases select_proc can fail if a procedure is too
complex.

// If select_proc failed, show an error messages, return the
cursor to the

// original position, and return.
_message_box(nls("select_proc failed"));
restore_pos(original_position);
message(get_message(status));
return(status);

}

lock_selection(); // Lock the selection.
begin_select(); // Move the cursor to the beginning of the

selection.

status=find(search_string,'m':+search_options); // Find the text
that the

// user specified
using the

// options
specified. We

// prepend the
'm' option

// since we know
we are

// searching in a

Searching for a String Within a
Current Function

1493

selection.
if (status) {

// If the search string was not found, deselect and return the
cursor to

// the original position.
deselect();
restore_pos(original_position);

}

// Just return the status. This will leave the proc selected so
that

// find_next works.
return(status);

}

Analyzing the Macro

The save_pos() call at the beginning of the macro saves the current cursor position information. This
function places the cursor in its original position if necessary.

The show() function launches a dialog box. In this case, the show() function launches a general purpose
dialog box named _text box_form. The dialog box _text box_form prompts the user for one or more
strings. After the first argument, the remaining arguments to show() pass to the on_create dialog box. In
this case, there are several arguments.

The second argument to show() is the caption for the on_create dialog box.

The next argument is a set of flags. In this case, the only flag specified is TB_RETRIEVE_INIT. The
TB_RETRIEVE_INIT flag tells the dialog box to initialize itself by retrieving the last values filled in for this
dialog box.

Use the next three arguments to specify text box width, help, and a button list. These particular
arguments are unused in this example, which is why they are shown here as ''.

The retrieve name is a unique name used to retrieve the values that were previously filled in for this dialog
box. Any remaining arguments are interpreted as prompts for the user. Default values can be given by
specifying the prompt as prompt:defaultvalue. The first prompt is the search string, and the second is for
search options. The options have default ixcs, meaning case-insensitive, and exclude comments and
strings. See the following section for a list of command line search options.

After the call to show, verify that the result is ''. If so, then the user clicked the Cancel button, so we
return. Otherwise, SlickEdit® must obtain the values that the user provides. These values are returned in
global variables _param1.._param N. In this case, our search string is returned in _param1, and the
search options are in _param2. These are saved in local variables.

SlickEdit calls select_proc to select the current function. If select_proc returns a non-zero status, then it
failed, so it is returned. In rare cases, select_proc can fail if a function is too long, or has preprocessing
that keeps it from correctly identifying the end of the function.

Next, lock_selection() is called, and then begin_select() is called to move to the beginning of the

Searching for a String Within a
Current Function

1494

selection.

Now, we can call find() with the search string and the search options from the user. Insert m at the
beginning of the options string to specify search only in the selection.

Finally, check the status from find. If the string is not found, clear the function and restore the original
cursor position.

Command Line Search Options

Command line search options include the characters listed in the table below.

Option Description

+ (Default) Forward search.

- Reverse search.

< (Default) Place cursor at beginning of string found.

> Place cursor after end of string found.

E (Default) Case-sensitive search.

I Case-insensitive search.

M Search within visible mark.

H Find text in hidden lines.

R Search for SlickEdit® regular expression.

L Interpret string as a Perl regular expression.

~ Interpret string as a Vim regular expression.

U Interpret string as a Perl regular expression. Unix
syntax regular expressions are no longer
supported.

B Interpret string as a Perl regular expression. Brief
syntax regular expressions are no longer
supported.

N (Default) Do not interpret search string as a regular
search string.

@ No error message.

Searching for a String Within a
Current Function

1495

Option Description

W Limits search to words such as variable names.

, Delimiter to separate ambiguous options.

Reading and Modifying Buffers
Slick-C® includes the Slick-C API. The API covers many actions normally performed in a code editor,
including navigating and modifying buffers.

Topics in this section:

• Functions for Reading and Modifying Buffers

• Common Functions for Navigating Buffers

• Escape Backslashes Example

• Comment Out Debug Print Lines Example

Functions for Reading and Modifying Buffers

The table below contains functions for reading and modifying buffers. This table focuses on one particular
category of the API, those functions that allow you to programmatically traverse and modify buffers.
These powerful functions enable you to take tasks that you can do manually, and create a macro to
perform the same tasks in seconds.

Function Action

_str cur_word(int & start_col [, _str from_cursor
])

Gets the current word at cursor.

int delete_line() Deletes the current line.

void _delete_text(int len) Delete len bytes starting from the cursor position.

void get_line(_str & line) Retrieves current line.

_str get_text([int count [,int seek_pos]]) Gets a stream of text starting at current line.

void keyin(_str string) Inserts string of characters as if typed from the
keyboard.

Reading and Modifying Buffers

1496

Function Action

void insert_line(_str line) Inserts line after current line.

void _insert_text(_str string) Inserts string at cursor position.

void replace_line(_str line) Replaces current line.

Common Functions for Navigating Buffers

The table below contains functions that can be used for navigating buffers.

Function Action

int up([int num]) Moves cursor up num lines, or one line if no value
passed in.

int down([int num]) Moves cursor down num lines, or one line if no
value passed in.

void left() Moves cursor one position to the left.

void right() Moves cursor one position to the right.

void top() Places cursor at first line and first column of buffer.

void bottom() Places cursor at end of last line of buffer.

void _begin_line() Places cursor at the beginning of the current line.

void _end_line() Places cursor after the end of the current line.

Escape Backslashes Example

Escape backslashes if, for every slash in a directory name, you actually need two for the compiler to
handle the directory name or string properly.

Example:

_command escape_slash() {
// Set string szLine to the current line.
_str myLine;
get_line(myLine);

Reading and Modifying Buffers

1497

// Replace slash with double slashes.
myLine = stranslate(myLine, "\\\\", "\\");

// Replace the line in the buffer.
replace_line(myLine);

}

The above command accepts the following line of code:

myDirectory = "C:\Data\Corporate\Internal";

and replaces it with:

myDirectory = "C:\\Data\\Corporate\\Internal";

Comment Out Debug Print Lines Example

Print or debug statements can be used to debug. These statements need to have supporting comments
or they must be deleted. The following example shows a simple function that loops through your entire
file. It contains supporting comments for all of the lines that have a printf statement:

_command comment_printf() {
typeless p;
save_pos(p); // Save the original position in the buffer
top(); // Go to top of buffer
up(); // Get to the top line

for (;;) {
int status=search("printf","wxcs"); // search for printf as a

whole
// word, but exclude

comments and
// strings

if (status) break; // If no other instances
are found,

// stop

_begin_line(); // If printf exists, move
cursor to

// the first column

_insert_text("//"); // Add a comment

_end_line(); // Move cursor to the end

Reading and Modifying Buffers

1498

of the
// line

}

restore_pos(p); // Restore the original position in the buffer
}

The function uses many of the buffer modifications and navigation macros. Starting at the top of the file, it
searches for printf lines and adds a comment when necessary. Modify this macro to meet your needs. For
example, if you want the lines deleted instead of commented, replace the _insert_text() call with
delete_line().

Working with Existing Macros
Every time you select a menu, click a button, or enter a key, a Slick-C® macro is called to perform an
action. More than half of the code in SlickEdit products is written in Slick-C and this source is provided to
you when you install, so you can tweak the product or use the Slick-C source as an example to help write
your own macros. By default, the Slick-C source is located in the macros subdirectory of your SlickEdit®
installation folder.

To make a macro change, or to recycle existing code, you need to know how to find a name to a
particular command and how to find its location in the source code. These examples will walk you through
the steps:

• Example: Turning on Line Numbers for All Files

• Example: Counting Lines of Code

Example: Turning on Line Numbers for All Files

SlickEdit® includes a line number toggle option to turn line numbers on and off for each edit window. This
option is located on the View menu (View → Line Numbers). By default, all files are displayed without
line numbers. When you enable them, they are enabled throughout sessions until you disable them.
SlickEdit also provides an option to enable line numbers on a language-specific basis (Tools → Options
→ Languages → [Language Category] → [Language] → View).

To automatically turn on line numbers for all files that are opened or created in SlickEdit regardless of the
language, you will need to write a macro, as outlined in the subsequent sections:

• Find the Command Definition

• Create the New Macro

• Load the Macro

• Results

Find the Command Definition

Working with Existing Macros

1499

You need to find the command that is associated with View → Line Numbers in order to view its source
code, so that you can obtain the function you®ll be using in your new macro.

To determine the command that is associated with View → Line Numbers:

1. Close any open files.

2. From the main menu, select Macro → Menus. The dialog box contains a list of all menus. To view the
main menu, select _mdi_menu and click Open. The Menu Editor dialog is displayed.

3. Navigate to View → Line Numbers. When you select Line Numbers, certain fields in the dialog box
are populated. The Command field is populated with the Slick-C® command that is invoked when this
menu item is selected. In this case, the command is view-line-numbers-toggle. Every time that you
click View → Line Numbers from the main menu, view-line-numbers-toggle is called.

To view the source code for the view-line-numbers-toggle command:

4. From the main menu, click Macro → Go to Slick-C Definition.

5. Start typing view, and select view_line_numbers_toggle() from the drop-down list, then click OK.

6. By viewing the source, it is a simple "if on then off, else on" algorithm, using bitwise logic. Note that you
will need to use p_LCBufFlags|=VSLCBUFFLAG_LINENUMBERS in your new macro to enable the
display of line numbers.

Create the New Macro

1. Create a new empty file named DisplayAllLines.e.

2. Copy and paste or type the following code into the file:

#include "slick.sh"

void _buffer_add_ViewLineNumbers()
{

p_LCBufFlags|=VSLCBUFFLAG_LINENUMBERS;
p_line_numbers_len = _default_option(VSOPTION_LINE_NUMBERS_LEN);

}

Any Slick-C macro that starts with _buffer_add_ is called when a new edit window is displayed. To
enable the numbers for every file, use the logic from Step 5 above.

Load the Macro

The new macro needs to be loaded. To load the macro, from the main menu, select Macro → Load
Module → DisplayAllLines.e.

If the macro was loaded properly, the message Modules loaded is displayed in the SlickEdit® message
line. If an error message is displayed, the macro did not load and the change did not take effect. Correct

Working with Existing Macros

1500

the error and load the macro again.

Results

Now every new file opened has line numbers. If any files were left open at the beginning, close and
reopen them and they will all have line numbers.

To remove the functionality that turns on line numbers for all files, you need to unload
DisplayAllLines.e: From the main menu select Macro > Unload Module. Select
DisplayAllLines.ex from the list and click OK. The list shows a .ex extension on the module instead
of a .e because you are actually compiling the source file into a binary file (.ex) and loading it, not the
actual source code.

Example: Counting Lines of Code

The number of lines of code in your workspace, projects, or files is often used to measure and analyze
performance, and can be determined by using a macro.

This example describes a macro, linecount.e, that loops through all projects in the current workspace
and all files within each project in the current workspace, and then displays a report in a new editor
window.

You can obtain linecount.e from the SlickEdit Web site at www.slickedit.com in the Slick-C®
Documentation section. Line numbers referenced in the subsections below:

• Gather Workspace, Project, and File Information

• Loop and Count

• Create the Report

• Load the Macro

• Run the Macro

Gather Workspace, Project, and File Information

Get a list of all projects and files in the workspace. _GetWorkspaceFiles() (Line 88) gets the list of all
projects in a workspace and places the list in a temporary buffer. The loop following (Lines 93-95), parses
through the buffer and stores the information in a temporary array for later reporting. This array, defined in
Line 67, is a three-dimensional array to store multiple projects, and multiple files per project.

Loop through each project, starting at Line 98, and fill the array with all file names for each project.
GetProjectFiles() does this by placing the list in a temporary buffer. Grab the names from the buffer and
put them in the array (Lines 109-124).

Loop and Count

For each project, open up a temporary buffer for each file in the project. Think of it as an invisible buffer
where you can move the cursor programmatically to check whether it is in a comment.

• _open_temp_view (Line 139) opens it.

Working with Existing Macros

1501

• up() and top() (Line 158) places the cursor at the top to start.

• down() (Line 161) will move the cursor down one line at a time.

Loop through the file to read one line at a time, as mentioned above (Lines 161-202). This validates
whether the current line is in a comment (Line 171), and if not, it increments the counter. If the current line
is in a comment, the next step is to jump to the end of the comment or comment block (Line 168). Another
check is made to see if the current line is in a comment and count it if it is not a comment.

Create the Report

All of the information is now stored in an array, so the next task is to generate a report and loop thru the
array to display the results. This is done in Lines 220-263.

The displayResultsInBuffer flag can be changed to false to only display the total lines in the entire
workspace.

Now that you understand the macro, the next steps are to load and run it.

Load the Macro

To load linecount.e, be sure to save it to your local hard drive, then from the main menu, click Macros
→ Load Module. Find linecount.e and click Open.

Run the Macro

You can now run the macro. There are several ways to run macros: from the command line, through a
menu item, or by using a keyboard shortcut.

To run the macro from the command line:

1. Open the command line by pressing Esc or by clicking in the message line area.

2. Type linecount and press Enter.

To associate the macro with a menu item:

1. Select Macro → Menus, then select menu on which you want to add the macro. For example, to add
the macro to the right-click context menu, select _ext_menu_default.

2. Click Open.

3. In the Menu Editor dialog, click Insert to add a new menu item.

4. Type a new Caption, set the Command to linecount. Use the Up and Down buttons to move the new
item to the desired location in the list. Type "Menu Editor dialog box" in the Help Index (Help → Index)
for more information about using the Menu Editor.

To associate the macro with a key or key sequence:

1. From the main menu, click Tools → Options → Keyboard and Mouse → Key Bindings.

Working with Existing Macros

1502

2. Find a key sequence that is not used®do not bind keys that are bound. To determine if a key or key
sequence is already in use, place the focus in the Search by key sequence field and press the key/
key sequence you want to check. For example, press Enter and the table will be filtered to show all
commands bound to the Enter key.

3. After determining the key or key sequence you want to use for the new binding, close the Options
dialog.

4. From the main menu, click Macro → List Macros.

5. Select linecount, then click Bind to Key. The Key Bindings option screen is displayed with linecount
selected.

6. Click Add and when the Bind Key dialog appears, type the key sequence to bind.

7. Click Bind, then OK.

Events

1503

Events
This section contains the topics:

• Event Names

• Keys

Event Names
Event names are used as arguments to the def primitive. Event names are also used when comparing
events returned by the get_event or test_event built-in functions or when defining an event handler
function. An event name is a string literal of a length of one or more. An event name string of a length one
specifies an ASCII character. To keep the macro source compatible, some event names do not have to
be enclosed in quotes as long as the _ (underscore) character is used instead of the - (dash) character.
The following sections list the acceptable constants.

Keys
This section contains the following topics:

• ASCII Characters

• Function Keys

• Extended Keys

• Miscellaneous Keys

• Key Name Examples

• Mouse Events

• on Events

ASCII Characters

Acceptable ASCII characters are \0..\255. Backslash is used for non-displayable keys.

You may also quote displayable characters such as "a" or "4". The keys \1..\29 are also represented by
the following keys:

• C-A

• C-B..C-Z

• C-[,C-\\,C-]

Event Names

1504

• C-^

• C-_

The ASCII keys \129..\255 are the same key binding as \128.

Function Keys

Acceptable function keys are F1, F2, and F12.

Extended Keys

Acceptable extended keys are the following:

• Backspace

• Delete

• Down

• End

• Enter

• Escape

• Home

• Insert

• Left

• Pad_5

• Pad_Minus

• Pad_Plus

• Pad_Slash

• Pad_Star

• PageDown

• PageUp

• Right

• Tab

• Up

Miscellaneous Keys

Keys

1505

Acceptable miscellaneous keys are

• C-A-Enter

• C-A-Tab

• C-A-Esc

• C-A-Backspace

• C-PrtScn

• C-Ctrl

• A-Alt

Key Name Examples

The following are examples of uses for key names in the Slick-C® language:

// Note that "A-a" is different than "A-A" which requires
// the Alt and Shift keys to be pressed.
def "A-x"=safe_exit;
def "A-?"=help;
def "C-X" "b"=list_buffers;
def \0 - \255= nothing;
ctlcombo1.on_change()
{
}
ctlcombo1."c-s-a"() // Define event handler for Ctrl+Shift+A
{
}
ctlcombo1."a"-"z", "A-"Z"() // Define event handler for characters

A-Z upper-
// and lowercase.

{
}
void p()
{

for (;;) {
key=get_event();
if (key:==name2event("ESC") break;
if (key:==name2event("UP")) {

// ...
} else if (key:==name2event("DOWN")) {

// ...
}

}

Keys

1506

}

Mouse Events

The following are acceptable mouse events.

• lbutton_double_click

• lbutton_down

• lbutton_triple_click

• lbutton_up

• mbutton_double_click

• mbutton_down

• mbutton_triple_click

• mbutton_up

• rbutton_double_click

• rbutton_down

• rbutton_triple_click

• rbutton_up

on Events

Below is a list of the on events. The acronyms "hsb" and "vsb" stand for horizontal and vertical scroll bar,
respectively.]

• on_change

• on_change2

• on_close

• on_create

• on_create2

• on_destroy

• on_destroy2

• on_drop_down

• on_got_focus

Keys

1507

• on_hsb_bottom

• on_hsb_line_down

• on_hsb_line_up

• on_hsb_page_down

• on_hsb_page_up

• on_hsb_thumb_pos

• on_hsb_thumb_track

• on_hsb_top

• on_load

• on_lost_focus

• on_resize

• on_scroll

• on_spin_down

• on_spin_up

• on_sscroll_lock

• on_vsb_bottom

• on_vsb_line_down

• on_vsb_line_up

• on_vsb_page_down

• on_vsb_page_up

• on_vsb_thumb_pos

• on_vsb_thumb_track

• on_vsb_top

Miscellaneous Events

on_select is an acceptable miscellaneous event.

Reserved Words and Keywords

1508

Reserved Words and Keywords
The following keywords are reserved in the Slick-C® language:

• _command

• _metadata

• _notinit

• _reinit

• _str

• arg

• auto

• bool

• boolean

• break

• case

• class

• const

• continue

• default

• defexit

• defined

• definit

• defload

• defmain

• do

• double

• else

• enum

• enum_flags

Reserved Words and Keywords

1509

• extern

• false

• for

• foreach

• if

• in

• instanceof

• int

• intdiv

• interface

• long

• loop

• namespace

• no_code_swapping

• null

• parse

• private

• protected

• public

• return

• short

• static

• struct

• switch

• this

• true

• typedef

• typeless

Reserved Words and Keywords

1510

• union

• using

• var

• void

• while

• with

The following keywords are reserved for built-in functions:

• _a2e

• _asc

• _assert

• _callmethod

• _callmethod

• _chr

• _construct

• _delete_unused

• _deleteel

• _dllexport

• _dllload

• _e2a

• _el

• _fieldindex

• _fieldindex

• _fieldname

• _fieldname

• _findmethod

• _findmethod

• _get_var

Reserved Words and Keywords

1511

• _getfield

• _getfield

• _indexin

• _insertel

• _instanceof

• _instanceof

• _isempty

• _isfunptr

• _length

• _length

• _load

• _load_template

• _make

• _makeempty

• _maybe_e2a

• _nextel

• _set_var

• _setfield

• _setfield

• _sort

• _typename

• _typename

• _update_template

• _varformat

• _write_state

• call

• call_event

• call_index

Reserved Words and Keywords

1512

• call_key

• center

• delete_name

• dsay

• env_match

• error_pos

• event2index

• event2name

• eventtab_index

• eventtab_inherit

• exit

• file_match

• find_index

• get_env

• index_callable

• index2event

• insert_name

• isinteger

• isnumber

• keyin

• last_index

• lastpos

• length

• list_bindings

• lowcase

• name_index2funptr

• name_info

• name_match

Reserved Words and Keywords

1513

• name_name

• name_type

• name2event

• nls

• pos

• pow

• prev_index

• replace_name

• say

• set_env

• set_eventtab_index

• set_name_info

• signal_handler

• stop

• stranslate

• strappend

• strcmp

• stricmp

• strieq

• strip

• strrev

• substr

• togglecase

• trace

• translate

• upcase

• verify

Reserved Words and Keywords

1514

The following keywords are reserved for future use:

• catch

• finally

• throw

• try

The following keywords are reserved, but deprecated. Avoid using them.

• _notinit

• bigint

• bigfloat

• bigstring

The following keywords are reserved and used for event, dialog, and menu programming.

• _check_box

• _combo_box

• _command_button

• _control

• _editor

• _form

• _frame

• _gauge

• _hscroll_bar

• _image

• _inherit

• _label

• _list_box

• _menu

• _minihtml

• _nocheck

Reserved Words and Keywords

1515

• _picture_box

• _print_preview

• _radio_button

• _spin

• _sstab

• _sstab_container

• _text_box

• _tree_view

• _vscroll_bar

• def

• defeventtab

• endsubmenu

• submenu

All identifiers starting with p_ are reserved to be used as Slick-C property names.

Reserved Words and Keywords

1516

Glossary

3-Way Merge

Typically used after two people make a local copy of the same source file and make some modifications
to their local copy. The 3-way merge takes both sets of changes and creates a new source file. A wizard
lets you select the change desired in the output file. The output can be viewed side-by-side or interleaved.

API

Application Programming Interface. A functional interface that allows an application program written in a
high-level language to use specific data or functions of the operating system or another program. An API
is the set of programming language constructs or statements that can be coded in an application program
to obtain the specific functions and services provided by an underlying operating system or service
program.

Binding

The attachment of a command to a key.

Bookmark stack

An internal list of pushed bookmarks.

Breakpoint

1517

A point designated in the code to break or stop during a debug. View a list of all breakpoints in the Task
view.

Buffer

A file that has been loaded into the application. When a file is loaded, you can safely perform
modifications to the buffer without modifying the file on disk until you save the buffer.

Class

A compiled Java source file.

Clipboard

A temporary storage area used to transfer text or dialog box controls from one place to another. Multiple
text clipboards are available to store multiple instances of copied material.

Code block

A syntactical set of code that is delimited by a specific begin and end. These include if, for, function
defines, areas between braces, etc.

Context Tagging®

A feature set that performs expression type, scope, and inheritance analysis as well as symbol look-up
within the current context to help you navigate and write code. Context Tagging uses an engine that
parses your code and builds a database of symbol definitions and declarations®commonly referred to as
tags. Context Tagging features work with your source code, not just standard APIs (application program
interfaces), and the features are dynamic, in the sense that symbols are updated immediately or in the
background as you edit your source code.

CVS

An open-source, network-transparent version control system.

DIFFzilla®

Allows you to view and merge changes from one version of a file to another. Difference two files, two
directories or two source trees. Provides the ability to view and merge differences for specific symbols
such as functions or classes, or a specified range of lines, from two files or the same file.

Edit window

A rectangular viewing area used to display and edit buffers.

Emulation

The ability of a program or device to imitate another program or device. Change the keyboard bindings or
shortcuts to emulate favorite shortcuts. Thirteen emulations available.

Enscript

Enscript is an external, command line program that prints a text file to a printer using PostScript, which

1518

allows for print formatting such as font, page layout, margins, colors, etc. Enscript is included in most
Linux distributions. However, it is also shipped with SlickEdit® to ensure availability of the program.

FLEXnet® Publisher

Licensing option for multiple users on a server.

Function heading

A term that refers to both the function signature and the comment above it. A function signature is the first
line (typically) of a function that contains the function name and the parameters. This can spread across
multiple lines, but is still considered one Line of Code (LOC).

Hotkey

A keyboard shortcut that is bound to a menu item.

IDE

Integrated development environment. A set of software development tools such as editors, compilers, and
debuggers, that are accessible from a single user interface.

Incremental search

Allows searching as letters are typed.

Key binding

A key or combination of keys that a user can press to perform an action that is available from a menu.
Also known as a shortcut key.

List Members

A SlickEdit Context Tagging® feature that automatically lists members when you type a member access
operator. Also access this feature by pressing Alt+Dot to invoke the list-symbols command.

List Symbols

A SlickEdit Context Tagging® feature that lists symbols visible in the current context. Access this feature
by pressing Alt+Dot to invoke the list-symbols command.

List Parameters

A SlickEdit Context Tagging® feature that displays a list of compatible variables and expressions for the
current argument when you type a function operator. For performance reasons, not all possible variables
and expressions are listed. Press Alt+Dot if the symbol you want is not listed. To access Auto List
Parameters on demand, press Alt+Comma.

Symbol Completion

A SlickEdit Context Tagging® feature that attempts to complete or correct the symbol under the cursor.
Access this feature by pressing Ctrl+Space to invoke the codehelp-complete command.

1519

Auto-Complete

A SlickEdit feature for saving keystrokes that offers suggestions for how syntax, keywords, symbols, and
lines of code may be completed by the editor. It works by looking at the word prefix under the cursor and
using several different queries to find and suggest completion options.

Parameter Info

Automatically displays the prototype for a function when you type a function operator, and highlights the
current argument within the displayed prototype.

pcode

The binary result of a translation of Slick-C® source code. The translation is done to speed up the
interpretation of source code.

Project

A group of folders, files, classes or packages.

Refactoring

A comprehensive code editing feature to help improve, stabilize, and maintain code. It allows a system-
wide coding change without affecting the semantic behavior of the system.

Run-time

The time period that a computer program is executing. A run-time environment is an execution
environment.

Schema

In database programming, the representation of a database that will be mapped.

Selection

A highlighted region of text typically operated by a command which affects only the region. In the dialog
editor, the selection is indicated by eight square handles which surround the control.

Selective Display

A SlickEdit feature that allows you to select which lines are visible or hidden based on the content of the
lines. Also known as code folding.

Slick-C®

The SlickEdit macro programming language.

SmartPaste®

Pasted or dropped source code is automatically re-indented to the correct indentation level.

Source folder

1520

A folder that contains packages, classes, and files.

State file

A file that stores configuration information and allows quick state restoration in subsequent edit sessions.

Window

A rectangular viewing area. We also use this term in the more advanced sections of this manual to refer
to the operating system resource known as a window.

Workspace

A workspace defines a set of projects and retains the settings for an editing session.

1521

1522

Index
Symbols
#endregion, 1402
#pragma, 1396
#region, 1402
(Standard only) XML Formatting Options, 542
(Windows only) Remote proxy port, 962
(Windows only) Use remote proxy, 962
*.ext wildcard name match style, 1034
*.ext<Enter> in File name, 1034
.BAK, 1044
.bz2

Decompress .bz2 files on open, 1033
Look in zip/word/excel files, 765

.cfg.xml File Format, 1128

.editorconfig, 105

.editorconfig support, 932

.gz
Decompress .gz files on open, 1033
Look in zip/word/excel files, 765

.seeditorconfig.xml support, 932

.tar
Look in zip/word/excel files, 765

.xz
Decompress .xz files on open, 1033
Look in zip/word/excel files, 765

.Z
Look in zip/word/excel files, 765

/, 565
/ command, 565
3 Way Merge Dialog, 857
<Tab> in File name, 1034
[Language] File Extensions dialog, 973
[Language] Referenced in Languages dialog, 974
_command, 1384
_control, 1439
_inherit, 1409
_str center, 1467

A
Abbreviate similar files, 292, 738
About SlickEdit, 43, 1089
ActionScript Formatting Options, 876
Activate Preview tool window from other windows,
919

Activate tool window, 1050
Activating the XML Outline View, 556
Active form, 1439
Active object, 1439
active project, 164
Ada Beautifier, 483, 485
Ada Formatting Options Standard Edition, 482
Adaptive Formatting, 370
Adaptive Formatting Options (Language-Specific),
984
Adaptive Formatting Results dialog, 373
Adaptive Formatting Statistics dialog, 376
Add #include, 493
Add (Code Templates Add New Item dialog box),
410
Add Dialog Box, 593
Add File dialog box (Code Templates), 408
Add file to project upon Save As, 1042
Add FTP Profile Advanced Tab, 746
Add FTP Profile General Tab, 745
Add import, 501
Add New Item dialog box (Code Templates), 409
Add New Language dialog, 475
Add opened files to Recent Files, 1033
Add Parameter dialog box (Code Templates), 409
Add Tag File dialog, 212
Add to current workspace, 720
Add to Project, 718
Add to shelf, 607
Add Tree dialog box, 872
Add using statement, 528
Adding a File Type Filter, 1047
Adding completion to command, 1386
adding files to a project, 171
Additional Options (Export/Import Options), 1080
Advanced Appearance Options, 921
Advanced File Mappings, 970
Advanced Keyboard and Mouse Options, 928
Advanced tab (FTP Options), 1059
Advanced Tool Options, 820
Alert Icons, 68
alias

Surround With, 432
Alias Options (Language-Specific), 993
aliases, 386

creating from selection, 396
directory aliases, 387
escape sequences, 390
expansion, 386

1523

expansion option, 997
language-specific aliases, 388
parameter prompting, 394

Aligning Controls, 1422
All Languages, 971
All Languages Options, 971
Allow drag/drop of text, 933
Allow edit and continue (hot swap) where available,
962
Allow editing of source files during debugging, 962
Allow mixed language references, 946
Alt menu hotkeys, 928
AND operator, 1362
android, 281, 281
Annotation Editor dialog, 453
Annotation File Manager dialog, 456
Annotation Type Conflicts dialog, 455
Annotation Types dialog, 454
anonymous e-mail address, 1059
anonymous login, 745
Anonymous Unions, 1352
ANSI-C Formatting Options, 876
Ant Options, 484
Ant targets, 231
Ant-like wildcards

Ant-like exclusions examples, 874, 874
Apache Ant, 230
Appearance Options, 887
Append EOF character, 1042
Application Options, 1050
Application theme, 888
Applying Formatting Rules to XML Files, 557
arg built-in, 1383
argument completion, 383
Argument completion

options for, 997
Argument Declarations, 1382
Array length method, 1346
Arrays, 1346
Assignment Operator, 1371
Associate File Types (Quick Start), 56
Associate File Types dialog, 144
Associate File Types Options, 1047
Associate with language, 478
associating workspaces, 145
Associative array variables, 1358
Asynchronous message duration(s), 962
At left margin, 987
At level of indent, 987

attach debugger, 243
core file, 244
GDB, 244
Java, 244
LLDB, 244
Mono, 244
running process, 243

attach debugger (GDB), 244
attach debugger (Java), 244
attach debugger (LLDB), 244
attach debugger (Mono), 244
attach debugger (WinDbg), 250
Attach Debugger Menu, 827
auto, 977
auto caps mode, 976
auto deselect, 951
Auto Enable Properties dialog box, 849
Auto escape regular expression, 955
Auto exit build window, 933
Auto Folder, 149
auto hide toolbar, 75
auto increment search results window, 765
Auto List Compatible Parameters, 204
auto list members, 202
auto merge, 858
auto parameter information, 203
Auto read only, 1041
auto refresh, 746
Auto reload, 1040
Auto reload all files if current file changed, 1041
Auto reload current file only, 1041
Auto reload timeout (ms), 1041
Auto restore

Auto restore supported options per monitor
configuration, 1053

Auto restore build window, 1052
Auto restore clipboards, 1052
Auto restore files, 1052
Auto restore line modify, 1052
Auto Restore Options, 1051
Auto restore projects tree, 1052
Auto restore selective display, 1052
Auto restore symbol browser tree, 1052
Auto restore working directory, 1052
Auto restore workspace, 1052
Auto restore workspace files, 1052
Auto Symbol Translation, 553
Auto-Close Options

Options, 957

1524

Auto-Close Options (Language-Specific)
Options, 1004

Auto-Complete, 379
Auto-Complete Options (Language-Specific), 995
Auto-display parameter, 1008
Auto-insert matching parameter, 1009
Auto-list compatible parameters, 1009
Auto-list compatible values, 1000
Auto-list members, 999
auto-restore, 143
Auto-Surround Options (Language-Specific)

Options, 1006
autodecl, 1397
autodeclctls, 1397
autodeclvars, 1397
automatic directory mapping, 583
Automatic mode, 718
automatic width (comment wrapping), 991
Automatically build references stack, 946
Automatically close visited files, 957
Automatically correct breakpoint scope, 962
Automatically expand doc comments, 987
Automatically pop references stack, 946
Automatically pop when no more references, 946
Autos tool window, 82
AutoSave activated, 1045
AutoSave directory, 1046
AutoSave File Options, 1045
Avoid updating context if average time exceeds
(ms), 948
AWK Formatting Options, 876

B
Background Process, 286
Background tagging of open files, 942
Background tagging of other files, 942
Background Tagging Options, 940
Backspace in replace mode, 927
Backspace key, 927
Backspace over tab, 927
Backup dialog box, 199
Backup directory path, 1044
Backup File Options, 1043
backup files, 1043
Backup History, 193
Backup History Browser dialog, 194
Backup History tool window, 77
Backup location, 1043
backups, 193

backward, 762
Base Classes dialog box, 354
base file, 586
basic editing, 301

cut, copy, paste, move, 312
Batch Formatting Options, 876
batch macro, 1338
BBEdit emulation keys, 1287

clipboard, 1291
command line and text box editing, 1290
compiling and programming, 1292
cursor movement, 1287
debugging, 1293
deleting, 1288
files and buffers, 1291
inserting, 1288
macros, 1294
miscellaneous, 1295
searching, 1289
selecting, 1288
windowing, 1292

beautifier, 465
Beautifier Settings

Export/Import Options, 1081
Beautifiers, 485
Beautify Menu, 855
Beautifying code, 465
begin end structure matching, 327

setting match style, 328
viewing/defining, 327

binary character searching, 661, 691
binary files (editing), 181
Bind Key dialog, 926
bind macro to key, 704
bitmaps (adding to image control), 1457
bitmaps (adding to list box), 1447
Bitwise AND, 1362
Bitwise OR, 1362
Bitwise XOR, 1362
block cursor option, 889
Block insert mode, 319
block selection

inclusive option, 951
block selections, 305
block statement, 1372
Bookmark Stack dialog, 780
bookmarks, 437

named, 437
pushed, 441

1525

relocatable code markers, 440
Bookmarks, 919, 956
Bookmarks dialog box, 781
Bookmarks options, 956
Bookmarks tool window, 778
boolean, 1371
Bounds, 1147
Bounds (Language-Specific), 978
breadcrumbs, 441
break (primitive), 1376
breakpoints, 245

conditional, 245
exceptions, 247
relocatable code markers, 247

Breakpoints, 919
breakpoints tab, 245
Breakpoints tool window, 78
Brief emulation keys, 1194

clipboard, 1197
command line, 1197
compiling and programming, 1200
cursor movement, 1194
debugging, 1201
deleting, 1196
files and buffers, 1198
inserting, 1195
macros, 1202
miscellaneous, 1203
searching, 1196
selecting, 1201
text box editing, 1197
windowing, 1199

Brief regular expressions, 693
Buffer cache size, 1053
buffers, 288

closing, 300
listing open, 297
switching between, 295

build and compile, 222
auto-build on save, 224
build errors, 233
build methods, 228
build on save, 224
commands, 224
GNU C/C++, 228
makefiles, 228
operations, 222
parsing errors, 234
projects, 223

setting shortcuts for Ant targets, 232
Xcode, 230

build command
escape sequences, 224

build errors, 233
listing, 234
navigation, 234
parsing with reg expressions, 234
viewing, 233

Build Menu, 823
build methods, 228

GNU C/C++, 228
Xcode, 230

build options, 170, 170
build settings (projects), 168
Build tab (Project Properties), 808
Build tag file (C++ Compiler), 490
Build tool window, 78
build window (auto exit), 933
build window (erased lines), 933
Build workspace tag file with references, 945
Building CTag Based Tag Files, 215
building running android, 282
Building Tag Files, 210
building tag files, 212
built-in functions, 1391
byte offset navigation, 330

C
c command, 569
C# Beautifier, 485
C# Organize Imports, 528
C# Organize imports options, 529
C# tutorial, 1095
C++ Formatting Options

Community Edition, 876
Standard Edition, 876

C/C++ Beautifier, 485
C/C++ Compiler Properties, 488
C/C++ Formatting Options, 486
C/C++ parsing options, 490
C/C++ preprocessing, 491
cache size (for buffers), 1053
cache size (for tagging), 1053
calculating (see mathematics), 622
calculator dialog box, 622
Call Stack tool window, 82
call tree, 352
callers tree, 353

1526

Cancel button (adding), 1426
capture groups for Perl, 633
capture groups for SlickEdit, 636
capture groups for Vim, 638
Cargo workspaces, 159
case sensitive, 618
case statement, 1379
casting types, 1367
Categories (Code Templates Add New Item dialog
box), 409
Categories (Template Manager dialog box), 407
CFML Formatting Options, 545
CFScript Formatting Options, 876
Ch Formatting Options, 876
Change directory, 889
Change Directory dialog box, 739
changing emulations, 107
character selection, 303

inclusive option, 950
characters (identifiers), 1014
characters (inserting literal), 319
Check Box control, 1445
Check In Dialog Box, 593
Check Out Dialog Box, 593
Checkin/Checkout Files dialog, 1073
child backup directory, 1044
CICS Formatting Options, 494
Clang (attaching to remote process), 244
Class, 919
Class Exclusion Manager dialog, 335
class properties, 82
Class tool window, 333

exclusion manager, 335
filtering hierarchy pane, 335
filtering/sorting members pane, 336

Classes (debug) tool window, 826
clear bookmark, 440
Clear Modified Lines, 360
Clear text box on Enter, 1033
Click past end of line, 940
Clipboard Inheritance(R), 1434
clipboards (how to use), 314
Clipboards tool window, 78
Close after find/replace, 954
Close deletes pushed bookmarks, 956
close workspace, 157
Closing a dialog box, 1426
closing files, 196

automatically, 325

closing SlickEdit (see exiting SlickEdit), 41
COBOL Formatting Options, 494
Code Annotations, 449, 919

Annotation Editor dialog , 452
filtering, 452
go to annotation, 452

code annotations
code marker, 450
copying, 453
creating, 451
deleting, 453
editing, 453
for code reviews, 458
for recording tasks, 458
handling type conflicts, 455
locations, 449
managing files, 455
moving, 453
private and shared, 450
types, 449
user-defined, 456
viewing, 452

Code Annotations tool window, 451
code folding, 363
code navigation, 323
code reviews with annotations, 458
Code Templates, 400

Add New Item dialog box, 409
Creating a multi-file template, 412
Creating templates, 402
Export/Import Options, 1081
Global Substitution Parameters, 408
Locating Templates, 410
Manually creating a template, 410
Metadata file reference, 413
Organizing templates, 405
Pre-defined substitution parameters, 403
Substitution parameters, 403
Template Manager dialog box, 406
Template Options dialog, 408
User templates (Locating), 410

CodeWarrior emulation keys, 1262
clipboard, 1265
command line and text box editing, 1265
compiling and programming, 1267
cursor movement, 1262
debugging, 1269
deleting, 1263
files and buffers, 1267

1527

inserting, 1263
macros, 1269
miscellaneous, 1270
searching, 1263
selecting, 1264
windowing, 1267

CodeWright emulation keys, 1271
clipboard, 1274
command line and text box editing, 1274
compiling and programming, 1276
cursor movement, 1271
debugging, 1277
deleting, 1272
files and buffers, 1276
inserting, 1272
macros, 1278
miscellaneous, 1279
searching, 1273
selecting, 1273
windowing, 1276

Coding (Quick Start), 55
collapse code block, 364
Color Coding

advanced configuration, 142
creating support for a new language, 136
General Tab , 1013
How to add a interpolation to string, 139
How to add a line comment, 137
How to add a multi-line comment, 137
How to add a string, 138
How to add words, 136
How to define color coding for numbers, 138
introduction , 123
Language Tab , 1023
More Tab , 1018, 1019
Numbers Tab , 1020
Options (Language-Specific) , 1011
Settings Tab , 1017
Tags Tab , 1025
Tips on using regular expressions matching, 140
Tokens Tab , 1015
use , 136

Color Coding General Tab, 1013
Color Coding Language Tab, 1023
Color Coding More Tab, 1018, 1019
Color Coding Numbers Tab, 1020
Color Coding Options (Language-Specific), 1011
Color Coding Profile

creating a new color coding profile, 1132

modifying a color coding profile, 1132
Color Coding Profile Format, 1132
Color coding profile name, 477
Color Coding Profiles, 1132
Color Coding Search Options dialog, 761
Color Coding Settings Tab, 1017
Color Coding Tags Tab, 1025
Color Coding Tokens Tab, 1015
Color Inheritance, 126
Color Options, 892
Color Picker dialog, 126
Color Settings dialog box, 892
colors, 123

Color Coding, 123
customizing, 123
for embedded languages, 127
of special characters, 361
profiles, 126
Symbol Coloring, 123, 127

Colors (Quick Start), 53
column indicators, 67
Combo Box control, 1448
Command Button control, 1445
command line

(see SlickEdit command line), 87
invocation options, 36
Launching SlickEdit from OS command line, 36

command line parameters, 36
Command line prompting, 929
Command Line Switches, 89
commands, 91

binding to keys, 113
defining with Slick-C, 1384
see also SlickEdit command line, 87
viewing associated key bindings, 89

Commands (Version Control Options), 1069
Commands, Built-ins, Defs (Differences), 1391
Comment Options (Language-Specific), 984
comment styles (C++ language constructs), 1339
Comment width, 839
Comment Wrap Options (Language-Specific), 989
comment wrapping, 448

enable, 990
reflowing comments, 448
sync vertical line, 991
width settings, 990

comments, 443
block comments, 443
commenting lines, 443

1528

configuration, 443
configuring block comments, 985
configuring doc comments, 987
configuring line comments, 986
creating doc comments, 444
doc comment examples, 444
Doxygen, 446
editing options, 988
Javadoc, 444
line comments, 443
reflowing, 448
removing, 443
string editing, 447
wrapping, 448
XMLDoc, 445

Common Formatting Options for Brace-style
Languages, 876
common keys (redefining), 97
Compare file contents before auto reload, 1041
Compare Options dialog box, 588
comparing files, 578
comparing folders (directories), 579
comparing parts of files, 580
comparing symbols, 580
compile, 222

projects, 223
Visual C++, 223
vsbuild, 223

Compile/Link tab (Project Properties), 811
Compiler Properties (Language-Specific), 1030
compilers.xml, 1124
Compiling macros, 1413
completion, 379

Adding to command, 1386
Auto-Close, 381
word/variable, 382

Completion (Context Tagging), 205
Completion (CTags Based Tagging), 208
Completion choice, 999
Completions in dialogs, 382
Concatenation, 1364
concurrent process buffer (Build window), 78
conditional breakpoints, 245
confidence level, 376
config (see configuration), 1123
configuration, 1123

changes not on menu, 1115
configuration variables, 1118
environment variables, 1113

of build settings, 168
of project directories, 165
of project tools, 165
of projects, 164
options for saving, 1054
set command, 1116
system config files, 1126
table of sys config files, 1126
table of user config files, 1124
user config directory, 1123
user.cfg.xml, 1115

Configurations (Debugging Options), 966
Configurations (New Project Tool Wizard), 819
Configure Error Parsing, 235
Configure Error Parsing Options, 235
Configuring Interactive Profiles, 627
Configuring Single File Project Profiles, 179
constants (defining), 1342
constants (numeric), 1341
context menus, 84
Context Tagging, 202

Building tag files, 210
configuring COBOL, 215
Configuring other languages, 215
Creating compiler-specific tag files , 210
Creating language-specific tag files, 212
Features, 202
managing tag files, 216
options for, 218
Quick Start, 56
Tag Files dialog, 869
workspace files, 210, 215

Context Tagging Features
Auto List Compatible Parameters, 204
Completions, 205
List Members, 202
Parameter Information, 203
Statement Level Tagging, 207
Symbol Browsing, 206
Tag-Driven Navigation, 202

Context Tagging Options, 943
Context Tagging Options (Language-Specific),
1007
Context Tagging result cache maximum, 947
Context Tagging toolbar, 77
continue (primitive), 1376
Continue bullet list on Enter (comment wrapping),
991
control characters (inserting), 319

1529

conventions, 13
code syntax, 13
menus and dialogs, 13

convert HTML symbols, 553
convert Unicode to UCN, 1111
Cool Features, 1090
Copy, 486
Copy dialog box, 199
Copy source to template directory (Code
Templates Add File dialog box), 408
Copy Unicode As Menu, 751
copying code annotations, 453
Copyrights Tab (about SlickEdit), 1089
core file, 244
Count number of lines, 1040
CR, 732, 734, 1027
CR w/o LF erases line in build window, 933
CR/LF, 732, 734, 1027
Create file outline, 981
Create New Configuration dialog, 164
Create new workspace, 720
Create project directory from project name, 720
create workspace, 157
creating a file from a selection, 184
Creating a new category (Template Manager dialog
box), 406
Creating a new template (Template Manager dialog
box), 406
creating a shelf, 606
creating custom project types, 163
creating directory aliases, 387
creating extension-specific aliases, 389
creating files, 184
Creating new configurations (compiler), 489
creating project files, 176
creating projects, 162
CTags Based Tagging, 208

Building CTags Based tag files, 215
Features, 208

CTags Based Tagging Features
Completions, 208
Tag-Driven Navigation, 208

CTags Tagging Options, 1074
Ctrl+/ (go to reference), 324
Ctrl+Alt+Dot (go to declaration), 323
Ctrl+Comma (pop bookmark), 324
Ctrl+Dot (go to definition), 323
Ctrl+Shift+V, 315, 933
CUA emulation keys, 1167

clipboard, 1170
command line and text box editing, 1170
compiling and programming, 1172
cursor movement, 1167
debugging, 1174
deleting, 1168
files and buffers, 1171
inserting, 1168
macros, 1174
miscellaneous, 1175
searching, 1168
selecting, 1169
windowing, 1172

CUA text box, 933
current character, 68
Current class, 997
Current Context toolbar, 77, 337
Current file, 997
Current line box color, 890
Current line column color, 890
Current line highlight, 890
Current paragraph, 839
Cursor left/right in leading spaces, 940
Cursor Movement, 939
cursor navigation, 329
Cursor page up/down, 1147
Cursor right/left wraps to next/prev line, 939
Cursor style, 889
Cursor up/down places cursor in virtual space, 939
Cursor up/down within soft-wrapped lines, 940
Custom Parameters tab (Template Manager dialog
box), 407
custom project types, 163
Custom View, 149
Customize, 719
Customize Project Types dialog, 163
CVS, 603
CVS Options, 604

D
D Formatting Options, 876
Data Set Utilities dialog box, 1460
Date display style, 890
dBASE Formatting Options, 535
Debug, 825
debug (see also debugging), 241
debug key bindings, 242
Debug Menu, 825
Debug Sessions toolbar, 82

1530

debug tab (FTP Options), 1062
Debug toolbar, 76
Debug Windows Menu, 826
debugger (see also debugging), 241
Debugger Options dialog, 247
debugging, 241

attach to core file, 244
attach to Java Virtual Machine, 244
attach to Mono Virtual Machine, 244
attach to remote process, 244
attach to running process, 243
C/C++ with GNU debugger, 248
C/C++ with WinDbgdebugger, 249
GDB, 244, 244
generate debug, 247
Google Go, 278
hot-swap debugger, 962
mixed mode view, 242
multiple sessions, 243
named sessions, 243
Perl, 267
PHP, 254
Python, 262
Ruby, 272
setting breakpoints, 245
setting options for, 247
Slick-C, 1416
tool windows, 248

debugging android, 283
Debugging Configurations Options, 966
Debugging Directories Options, 965
Debugging General Options, 960
debugging gwt, 280
Debugging Numbers Options, 963
Debugging Options, 959
Debugging Runtime Filters Options, 964
Decimal ruler, 890
def, 1407
def primitive, 1407
Default Arguments, 1383
Default layout applied to dragged out document
tabs, 293
default local directory, 1059
DefaultName element (Code Templates metadata
file reference), 414
defeventtab, 1407
defeventtab primitive, 1407
defining constants, 1342
defining event tables, 1409

defining functions, 1381
defining keys, 1407
defining procedures, 1381
defining project dependencies, 164
Defining Special Characters, 361
definit, 1411
defload, 1411
defmain, 1392
Defs, 919
Defs tool window, 338
Defs Tool Window

options, 339
Outline View for XML, 555

Delete, 487
delete bookmark, 440
Delete Code Block dialog, 435
Delete key, 927
Delete Menu, 749
delete selection, 951
Deleting a template (Template Manager dialog
box), 407
deleting code annotations, 453
deleting code blocks, 435
dependencies (defining for projects), 164
Dependencies tab (Project Properties), 814
Dependency of, 720
deploying gwt, 280
deprecation, 1397
Derived Classes dialog, 354
Description element (Code Templates metadata file
reference), 415
deselect after paste, 950
Details tab (Template Manager dialog box), 407
Dialog Box Retrieval, 1458
dialog boxes (forms for macros), 1466
Dialog Editor, 1420
Dialog Editor Properties dialog box, 1421
Diff columns, 978
Diff dialog box, 576
diff options tab, 864
Diff Setup dialog box, 864
Differences Between SlickEdit Vim and gvim, 1216
diffing files, 576
diffing symbols, 580
diffmap.ini, 1124
diffsessions.xml, 1124
DIFFzilla, 576

backup history, 583
comparing folders (directories), 579

1531

comparing parts of files, 580
comparing symbols, 580
comparing two files, 578
directory mapping, 583
dynamic difference editing, 576
Files tab, 860
generating file lists, 581
options, 862
path info, 860

DIFFzilla Dialog, 859
Directories (Debugging Options), 965
directories (for projects), 165
Directories tab (Project Properties), 803
directory (auto-change), 889
directory aliases, 387

creating, 387
embedding env variables, 388
using, 387

Directory List Box control, 1454
directory mapping, 583
Directory Project Options, 1050
Directory View, 149
Disable auto-loading of scripts, 963
Dismiss on select, 1033
Display after idle, 949
display tool tips, 118
Displaying Dialog Boxes, 1427
do (loop), 1373
do not upload, 1059
Doc Comment Editor dialog, 446
doc comments, 444

configuration, 987
docking toolbars, 74
document math, 624
Document Menu, 830
Document Mode, 718
Document Overview Bar, 463
Document Tabs, 289

Abbreviate file tab captions, 938
abbreviate similar files, 292
Document tab title, 938
Hide known file extensions, 938
Hiding the document tabs with Zoom Toggle,
292
New file tab position, 938
Show close buttons on document tabs, 938
sort order options, 937
Zoom (hide tabs) when one window, 936

documentation, 12

documentation conventions, 13
documentation feedback, 12
Doxygen comments, 446
drag and drop text, 314
drag/drop, 933
Draw box only, 890
Drive List control, 1453
DTD caching, 542
dual monitors, 93
dynamic difference editing, 576
Dynamic Surround, 427
dynamic-language projects, 162

E
e/edit command Smart Open, 1033
Eclipse emulation keys, 1312

clipboard, 1315
command line and text box editing, 1315
compiling and programming, 1317
cursor movement, 1312
debugging, 1318
deleting, 1313
files and buffers, 1316
inserting, 1313
macros, 1319
miscellaneous, 1320
searching, 1314
selecting, 1314
windowing, 1317

Edit, 486
Edit 'A B C' start on file A, 1032
Edit (File Manager), 199
Edit Alias Parameter dialog, 995
Edit Menu, 747
edit other copy unicode as ucn menu, 1111
Edit Other Menu, 749
Edit Select Menu, 748
Edit toolbar, 76
Editing an existing template (Template Manager
dialog box), 406
editing code annotations, 453
Editing Options, 931
Editing Options (Language-Specific), 976
editing recorded macros, 705
Editing XMLDoc Comments, 530
Editor Control, 1444
Editor Window Options, 935
editor windows, 288

closing, 300

1532

duplicating, 295
left margin width, 294
linking, 299
splitting, 294
tiling, 295

Elements (Code Templates metadata file
reference), 414
embedded language color, 127
embedded languages , 22

HTML , 22
Perl , 23
UNIX , 23

embedding env variables in aliases, 388
Emulation (Quick Start), 52
Emulation Options, 923
emulations, 106

changing, 107
determining keys/functions, 108
supported, 106
tables of keys, 1167

Emulations (list), 106
Enable auto-completion, 996
enable comment wrap, 990
Enable Python pretty printing, 963
Enable soft wrap, 993
encoding, 1108

SBCS/DBCS, 1108
Unicode, 1109
UTF-8, 1108

Encoding (global option), 1039
END command saves the file, 1147
End key, 927
end of line, 361
Enhanced Scroll Bar, 463
Enter Alias Parameter dialog, 394
Enter key, 927
Enter New Alias Name dialog, 389
Enter New Profile Name dialog, 136
Enter places cursor in prefix area, 1147
Entire block comment (Comment Wrap tab), 839
entity reference translation, 553
Enumerate dialog box, 753
Enumeration, 307
environment variables, 1113

set command, 1116
setting in user.cfg.xml, 1115
VSLICKINCLUDE, 1403
VSLICKPATH, 1403
VST, 1396

Epsilon emulation keys, 1204
argument and repeating a key, 1216
clipboard, 1208
command line, 1212
compiling and programming, 1210
cursor movement, 1205
debugging, 1211
deleting, 1206
files and buffers, 1209
inserting, 1206
macros, 1212
miscellaneous, 1214
searching, 1207
selecting, 1207
text box editing, 1212
windowing, 1209

Error File dialog box, 234
error parsing, 234

configuration, 235
exclusions, 237
sample expression, 238
testing expressions, 239

Error Regular Expressions dialog box, 235
escape sequences for aliases, 390
Escape sequences for build commands, 224
Event driven dialog (event tables), 1409
Event Names, 1504
Event tables, 1407
event-driven dialog boxes, 1334
events and event tables, 1407
examples of Perl reg expressions, 660
examples of SlickEdit reg expressions, 675
examples of Vim reg expressions, 690
Excel

multi-file find, 765
exception breakpoints, 247
Exceptions tool window, 79
Exclusions, 1045
exclusions (error parsing), 237
Executable name, 720
execute Ant target, 232
execute NAnt target, 232
Executing programs from macro, 1480
Exit confirmation prompt, 1055
Exit Options, 1054
exit process, 933
Exit SlickEdit on AutoSave, 1045
exiting SlickEdit, 41

default options, 42

1533

with modified buffers, 42
expand code block, 364
Expand tabs, 729
Expand tabs to spaces, 1042
Expanded text, 997
Explorer Open dialog box, 726
Explorer Standard Open dialog box, 726
Export Groups, 1078
export key bindings, 115
export to HTML, 544
Export/Import Options, 1076
expressions (unary operators in), 1361
extend file history, 1120
Extend line comments, 988
extend workspace history, 1121
extension-specific aliases

creating, 389
escape sequences, 390
parameter prompting, 394

Extract method (Quick Refactoring), 469

F
f command, 325
failed saves, 191
Fast auto read only, 1041
Fast line count on partial load, 1038
Feature Notification, 286
Feature Notifications

options, 1055
features (new), 5
file associations, 144
File element (Code Templates metadata file
reference), 416
File Exclusions

Ant-like exclusions examples, 874
File Extension Manager, 477, 969
file filters, 1046
file history (File menu), 1120
file history (Project menu), 1121
File List Box control, 1453
file lists, 933
file lists (generating), 581
File locking, 1039
File Manager (Using), 197
File Manager Files Menu, 717
File Manager Menu, 715
File Manager Select Menu, 716
File Menu, 712
File Open dialog box, 726

File Options, 1031
File Options (Language-Specific), 1026
File Options dialog box, 190
file search order, 1131
File Sort dialog box, 199
File Tabs, 736

Abbreviate file tab captions, 938
abbreviate similar files, 738
Hide known file extensions, 938
New file tab position, 938
Show close buttons on document tabs, 938
sort order options, 937

File Tabs tool window, 79
file types, 144
fileman select menu, 199
files, 181

auto-close, 325
autosave options, 192
Backup History, 193
backups, 193
closing, 196
comparing parts of, 580
comparing two files, 578
configuration files and directories, 1123
creating from selections, 184
diffing file history, 583
encoding, 1108
failed saves, 191
file filters, 1046
finding files to open, 188
FTP, 621
generating lists, 581
inserting into buffers, 189
listing open files/buffers, 297
merging, 585
navigating between, 329
opening, 186
quick create/open, 184
save as, 191
saving, 191
setting associations, 144

Files, 920
Files element (Code Templates metadata file
reference), 417
files menu, 712
Files of Type Filters, 1046
Files tab (DIFFzilla), 860
Files tab (Project Properties), 801
Files tab (Template Manager dialog box), 407

1534

Files tool window, 79
Files Tool Window, 184
Fill Selection, 309
Filtering marked text, 1476
filters, 746
filter_selection procedure, 1476
find

see also searching, 560
Find all references immediately, 945
Find and Replace tool window, 758
find command, 565
Find File dialog box, 188
Find Files tab (Find and Replace), 771
Find in Files tab (Find and Replace), 762
Find references in background, 945
Find references incrementally, 945
Find references search strategy, 945
Find Symbol, 920
Find Symbol tool window, 774
Find tab (Find and Replace), 760
finding files, 188
find_error command, 1415
find_proc command, 1414
Finish (New Project Tool Wizard), 822
firewall proxy tab, 1060
First line is top, 986
fixed right margin (comment wrapping), 991
fixed width (comment wrapping), 990
float toolbar, 75
Floating point numbers, 1341
Folder View, 149
follow characters, 1014
Font Configuration dialog box, 912
Font dialog box, 121
Font Options, 912
fonts, 120

changing, 120
editor windows, 121

Fonts (Quick Start), 54
for (loop), 1373
foreach (loop), 1374
foreground search, 767
Formatting Options (Language-Specific), 982
Formatting Rule Set Configuration, 556
Fortran Formatting Options, 494
forums, 12
fp command, 325
Frame control, 1445
FTP, 619

configuration options, 621
connecting, 620
disconnecting, 621
FTP Profile Manager, 619
opening files, 621
tool windows, 619

ftp connection profile, 619
FTP Default Options, 1058
FTP Default Options Advanced Tab, 1059
FTP Default Options Debug Tab, 1062
FTP Default Options Firewall/Proxy Tab, 1060
FTP Default Options SSH/SFTP Tab, 1062
FTP files, 619
FTP Menu, 714
FTP Options Advanced Tab, 1059
ftp options firewall/proxy tab, 1060
ftp options general tab, 745
ftp options ssh/sftp tab, 1062
FTP tool window, 619
full screen mode, 93
Function Prototypes, 1390
functions (defining), 1381
functions (finding), 1391

G
Gauge control, 1455
GDB (attaching to remote process), 244
GDB (multiple session debugging), 243
GDB (newer version), 966
GDB (setting configurations), 966
GDB projects, 161
General Appearance Options, 887
General Editing Options, 931
General Options (Language-Specific), 972
Generate debug, 247
generate file list, 581
generate references, 344
Get Dialog Box, 593
getting started android, 281
getting started gwt, 280
get_string procedure, 1482
Git, 603
Git Options, 603
Global Alias Options, 959
global aliases, 387
global directory, 1044
Global Find dialog, 200
global nested directories, 1044
Global Replace dialog box, 200

1535

globs
Ant-like exclusions examples, 874

GNU C/C++ build methods, 228
GNU C/C++ projects, 160
GNU Emacs emulation keys, 1238

argument and repeating a key, 1249
clipboard, 1242
command line, 1246
compiling and programming, 1243
cursor movement, 1238
debugging, 1244
deleting, 1240
files and buffers, 1243
inserting, 1240
macros, 1245
miscellaneous, 1248
searching, 1241
selecting, 1241
text box editing, 1246
windowing, 1243

Go to Bookmark dialog box, 779
Go to Bookmark feature, 439
go to declaration, 323
go to definition, 323

navigation option, 1009
Go to import, 501
go to reference, 323
Google Go, 278
Google Go Formatting Options, 876
Goto using statement, 528
Grid Settings dialog, 847
Groovy Beautifier, 485
GUID Generator, 613
gwt, 280, 280

H
hash tables, 1348
hash tables editing, 845
header files (Slick-C), 1326
Header Files, Including, 1403
Help Menu, 1087
help resources, 12
help system, 13
Hex

Bytes per column, 981
Language-Specific View Options, 981
Number of columns, 981

Hex character code, 1341
hex view, 365

hexadecimal display, 320
hexadecimal numbers, 1341
Hide maximized child window titlebars, 936
Hide mouse pointer, 889
hide toolbar, 75
Highlight matches, 762
Highlight matching blocks, 934
Highlight matching blocks after (ms) idle, 934
Highlight matching blocks timeout (ms), 934
Highlight matching symbols under cursor, 1010
Highlight references in editor, 946
highlight symbols, 575
history (increase File menu), 1120
history (increase Project menu), 1121
History dialog box, 188
History Options, 1048
History retrieval, 954
Home key, 928
HOME Key Configurations, 97
Home places cursor on command line, 1147
Horizontal scroll bar, 889
host name of firewall, 1061
host name of FTP server, 745
host type, 745
hot fixes, 31

automatic installation, 32
list of installed, 33
manual installation, 31
unloading, 33

hot key, 85
hot-swap debugger, 962
hotfixes, 31
hotkeys, 928
Hotspot Options, 958
HTML, 543

beautifying, 546
browser configuration, 544
exporting current file, 544

HTML and XML Formatting Options Standard
Edition, 544
HTML Beautifier Case and Quoting tab, 550
HTML Beautifier Comments & Languages tab, 552,
552
HTML Beautifier dialog box, 546
HTML Beautifier Indent tab, 546
HTML Beautifier Tags tab, 548
HTML Formatting Options, 545
HTML symbol translation, 553
HTML toolbar, 544

1536

I
iconized windows, 843
Identifiers, 1014
IDL Formatting Options, 876
if statement, 1371
Ignore forward class declarations, 1010
ignore spaces, 859
Image control, 1456
Immediately update context if maximum observed
time is less than (ms), 948
Import File List dialog, 176
import key bindings, 115
Import Options, 1079
Import options (C# Imports), 529
Import options (Java Imports), 515
Import options (Refactoring), 501, 528
importing files to projects, 176
importing makefiles, 177
Imports, 501, 528
Imports Menu, 855
Include options (Refactoring), 493
Includes, 493
Including macro header files, 1403
increase file history (File menu), 1120
increase workspace history (Project menu), 1121
Incremental search highlighting, 955
incremental searching, 561, 562
Indent by syntax indent, 977
indent style, 977
indicator (macro recording), 68
indicator (named bookmark), 438
indicator (pushed bookmark), 442
Inheritance, 1434
Inherited Code Found dialog box, 1425
initial directory, 746
Initial NumLock state, 929
Initialize search string, 954
Initialize with default options, 955
initializing macro modules, 1411
Insert File dialog box, 189
Insert Form Source dialog box, 1424
Insert keyword before parameter when required,
1009
Insert Literal dialog box, 319
insert mode, 933
Insert open parenthesis for functions, 998
insert real indent, 977
Insert space after comma, 1009

insert toggle, 68
Inserting control characters, 319
inserting files into buffers, 189
Installed templates (Locating), 410
installing SlickEdit, 25
Installing Xdebug, 254
Instances, 1439
Interactive Profiles

Configuring, 627
Interactive tool window, 81, 627
Internet Protocol (IP), 1058
Invocation Options, 36
invoking Ant targets, 231
invoking NAnt targets, 231
ISPF Copy Lines, 1154
ISPF Delete Lines, 1155
ISPF Emulation, 1146
ISPF emulation keys, 1250

clipboard, 1254
command line and text box editing, 1255
compiling and programming, 1258
cursor movement, 1250
debugging, 1259
deleting, 1252
files and buffers, 1257
inserting, 1251
macros, 1259
miscellaneous, 1260
selecting, 1253
selective display, 1260
windowing, 1257

ISPF Emulation Options, 1146
ISPF Exclude Lines, 1161
ISPF Expose First Lines, 1155
ISPF Expose Last Line, 1156
ISPF Expose Next Level of Code, 1158
ISPF Insert After, 1153
ISPF Insert Before, 1153
ISPF Insert Bounds Ruler, 1154
ISPF Insert Columns Ruler, 1154
ISPF Insert Lines, 1155
ISPF Insert Mask Line, 1157
ISPF Insert Tabs Ruler, 1159
ISPF Insert Text, 1159
ISPF Join Lines, 1160
ISPF Line Command A, 1151
ISPF Line Command B, 1151
ISPF Line Command Delete, 1151
ISPF Line Command Exclude, 1152

1537

ISPF Line Command First, 1151
ISPF Line Command Uppercase, 1152
ISPF Line Commands, 1152
ISPF Line Labels, 1152
ISPF Lowercase Lines, 1156
ISPF Make Data Lines, 1157
ISPF Move Lines, 1156
ISPF Overlay Lines, 1158
ISPF Repeat Lines, 1158
ISPF Select Lines, 1161
ISPF Shift Lines Left or Right, 1152
ISPF Split Line, 1160
ISPF Unsupported Primary Commands, 1162
ISPF Uppercase Lines, 1160

J
J# Formatting Options, 876
Java, 496
Java Beautifier, 485
Java compiler, 501
Java Compiler Properties, 504
Java Formatting Options, 485
Java Live Errors, 501
Java Options Android tab, 505
Java Options AppletViewer tab, 505
Java Options Classpath tab, 505
Java Options Compiler tab, 505
Java Options dialog, 505
Java Options GWT tab, 505
Java Options J2ME tab, 505
Java Options Jar tab, 505
Java Options Javadoc tab, 505
Java Options JRE tab, 505
Java Options Live Errors tab, 505
Java Organize Imports, 501
Java Organize imports options, 515
Java projects, 162
Javadoc Beautifier dialog box, 517
Javadoc comments, 444
Javadoc Editor dialog box, 517
JavaScript Beautifier, 485
JavaScript Formatting Options, 485
JCL Formatting Options, 494
Join comments, 989
JSP TagLib Formatting Options, 545
Jump over tab characters, 940
Jump to first item when finding references, 946
jumping to a tag, 323
JUnit, 502

Justification dialog box, 838
justified, 993
justify style, 992

K
keep alive default FTP, 1060
keep alive FTP connection, 746
Key Binding Options, 923
Key Binding Profile Format, 1145
key bindings, 109

binding macros, 704
creating, 113
definitions of terms, 109
emulations, 106
export/import, 115
key message delay, 116
unbinding, 114
used in debugging, 242
viewing associated commands, 89

key definition, 89
Key message delay, 929
key names, 85
key names (option), 922
key shortcuts in text boxes, 95
Keyboard and Mouse Options, 922
Keyboard Options

advanced, 928
Keys Help, 108
Keyword case, 483
Keywords, 997

L
l command, 565
Label control, 1442
Language Constructs, 1339
Language Manager, 474, 968
Language Options, 967
Language Setup, 478
language support , 15
Language tab (Color Coding Setup), 1023
language-specific aliases, 388

creating from selection, 396
language-specific projects, 171
Largest file to AutoSave, 1046
Last line is bottom, 986
Launching SlickEdit, 35
Layout applied to dragged out document tabs, 293
Layouts menu, 293

1538

lcase, 318
Leave selected, 955
left and respace, 992
Left and Right, 986
LF, 732, 734, 1027
libraries, 156
License Agreement Tab (about slickedit), 1089
licensing, 26
Light bulb, 997
Limit size of backup, 1044
Limitations with sharing your configuration with
multiple instances, 104
line endings, 732, 734, 1027
Line endings for new files (global option), 1039
line feed, 732, 734, 1027
Line format, 732, 734, 1027
line hex, 365
line indicators, 67
Line insert style, 933
line navigation, 330
line numbers, 361, 981
line selections, 304
Line separator char, 729
Line wrap, 940
Link Window dialog box, 299
Linking to a window, 299
List all occurrences, 762
List Box control, 1446
list clipboards, 314
list clipboards dialog box, 314
List command line completions, 889
List errors, 234
List Files dialog box, 197
List files of type, 728
list hot fixes, 33
List include files after typing #include, 999
List Members, 202
List of matches, 997
list open files/buffers, 297
list project files, 832
list workspace files, 832
Lists shelves, 608
literal characters (inserting), 319
Live Error Profiles (Language-Specific), 1027
Live errors, 466
live errors, 501
Live Errors tab (Project Properties), 815
LLDB (multiple session debugging), 243
LLDB projects, 161

load (for different drives), 191
Load as Binary, 1026
load command, 1413
Load entire file, 1040
Load File, 487
Load File Options, 1037
Load Module dialog box, 708
load partial if larger than, 190
Load partially for large files, 1040
Load partially when files are larger than, 1040
Loaded Classes tool window, 82
Loading macros, 1413
loading project files, 178
Locals, 996
Locals tool window, 82
Locating templates, 410
Location, 987
Location (Code Templates Add New Item dialog
box), 410
locations for code annotations, 449
locked files, 190
look in, 760
loop (loop), 1375
Loops, 1372

M
Mac Option/Alt key behavior, 929
Mac resize borders, 936
macOS, 94

format buffer, 41
special features, 21
writing selection filters, 1476

macOS emulation keys, 1305
clipboard, 1310
command line and text box editing, 1308
cursor movement, 1305
deleting, 1307
files and buffers, 1309
inserting, 1306
macros, 1311
miscellaneous, 1311
searching, 1308
selecting, 1307
windowing, 1310

macOS Installation, 25
macOS style Browse for Folder dialog, 922
Macro Menu, 840
macro prompting, 1482
macros

1539

programmable, 707
recorded, 702

macros (batch), 708
Maintenance and Support, 3
Make backup files, 1043
makefile (build with auto), 229
makefile (building without), 229
makefile (custom build command), 229
makefile import, 177
makefiles, 164
managing code annotation files, 455
Managing Extensionless Files, 479
managing projects, 160
managing projects in workspace, 159
managing workspaces, 156
Manual symbol completion fixes minor typos, 1003
margins (setting), 992
Margins dialog box, 837
Match block comment setting, 839
Match case, 761
Match case (default), 954
match highlighting, 575
Match whole word, 761
Match whole word (default), 954
math (see mathematics), 622
Mathematical Operators, 1361
mathematics, 622

document math, 624
expressions with mixed bases, 622
math commands, 623
math commands (examples), 624
overflow/underflow, 624
prime numbers, 625
using the Calculator, 622

Max files, 1039
Max undo steps, 1039
Maximize editor in full screen mode, 922
Maximum candidates for list parameters, 947
Maximum class/struct shown in list members, 947
Maximum clipboards, 933
Maximum distance for Highlight matching blocks
(KB), 934
Maximum functions found by parameter help, 947
Maximum items found in references search, 948
Maximum nesting level, 891
Maximum nesting level for Highlight matching
blocks, 934
Maximum number of memory allocators, 1054
Maximum number of tags per file, 948

Maximum response time for list members (ms), 947
Maximum response time for list parameters (ms),
947
Maximum search results output (KB), 955
Maximum size of files for building token list, 948
Maximum size of files for statement tagging, 948
Maximum size of files to tag, 948
Maximum size of in-line deltas in archive files (KB),
1044
Maximum size to backup, 1044
Maximum stack depth, 957
Maximum suspended update time(ms), 962
Maximum symbols, 949
Maximum tags found in symbol search, 948
Maximum time for parsing current file (ms), 948
Maximum word completion, 949
Members tool window, 82
Memory tool window, 83
Menu Customizations

Export/Import Options, 1081
Menu Editor dialog box, 847
menu if no selection, 84
menu if selection, 84
Menu Item Alias dialog box, 1166
menus (changing or adding), 1460
Mercurial Options, 605
Merge dialog box, 585
merging files, 585
Message line, 67
Message List, 460, 920
Message list colors, 891
Message List tool window, 460
Message modified color, 891
Message visited color, 891
metadata, 1402
Methods, 1441
Mini Find and Replace Dialog, 562
minimap, 98
Minimap

Language-Specific View Option, 982
Minimum level to collapse, 891
Minimum prefix, 998
Minimum running update time(ms), 961
Minimum size for fast delta creation (KB), 1044
Minutes before restarting, 942
mixed mode view (debugging), 242
Modal and modeless dialog boxes, 1431
mode name, 973
Modified Buffers dialog box, 42

1540

modified lines
reset, 1042
viewing, 360

Modify parameter list (Quick Refactoring), 469
modifying doc comment templates, 446
modifying selected text, 307
Module Initializations, 1411
modules (Slick-C), 707
Mono, 519
Mono (.NET) Options dialog, 522
Mono Options Assemblies tab, 522
Mono Options Compiler tab, 522
Mono Options dialog, 522
Mono Options Interpreter tab, 522
Mono Options Path tab, 522
Mono projects, 162
More Information (Quick Start), 57
Mouse Options

advanced, 928
mouse pointer option, 889
mouse selection, 951
Move dialog box, 199
moving code annotations, 453
Moving Controls, 1422
multi-file diff output dialog box, 581
multi-file undo/redo, 575
multiple cursors and selections, 322
multiple file search and replace, 762
multiple monitors, 93
multiple monitors (configuring), 39

N
Name (Code Templates Add New Item dialog box),
409
Name (Code Templates Add Parameter dialog
box), 409
Name element (Code Templates metadata file
reference), 418
Named Arguments, 1383
named bookmarks, 437

Bookmarks tool window, 778
deleting/clearing, 440
indicator, 438
navigating (go to), 439
setting, 437
toggle, 438
workspace bookmarks, 440

named sessions (debugging), 243
namespaces, 490, 491, 539, 540

name_info, 1386
NAnt, 230
NAnt targets, 231
navigate to named bookmark, 439
navigate to pushed bookmark (popping), 441
navigation, 323

between buffers/windows, 295
between symbols, 323
between words, 326
cursor movements, 329
go to offset, 330
in pages and files, 329
in statements and tags, 328
subword navigation, 326
symbol browsing, 333
to a specific line, 330
URLs, 331

Network and Internet Options, 1057
Network Settings, 1058
never, 977
New (File) dialog box, 184
New Annotation dialog, 451
new configurations, 489
New dialog, File tab, 717
New Extension dialog, 478
new features, 5
New Field dialog, 454
New File Tab, 184
New file tab position, 938
New Folder Name dialog, 156
New Project dialog, 163
New Project Tab, 719
New Project Tool (New Project Tool Wizard), 819
New Project Tool Wizard, 818
New Workspace Tab, 720
Newline characters, 980
next word, 326
Next word style, 933
no window reordering, 937
Non wildcard name match style, 1035
non-mdi editor control, 843
none, 977
Normalized Profile, 1128
Notification Options, 1055
Notifications, 286
notifications

options, 1055
no_code_swapping, 1485
null, 1347

1541

number lines every, 743
Number of backups to keep for each file, 1044
number of copies, 743
Number of elements to expand in arrays, 961
Number of lines to color above and below the
current page, 949
Number of lines to scan for Autos, 961
Number of off-page lines to color per pass (chunk
size), 949
Number of recent language modes to store, 1050
Number of recent project types to store, 1050
Numeric constants, 1341
numeric overflow or underflow, 624
numeric sort, 617

O
Object Instances, 1439
Objective-C Formatting Options, 485
offset navigation, 330
OK button (adding), 1426
one file per window, 936
Only highlight current set of references, 946
Open Application, 478
Open dialog box, 726
Open File Options, 1031
Open files using, 1032
Open Form dialog, 1424
Open Makefile as Workspace dialog, 817
Open Menu dialog box, 1165
Open Other Workspace Menu, 797
open site, 1061
Open tab (Project Properties), 817
Open tool window, 80
Open Tool Window, 721
Open URL dialog box, 188
open workspace, 157
opening files

quick open, 184
Opening Files, 186
opening Unicode files, 1110
opening URLs, 188
Operators, 1361
Options

auto-restore, 143
Export/Import, 1076
Export/Import Overview, 103
Overview , 102
Quick Start Configuration Wizard, 52
Saving, Restoring, and Backing Up, 103

options (using macros to discover/control), 706
Options dialog, 878
Options dialog shortcuts, 883
Options Export/Import, 1076

Export Groups, 1078
options for common keyboard keys, 97
options for pushed bookmarks, 442
Options History, 1075
Options Search, 882
Options tab (DIFFzilla), 862
OR operator, 1362
order, 617
Organize All Workspaces dialog, 157
Organize C# Imports, 528
Organize Imports, 501, 528
Organize Imports Options, 515, 529
Organize Java Imports, 501
organize_imports_options, 501, 528
organizing projects, 153
orientation, 743
OS prompt, 90
OS/390 Assembler Formatting Options, 494
Other wildcard name match style, 1035
output file, 858
output style, 859
Output tool window, 80

P
Package View, 149
Pad parentheses, 1009
Parameter element (Code Templates metadata file
reference), 418
Parameter info, 1008
Parameter Information, 203
parameter prompting, 394
Parameters element (Code Templates metadata
file reference), 420
paren style, 328
Parenthesis matching style, 934
parse statement, 1376
parsing options for C/C++, 490
parsing options for Verilog, 540
partial load (fast line count), 1038
Partial word wrap, 993
Pascal Formatting Options, 532
passive transfers, 1062
password, 745
paste, 314
pedantic, 1397

1542

perfile.xml, 1124
Perforce Options, 597
Perl

Running and Debugging, 267
Perl capture groups, 633
Perl Formatting Options, 876
Perl regular expressions, 646

compatibility issues with old syntax, 696
examples, 660

perl regular expressions
compatibility issues, 695

Perl tagged expressions, 633, 633
personal.sca, 1125
PHP

project, 256
Running and Debugging, 254

PHP Beautifier, 485
PHP Formatting Options, 545
Picture Box control, 1455
pictures (adding to image control), 1457
pictures (adding to list box), 1447
PL/I Formatting Options, 535
PL/SQL Formatting Options, 535
Place cursor at end, 954
Place cursor on focus click, 937
platform-specific notes, 94
Pointer Variables, 1358
pop bookmark, 441
port, 746
Preferences

see Options, 102
Prefix area width, 1146
Prefix matching (Options dialog), 883
preprocessing for C/C++, 491
preprocessing for Verilog, 539
Preserve column on top/bottom, 933
Preserve trailing, 999
preserve width on existing (comment wrapping),
991
Preview (Code Templates Add File dialog box),
408
Preview All shows modified file(s) on the left, 954
Preview tool window, 340

what is displayed, 342
Preview tool window options, 918
Preview window symbol lookup timeout (ms), 945
prime numbers, 625
print color, 742
print color coding, 742

Print dialog box, 740
print hex, 743
printing

insert formfeed, 740
Prioritize navigation to symbols in the current
project, 1010
procedures (defining), 1381
process buffer, 933
Process recognized xterm color output in Build
Window, 889
procs and prototypes, 325
Product Improvement Program, 44
Product Improvement Program Options, 1057
product registration, 3
product support, 43
Product Support

Contacting, 43
Product Updates, 1091
Product Updates Menu, 1089
Profile Combo Box, 486
profile name, 745
profiles (colors), 126
profiling (Slick-C), 1415
Program Info Tab (about SlickEdit), 1089
programmable macros, 707

loading, 708
Project Build Commands tab, 808
Project Configuration Settings dialog, 164
project directories tab, 803
project files

adding and removing, 171
creating, 176
importing, 176
listing, 832
loading, 178
makefiles, 164

Project Files Tab, 801
Project Live Errors tab, 815
Project Menu, 795
Project name, 720
Project properties (Tools), 804
Project Properties dialog, 800
Project tab (New dialog), 719
Project Templates

Export/Import Options, 1081
Project Tools Tab, 804
Project Tools toolbar, 76
Project type, 719
project types, 160

1543

dynamic languages, 162
GNU C/C++, 160
Java, 162
Mono, 162
other compilers, 161, 161
Perl, PHP, Python, 162
Ruby, 162
Visual Studio, 161

project wildcards, 156
project.vpe, 1125
projects, 148

build output options, 170
build settings, 168
build system options, 170
command line execution, 167
configurations, 164
configuring directories, 165
configuring tools, 165
creating, 162
creating custom types, 163
defining dependencies, 164
defining language-specific, 171
importing files, 176
libraries, 156
loading files, 178
makefiles, 164
managing, 160
managing source files, 171
managing within a workspace, 159
organizing, 153
Other project type, 160
project types, 160
project wildcards, 156
setting active, 164
sharing between workspaces, 159
specifying command directory, 167
version control, 156
with one file, 171

Projects tool window, 80
Prompt for value (Code Templates Add Parameter
dialog box), 409
prompt procedure, 1483
prompt replace dialog box, 767
Prompt string (Code Templates Add Parameter
dialog box), 409
Prompt to undo past last save, 1039
prompting from macros, 1482
Properties dialog box, 1421
protect read-only, 933

Protect read-only mode, 933
prototypes, 1390
Proxy Settings, 1064
pushed bookmarks, 441

bookmark stack, 442
indicator, 442
options, 442
popping, 441
pushing, 441
viewing, 442

PVCS, 603
Python

Running and Debugging, 262
Python Beautifier, 485

Q
Quick Brace, 425
Quick brace/unbrace one line statements, 877
quick create, 184
quick extract method, 469
quick modify parameter list, 469
quick open, 184
quick refactoring, 468

undo/redo, 468
Quick Refactoring Menu, 854
quick rename, 468
quick replace, 561
quick replace literal with constant, 470
quick search, 560
Quick Start, 52
Quick Start Configuration Wizard, 52
quote_key command, 740

R
Radio Button Control, 1445
rc variable, 1418
Read List dialog box, 200
read only indicator, 68
read only mode (macros), 843
read only mode (protect), 933
rebuild, 232
rebuilding tag files, 217
recognizing Unicode files, 1110
Record width, 729
recorded macros, 702

binding to keys, 704
deleting, 706
execute_last_macro_key, 704

1544

operations, 702
recording a new macro, 703
running, 705
saving and editing, 705
using to discover/control options, 706

recording tasks with annotations, 458
redeclvars, 1398
Redefine Common Key Options, 927
redo (multi-file), 575
redo replacement, 575
refactoring, 468
Refactoring Options, 1075
Refactoring results, 470
References, 920
references (options), 945
References tool window, 343

options, 347
References view, 343
reflow comment dialog box, 838
Reflow next, 933
reflowing comments, 448
Reflowing Text, 467
Regex Evaluator, 644
Regex Evaluator tool window, 644

entering expressions, 645
entering test cases, 644
options, 645

Registers tool window, 83
registration, 3
Regular Expressions,

An Overview,
Brief, 693
capture groups for Perl, 633
capture groups for SlickEdit, 636
capture groups for Vim, 638
minimal versus maximal matching, 631
Perl, 646
Perl examples, 660
search and replace with, 633, 636, 638
SlickEdit, 662
SlickEdit examples, 675
syntax option, 954
tagged search expressions, 633, 638
tagged search expressions for SlickEdit, 636
testing, 644
Unicode category specifications, 698
UNIX, 694
Vim, 677
Vim examples, 690

Reinsert after current, 1039
Release Notes Tab (about SlickEdit), 1089
Reload on switch buffer, 1041
reload prompt, 1040
Reload With Encoding dialog, 730
remote JVM, 244
remote Mono, 244
remote process (debugging), 244
remote to local directory mapping, 746
Remove Dialog Box, 594
remove duplicate lines, 618
Remove EOF character, 1042
removing files from a project, 171
removing SlickEdit, 33
Rename (Quick Refactoring), 468
reorder windows, 937
repeat command on selected dialog box, 200
replace

see also replacing, 560
replace command, 569
Replace in Files tab (Find and Replace), 769
Replace literal with constant (Quick Refactoring),
470
replace mode, 933
Replace params in target file (Code Templates Add
File dialog box), 408
Replace tab (Find and Replace), 767
replace toggle, 68
replacing, 560

Find and Replace tool window, 571
minimal vs maximal matching, 631
quick replace, 561
Regular Expressions,
replace and c commands, 569
see also searching, 560
tagged search expressions for SlickEdit, 633,
636, 638
undo/redo, 575

Reset, 487
Reset modified lines, 1042
resolve links, 746
Response timeout(s), 961
Restore cursor after replace, 955
Restore Default Options, 1080
retagging workspace, 210, 215
return statement, 1382
revision one, 858
revision two, 858
REXX Formatting Options, 535

1545

Right CTRL = Enter/Send, 1147
router, 1061
Ruby

Running and Debugging, 272
Ruby Formatting Options, 876
rule, symbol coloring, 129
Run-time error finding, 1415
Run/Debug tab (Project Properties), 813
running a program, 241
Running and Debugging Perl, 267
Running and Debugging PHP, 254
Running and Debugging Python, 262
Running and Debugging Ruby, 272
running recorded macros, 705
Running SlickEdit, 35
running SlickEdit, 35

multiple instances , 35

S
safe exit, 41
Same name, 1046
Same name different extension, 1046
Save after period of inactivity, 1045
Save after period of time, 1045
Save all prompts to name unnamed files, 1043
Save and Bind to Key, 843
save as (using), 191
Save As dialog box, 191
Save configuration, 1054
Save Failed dialog box, 191
Save File Options, 1041
Save files on loss of focus, 1042
save macro dialog box, 842
Save Multi-File Diff Output dialog box, 582
save password, 745
Save to, 1045
Save to different directory, 1045
Save/restore file position, 1039
saving files, 191
saving recorded macros, 705
SBCS/DBCS, 1108
sc.lang.IHashIndexable, 1349
sc.lang.IIndexable, 1347
sc.lang.IToString, 1356
SCC, 595

configuration, 596
opening a project, 597

Scoping and Declaring Variables, 1366
screen layout, 66

screen management, 93
scroll bars, 118
Scroll Markers, 463
Scroll style, 890
Scroll when, 890
search

see also searching, 560
search (go to offset), 330
search and replace, 560
Search backward, 954
search for, 760
Search for word matches if symbol is not found,
946
Search hidden text, 954
Search Menu, 756
Search Options, 951

Default regular expression syntax, 954
Search Options dialog box, 761
search order, 1131

executable files, 1131
Search results, 920
Search Results node, 882
Search results output, 573
Search Results tool window, 81
searching, 560, 954

classes, 78
Default Find and Replace GUI, 955
Excel files, 765
Find and Replace tool window, 571
find and slash commands, 565
Find Symbol tool window, 574
finding all symbols in file, 575
history retrieval, 954
incrementally, 561
initialization options, 954
Maximum buffer size for incremental search
(KB), 954
Maximum occurrence matches, 954
members, 78
Mini window options, 954
minimal vs maximal matching, 631
multiple files, 762
quick search, 560
regular expression syntax option, 954
Regular Expressions,
syntax-driven, 573
tagged search expressions for Perl, 633
tagged search expressions for SlickEdit, 636
tagged search expressions for Vim, 638

1546

undo/redo, 575
Word files, 765

Seek dialog, 330
seek offset position, 330
Select a Buffer dialog box, 299
Select Files With Attribute dialog, 199
Select Files With Extension dialog, 199
select first, 84
Select Mode dialog box, 474
Select Mouse Event dialog, 112
Select Symbol, 920
Select Symbol dialog, 783
Select Text to Paste dialog, 752
Selected text (if exists), 955
selecting a code block, 432
Selecting a mode, 474
Selecting Controls, 1420
selecting text, 302

block insert mode, 319
blocks (columns), 305
characters, 303
commands, 307
counting lines/characters, 305
drag-and-drop, 314
enumeration, 307
keyboard shortcuts, 303
lines, 304
modifying a selection, 307

Selection (Comments), 839
selection (creating alias from), 396
selection color, 302
Selection Functions Overview, 1474
Selection indicator, 67, 305
selection only, 742
Selection Options, 949
selection styles, 949
Selective Display, 363
Selective Display bracketing, 890
Selective Display dialog box, 788
Selective Display Function headers, 789
Selective Display line color, 891
Selective Display Multi-level, 791
Selective Display Preprocessor directives, 791
Selective Display Search Text, 788
Selective Display toolbar, 76
Selective Display, Expand/collapse, 929
server type, 745
service name, 1062
Set Attributes dialog, 200

set command, 1116
Set current directory when switching buffers, 1033
set named bookmark, 437
set pushed bookmark, 441
set scroll style, 118
Set Variable dialog box, 845
SETemplate element (Code Templates metadata
file reference), 421
setting

fonts, 120
setting active project, 164
Setting Properties, 1421
SFTP, 619
sftp tab, 1062
sharing code annotations, 450
sharing projects, 159
Sharing Your Configuration, 104
shell prompt, 90
shell scripts , 22
shelling, 90
Shelling from macro, 1480
shelving, 605
Short key names, 922
shortcuts for build and rebuild, 232
shortcuts in Options dialog, 883
shortcuts in text boxes, 95
Show all folders in directory panel, 1034
Show auto reload timeout notifications, 1041
Show bitmap in margin for each reference, 946
Show categories, 997
show changes, 858
Show close buttons on document tabs, 938
Show comments, 1009
Show dot files, 889
Show EOF character, 1039
Show extra line after last newline, 934
Show file name twice, 1050
Show files in Add Source Files dialog, 1036
Show folders in file list, 1034
show hidden files (Save As dialog), 732
show hidden files (Save Copy As dialog), 734
Show icons, 997
Show info for symbol under mouse, 1010
Show MDI menu in full screen mode, 922
Show new workspace dialog, 1051
Show parameters, 997
Show pictures, 736
Show preview for symbol under cursor, 1011
Show preview of symbols in tool windows after

1547

(ms), 945
Show preview of symbols in tool windows on
mouse-over, 945
Show pushed bookmarks, 956
Show set bookmarks, 956
Show value of symbol under mouse, 962
Show/match files in current file directory, 1034
Show/match files in history, 1034
Show/match open files, 1034
Show/match workspace and project files, 1034
Simple Variables, 1366
Single File Projects, 179
single line statements, 425
Size limit for comparing contents (KB), 1041
Sizing Controls, 1422
Slick-C Batch Files, Writing, 1392
Slick-C Beautifier, 485
Slick-C Debugger, 1416
Slick-C Formatting Options, 876
Slick-C headers, 709
Slick-C module, 707
Slick-C Profiler dialog, 1415
Slick-C profiling, 1415
Slick-C Stack, 81
Slick-C Stack tool window, 81
Slick-C variable, 708
SlickEdit book, 12
SlickEdit capture groups, 636
SlickEdit command line, 87

activating, 87
common commands, 91
history, 88
keyboard shortcuts, 89
prompting, 90
prompting (option), 929
shelling, 90

SlickEdit emulation keys, 1184
clipboard, 1188
command line, 1189
compiling and programming, 1191
cursor movement, 1185
debugging, 1192
deleting, 1186
files and buffers, 1190
inserting, 1185
macros, 1192
miscellaneous, 1193
searching, 1186
selecting, 1187

text box editing, 1188
windowing, 1190

SlickEdit File Manager, 197
SlickEdit regular expressions, 662

compatibility issues with old syntax, 697
examples, 675

SlickEdit tagged expressions, 636
SLICKEDITCONFIG, 1113
smart next window, 296
Smart next window style, 937
Smart Open, 187

e command, 184
e command options, 185
Open Tool Window, 721

SmartPaste, 368
Smooth horizontal scroll, 890
Smooth vertical scroll, 890
snippets, 386
soft wrap, 993
SoftWrap, 362
sort (selection), 617
Sort buffer, 617
sort commands, 618
sort dialog box, 617
Sort on selection, 617
Sort within selection, 617
Sort workspaces and projects on the All
Workspaces menu, 1050
sorting text, 617

commands, 618
SortOrder element (Code Templates metadata file
reference), 421
sort_on_selection command, 618
Source Diff, 576
Source file name (Code Templates Add File dialog
box), 408
Space always inserts space, 998
space between, 743
Space inserts longest unique prefix, 998
Special Character Options, 920
Special Characters, 980
special characters tab, 920
specifying tabs for a file extension, 368
spell check, 614

in multiple files, 615
operations, 614
running, 614

Spell Check Files dialog box, 615
Spell Check Menu, 856

1548

Spell Check Options, 1067
spelling dialog box, 614
spill file (and buffer cache), 191
Spill file path, 1053
Spin control, 1443
Split line comments, 988
Split strings, 989
SQL Server Formatting Options, 535
ssh executable, 1062
ssh tab, 1062
st command, 1413
stack class, 203
Standard HTML and XML Case and Quoting Tab,
545
Standard HTML and XML General Tab, 544
Standard HTML and XML Tags Tab, 545
Standard Open dialog box, 726
Standard property, 1128
Standard toolbar, 77
Start after minutes idle, 942
Start after seconds idle, 942
start characters, 1014
Start in column, 987
Start mode, 933
start on file, 1032
Start up options, 36
Start wrapping on line, 990
starting FTP connection, 620
state file, 709
state file (alternate), 40
Statement Level Tagging, 207
statement navigation, 328
status line, 67
stopping FTP connection, 621
strict, 1398
strict2, 1398
strictarglists, 1398
strictboolean, 1399
strictellipsis, 1400
strictenums, 1399
strictincludes, 1400
strictnames, 1400
strictnumbers, 1400
strictparens, 1401
strictpointers, 1399
strictprotos, 1401
strictreturn, 1401
strictsemicolons, 1401
strictstrings, 1402

string concatenation, 1364
String editing, 989
string editing (comments), 447
string literals, 1339
string operators, 1345
Strip trailing spaces, 1042
struct, 1349
structure matching, 327

setting match style, 328
viewing/defining, 327

submenus, 84
subsystem, 1062
Subversion, 598
Subversion Options, 601
subword navigation, 326
summary of keys, 106
support (for SlickEdit), 43
Suppress prompt unless modified, 1040
surrogate support, 1111
Surround With, 431

alias, 432
commands, 433

Surround With Dialog, 431
surrounding, 427, 431

unsurrounding, 435
surrounding text, 427
SVN History Dialog, 598
switch statement, 1379
Symbol Arguments tool window, 357
Symbol Browser Filter Options dialog box, 354
symbol browsing, 333

base/derived classes, 354
Class tool window, 333
Current Context Toolbar, 337
Defs tool window, 338
Find Symbol tool window, 340
Preview tool window, 340
References tool window, 343
symbol refs/callers tree, 353
symbol uses/call tree, 352
Symbols tool window, 348
Tag Arguments tool window, 357
Tag Properties tool window, 357

symbol callers, 353
Symbol Coloring, 123, 127

Options , 899
rule, 129
Unidentified Symbols, 129
View Menu , 787

1549

Symbol Coloring Options, 899
Symbol declaration, 998
symbol highlighting, 575
symbol navigation, 323

between multiple instances, 325
browsing symbols, 333
Find Symbol tool window, 325
more methods, 325

Symbol Properties tool window, 357
Symbol Refs/Callers tree dialog box, 353
Symbol Translation Editor, 554
symbol use, 352
Symbol Uses/Calling tree dialog box, 352
Symbol view, 348
symbols

comparing, 580
Symbols, 920, 996
Symbols tool window, 348

base/derived classes, 354
filter options, 354
filtering symbols, 350
options, 350
refs/callers tree, 353
uses/calling tree, 352

Sync background colors, 893
Sync current directory, 1033
sync vertical line (comment wrapping), 991
syntax expansion, 397
Syntax Expansion, 978
Syntax expansion, 997
Syntax expansion (Overview), 397
Syntax indent, 982
Syntax indent ruler, 890
syntax-driven search, 573
system configuration files, 1126
system state file, 709
SystemVerilog Beautifier, 485, 539

T
Tab cycles through choices, 998
tab groups, 74
Tab inserts longest, 998
Tab key, 367, 977
Tabs, 983
tabs dialog box, 368
Tabs dialog box, 837
Tabs ruler, 890
tabular lists, 72
Tag Compiler Libraries Dialog, 210

Tag file cache maximum, 947, 1054
Tag file cache size, 946, 1053
Tag file on save, 942
Tag file on switch buffer, 942
tag files, 490

building, 210, 215
categories, 209
language-specific libraries, 212
rebuilding, 217
search order, 216
workspace files, 210, 215

Tag Files (Language-Specific), 1011
tag navigation, 328
tagged expressions for Perl, 633
tagged expressions for SlickEdit, 636
tagged expressions for Vim, 638
tagging, 202, 208

compiler libraries, 210
workspace files, 210, 215

tagging (identifiers), 1014
tagging (minutes before retagging), 942
tagging cache, 1053
Tagging Excludes, 875
Tags tab (Color Coding Setup), 1025
Target file name (Code Templates Add File dialog
box), 408
Tcl Options, 876
Template file (Template Manager dialog box), 407
Template Manager dialog box (Code Templates),
406
Template Options dialog, 408
TemplateContent element (Code Templates
metadata file reference), 422
TemplateDetails element (Code Templates
metadata file reference), 423
Templates list (Code Templates Add New Item
dialog box), 409
Templates list (Template Manager dialog box), 407
Terminal tool window, 81
testing regular expressions, 644
Text Box control, 1444
text box editing keys, 95
text compare, 576
text editing

block insert mode, 319
inserting characters, 319
selections, 302
sorting, 617

text selection, 951

1550

third-party workspaces, 159
Threads tool window, 83
three way merge editing, 585
Throw away file lists, 933
Time display style, 890
timeout, 746
Timeout (s), 1045
Timeout after (ms), 949
toggle, 68
toggle bookmark, 438
Tool Options, 1066
Tool Window & Toolbar Options, 916
Tool Window, Toolbar Options, 916
Tool Windows

Customizing, 76
tool windows (overview), 74
Tool Windows Options, 915
Tool Windows Options dialog, 915
Toolbar and Tool Window Layout

Export/Import Options, 1081
Toolbar Control Properties dialog, 793
Toolbar Customization, 914
Toolbar Customization dialog, 914
Toolbar Customizations

Export/Import Options, 1081
Toolbar Options, 914
Toolbar update delay(ms), 962
toolbars, 74

displaying, 74
docking, 74

Toolbars
Customizing, 75

Toolbars dialog, 914
tools (for project configuration), 165
Tools Menu, 852
Tools tab (Project Properties), 804
Tools toolbar, 77
Top of file line, 889
Track active project in workspace along with
workspace history, 1050
transfer type, 745
Truncate file at EOF, 1040
truncation, 978
Turn off Highlight matching blocks when file larger
than (KB), 934
tutorials, 1094

C#, 1095
C/C++, 1094
Java, 1105

two up, 743
twopass, 1402
Type Casting, 1367
typeless, 1359
typeless variable declaration, 1367
types of code annotations, 449

U
ucase, 318
UCN, 1111
unattended installation, 26
unbinding a key, 114
Unbrace, 425
uncommenting, 443
Underline URLs, 889
undo (multi-file), 575
undo replacement, 575
Unicode, 1109

category specs for reg expressions, 698
converting to UCN, 1111
file recognition, 1110
implementation, 1111
limitations, 1111
opening files, 1110
surrogate support, 1110

Unidentified Symbols, 129
uninstalling SlickEdit, 33
union, 1351
Unit Test, 920
Unit testing

JUnit , 502
Unit Testing tool window, 81
UNIX regular expressions, 694
UNIX temp environment, 1053
Unlist Files with Attributes dialog, 199
Unlist Files With Extension dialog, 199
Unlist Search dialog box, 200
unload hot fix, 33
unload module, 708
Unlock Dialog Box, 593
Unnormalized Profile, 1128
Unshelve dialog box, 609
unsurround block, 435
unsurrounding text, 427
Update after (ms) idle, 949
Update after (ms) idle (0 implies no delay), 948
Update after idle, 949
update manager, 30
Update Manager Options dialog, 1091

1551

Update workspace tag file on activate, 942
Update workspace tag file on open, 942
updates (to SlickEdit), 30
upgrading SlickEdit, 30
upload filename case, 746
URI Scheme Options, 1063
URL (opening), 188
URL Mapping Options, 1062
url mappings, 543
URL navigation, 331
Use background tagging, 941
Use background tagging threads, 941
Use Clear key as NumLock, 929
Use Command+key for dialog hotkeys, 929
Use Command+key for menu drop-downs, 929
Use file association, 478
use firewall/proxy, 746
use hanging indent (comment wrapping), 991
use smart merge, 859
Use strict case-sensitivity rules, 1000, 1000
Use subword matching rules, 1000
Use Syntax Expansion on space, 978
Use timeout, 1044
Use undo, 1039
Use workspace bookmarks, 956
user configuration files, 1123
user id, 745
User interface, 66

tabular lists, 72
user preferences, 102
user state file, 709
User-Created Forms

Export/Import Options, 1081
User-Created Menus

Export/Import Options, 1081
User-Created Toolbars

Export/Import Options, 1081
User-Loaded Modules dialog, 841
User-Recorded Macros

Export/Import Options, 1081
user.cfg.xml, 1125, 1128
user.cfg.xml File Format, 1128
usercpp.h, 1125
usersystemverilog.svh, 1125
userverilog.v, 1125
Using Version Control, 590
usrprjtemplates.vpt, 1125
UTF-8, 1108

V
Value (Code Templates Add Parameter dialog
box), 409
variable (Slick-C), 708
Variable editor, 845
Variable Editor dialog box, 845
Variable Initializations, Details, 1367
VBScript Beautifier, 485
VBScript Formatting Options Standard Edition, 532
Vera Options, 876
Verilog Beautifier, 485, 539
Verilog Beautifiers, 539
Verilog parsing options, 540
Verilog preprocessing, 539
version control, 590

Add to shelf, 607
advanced settings, 595
configuration, 595
CVS, 603
Git, 603
List shelves, 608
overview, 590
PVCS, 603
SCC, 595
setting up command line systems, 595
shelving, 605, 606
Subversion, 598
using, 590
workspaces and projects, 156

Version Control Advanced Settings, 1070
version control command setup dialog box, 595
Version Control Commands Setup Dialog box,
1069
Version Control Menu, 853
Version Control Options, 1067
Version Control Providers, 1069
Version Control Setup dialog box, 595
Version Control Setup Options, 1067
Vertical line color, 889
Vertical line columns, 889
Vertical scroll bar, 889
vi-:!, 1232
vi-:$, 1232
vi-:%, 1232
vi-:', 1232
vi-:'<, 1232
vi-:'>, 1232
vi-:., 1232

1552

vi-:/, 1232
vi-:<, 1232
vi-:>, 1232
vi-:?, 1232
vi-:b, 1233
vi-:bdelete, 1232
vi-:bnext, 1233
vi-:bprevious, 1233
vi-:bufdo, 1233
vi-:buffer, 1233
vi-:buffers, 1233
vi-:cd, 1233
vi-:close, 1233
vi-:copy, 1233
vi-:delete, 1233
vi-:edit, 1233
vi-:file, 1233
vi-:g, 1233
vi-:g!, 1233
vi-:global, 1233
vi-:global!, 1233
vi-:help, 1233
vi-:join, 1234
vi-:k, 1234
vi-:list, 1234
vi-:move, 1234
vi-:n, 1234
vi-:next, 1234
vi-:nohlsearch, 1234
vi-:number, 1234
vi-:p, 1234
vi-:print, 1234
vi-:put, 1234
vi-:q, 1234
vi-:q!, 1234
vi-:qall, 1234
vi-:quit, 1234
vi-:quit!, 1234
vi-:r, 1234
vi-:read, 1234
vi-:redo, 1235
vi-:registers, 1235
vi-:rewind, 1235
vi-:s, 1235
vi-:sbuffer, 1235
vi-:set, 1237
vi-:shell, 1237
vi-:split, 1237
vi-:substitute, 1235

vi-:t, 1237
vi-:tag, 1237
vi-:undo, 1237
vi-:version, 1237
vi-:vglobal, 1237
vi-:vsplit, 1237
vi-:w, 1237
vi-:wall, 1238
vi-:wq, 1238
vi-:wqall, 1238
vi-:write, 1237
vi-:x, 1238
vi-:xall, 1238
vi-:yank, 1238
vi-:z, 1238
view

hex/line hex, 365
line number, options, 981
line numbers, 361
special characters, 360

View Menu, 785
View Options (Language-Specific), 979
view special characters, 360
View text symbols (Special Characters tab), 920
viewing

current line, 359
modified lines, 360

viewing accessible members, 356
viewing symbol callers, 353
viewing symbol properties, 351
viewing symbol references, 343
viewing symbol uses, 352
Vim capture groups, 638
Vim emulation keys, 1216

clipboard, 1222
command line and text box editing, 1223
compiling and programming, 1227
cursor movement, 1216
debugging, 1228
deleting, 1220
files and buffers, 1225
inserting, 1219
macros, 1229
miscellaneous, 1229
searching, 1220
selecting, 1221
windowing, 1226

Vim emulation options, 929
Vim EX commands, 1232

1553

Vim EX range specifiers, 1232
Vim regular expressions, 677

examples, 690
Vim tagged expressions, 638, 639
Vim tutorial, 1106
Virtual Memory Options, 1053
visible lines only, 742
Visual C++ emulation keys, 1176

clipboard, 1179
command line and text box editing, 1180
compiling and programming, 1181
cursor movement, 1176
debugging, 1182
deleting, 1177
files and buffers, 1181
inserting, 1177
macros, 1183
miscellaneous, 1183
searching, 1178
selecting, 1178
windowing, 1181

Visual C++ Setup dialog box, 223
Visual Studio emulation keys, 1296

clipboard, 1299
command line and text box editing, 1299
compiling and programming, 1301
cursor movement, 1296
debugging, 1302
deleting, 1297
files and buffers, 1301
inserting, 1297
macros, 1303
miscellaneous, 1304
searching, 1297
selecting, 1298
windowing, 1301

Visual Studio projects, 161
Visual Studio workspaces, 159
VPW extension, 145
vpwhist file extension, 1126
vrestore.slk, 1125
vs, 36
vsbuild to compile files, 223
Vscroll Bar control, 1452
vsdebugio connection port, 962
vsdiff, 584
vsdiff Invocation Options, 584
VSLICK, 1113
vslick.sta, 38, 1125

VSLICKALIAS, 1114
VSLICKBACKUP, 1114
VSLICKBIN, 1114
VSLICKBITMAPS, 1114
VSLICKINCLUDE, 1403
VSLICKLOAD, 1114
VSLICKMACROS, 1114
VSLICKMISC, 1114
VSLICKPATH, 1113
VSLICKRESTORE, 1113
VSLICKTAGS, 1114
VSLICKXNOPLUSNEWMSG, 1115
VSLICKXTERM, 1114
VSNet emulation keys, 1296
VST, 1115
vstw program, 1413
vstw.exe program, 1413
vusrobjs.e, 1126

W
Watch tool window, 83
watches, 246
watchpoints, 246
Web Browser Setup, 544
Web Browser Setup Options, 1065
web development, 541
welcome, 2
what is key, 89
When tab key reindents, 977
where is command, 89
while (loop), 1376
wid_expression, 1439
Wildcards, 692
Window Font dialog box, 121
window font dialog box, 1084
Window left margin, 889
Window Menu, 1083
window ordering, 937
windows, 288
Windows PowerShell Options, 876
Windows style Browse for Folder dialog, 922
Windows temp environment, 1053
Word

multi-file find, 765
word boundary, 993
word chars, 975
Word completion, 997
word navigation, 326
word wrap, 993

1554

Word Wrap Options (Language-Specific), 991
word wrap while typing, 993
workspace bookmarks, 440
workspace files (listing), 832
workspace history list, 1121
Workspace Properties dialog, 798
Workspace tag file only, 942
workspaces, 148

creating, 157
managing, 156
managing projects, 159
opening and closing, 157
sharing projects, 159
third-party, 159

workspaces and projects, 148
Workspaces and Projects (Quick Start), 56
wrap, 762

SoftWrap, 362
Wrap at beginning/end, 954
Wrap line length, 1039
wrapping (comments), 448
Write List dialog box, 200
Write Selection dialog box, 184

X
Xcode build methods, 230
Xcode emulation keys, 1280

clipboard, 1284
command line and text box editing, 1283
cursor movement, 1280
deleting, 1281
files and buffers, 1284
inserting, 1281
macros, 1285
miscellaneous, 1285
searching, 1283
selecting, 1281

Xcode workspaces, 159
xcom command, 1393
XEDIT line commands, 1147
XEDIT Line Commands, 1161
XML, 541

beautifying, 546
DTD caching, 542
toggle between begin/end tags, 543
turn off auto-validate, 1122
XMLDoc Editor, 542

XML Beautifier Case and Quoting tab, 550
XML Beautifier Comments & Languages tab, 552

XML Beautifier dialog box, 546
XML Beautifier Indent tab, 546
XML encoding, 1108
XML Formatting Options, 542
XML property, 1128
XML symbol translation, 553
XML toolbar, 541
XMLDoc Beautifier dialog box, 531
XMLDoc comments, 445
XMLDoc Editor dialog box, 530
XMLDOC Editor dialog box, 542
XOR operator, 623

Z
Zoom (hide tabs) when one window, 936

1555

1556

	Welcome to SlickEdit 2020
	Chapter 1. Introduction
	Getting the Most Out of SlickEdit®
	Learn About Our Cool Features
	Write More Code, Faster
	Quick Start
	Register Your Product
	Get Maintenance & Support

	New Features and Enhancements
	Language Support
	Project Support
	Sharing Your Configuration with Multiple Instances
	New Interactive Tool Window
	New Terminal Tool Window
	DIFFzilla
	Version Control
	Tagging
	Debugger
	Find and Replace
	Appearance Enhancements
	Files
	Printing Enhancements
	Miscellaneous
	General

	Documentation
	Documentation Updates/Feedback
	Other Resources
	Documentation Conventions
	Menus and Dialogs
	Code Syntax Conventions

	The Help System

	Supported Languages and Environments
	Supported Languages and File Types
	Special Features for macOS
	Embedded Languages
	Embedded Languages in HTML
	Embedded Languages in Perl and Other Scripting Languages

	Supported Editor Emulations
	Supported Project Types
	Supported Version Control Systems

	Installation
	Installing SlickEdit®
	Windows
	Linux/UNIX
	Mac
	Unattended Installation

	Licensing (Pro and Standard edition only)
	License Manager
	Concurrent User Licenses
	Borrowing a License

	Named User Licenses

	Upgrading SlickEdit®
	Upgrading to a New Version
	Checking for Updates
	Migrating Settings
	Keeping the Previous Version

	Applying Hot Fixes
	Manually Installing Hot Fixes
	Automatically Installing Hot Fixes
	Listing Installed Hot Fixes
	Unloading Hot Fixes

	Uninstalling SlickEdit®
	Windows
	Linux/UNIX
	Mac

	Startup and Exit
	Running SlickEdit
	Running SlickEdit for the First Time
	Running Multiple Instances

	Invocation Options
	Exiting the Program
	Exiting with Modified Buffers
	Default Exit Options

	Product Support
	Contacting Product Support

	Product Improvement Program
	Performance Tuning
	First Steps
	File Locations
	Source Files
	Workspaces and Project Files
	SlickEdit Configuration Files

	Memory and Caching (Pro only)
	Tuning Context Tagging (Pro only)
	Background Tagging (Pro only)
	Context Tagging Maximums
	References

	Add as Wildcard
	Profiling

	Chapter 2. Quick Start
	Quick Start Configuration Wizard
	Emulation
	Colors
	Fonts
	Coding
	Associate File Types
	Workspaces and Projects Setup
	Context Tagging (Pro only)
	More Information

	Additional Settings
	General Options
	Language-Specific Options

	Set Up a Workspace and Project
	Create a New Workspace
	Create a New Project
	Add Files to the Project

	Start Coding

	Chapter 3. User Interface
	Screen Layout
	The SlickEdit Interface
	Editor Windows
	Margin Icons

	Tabular Lists

	Toolbars and Tool Windows
	Displaying Toolbars and Tool Windows
	Docking and Grouping Toolbars and Tool Windows
	Customizing Toolbars
	Changing Toolbar Button Command Properties

	Customizing Tool Windows
	Available Toolbars and Tool Windows
	Toolbars
	Debug (Pro only)
	Edit
	HTML
	Project Tools (Pro only)
	Selective Display
	Standard
	Current Context toolbar (Not in Community edition)
	Context Tagging® (Pro only)
	Tools
	XML

	Tool Windows
	Backup History (Not in Community edition)
	Bookmarks
	Breakpoints (Pro only)
	Build (Pro only)
	Class (Pro only)
	Clipboards
	Code Annotations (Pro only)
	Defs (Not in Community edition)
	Exceptions (Pro only)
	Feature Notifications
	File Tabs
	Files
	Find and Replace
	Find Symbol (Pro only)
	FTP Client (Not in Community edition)
	FTP (Not in Community edition)
	Message List (Pro only)
	Open
	Output
	Preview (Pro only)
	Projects
	References (Pro only)
	Regex Evaluator
	Search Results
	Slick-C® Stack
	Symbols (Pro only)
	Symbol Properties (Pro only)
	Unit Testing (Pro only)
	Terminal (Pro only)
	Interactive (Pro only)

	Debug Tool Windows (Pro only)
	Autos
	Breakpoints
	Call Stack
	Loaded Classes
	Debug Sessions
	Exceptions
	Locals
	Members
	Memory
	Registers
	Threads
	Watch

	Menus
	Right-Click Context Menus
	Context Menu Settings

	Menu Hotkeys
	Alt Menu
	Alt Menu Hotkeys

	Short Key Names in Menus

	SlickEdit® Command Line
	Activating the Command Line
	Command Line History
	Command Line Completion
	Disabling Command Line Completions

	Using Shortcuts Inside the Command Line
	Using the Command Line to View Key Binding Associations
	Determining the Command of a Key Binding
	Determining the Key Binding of a Command

	Command Line Switches
	Starting a Program from the Command Line (Shelling)
	Command Line Prompting
	Common SlickEdit® Commands

	Screen Management
	Full Screen Mode
	Multiple Monitor Support

	Using the Mouse and Keyboard
	Emulations
	Platform-Specific Notes
	macOS Notes

	Key Shortcuts in Text Boxes
	Redefining Common Keys

	Using the Minimap
	Viewing the Minimap
	Minimap Context Menu

	Chapter 4. User Preferences
	Introduction to User Preferences (Options)
	Global Options
	Language-Specific Options
	Saving, Restoring, and Backing-up User Preferences
	Options Export and Import

	Sharing Your Configuration with Multiple Instances
	Limitations with sharing your configuration with multiple instances

	Support for .editorconfig Files

	Emulations
	Supported Emulations
	Changing Emulations
	Determining Keys/Functions

	Key and Mouse Bindings
	What is a Binding?
	Managing Bindings
	Viewing and Filtering Bindings
	Creating Bindings
	Editing Bindings
	Removing Bindings
	Exporting and Importing Bindings
	Exporting Bindings
	Importing Bindings

	Saving a Bindings Chart
	Running a Command/Macro using the Key Bindings Dialog
	Resetting Default Bindings
	Working with Key Binding Ranges

	Key Binding Settings
	Key Message Delay
	Using Shorter Key Names in Menus

	Cursor, Mouse, and Scroll Settings
	Setting the Cursor Style
	Hiding the Mouse Pointer
	Displaying Tool Tips
	Scroll Bar and Scroll Style Settings

	Fonts
	Setting Fonts for Screen Elements
	Setting Editor Window Fonts

	Colors, Color Coding, and Symbol Colors
	Colors
	Setting Colors for Screen Elements
	Using Color Profiles
	Setting an Embedded Language Color

	Symbol Coloring (Pro only)
	Symbol Coloring Profiles (Pro only)
	Unidentified Symbols

	Color Profile Compatibility (Pro only)
	Selecting a Symbol Coloring Profile (Pro only)
	Editing a Symbol Coloring Profile (Pro only)
	Creating a New Symbol Coloring Profile (Pro only)
	Selecting a Symbol Coloring Profile for the Current File (Pro only)
	Language-Specific Symbol Coloring Settings (Pro only)
	Symbol Coloring Performance Settings (Pro only)

	Color Coding
	Creating Color Coding for a New Language
	How to add new color coding words (keywords, library symbols, operators, punctuation etc.)
	How to add a line comment
	How to add a multi-line comment
	How to add a string
	How to define color coding for numbers
	How to add a interpolation to a string
	Tips on using regular expressions matching in color coding
	Advanced Color Coding Configuration

	Restoring Settings on Startup
	Setting File Associations

	Chapter 5. Workspaces, Projects, and Files
	Workspaces and Projects
	Overview of Workspaces and Projects
	Viewing your Files in the Projects tool window
	Wildcard Directory Folder
	Folders for File Types (.cpp, .h, .png, .rc, etc.)
	Folders for each Package or Namespace
	Folders for each Directory
	Customized Folders for Directories

	Organizing Workspace (.vpw) and Project (.vpj) Files
	Version Control
	Project Wildcards
	Working with Libraries (Pro only)

	Managing Workspaces
	Opening and Closing Workspaces
	Creating Workspaces
	Organizing Workspaces
	Managing Projects within a Workspace
	Sharing Projects between Workspaces
	Working with Third-Party Workspaces

	Managing Projects
	Project Types (Pro only)
	GNU C/C++
	Microsoft Visual Studio
	Other C/C++ Compiler Compatible with GDB (UNIX only)
	C/C++ Compiler Compatible with LLDB (macOS and 64-bit Linux only)
	Other C/C++ Compiler
	Java
	Mono
	Perl, PHP, and Python
	Other Dynamic Languages, Including Ruby

	Creating Projects
	Creating Custom Project Types (Pro only)
	Setting the Active Project
	Defining Project Dependencies (Pro only)
	Project Configurations (Pro only)
	Configuring Project Directories
	Configuring Project Tools (Pro only)
	Setting Language-Specific Options
	Command Line Execution
	Specifying a Command Directory
	Other Options

	Configuring Build Settings (Pro only)
	Build Output Options
	Build System Options

	Defining Language-Specific Projects

	Managing Source Files
	Adding and Removing Files
	How to Add or Remove Files From a Project
	Add Files
	Add Tree

	Creating New Files
	Import Files
	Importing Makefiles
	Loading Project Files for Editing

	Single File Projects (Pro only)
	Overview
	Configuring Single File Project Profiles

	Working with Files
	Overview
	A Word of Caution for Binary Files

	The Working Directory
	Automatic Changes to the Working Directory
	Manually Changing the Working Directory
	Changing Directories From the SlickEdit® Command Line

	Working Directory in the Build Window (Pro only)

	The Files Tool Window
	Creating Files
	Using the e Command
	Using the New File Dialog
	Using Code Templates
	Using Write Selection

	Opening Files
	Explicitly Opening Files
	Implicitly Opening Files
	Recently Opened Files
	Finding Files
	Opening URLs
	Inserting Files
	Invoke and Edit
	Options for Opening Files
	Activating Change Directory
	Setting Global Load Options
	Working with Large Files
	Different Options for Different Drives

	Setting Language-Specific Load Options

	Saving Files
	Options for Saving Files
	Setting Global Save Options
	Setting Language-Specific Save Options
	Setting Backup Options
	Setting AutoSave Options
	Setting Files of Type Filter Options

	File Backups
	Backup History

	Closing Files
	The SlickEdit® File Manager
	Creating a New File List
	Selecting Files in the File List
	Operating on Selected Files

	Chapter 6. Context Tagging® (Pro only)
	Context Tagging Features (Pro only)
	Tag-Driven Navigation (Pro only)
	List Members (Pro only)
	Parameter Information (Pro only)
	Auto List Compatible Parameters (Pro only)
	Completions (Pro only)
	Symbol Browsing (Pro only)
	Statement Level Tagging (Pro only)

	CTags Based Tagging Features (Standard only)
	Tag-Driven Navigation (Standard only)
	Completions (Standard only)

	Building and Managing Tag Files
	Tag File Categories (Pro only)
	Building Tag Files (Pro only)
	Creating Tag Files for Workspace Files (Pro only)
	Creating Tag Files for Compiler-Specific Libraries (Pro only)
	Creating Language-Specific Tag Files (Pro only)
	Configuring Context Tagging for COBOL (Pro only)
	Configuring Context Tagging for Other Languages (Pro only)

	Building CTags Based Tag Files (Standard only)
	Creating Tag Files for Workspace Files (Standard only)

	Managing Tag Files (Pro only)
	Tag File Search Order (Pro only)
	Example: C/C++ Tag File Search Order
	Example: Java Tag File Search Order

	Rebuilding Tag Files (Pro only)

	Context Tagging® Options (Pro only)
	General Context Tagging® Options
	Language-Specific Context Tagging® Options (Pro only)

	Chapter 7. Building, Running, and Debugging (Pro only)
	Building and Compiling (Pro only)
	Project Configurations in Builds (Pro only)
	Using Build and Compile Operations (Pro only)
	Compiling a Project
	Using VSBUILD to Compile
	Compiling a Visual C++ Project

	Specifying Build on Save
	Specifying Open Commands
	Escape Sequences for Build Commands

	Language-Specific Build Methods (Pro only)
	Build Methods for GNU C/C++
	Cygwin: Using GNU C/C++ 'alternatives' system

	Build Methods for Xcode
	Build Methods for Ant and NAnt
	Invoking Ant or NAnt Targets
	Setting Shortcuts for Build and Rebuild

	Working with Build Errors (Pro only)
	Viewing Errors
	Viewing Errors in the Editor Window
	Viewing Build Results in the Build Tool Window
	Viewing Build Errors in the Message List Tool Window
	Listing Errors with list-errors

	Navigating from Build Errors to Source Locations
	Parsing Errors with Regular Expressions
	Configuring Error Parsing
	Enabling Expressions
	Setting Priority
	Resetting Configuration
	Adding New Categories
	Adding New Expressions
	Exclusions

	Editing Expressions
	Error Expression Groups
	Sample: Creating a New Error Parsing Expression
	Testing Expressions

	Running and Debugging (Pro only)
	Running a Program(Pro only)
	Debugging (Pro only)
	64-bit Versus 32-bit Programs
	Mixed Mode View in Debugger
	Debug Key Bindings
	Multiple Session Debugging
	Named Sessions
	Attaching to a Running Process (GNU C++ or Clang only)
	Attaching to a Remote Process (GNU C++ or Clang only)
	Attaching to a Core File (GNU C++ or Clang, UNIX only)
	Attaching to a Remote JVM (Java only)
	Attaching to a Remote VM (Mono only)

	Setting Breakpoints (Pro only)
	Setting Conditional Breakpoints
	Watches and Watchpoints
	Setting Java or C# Exception Breakpoints
	Relocatable Code Markers

	Generate Debug
	Viewing Debugger Info and Setting Options
	Debugger Tool Windows

	Debugging GNU C/C++ (Pro only)
	Debugging Microsoft Visual Studio C++ Programs Using WinDbg (Pro only)
	Running and Debugging PHP (Pro only)
	Installing Xdebug
	Setting Up a PHP Project
	Executing and Debugging a Web Page
	Executing and Debugging a Local Script
	PHP Options
	Run Options
	Debug Options

	Using an SSH Tunnel to Debug a Remote Web Page

	Running and Debugging Python (Pro only)
	Executing and Debugging a Local Script
	Debugging a Remote Script
	Python Options
	Run Options
	Debug Options
	Remote Mappings

	Running and Debugging Perl (Pro only)
	Executing and Debugging a Local Script
	Debugging a Remote Script
	Using an SSH Tunnel to Debug a Remote Script
	Perl Options
	Run Options
	Debug Options
	Remote Mappings

	Running and Debugging Ruby (Pro only)
	Executing and Debugging a Local Script
	Debugging a Remote Script
	Using an SSH Tunnel to Debug a Remote Script
	Ruby Options
	Run Options
	Debug Options
	Remote Mappings

	Running and Debugging Google Go (Pro only)

	Working With Google Web Toolkit Projects (Pro only)
	Getting Started
	Debugging (Java Only)
	Deploying to the Google App Engine

	Working With Android Projects (Pro only)
	Getting Started
	Android Toolbar

	Building and Running
	Debugging
	Java
	C/C++

	Chapter 8. Editing Features
	Notifications
	Feature Notifications
	Notification Tool Window

	Files, Buffers, and Editor Windows
	Managing Windows
	Document Tabs
	Document Tab Context Menu
	Customizing the Default Layout Applied to Dragged out Document Tabs
	Docking Tool Windows to Floating Window Groups

	Changing the Window Left Margin Width
	Splitting Windows
	Duplicating Windows
	Tiling Windows
	Manipulating Tiled Windows

	Switching Between Buffers or Windows
	Next Window Style
	Buffer and Window Switching Commands
	Listing Open Files
	Linking to a Window

	Closing Buffers and Windows

	Basic Editing
	Overview
	SlickEdit and Selections
	SlickEdit® Clipboards
	Insert/Replace Editing Mode
	Improve Your Editing Efficiency
	Undoing Edit Operations

	Selections
	Selection Types
	Character Selections
	Starting/Extending a Character Selection

	Line Selections
	Block Selections

	Selection Styles
	Selection Indicator
	Cycling Through Selections
	Operating on Selected Text

	Cut, Copy, Paste, and Move
	Cutting and Deleting
	Copying Text
	Pasting Text
	Moving Text

	Clipboards
	Viewing and Inserting Clipboards
	Named Clipboards
	Clipboards in the Command Line and Text Boxes
	Setting the Max Number of Clipboards

	Other Operations
	Inserting Lines
	Case and Capitalization of Text
	Inserting Literal Characters
	Block Insert Mode
	Hex Mode Editing
	Hex/Text View Key Bindings

	Multiple Cursors and Selections
	Adding a Cursor or Selection
	When Should I use Multiple Cursors and Selections
	Cut/Paste and Multiple Cursors

	Navigation
	Code Navigation
	Symbol Navigation (Pro only)
	Automatically Closing Visited Files
	Navigating Between Multiple Instances
	Using the Find Symbol Tool Window
	More Symbol Navigation Methods

	Navigating Between Words
	Subword Navigation
	Begin/End Structure Matching
	Viewing and Defining Begin/End Pairs
	Example 1
	Example 2

	Setting the Paren Match Style

	Navigating in Statements and Tags
	Navigating with S-expressions

	Cursor Navigation
	Navigating in Pages and Files
	Navigating to a Specific Line
	Navigating to an Offset
	Navigating to URLs
	Handling File URLS
	Runnable Files

	Other URI Schemes

	Symbol Browsing
	Class Tool Window (Pro only)
	Filtering in the Hierarchy Pane
	Class Exclusion Manager

	Filtering and Sorting in the Members Pane

	Current Context Toolbar
	Defs Tool Window
	Defs Tool Window Options

	Find Symbol Tool Window (Pro only)
	Preview Tool Window (Pro only)
	Information Displayed in the Preview Window

	References Tool Window (Pro only)
	References Tool Window Options

	Symbols Tool Window (Pro only)
	Filtering Symbols in the Symbols Tool Window
	Symbols Tool Window Options
	Viewing Symbol Uses with the Calling Tree (Pro only)
	Viewing Symbol Callers Tree (Pro only)
	Viewing Base and Derived Classes (Pro only)
	Symbol Browser Filter Options (Pro only)

	Symbol Properties Tool Window (Pro only)
	Symbol Arguments Tool Window (Pro only)

	Viewing and Displaying
	Colors and Color Coding
	Current Line
	Modified Lines
	Viewing Special Characters
	Defining Special Characters
	Changing the Color of Special Characters

	Viewing Line Numbers
	Soft Wrap
	Selective Display
	Expanding/Collapsing Code Blocks
	Selective Display Regions

	Hex/Line Hex View
	Other Display Options
	Displaying a Top of File Line
	Displaying a Vertical Line

	Syntax Indent and SmartPaste®
	Syntax Indent
	Indenting with Tabs
	Setting Tab Spacing
	Setting Tab to Indent Selections
	Setting Tabs for the Current File

	Setting the Backspace Unindent Style

	SmartPaste®

	Adaptive Formatting
	Enabling/Disabling Adaptive Formatting
	Recognized Settings
	Scanning for Styles in Use
	Confidence Level and Statistics
	Rescanning

	Completions
	Auto-Complete
	Using Auto-Complete

	Auto-Close
	Word Completion
	Completion in Dialogs
	Argument Completion

	Configuring Completion Settings

	Aliases
	Expanding Aliases
	Global Aliases
	Directory Aliases
	Defining a New Directory Alias
	Using Directory Aliases
	Embedding Environment Variables in Directory Aliases

	Language-Specific Aliases
	Creating a Language-Specific Alias
	Alias Escape Sequences
	Escape Sequence Examples

	Parameter Prompting
	Creating an Alias for Parameter Prompting
	Example: Instantiating a Variable in Java with Parameter Prompting

	Creating a Language-Specific Alias from a Selection

	Syntax Expansion
	Syntax Expansion Settings
	Modifying Syntax Expansion Templates
	Adding Syntax Expansion for Other Languages (Pro only)

	Code Templates
	Instantiating a Template
	Creating Templates
	Create the Template Source Files
	Insert Substitution Parameters into the Template Files
	Use the Template Manager to Create a New Template
	Add the Template Files to the Newly-Defined Template

	Substitution Parameters
	Predefined Substitution Parameters

	Organizing Templates
	Template Manager Operations
	Creating a New Category
	Creating a New Template
	Editing an Existing Template
	Deleting a Template

	Template Manager Dialog
	Details Tab
	Files Tab
	Custom Parameters Tab

	Template Options Dialog
	Global Substitution Parameters

	Add File Dialog
	Add Parameter Dialog
	Add New Item Dialog
	Locating Templates
	Installed Templates
	User Templates

	Manually Creating a Template
	Example
	Creating a Multi-file Template
	Example

	Code Template Metadata File Reference
	Elements
	DefaultName
	Example

	Description
	Example

	File
	Example

	Files
	Example

	Name
	Example

	Parameter
	Example

	Parameters
	Example

	SETemplate
	Example

	SortOrder
	Example

	TemplateContent
	Example

	TemplateDetails
	Example

	Quick Brace/Unbrace
	Using Quick Brace/Unbrace
	Disabling Quick Brace/Unbrace

	Surrounding and Unsurrounding
	Dynamic Surround
	Surround With
	Surround With Aliases
	Surround With Commands

	Unsurround
	Deleting Code Blocks

	Bookmarks
	Named Bookmarks
	Setting Named Bookmarks
	Setting a Bookmark With a Specific Name
	Setting a Bookmark With an Automatic Name
	Setting a Bookmark With a Key Binding

	Navigating Named Bookmarks
	Deleting Named Bookmarks
	Using Workspace Bookmarks
	Relocatable Code Markers

	Pushed Bookmarks
	Pushing and Popping Bookmarks
	Viewing Pushed Bookmarks
	Pushed Bookmark Options

	Commenting
	Commenting Blocks and Lines
	Comment Block and Line Settings

	Doc Comments
	Doc Comment Examples
	Javadoc Format
	XMLDoc Format
	Doxygen Format

	Modifying Doc Comment Templates

	String Editing
	Comment Wrapping
	Reflowing Comments

	Code Annotations (Pro only)
	Code Annotations Overview (Pro only)
	Annotation Types (Pro only)
	Purpose-Based Locations
	Private and Shared Annotations
	Relocatable Code Marker
	Annotations Tool Window and File Manager

	Managing Annotations (Pro only)
	Creating Annotations
	Viewing Code Annotations
	Filtering Code Annotations
	Copying and Moving Annotations
	Copying
	Moving

	Editing Annotations
	Deleting Annotations
	Managing Annotation Types
	Handling Annotation Type Conflicts
	Managing Annotation Files
	Personal Annotations
	Workspace Annotations
	Project Annotations
	User-Defined Annotations
	Annotation File Manager

	Using Code Annotations to Record Tasks (Pro only)
	Using Code Annotations for Code Reviews (Pro only)

	Message List (Pro only)
	Processes That Use Message List
	Message List Tool Window (Pro only)
	Filtering and Removing Messages

	Document Overview Bar
	Beautifying Code
	Code Beautifiers

	Live Errors
	Overview
	Configuring Live Errors

	Reflowing Text
	Quick Refactoring (Pro only)
	Available Refactorings (Pro only)
	Quick Rename
	Quick Extract Method
	Quick Modify Parameter List
	Quick Replace Literal with Constant

	Reviewing Refactoring Changes (Pro only)

	Chapter 9. Language-Specific Editing
	Introduction to Language-Specific Editing
	Language-Specific Options
	Language Editing Mode
	Manually Setting the Language Mode

	Managing Languages
	Adding and Removing Languages

	Managing File Extensions
	Adding and Removing File Extensions

	Managing Extensionless Files
	File Mapping
	Pattern Mapping

	Ada
	Ada Formatting Options (Standard or Community only)
	Ada Beautifier (Pro only)

	Ant
	Ant Options

	C and C++
	Working with ANSI-C
	Beautifiers (Pro only)
	Beautifier Profiles
	Beautifier Profile Editor

	C/C++ Compiler Settings (Pro only)
	Creating New Configurations
	Building the Tag File

	C/C++ Parsing Options
	C/C++ Preprocessing
	C/C++ Documentation Comments
	Add #include (Pro only)
	Adding #include

	COBOL
	COBOL Formatting Options

	Java
	Initial Setup (Pro only)
	Context Tagging® for Java (Pro only)
	Setting Up a Java Workspace and Project (Pro only)
	Configuring Java Build and Runtime Options (Pro only)

	Java-Specific Features
	Javadoc Comments
	Organize Imports (Pro only)
	Adding Imports
	Go to Import
	Import Options

	Java Live Errors (Pro only)
	JUnit Testing (Pro only)

	Java-Specific Interfaces
	Java Compiler Properties Dialog (Pro only)
	Java Options Dialog (Pro only)
	Compiler Tab
	Javadoc Tab
	Jar Tab
	Classpath Tab
	JRE Tab
	Live Errors Tab

	Organize Java Imports Options Interface (Pro only)
	Javadoc Editor Dialog
	Javadoc Beautifier Options Dialog

	Mono
	Initial Setup (Pro only)
	Context Tagging® for .NET(Pro only)
	Setting Up a Mono Workspace and Project (Pro only)
	Mono Options Dialog (Pro only)
	Compiler Tab
	Assemblies Tab
	JRE Tab

	C# Organize Imports
	Organize Imports (Pro only)
	Adding using statements
	Goto using statement
	Import Options

	Organize C# Imports Options Interface (Pro only)

	XMLDoc Comments
	Editing XMLDoc Comments
	XMLDoc Editor Dialog
	XMLDoc Beautifier Options Dialog

	Pascal
	Pascal Formatting Options

	PL/I
	PL/I Formatting Options

	Python
	Begin/End Structure Matching for Python

	Verilog and SystemVerilog
	Verilog Beautifiers (Pro only)
	Verilog Preprocessing
	Verilog Parsing Options

	XML and HTML
	XML
	XML Validation
	XML Toolbar
	(Standard or Community only) XML Formatting Options
	XML Formatting Options (Pro only)
	XMLDoc Editor
	DTD Caching
	Opening DTD Files from XML

	URL Mapping
	Toggling Between Begin and End XML Tags

	HTML
	HTML Toolbar
	Exporting to HTML
	Configuring the Web Browser
	(Standard or Community only) HTML and XML Formatting Options
	General Tab
	Tags Tab
	Case and Quoting Tab

	HTML Formatting Options (Pro only)
	HTML and XML Beautifiers (Pro only)
	Indent Tab
	Tags Tab
	Case and Quoting Tab
	Comments & Languages Tab

	Auto Symbol Translation
	Enabling/Disabling Auto Symbol Translation
	Configuring Symbol Aliases

	Outline View for XML
	Formatting Rule Sets
	Activating the XML Outline View
	Formatting Rule Set Configuration
	Applying Formatting Rules to XML Files

	Chapter 10. Tools and Utilities
	Find and Replace
	Default Search Options
	Quick Search and Replace
	Quick Search
	Quick Replace

	Incremental Searching
	Mini Find and Replace Dialog
	Find and Replace Commands
	Find and Slash (/) Commands
	Replace and c Commands
	Replace Command Search Examples

	Find and Replace Tool Window
	Docking the Tool Window
	Saving Search and Replace Values
	Syntax-Driven Searching
	Setting Options
	Search Results Output

	Find Symbol Tool Window
	Find and Replace with Regular Expressions
	Undoing/Redoing Replacements
	Match Highlighting (Pro only)
	Cursor on Symbol Shows All Uses in File

	Comparing and Merging
	DIFFzilla
	Dynamic Difference Editing (Pro only)
	Source Diff (Pro only)
	Using DIFFzilla
	Launching DIFFzilla from the Operating System

	Comparing Two Files
	Comparing Two Directories (Pro only)
	Comparing Symbols (Pro only)
	Comparing Parts of Files
	Generating File Lists (Pro only)
	Automatic Directory Mapping (Pro only)
	Diffing File History
	Launching DIFFzilla from the Operating System

	3-Way Merge (Pro only)
	Performing a Three-Way Merge
	Launching 3-Way Merge from the Operating System
	3-Way Merge Settings

	The compare Command
	Setting Compare Options

	Version Control (Pro only)
	Overview of Version Control (Pro only)
	Using Version Control (Pro only)
	Version Control Status Icons

	Configuring Version Control (Pro only)
	Advanced Setup Options
	Setting Up Command Line Version Control Systems

	Specific Version Control Support (Pro only)
	Source Code Control (SCC)
	Configuring SCC
	Opening an SCC Project

	Perforce
	Perforce Options

	Subversion
	SVN History Dialog
	Subversion Options

	Git
	Git Options

	PVCS
	CVS
	CVS Options

	Mercurial
	Mercurial Options

	Shelving (Pro only)
	Overview of Shelving
	Creating a shelf
	Adding to a shelf
	Listing Your Shelves

	GUID Generator
	Spell Checking
	Spell Check Operations
	Running Spell Check
	Spell Checking Multiple Files

	Sorting Text
	Sort Commands

	FTP
	Working with FTP
	FTP Tool Window
	FTP Profile Manager
	Starting a Connection
	Stopping a Connection
	Opening FTP Files

	Setting FTP Options

	Using the Calculator and Math Commands
	The Calculator
	Calculating Expressions with Mixed Bases

	Math Commands
	Math Command Examples
	Overflow/Underflow
	Document Math
	Prime Numbers

	OS File Browser
	Interactive tool window (Pro only)
	Overview
	Configuring Interactive Profiles

	Chapter 11. Regular Expressions
	Using Regular Expressions in SlickEdit®
	Specifying the Syntax to Use
	Minimal versus Maximal Matching
	Using Perl Tagged Expressions
	Tagged Expressions in Perl Search String
	Tagged Expressions in Perl Replace String
	Tagged Expressions Perl Examples

	Using SlickEdit® Tagged Expressions
	Tagged Expressions in SlickEdit® Search String
	Tagged Expressions in SlickEdit® Replace String
	Tagged Expressions SlickEdit® Examples

	Using Vim Tagged Expressions
	Tagged Expressions in Vim Search String
	Tagged Expressions in Vim Replace String
	Tagged Expressions Vim Examples

	Replacing with Regular Expressions
	Case Modification in Replace
	Examples of Replacing with Regular Expressions

	The Regex Evaluator
	Entering Test Cases
	Entering a Regular Expression
	Regex Evaluator Options

	Perl Regular Expressions
	Perl Regular Expression Examples

	SlickEdit Regular Expressions
	SlickEdit Regular Expression Examples

	Vim Regular Expressions
	Vim Regular Expression Examples

	Wildcard Expressions
	Brief Regular Expressions
	UNIX Regular Expressions
	Compatibility Issues With Perl Regular Expressions
	Compatibility Issues Between Old and New Perl Regular Expressions
	Compatibility Issues Between Old and New SlickEdit® Regular Expressions
	Unicode Categories and Character Blocks
	Unicode Category Specifications for Regular Expressions

	Chapter 12. Macros and Macro Programming
	Recorded Macros
	Common Macro Operations
	Recording a Macro
	Binding Recorded Macros to Keys
	Binding Macros Using the Key Bindings Option Screen
	Binding Macros Using execute_last_macro_key

	Running a Recorded Macro
	Saving and Editing Recorded Macros
	Deleting Recorded Macros
	Using Macros to Discover and Control Options

	Programmable Macros
	Slick-C® Modules
	Loading and Unloading Slick-C® Modules

	Slick-C® Variables (Config Variables)
	Slick-C® Batch Macros
	State File
	Slick-C® Header Files and More Resources

	Chapter 13. Menus, Dialogs, and Tool Windows
	File
	File Menu
	File FTP Menu
	File Manager Menu
	File Manager Select Menu
	File Manager Files Menu

	File Dialogs and Tool Windows
	New Dialog
	File Tab
	Project Tab
	Workspace Tab

	Open Tool Window
	Filtering and Matching
	Completions
	Hotkeys for Open Tool Window
	Open Tool Window Options

	Standard Open Dialog
	Open URL Dialog
	Reload With Encoding Dialog
	Save As Dialog
	Save Copy As Dialog
	Save Failed Dialog
	Exiting with Modified Buffers Dialog
	File Tabs
	File Tab Context Menu

	Change Directory Dialog
	Print Dialog
	General Tab
	Header/Footer Tab
	Margins Tab
	Profiles Tab

	Add/Edit FTP Profile Dialog
	General Tab
	Advanced Tab

	Edit
	Edit Menu
	Edit Select Menu
	Edit Delete Menu
	Edit Other Menu
	Copy Unicode As Menu

	Edit Dialogs and Tool Windows
	Select Text to Paste Dialog
	Enumerate Dialog
	Filter Selection: Command Dialog

	Search
	Search Menu
	Search Bookmarks Menu

	Search Dialogs and Tool Windows
	Find and Replace Tool Window
	Find and Replace Tool Window: Context Menu
	Find Tab
	Find in Files Tab
	Replace Tab
	Replace in Files Tab
	Files Tab

	Find Symbol Tool Window (Pro only)
	Bookmarks Tool Window
	Go to Bookmark Dialog
	Bookmark Stack Dialog
	Bookmarks Dialog
	Select Symbol Dialog (Pro only)

	View
	View Menu
	Symbol Coloring Menu (Pro only)

	View Dialogs and Tool Windows
	Selective Display Dialog
	Search Text
	Function Headers
	Preprocessor Directives
	Multi-Level
	Comments
	Paragraphs
	Hide Selection
	Expansion Options

	Toolbar Control Properties Dialog

	Project
	Project Menu
	Open Other Workspace Menu

	Project Dialogs and Tool Windows
	Workspace Properties Dialog
	Project Properties Dialog
	Project Properties Dialog - General Options
	Files Tab
	Directories Tab
	Tools Tab (Pro only)
	Build Tab (Pro only)
	Compile/Link Tab (Pro only)
	Run/Debug Tab
	Dependencies Tab (Pro only)
	Live Errors Tab (Pro only)
	New/Edit Profile Override Dialog

	Open Tab (Pro only)

	Open Makefile as Workspace Dialog
	New Project Tool Wizard
	New Project Tool
	Configurations
	Advanced Tool Options
	Finish Wizard

	Build (Pro only)
	Build Menu (Pro only)

	Debug (Pro only)
	Debug Menu (Pro only)
	Debug Windows Menu
	Attach Debugger Menu

	Document
	Document Menu
	Document Dialogs and Tool Windows
	Files Tool Window
	Accessing the Tool Window
	List Views
	Working with the Files List
	Opening Files for Editing
	Saving Modified Files
	Closing Files
	Diffing Files
	Files Tool Window Interface

	Tabs Dialog
	Margins Dialog
	Justification Dialog
	Reflow Comment Dialog

	Macro
	Macro Menu
	Macro Dialogs and Tool Windows
	User-Loaded Modules Dialog (Pro only)
	Save Macro Dialog
	List Macros Dialog
	Set Variable Dialog
	Variable Editor Dialog
	Grid Settings Dialog (Pro only)
	Menu Editor Dialog
	Auto Enable Properties Dialog

	Tools
	Tools Menu
	Version Control Menu (Pro only)
	Quick Refactoring Menu (Pro only)
	Imports Menu (Pro only)
	Beautify Menu (Pro only)
	Spell Check Menu

	Tools Dialogs and Tool Windows
	3-Way Merge Dialog (Pro only)
	DIFFzilla
	DIFFzilla® Files Tab
	Items to Compare
	DIFFzilla Icons
	Folder options

	DIFFzilla Options Tab
	File Compare Options
	Dialog Setup Options

	DIFFzilla Diff Dialog
	Multi-File Diff Output Dialog (Pro only)

	Context Tagging - Tag Files Dialog (Pro only)
	Add Tree Dialog
	Exclusion Examples

	Workspace Tagging Excludes
	GUID Generator
	Common Formatting Options for Brace-style Languages

	Options
	Options Dialog
	Using the Options Dialog
	Changing and Applying Option Settings
	Navigating to Previously Viewed Panels
	Option Favorites
	Option Search
	Keyboard Shortcuts in the Options Dialog

	Option Categories

	Appearance Options
	General Appearance Options
	Color Options
	Color Elements

	Symbol Coloring Options (Pro only)
	Symbol Coloring settings
	Symbol types
	Symbol attributes
	Color Rules

	Font Options
	Toolbar Options
	Toolbar Customization
	Tool Windows Options
	Tool Window & Toolbar Options
	Preview Tool Window (Pro only)
	Special Character Options
	Advanced Appearance Options

	Keyboard and Mouse Options
	Emulation Options
	Key Binding Options
	Bind Key Dialog

	Redefine Common Key Options
	Advanced Keyboard and Mouse Options
	Vim Options
	ISPF Options

	Editing Options
	General Editing Options
	Editor Window Options
	Cursor Movement
	Background Tagging Options (Pro only)
	Context Tagging® Options (Pro only)
	Selection Options
	Search Options
	Bookmarks
	Auto-Close
	Hotspot Options
	Global Alias Options

	Debugging Options (Pro only)
	Debugging General Options
	Debugging Numbers Options
	Debugging Runtime Filters Options
	Debugging Directory Options
	Debugging Configurations Options

	Language Options
	Language Manager
	File Extension Manager
	Advanced File Mappings
	Patterns

	All Languages
	Setting All Languages Options
	Initial Settings

	Language-Specific General Options
	Language-Specific Editing Options
	Language-Specific View Options
	Special Characters
	Line Numbers
	Symbol Coloring (Pro only)
	Hex
	Selective Display on file open
	Color positional keywords
	Modified Lines
	Current Line
	Show minimap

	Language-Specific Formatting Options
	Language-Specific Adaptive Formatting Options
	Language-Specific Comment Options
	Comment block
	Comment line
	Doc comments
	Comment editing
	String editing

	Language-Specific Comment Wrap Options
	Language-Specific Word Wrap Options
	Language-Specific Alias Options
	Language-Specific Auto-Complete Options
	Language-Specific Auto-Close
	Language-Specific Auto-Surround
	Language-Specific Context Tagging® Options (Pro only)
	Parameter Information
	Go to Definition
	Preview and Highlighting

	Language-Specific Tag Files(Pro only)
	Language-Specific Color Coding Options
	Color Coding General Tab
	Color Coding Tokens Tab
	Color Coding Settings Tab
	Color Coding More Tab
	Color Coding Embedded Tab

	Color Coding Numbers Tab
	Color Coding Language Tab
	Color Coding Tags Tab

	Language-Specific File Options
	Language-Specific Live Error Profiles
	Live Error Profile Dialog
	Additional Escape Sequences

	Language-Specific Compiler Properties (Pro only)

	File Options
	Open File Options
	Load File Options
	Save File Options
	Backup File Options
	AutoSave File Options
	Files of Type Filter Options
	Associate File Types Options
	History Options

	Application Options
	Directory Project Options
	Auto Restore Options
	Virtual Memory Options
	Exit Options
	Notification Options
	Product Improvement Program Options

	Network & Internet Options
	Network Settings
	FTP Default Options
	FTP Default Options General Tab
	FTP Default Options Advanced Tab
	FTP Default Options Firewall/Proxy Tab
	FTP Default Options SSH/SFTP Tab
	FTP Default Options Debug Tab

	URL Mapping Options
	URI Scheme Options
	Proxy Setting Options
	Web Browser Setup Options

	Tool Options
	Spell Check Options
	Version Control (Pro only)
	Version Control Setup Options (Pro only)
	Version Control Providers
	Version Control Commands Setup Dialog
	Version Control Advanced Settings
	Checkin/Checkout Files Dialog

	Configure Error Parsing (Pro only)
	CTags Tagging Options (Standard only)
	Refactoring Options (Pro only)

	Options History
	Export/Import Options
	Export All Options
	Setup Export Groups
	Importing Options
	Restoring Default Options
	Additional Options
	Configuration Backup

	Window
	Window Menu
	Window Dialogs and Tool Windows
	Window Font Dialog
	Link Window Dialog

	Help
	Help Menu
	Product Updates Menu

	Help Dialogs and Tool Windows
	Cool Features Dialog
	Update Manager Options Dialog

	Chapter 14. Appendix
	Tutorials
	Hello World Tutorial (C/C++) (Pro only)
	Create the Project Using the GNU C/C++ Wizard
	Build the Project
	Run the Program
	Comments

	Hello World Tutorial (C#) (Pro only)
	Creating the Starter Project
	Project Setup
	Create and Add a File to the Project
	Set Environment Variables

	Setting Up the Release Build
	Setting Up the Debug Build
	Handling Complex Build Commands
	Setting Up the Console Debugger

	Hello World Tutorial (Java) (Pro only)
	Create the Project
	Create the File
	Edit the File
	Build the Project
	Run the Program

	Vim Tutorial
	Creating and Distributing Custom Toolbars (Pro only)

	Encoding
	Using Unicode
	Unicode File Recognition
	Opening Unicode Files
	Surrogate Support
	Converting Unicode to UCN
	Unicode Limitations
	Unicode Implementation

	Environment Variables
	Setting Environment Variables in user.cfg.xml
	Using the set Command

	Configuration Variables
	Viewing Configuration Variables
	Setting/Changing Configuration Variables
	Table of Configuration Variables

	Configuration Directories and Files
	User Configuration Directory
	Configuration Directory Location
	Resetting the Configuration Directory
	Table of User Configuration Files

	System Configuration Files
	Table of System Configuration Files

	.cfg.xml File Format
	Normalized and Unnormalized Profiles
	Standard and XML Properties

	File Search Order
	Search Order for Executable Files

	Color Coding Profiles
	Creating a New Color Coding Profile
	Color Coding Profile Format
	A Word About the Color Coding Profile XML Format
	Property Syntax for Matching Language Elements
	Color Coding Colors
	Color Coding Flags
	Adding Color Coding for HTML/XML Tags, Attributes, and Values
	Other Color Coding Profile Properties
	Color Coding Style Values
	Color Coding Number Flags

	Editing a Key Binding Profile
	Using the ISPF and XEDIT Emulations
	ISPF Options
	ISPF Primary Commands
	ISPF Line Commands
	ISPF Line Command Documentation
	ISPF Line Labels .label
	Usage
	Remarks
	See Also

	ISPF Shift Lines Left or Right
	Usage
	Remarks
	See Also

	ISPF Insert After A
	Usage
	Remarks
	See Also

	ISPF Insert Before B
	Usage
	Remarks
	See Also

	ISPF Insert Bounds Ruler BNDS
	Usage
	Remarks
	See Also

	ISPF Copy Lines C and CC for blocks
	Usage
	Remarks
	See Also

	ISPF Insert Columns Ruler COLS or SCALE
	Usage
	Remarks
	See Also

	ISPF Delete Lines D and DD for blocks
	Usage
	Remarks
	See Also

	ISPF Expose First Lines F and FF
	Usage
	Remarks
	See Also

	ISPF Insert Lines
	Usage
	Remarks
	See Also

	ISPF Lowercase Lines LC, LCC and LCLC for blocks
	Usage
	Remarks
	See Also

	ISPF Expose Last Lines L and LL
	Usage
	Remarks
	See Also

	ISPF Move Lines M and MM for blocks
	Usage
	Remarks
	See Also

	ISPF Insert Mask Line MASK
	Usage
	Remarks
	See Also

	ISPF Make Data Lines MD, MDD and MDMD for blocks
	Usage
	Remarks
	See Also

	ISPF Overlay Lines O and OO for blocks
	Usage
	Remarks
	See Also

	ISPF Repeat Lines
	Usage
	Remarks
	See Also

	ISPF Expose Next Level of Code S and SS
	Usage
	Remarks
	See Also

	ISPF Insert Tabs Ruler TABS or TABL
	Usage
	Remarks
	See Also

	ISPF Insert Text TE
	Usage
	Remarks
	See Also

	ISPF Insert Lines TF
	Usage
	Remarks
	See Also

	ISPF Join Lines TJ
	Usage
	Remarks
	See Also

	ISPF Split Line TS
	Usage
	Remarks
	See Also

	ISPF Uppercase Lines UC, UCC and UCUC for blocks
	Usage
	Remarks
	See Also

	ISPF Exclude Lines X and XX for blocks
	Usage
	Remarks
	See Also

	ISPF Select Lines Z and ZZ for blocks
	Usage
	Remarks
	See Also

	XEDIT Line Commands
	ISPF Unsupported Primary Commands

	Menu Editing
	Creating and Editing Menus
	Creating a New Menu Resource
	Editing Menus
	Defining Menu Item Aliases
	Enabling/Disabling Menu Items

	Emulation Tables
	CUA Keys
	CUA Cursor Movement
	CUA Inserting Text
	CUA Deleting Text
	CUA Searching
	CUA Selection
	CUA Clipboard
	CUA Command Line and Text Box Editing
	CUA Files and Buffers
	CUA Windowing
	CUA Compiling and Programming Support
	CUA Debugging (Pro only)
	CUA Macros
	CUA Miscellaneous

	Visual C++ Keys
	Visual C++ Cursor Movement
	Visual C++ Inserting Text
	Visual C++ Deleting Text
	Visual C++ Searching
	Visual C++ Selection
	Visual C++ Clipboard
	Visual C++ Command Line and Text Box Editing
	Visual C++ Files and Buffers
	Visual C++ Windowing
	Visual C++ Compiling and Programming Support
	Visual C++ Debugging (Pro only)
	Visual C++ Macros
	Visual C++ Miscellaneous

	SlickEdit® Keys
	SlickEdit® Cursor Movement
	SlickEdit® Inserting Text
	SlickEdit® Deleting Text
	SlickEdit® Searching
	SlickEdit® Selection
	SlickEdit® Clipboard
	SlickEdit® Command Line and Text Box Editing
	SlickEdit® Command Line Keys
	SlickEdit® Files and Buffers
	SlickEdit® Windowing
	SlickEdit® Compiling and Programming Support
	SlickEdit® Debugging (Pro only)
	SlickEdit® Macros
	SlickEdit® Miscellaneous

	Brief Keys
	Brief Cursor Movement
	Brief Inserting Text
	Brief Deleting Text
	Brief Searching
	Brief Clipboard
	Brief Command Line and Text Box Editing
	Brief Command Line Keys
	Brief Files and Buffers
	Brief Windowing
	Brief Compiling and Programming Support
	Brief Debugging (Pro only)
	Brief Selection
	Brief Macros
	Brief Miscellaneous

	Epsilon Keys
	Epsilon Cursor Movement
	Epsilon Inserting Text
	Epsilon Deleting Text
	Epsilon Searching
	Epsilon Selection
	Epsilon Clipboard
	Epsilon Files and Buffers
	Epsilon Windowing
	Epsilon Compiling and Programming Support
	Epsilon Debugging (Pro only)
	Epsilon Macros
	Epsilon Command Line and Text Box Editing
	Epsilon Command Line Keys
	Epsilon Miscellaneous
	Epsilon Argument/Repeating a Key

	Vim Keys
	Differences Between SlickEdit Vim and gvim
	Vim Cursor Movement
	Vim Cursor Movement - Normal Mode Only
	Vim Cursor Movement - Visual Mode Only

	Vim Inserting Text
	Vim Inserting Text - Normal Mode Only

	Vim Deleting Text
	Vim Deleting Text - Normal Mode Only

	Vim Searching
	Vim Searching - Normal Mode Only

	Vim Selection
	Vim Selection - Normal Mode Only

	Vim Clipboard
	Vim Clipboard - Normal Mode Only

	Vim Command Line and Text Box Editing
	Vim Command Line and Text Box Editing - Normal Mode Only

	Vim Files and Buffers
	Vim Files and Buffers - Normal Mode Only

	Vim Windowing
	Vim Windowing - Normal Mode Only

	Vim Compiling and Programming Support
	Vim Debugging (Pro only)
	Vim Macros
	Vim Macros - Normal Mode Only

	Vim Miscellaneous
	Vim Miscellaneous - Normal Mode Only

	Vim EX command line
	Vim EX range specifiers
	Vim EX commands

	GNU Emacs Keys
	GNU Emacs Cursor Movement
	GNU Emacs Inserting Text
	GNU Emacs Deleting Text
	GNU Emacs Searching
	GNU Emacs Selection
	GNU Emacs Clipboard
	GNU Emacs Files and Buffers
	GNU Emacs Windowing
	GNU Emacs Compiling and Programming Support
	GNU Emacs Debugging (Pro only)
	GNU Emacs Macros
	GNU Emacs Command Line and Text Box Editing
	GNU Emacs Command Line Keys
	GNU Emacs Miscellaneous
	GNU Emacs Argument/Repeating a Key

	ISPF Keys
	ISPF Cursor Movement
	ISPF Line Prefix Commands
	ISPF Inserting Text
	ISPF Inserting Text - Line Prefix Commands
	ISPF Deleting Text
	ISPF Deleting Text - Line Prefix Commands
	ISPF Searching
	ISPF Selection
	ISPF Selection - Line Prefix Commands
	ISPF Clipboard
	ISPF Clipboard - Line Prefix Commands
	ISPF Command Line and Text Box Editing
	ISPF Files and Buffers
	ISPF Windowing
	ISPF Compiling and Programming Support
	ISPF Debugging (Pro only)
	ISPF Macros
	ISPF Selective Display
	ISPF Miscellaneous
	ISPF Miscellaneous - Line Prefix Commands

	CodeWarrior Keys
	CodeWarrior Cursor Movement
	CodeWarrior Inserting Text
	CodeWarrior Deleting Text
	CodeWarrior Searching
	CodeWarrior Selection
	CodeWarrior Clipboard
	CodeWarrior Command Line and Text Box Editing
	CodeWarrior Files and Buffers
	CodeWarrior Windowing
	CodeWarrior Compiling and Programming Support
	CodeWarrior Debugging (Pro only)
	CodeWarrior Macros
	CodeWarrior Miscellaneous

	CodeWright Keys
	CodeWright Cursor Movement
	CodeWright Inserting Text
	CodeWright Deleting Text
	CodeWright Searching
	CodeWright Selection
	CodeWright Clipboard
	CodeWright Command Line and Text Box Editing
	CodeWright Files and Buffers
	CodeWright Windowing
	CodeWright Compiling and Programming Support
	CodeWright Debugging (Pro only)
	CodeWright Macros
	CodeWright Miscellaneous

	Xcode Keys
	Xcode Cursor Movement
	Xcode Inserting Text
	Xcode Deleting Text
	Xcode Selection
	Xcode Searching
	Xcode Command Line and Text Box Editing
	Xcode Files and Buffers
	Xcode Clipboard
	Xcode Macros
	Xcode Miscellaneous

	BBEdit Keys
	BBEdit Cursor Movement
	BBEdit Inserting Text
	BBEdit Deleting Text
	BBEdit Selection
	BBEdit Searching
	BBEdit Command Line and Text Box Editing
	BBEdit Files and Buffers
	BBEdit Clipboard
	BBEdit Windowing
	BBEdit Compiling and Programming Support
	BBEdit Debugging (Pro only)
	BBEdit Macros
	BBEdit Miscellaneous

	Visual Studio Default Keys
	Visual Studio Cursor Movement
	Visual Studio Inserting Text
	Visual Studio Deleting Text
	Visual Studio Searching
	Visual Studio Selection
	Visual Studio Clipboard
	Visual Studio Command Line and Text Box Editing
	Visual Studio Files and Buffers
	Visual Studio Windowing
	Visual Studio Compiling and Programming Support
	Visual Studio Debugging (Pro only)
	Visual Studio Macros
	Visual Studio Miscellaneous

	macOS Keys
	macOS Cursor Movement
	macOS Inserting Text
	macOS Deleting Text
	macOS Selection
	macOS Searching
	macOS Command Line and Text Box Editing
	macOS Files and Buffers
	macOS Clipboard
	macOS Windowing
	macOS Macros
	macOS Miscellaneous

	Eclipse Keys
	Eclipse Cursor Movement
	Eclipse Inserting Text
	Eclipse Deleting Text
	Eclipse Searching
	Eclipse Selection
	Eclipse Clipboard
	Eclipse Command Line and Text Box Editing
	Eclipse Files and Buffers
	Eclipse Windowing
	Eclipse Compiling and Programming Support
	Eclipse Debugging (Pro only)
	Eclipse Macros
	Eclipse Miscellaneous

	Chapter 15. Slick-C® Macro Programming Guide
	Introduction
	Working with the Slick-C® Source Code
	Slick-C® Naming Conventions

	Differences Between Slick-C® and C++
	Structures
	Arrays
	Hash Tables
	Assignment Statement
	Comparison Operator
	Preprocessing
	switch Statement
	enum
	Const
	Labeled Loops
	Variable Argument Functions
	Built-in Graphics Primitives
	Clipboard Inheritance®
	End of Statement Semicolon
	Type Checking
	Capabilities not Supported by Slick-C®

	Four Ways to Use Slick-C®
	Recording Slick-C® Macros
	Key Bindable Command
	Event-Driven Dialog Boxes
	Creating a Simple Event-Driven Dialog Box
	Loading Code and Displaying Dialog Boxes
	Binding Commands to Keys for Dialog Box Display

	Batch Macros

	Language Constructs
	Identifiers
	Comments
	String Literals
	Numeric Literals
	Defining Constants
	Defining Constants Using #define
	Defining Constants Using const
	Defining Constants Using Enumerators

	Namespaces

	Types
	Strings
	Enumerated Types
	Arrays
	Differences from C++

	Hash Tables
	Structs
	Differences from C++

	Unions
	Anonymous Unions

	Interfaces
	Classes
	Introspection
	Implicit Conversion to Strings
	Overloading Comparison and Assignment Operators
	Overloading Array Index Operators
	Overloading Assignment/Copy Semantics
	Overloading Iteration Semantics
	SlickEdit® Class Libraries
	Differences from C++ and Java

	Pointers
	Pointers to Variables
	Pointers to Functions

	Typeless

	Mathematical Operators
	Declarations
	Scoping and Declaring Variables
	Simple Variables
	Details About Variable Initializations
	Type Casting

	Implicit Local Variables
	Declaring Local Variables With :=
	Declaring Variables With auto

	Statements
	Assignment Operator
	if Statement
	Block Statement
	Loops
	do
	for
	foreach
	loop
	while
	break
	continue

	parse Statement
	switch Statement

	Functions
	Defining a Procedure
	Argument Declarations
	Default Arguments
	Named Arguments

	Defining a Command
	name_info Attributes
	OnUpdate Functions

	Class Methods
	Function Prototypes
	Library Functions
	Built-in Functions
	Finding Functions

	Differences Between Commands, Built-ins, and Defs
	defmain: Writing Slick-C® Batch Files

	Preprocessing
	#if
	#pragma
	#region and #endregion
	Including Header Files
	Importing Slick-C Modules

	Defining Controls
	Defining Events and Event Tables
	def Primitive

	Event-Driven Dialog Boxes
	Module Initializations
	Compiling and Loading Macros
	Debugging Macros
	Finding Procedures
	Finding Run-Time Errors
	Performance Profiling
	Slick-C® Debugger

	Error Handling and the rc Variable
	Dialog Editor
	Microsoft Visual Basic and Slick-C®

	Creating Dialog Boxes
	Dialog Editor Summary
	Adding and Deleting Controls
	Setting Properties
	Aligning Controls
	Sizing Controls
	Moving Controls
	Miscellaneous Assignments When the Form is Active
	Miscellaneous Menu Items
	Creating a Form
	Saving a Form
	Inserting a Form
	Adding Event Handlers
	Inherited Code Found Dialog Box
	Loading and Running the Form
	Adding a Cancel Button
	Adding an OK Button and Closing a Dialog Box
	Displaying Dialog Boxes
	on_create and on_load Events
	Return Value of show

	Modal and Modeless Dialog Boxes
	Dialog Box Parent Window
	Remembering a Dialog Box's Previous Position

	Clipboard Inheritance®
	Clipboard Inheritance® Overview
	Clipboard Inheritance® Example
	Dialog Box Inheritance Order

	Objects and Instances
	Active Object
	Active Form
	Instance Expressions

	Using Functions as Methods
	Built-in Controls
	Label Control
	Spin Control
	Text Box Control
	Editor Control
	Frame Control
	Command Button Control
	Radio Button Control
	Check Box Control
	List Box Control
	Combo Box Control
	Scroll Bar Controls
	Drive List Control
	File List Box Control
	Directory List Box Control
	Picture Box Control
	Gauge Control
	Image Control
	Adding a Bitmap Command Button or Check Box

	Adding Dialog Box Retrieval

	Menus
	Menu Editor Dialog Box
	Menu Item Alias Dialog Box
	Auto Enable Properties Dialog Box
	Creating and Editing Menu Resources
	Defining a Menu Resource
	Predefined Attributes for Auto-Enabling Commands
	Macro Callbacks for Enabling Commands
	Placing a Menu Bar on a Form
	Displaying a Menu as a Pop-Up

	Common Macro Dialog Boxes
	String Functions
	Search Functions
	Selection Functions
	Writing Selection Filters
	Unicode and SBCS or DBCS Macro Programming
	Shelling Programs from a Slick-C® Macro
	Interfacing With Other Languages (DLL)
	Command Line Interface
	Command Line Arguments
	get_string Procedure
	Single Argument Prompting with Support for Prompt Style

	Hooking Startup and Exit
	Invoking a Macro on Startup
	Invoking a Macro on Exit

	State File Caching
	Windows Data Structure
	Window Properties
	View Properties
	Buffer Properties

	Tutorials
	Defining Stack Routines
	Searching for a String Within a Current Function
	Creating the Macro
	Analyzing the Macro
	Command Line Search Options

	Reading and Modifying Buffers
	Functions for Reading and Modifying Buffers
	Common Functions for Navigating Buffers
	Escape Backslashes Example
	Comment Out Debug Print Lines Example

	Working with Existing Macros
	Example: Turning on Line Numbers for All Files
	Find the Command Definition
	Create the New Macro
	Load the Macro
	Results

	Example: Counting Lines of Code
	Gather Workspace, Project, and File Information
	Loop and Count
	Create the Report
	Load the Macro
	Run the Macro

	Events
	Event Names
	Keys
	ASCII Characters
	Function Keys
	Extended Keys
	Miscellaneous Keys
	Key Name Examples
	Mouse Events
	on Events
	Miscellaneous Events

	Reserved Words and Keywords

	Chapter 16. Glossary
	Index

