

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 1 of 13

Table of Contents

• Introduction
• Macro modules
• System macros

• Modifying macros that ship with SlickEdit
• But I really, really, really want to change the way a command works

• Loadable vs. batch macros
• Loadable macros
• Batch macros

• Recorded macros
• Where do I store macros that I write?
• Finding help and examples

• Help system
• Tracing macro code

• Find a similar menu item and trace it
• Find a similar toolbar button and trace it
• Find a similar key binding and trace it
• Record a macro command and trace it

• Debugging/tracing macros
• Slick-C stacks
• say function
• messageNwait function
• _StackDump function

• Include the slick.sh header file
• Command context

• name_info
• _OnUpdate_ functions

• Determining the platform at compile time
• Determining the platform at run time
• Determining if a file is open

• Determining if a file exists
• Selected text

• Filtering a selection (a.k.a. How do I stuff selected text into a variable?)
• Knowing when an open file is modified
• Slick-C language notes

• Implicit variable declarations
• Dynamic typing

• Standard dialogs
• Selection list dialog
• Text box dialog
• Open dialog
• Directory chooser dialog
• Print dialog

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 2 of 13

Introduction
This article is intended to provide guidance as you begin to write macros for SlickEdit products. We will
discuss such practical matters as suggested conventions and best practices to use when writing, storing
and running your macros.

If you have not familiarized yourself with Slick-C® language basics (i.e. syntax, etc.), then see the
Slick-C® Macro Programming Guide that ships with each SlickEdit product before continuing. We
assume that you are familiar with the Slick-C macro language, since details of the language (e.g.
syntax, constructs, etc.) will not be discussed in this article.

We make frequent use of some terms and features throughout this article, so here they are up front:

Configuration directory

Directory where the user's state file, along with options, settings, and recorded macros are
stored. You can see your Configuration Directory from the Help > About SlickEdit menu
in the SlickEdit® product, and Tools > Plug-In Information in the SlickEdit® Plug-In
for Eclipse™.

SlickEdit command line
Text box anchored at the bottom of the SlickEdit application frame (or floating in the
SlickEdit Plug-In). Click with mouse at the bottom of the application frame or hit ESC in
most emulations to activate the command line.

State file
Binary file that stores all loadable, compiled macro source code, resources (dialogs,
toolbars, menus, images, key bindings), and settings. SlickEdit products ship with a state
file (the system state file), and each user's configuration directory stores a user state file
(Windows®: vslick.sta; UNIX®: vslick.stu).

Slick-C command
A Slick-C function prefixed with the _command keyword. A Slick-C command can be
bound to a key, menu, toolbar button, or executed from the SlickEdit command line.

Macro modules
When we refer to "macros" we are usually talking about a macro module/file. Keep this in mind as you
read further. Macro files with a .e extension are source code, files with a .sh extension are header files,
and files with a .ex extension are compiled macro source (byte code) that has been compiled with the
Slick-C macro compiler. All compiled macro source files, with the exception of batch macros, are loaded
and stored in the state file.

System macros
System macros, macros that ship with each SlickEdit product, are stored under the macros
subdirectory. Feel free to use snippets of system macro source when writing your own macros—we ship
the macro source for this reason.

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 3 of 13

Modifying macros that ship with SlickEdit

Don't do it! Take your hands away from the keyboard. Unless you have an OEM support contract with
SlickEdit Inc., and sometimes not even then, you should not be modifying system macros...ever. Feel
free to use snippets from them all you like in your own macros, but don't modify the ones we ship.

If you modify a system macro, you are guaranteeing that:

• The next patch or upgrade you do will wipe out your changes
• Support will not be able to help you

But I really, really, really want to change the way a command works

That's fine (no it's not), but keep in mind that wholesaling an entire module with all the functions and
commands it contains could potentially (most probably) break future upgrades and patches that rely on
the functions and commands that were in that module. If you must rewrite functionality that ships with
the product, then at least do the following:

• Put the changed command inside a new macro module and keep it separate from the
product

• Change the name of the copy of the command you are making
• Rebind your keys, menus, and toolbar buttons that used the command to your new

command

Loadable vs. batch macros
There is very important distinction to make between macro modules that are loaded into the state file
vs. batch macros that are not.

Loadable macros

These are the most common type of macros. Macro modules that you load are stored in your state file
in your Configuration Directory. Loaded modules contain Slick-C commands, functions, and event
tables. SlickEdit cannot make use of your custom macro until you load it. To load a module, use the
Macro > Load Module menu item.

Loadable macros are good for:

• Defining Slick-C commands that can be bound to keys, buttons, menus
• Defining Slick-C event tables used for dialog and tool window interaction

Batch macros

Batch macros are macros that are temporarily loaded for the duration that they run and unloaded after
completion. Batch macros are not stored in the state file. You can always tell a batch macro because it
starts off with a defmain. Batch macros are useful as a way to share custom macros with other users.

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 4 of 13

They do not have to be loaded, and can be run from the SlickEdit command line. Batch macros can also
be run from a menu or toolbar button. Batch macros cannot be bound to a key.

Batch macros are good for:

• Standalone, single-task macros. The Auto Tag dialog that tags run-time libraries is a batch
macro.

• Facilitator macros that exist only to get key bindings, dialogs, tool windows, toolbars, or
menus loaded into the state file. Your vusrdefs.e (UNIX: vunxdefs.e) in your configuration
directory is a batch macro that migrates your options and key bindings after performing a
patch or upgrade.

Recorded macros
You can record an operation or action in SlickEdit and the Slick-C source code to replay that operation
is recorded in a macro file called vusrmacs.e in your configuration directory. vusrmacs.e is
automatically saved and loaded into the state file each time you record a new macro. Recorded macros
are also a good way to explore the Slick-C macro code and get ideas when writing your own macros.

You can start, stop, run, save, and manage recorded macros from the Macro menu.

Where do I store macros that I write?
User macros, macros created by you, can be stored anywhere. However, we suggest that you do NOT
store them under the SlickEdit product directory. SlickEdit will automatically remember your loaded
macros after performing a patch or upgrade.

If you are writing batch macros, then it would be a good idea to add an entry to the VSLICKPATH
environment variable in a file called vslick.ini in your Configuration Directory. Doing so will allow you to
execute batch macros without having to specify the full path.

Example vslick.ini with modified VSLICKPATH:

[Environment]
; IMPORTANT: Append to existing value of VSLICKPATH or else you will have BIG problems!
VSLICKPATH=%VSLICKPATH%;<my-custom-macro-directory>

Finding help and examples

Help system

The obvious place to start looking for help when writing macros is the SlickEdit Help system. All
SlickEdit APIs are listed under the help topic "Macro Functions by Category" in the Table of Contents.
Many of the API help pages include examples of their use.

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 5 of 13

Tracing macro code

For the case when the Help system is not enough, and you know of a feature that does something
similar, you have some options:

1. Find a similar menu item and trace it
2. Find a similar toolbar button and trace it
3. Find a similar key binding and trace it
4. Record a macro command and trace it

An indispensable tool when tracing macros is the command fp (short for find_proc) which you run from
the SlickEdit command line and give it a command name to trace. You can also use the Macro > Go to
Slick-C Definition menu item. If we say: "Do a find-proc on xyz", then we mean:

1. Go to the SlickEdit command line
2. Type 'fp xyz' and hit ENTER

which will cause SlickEdit to jump to the definition of xyz. You can pop back to where you were by
pressing Ctrl+Comma.

If your cursor is parked on a Slick-C command or function, you can go to the definition of that function
by pressing Ctrl+Dot. Ctrl+Comma will pop you back. Using Ctrl+Dot, you can "push" down as many
levels deep into the code as you need and use Ctrl+Comma to "pop" back.

Find a similar menu item and trace it

Let's say you wanted to write a macro that sorted lines in a buffer as a part of its funtionality. You
know that Tools > Sort dialog has an option for sorting a buffer. You can use the menu editor
(Macros > Menus) to edit the main menu named _mdi_menu and navigate down to the Sort menu
item. From there you get the command gui_sort which you can trace to find the call to the
sort_buffer command. That sure looks like what we need. Looking at the help for sort_buffer gets us
help on all the options.

Find a similar toolbar button and trace it

Let's say you wanted to know when an edit window has some selected text. You know that the Cut
toolbar button on the Standard toolbar behaves differently when there is not a selection (it cuts the
current line), so you reason that it must be able to check for a selection. If we right-click on the Cut
button and choose Properties we see the command is cut. If we do a find-proc on 'cut' and drill down
into the function cut2, we see near the top that there is a call to select_active():

 if (! select_active()) {
 ...

That sure looks like what we need. A quick look at the help for select_active verifies this. Mission
accomplished.

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 6 of 13

Find a similar key binding and trace it

Let's say you wanted to know the current word under the cursor so you could perform some operation
on it. You know that Ctrl+Shift+U upcases the current word so you surmise that it must know how to
get the current word. Good guess! If we run the Help > What Is Key dialog, or run what-is from the
SlickEdit command line, we find out that Ctrl+Shift+U executes the upcase_word command. Tracing
upcase_word (by doing a find-proc on 'upcase_word' of course), we see the following line of code:

 int start_col=0;
 _str word=cur_word(start_col,def_from_cursor,false,def_word_continue);

Looks like what we need, but what are all those arguments getting passed? Looking at the help, we
determine that the only argument we really need to worry about is the first argument (the rest are all
default parameters that we are not required to provide). So our call to cur_word would be much
simpler:

 int start_col=0;
 _str word=cur_word(start_col);

Record a macro command and trace it

Let's say, for example, that you want to know how to find and highlight a search string in the current
edit window. If you look at the command on the Search > Find menu using the menu editor, then you
see it runs the gui_find command. gui_find will display the Find dialog, but that only tells you how to
display the Find dialog, not how to actually perform the search. Recording a macro of the operation is
what you want. After recording the operation, and giving the macro a name, we can edit the macro to
find something like:

#include "slick.sh"
_command test1() name_info(','VSARG2_MARK|VSARG2_REQUIRES_EDITORCTL)
{
 _macro('R',1);
 find('some_search_string','I');
}

where the operation we performed was a case-insensitive search for the string 'some_search_string'.

Debugging/tracing macros
Although there is not a Slick-C debugger, there are several tools you can use to debug/trace a running
macro.

Slick-C stacks

When your macro misbehaves badly (e.g. accesses an invalid property, operates on an uninitialized
variable, etc.), the Slick-C interpreter stops and the current execution stack is dumped into the Slick-C
Stack tool window. A vsstack file is also written to your TEMP directory (UNIX: /tmp).

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 7 of 13

A stack looks like:

 Stack trace written to file: C:\DOCUME~1\username\LOCALS~1\Temp\vsstack
 Invalid argument
test.ex 1438 my_test_macro() p_window_id: 75 p_object: OI_FORM p_name:
stdcmds.ex 6170 command_execute() p_window_id: 75 p_object: OI_FORM p_name:
stdcmds.ex 5447 nosplit_insert_line() p_window_id: 4 p_object: OI_TEXT_BOX p_name:
stdprocs.ex 6441 try_calling(967) p_window_id: 4 p_object: OI_TEXT_BOX p_name:
stdprocs.ex 8949 call_root_key(" ") p_window_id: 4 p_object: OI_TEXT_BOX p_name:
slickc.ex 1243 slick_enter() p_window_id: 4 p_object: OI_TEXT_BOX p_name:

There is a lot of useful information here, including the offset in the bytecode where the error occurred
(somewhere in my_test_macro). You can use this byte offset to find the source code line by:

1. Opening the offending source code module (if the compiled module is test.ex, then the
source code module is test.e).

2. Typing st -f <offset> on the SlickEdit command line and pressing ENTER. Example: st
-f 1438 with the test.e module open would put our cursor at the offending line in the
my_test_macro function.

say function

Use the say function to print trace messages out to a trace window (UNIX will print trace messages out
to the console).

Example:

#include "slick.sh"
...
_command test1()
{
 int i;
 for(i=0; i<10; ++i) {
 say("i=":+i);
 }
}

messageNwait function

Sometimes a bunch of trace messages are not enough. You need to pause to see what is going on in
SlickEdit during your macro's execution. Use the messageNwait function to print a message on the
message line and pause for a keypress.

Example:

 ...
 messageNwait("Debugging...press any key to continue");
 ...

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 8 of 13

_StackDump function

The _StackDump function allows you to dump the current execution stack to a trace window and the
Slick-C Stack tool window. You call _StackDump in your macro code when you need to know about
exceptional conditions that occur.

Example:

 ...
 // wid is a window id. We do not want to operate on a window that is no longer valid,
 // but we should never even be pressing this code, so dump the stack when it happens.
 if(wid>0 && !_iswindow_valid(wid)) {
 say('my_test_macro: !!!!!! _iswindow_valid('wid') FAILED!');
 _StackDump(1);
 }
 ...

Include the slick.sh header file
You must start every macro module you write with the include:

#include "slick.sh"

Every variable, structure, flag, or setting you could possibly be interested in is included by this header
file.

Command context
Command context describes what types of objects a command can or cannot operate on. It also
describes what types of information your command requires to operate correctly.

Command context is important when putting your command on a menu or toolbar button because
SlickEdit will enable/disable the menu/button based on the current object context (e.g. if a command
requires a selection to operate, then a button that runs that command will be disabled unless there is
an active selection).

name_info

Most of the Slick-C commands you see in macro source will have a name_info line:

_command upcase_word() name_info(','VSARG2_TEXT_BOX|VSARG2_REQUIRES_EDITORCTL)
...

The first part of the name_info line (before the ',') is specifying completion information for the
command. In most cases, as is the case in the example above, it will be blank. Completion information
governs what types of items will be listed when an auto completion list is requested for the command

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 9 of 13

from the SlickEdit command line. An example of a command that uses the completion part of the
name_info line is edit:

_command edit(....) name_info(FILE_ARG'*,'VSARG2_CMDLINE|VSARG2_REQUIRES_MDI)
...

FILE_ARG specifies that the edit command should get only file names when requesting a completion list
from the SlickEdit command line. To see this in action, type the following from the SlickEdit command
line:

edit ?

The second part of the name_info line (after the ',') is specifying that the command will work in a text
box (and also the SlickEdit command line which is a text box) and that it requires an edit window to act
upon. Some of the more common VSARG2_* constants (in slick.sh) that you can use to restrict/allow
where your commands can operate are:

Constant Description

VSARG2_MARK
Command operates on a selection. This is necessary when you bind your command to a key that
would normally cause text to be deselected or deleted/replaced.

VSARG2_READ_ONLY Command operates on read-only edit windows.

VSARG2_LASTKEY
Command requires knowledge of the last key the user pressed. Use last_event to retrieve the last
key the user pressed.

VSARG2_TEXT_BOX Command operates on any text box including the SlickEdit command line.

VSARG2_CMDLINE Command operates on the SlickEdit command line.

OnUpdate functions

Sometimes you need more sophistication when determining whether a command is valid in a particular
context. One example of this is the requirement that a command only operate on certain types of files.
For example, you have a command that can only operate on C++ header files (.h). There is no
name_info VSARG2_ constant you can use for this, so you have to write an
OnUpdate<command-name> function to check the extension on the current buffer and
enable/disable accordingly. The _OnUpdate_ function would look like:

// The name of the command that this function operates on is 'my_command'
int _OnUpdate_my_command(CMDUI &cmdui, int target_wid, _str command)
{
 return (p_extension!="h")? MF_GRAYED|MF_ENABLED;
}

Determining the platform at compile time
Sometimes, hopefully rarely, you need to know if you are on Windows or a UNIX-like platform in order
to conditionally compile macro code. The classic example is with file separators (Windows: backslash;
UNIX: slash) and path separators (Windows: semicolon; UNIX: colon). You can use the special

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 10 of 13

preprocesser macros __NT__ and __UNIX__ to conditionally compile for Windows and UNIX-like
platforms respectively.

Example:

#if __NT__
// Do something Windows-specific
#endif
...
#if __UNIX__
// Do something UNIX-specific
#endif

Note: UNIX-like platforms include: AIX®, IRIX®, Linux®, Mac OS® X, HP-UX, Solaris™.

Determining the platform at run time
You can determine the exact platform at run-time by calling the machine builtin function. See the help
for a complete list of platform strings returned.

Example:

 // If we are running on HP-UX or Solaris ...
 if (machine()=='HP9000' || machine()=='SPARCSOLARIS') {
 ...

Determining if a file is open
When your macro needs to know whether a particular file is open in SlickEdit already, use buf_match.

Example:

boolean file_is_already_open = (buf_match(filename,1,'e') != "");

Determining if a file exists

When your macro needs to know whether a particular file exists in the file system, use file_exists.

Example:

boolean exists = file_exists(filename);

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 11 of 13

Selected text
There are three types of selections in SlickEdit:

LINE

Entire line or lines are selected. Use the _select_line builtin when selecting lines.
COLUMN

A vertical column/block of text is selected. Use the _select_block builtin when selecting
columns.

STREAM/CHAR
Arbitrary extent of text is selected. Use the _select_char builtin when selecting streams.

Filtering a selection (a.k.a. How do I stuff selected text
into a variable?)

To iterate over the lines of selected text, use the filter_init, filter_get_string, filter_put_string, and
filter_restore_pos APIs.

Example:

 ...
 // Display each selected portion of each line in selection in a message box
 filter_init();
 _str text = "";
 while(filter_get_string(text) == 0) {
 _message_box("Text: ":+text);
 }
 filter_restore_pos();
 ...

Knowing when an open file is modified
If the current file is modified, then the p_modify property will be true.

Example:

 ...
 if(p_modify) {
 _message_box("Current open file is modified!");
 }

Slick-C language notes

Implicit variable declarations

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 12 of 13

Don't use them! Slick-C supports implicit variable declarations inside functions, but please don't use
them.

Reasons not to use implicit declarations:

• If variables are always explicitly declared, there is never any confusion about the scope of
a variable.

• When mixing implicit and explicit declarations, it is easy to have uninitialized variables.
This cannot happen when only explicit declarations are used.

Put #pragma option(strict,on) at the top of all your modules to disallow implicit declarations:

#pragma option(strict,on)
...
#include "slick.sh"

Dynamic typing

Don't use it! Slick-C supports dynamic typing for historical reasons, but we beg you not to use it.

Reasons not to use dynamic typing:

• Harder to make semantic mistakes
• All type checks happen at compile time - fewer errors hopefully
• Functions are called with correctly typed arguments - no surprises

Put #pragma option(strict,on) at the top of all your modules to disallow dynamic typing:

#pragma option(strict,on)
...
#include "slick.sh"

Standard dialogs
There are some standard dialogs that are useful for performing common operations (e.g. opening a file,
etc.).

Selection list dialog

When you want to present the user with a list of items to choose from, show the _sellist_form dialog.
See the help for _sellist_form for examples.

Slick-C Macro Conventions and Best
Practices for End Users

Copyright 2007 SlickEdit Inc. All Rights Reserved. Page 13 of 13

Text box dialog

When you want to prompt the user to fill in one or more fields using text boxes, combo boxes, or radio
buttons, use the textBoxDialog function. See the help for textBoxDialog for examples.

Open dialog

For a standard Open dialog, use the _OpenDialog function.

Example:

 ...
 _str result=_OpenDialog("-modal "_stdform("_open_form"),
 "Choose File", // Title
 "", // Initial wildcards
 def_file_types,
 OFN_NOCHANGEDIR|OFN_FILEMUSTEXIST,
 "", // Default extension
 "", // Initial filename
 "", // Initial directory
 "",
 "");
 result=strip(result,'B','"');
 if(result=="") {
 // User cancelled the dialog
 return;
 }
 // result now holds the file name
 ...

Directory chooser dialog

For a directory chooser dialog, show the _cd_form dialog.

Example that prompts for a folder location:

 ...
 _str result = show("-modal "_stdform("_cd_form"),"Choose Location",true,true,true);
 result=strip(result,'B','"');
 if(result=="") {
 // User cancelled the dialog
 return;
 }
 // result now holds the location
 ...

Print dialog

For a standard print dialog that prints the current file, use the gui_print command.

	Table of Contents
	Introduction
	Macro modules
	System macros
	Modifying macros that ship with SlickEdit
	But I really, really, really want to change the way a comman

	Loadable vs. batch macros
	Loadable macros
	Batch macros

	Recorded macros
	Where do I store macros that I write?
	Finding help and examples
	Help system
	Tracing macro code
	Find a similar menu item and trace it
	Find a similar toolbar button and trace it
	Find a similar key binding and trace it
	Record a macro command and trace it

	Debugging/tracing macros
	Slick-C stacks
	say function
	messageNwait function
	_StackDump function

	Include the slick.sh header file
	Command context
	name_info
	OnUpdate functions

	Determining the platform at compile time
	Determining the platform at run time
	Determining if a file is open
	Determining if a file exists

	Selected text
	Filtering a selection (a.k.a. How do I stuff selected text i

	Knowing when an open file is modified
	Slick-C language notes
	Implicit variable declarations
	Dynamic typing

	Standard dialogs
	Selection list dialog
	Text box dialog
	Open dialog
	Directory chooser dialog
	Print dialog

