
What you need to know when
selecting a grid

Types of grids

One of the most common misconceptions is the notion
that a grid is a grid. In reality, there are several different
types of grids and choosing the right one for your needs
can help save substantial time and effort. Choosing the
wrong grid can result in tremendous effort to make it
work the way you need, which is quite frustrating. We
will look at the different types of grids and the ways in
which they are typically used.

1. Cell-oriented grid

•	 No assumptions on layout–Cell-oriented grids do
not make any assumptions on the layout of data.
They work very well when you wish to have com-
plete control over the layout. They allow you to dis-
play data that flows over multiple cells and embed
controls such as charts that occupy several underly-
ing cells. You can mix different kinds of cells in the
same column.

•	 Excel-like behavior–Each cell is independent of
other cells. Commonly, you’re able to set 50 dif-
ferrent attributes on each cell.

•	 Formula support–Cell-oriented grids typically offer
support for cell-level formulas, similar to Excel.

•	 No assumptions on the source of data–Cell ori-
ented grids do not expect data to be in a certain
format. They allow data to be provided on demand
from any source. Binding to data usually involves
the implementation of simple callbacks.

2. Data-bound grid controls

•	 Homogenous columns–Data-bound grid controls
assume that data in a column will be the same type.
They work best when most of your data comes from
a straight tabular data source and can be displayed
in the same layout. They do not work well if you
wish to have more control over the layout of your
display.

•	 Binding to standard types–Data-bound grid cont-
rols can be bound to any standard data source with
a few lines of code.

•	 Rich metadata–Data-bound grids utilize type meta-
data and other information available from data-
binding interfaces. Operations such as sorting, filter-
ing, and grouping are also easier to implement with
data-bound grids because of this rich metadata.

•	 Support for editing–Support for editing is imple-
mented in most data-bound grid controls. If the ba-
cking data store supports editing, adding new rows,
and deleting current rows, such support will auto-
matically become available in data-bound grids.

•	 Support for automatic updates–Data-bound grid
controls can automatically display changes to the
data source to which they are bound, provided the
data source implements appropriate interfaces.

•	 Business objects–Data-bound grid controls support
displaying data in business objects, provided such
data will support one of the commonly used .NET
data-binding interfaces.

•	 Delegating common operations to the server–It is
typically desirable to delegate such operations to
the server. This is the default behavior with most
controls.

•	 Support for expressions or formulas–Data-bound
grid controls do not typically support cell-level for-
mula calculations (like Excel). They instead offer
unbound columns where simple expressions may be
used to calculate the displayed value. If you need
Excel-like formulas, then a cell-oriented grid is a
better choice.

•	 Displaying related data–Data-bound grids that sup-
port displaying related information display such data
inline. This is referred to as a hierarchical display or
nested table. It is possible for a hierarchical grid to
support editing and differing levels in nested tables.

•	 Displaying foreign key references–When you have
a foreign key relationship, data-bound grid controls
should easily display values from the related table.

•	 Displaying grouped data–Grouping classifies a list
of data based on one or more fields. Data-bound
grids can support grouping, along with custom
summaries and data updates with multiple field
groupings.

3. Pivot grids

Pivot grids are very powerful and allow for the dis-
play and analysis of massive amounts of data in a
summarized, condensed format. Please be sure to
test with at least five times the data you expect
to work with (both rows and columns). Also, test
with several grouping levels on both the row and
column axes.

4. Tree grids

Tree grids resemble tree controls, but instead of
displaying just one column of information as with
a typical tree, they display additional attributes as
additional columns. Test for editing and load-on-
demand support.

Features of a grid ➤

By Daniel Jebaraj, Vice President
Syncfusion, Inc.

Features of a grid

Virtualization

Virtualization is another critical aspect to consider when
selecting a grid control. There are two kinds of virtuali-
zations possible with grid controls on the WPF and Silver-
light platforms.

User interface virtualization

The .NET framework supports what is known as UI virtua-
lization for ItemsControls. Most controls available on the
market support UI virtualization because it is essentially
implemented by the underlying Microsoft framework.

Test for the following scenarios:

•	 Large window size–Maximize the grid control and
observe the impact on performance.

•	 Multiple monitors–This is an extension of the large-
window-size test. Test with multiple monitors run-
ning several windows with the grid displayed.

•	 Grouping and hierarchical display–Test perfor-
mance when groups and nested controls consist
of more than a few thousand rows and columns.

•	 Touch screens–As of .NET 4, framework UI virtua-
lization does not work well with touch-screen sys-
tems. Please ensure that you test with such systems if
this is a deployment target for you.

•	 Variable item heights–If you need to display items
of different heights, please test with this scenario.

•	 Data virtualization–UI virtualization does not help
to minimize the need for actual displayed data to
be kept in memory. It is possible to get around this
requirement by implementing a virtualized list that
sits on top of the underlying data. This approach
works for WPF controls but does not work with Sil-
verlight at this time.

Cell architecture and user interaction

Grid controls allow for the display of several kinds of
cells. When testing performance, be sure to test with the
actual cell types that you will be using and not just text
boxes or static text.

Validation

Ensure that entry-time validation is enforced by cell edi-
tors and that support for IDataErrorInfo by data sources
is implemented.

Selection behavior

Controls should allow the selection of rows, columns,
and arbitrary collections of cells. If your users are used
to Microsoft Excel, this is one area where behavior that
closely mimics Excel may be very desirable.

Clipboard operations

Controls should allow clipboard operations with rows,
columns, and arbitrary collections of cells. If your users
are familiar with Microsoft Excel, this is yet another area
where behavior that closely mimics Excel may be very
desirable. Also evaluate the copy-paste behavior of the
control with Microsoft Excel. Do you need rich text for-
matting (perhaps formulas), or is plain text enough?

Frozen rows and columns

Frozen rows and columns are typically positioned at the
top, bottom, left, or right of a grid control. It is impor-
tant to test if multiple rows and columns can be frozen.

Appearance customization

Customization should be possible using themes. Bonus
points if they do, since this work can be quite daunting
if approached without direct support from the vendor.

Importing and exporting data

•	 Exporting–Exporting to Excel is usually supported
by grid controls. Please be sure to test this well.
PDF and Word exporting are two additional export
options that may be of interest to you.

•	 Importing–There are two kinds of importing from
Excel. One is complete import, where the entire
file is opened in the grid, and the second is selective
import, importing just a section of data.

Globalization

•	 Right-to-left support–Right-to-left support is es-
sential if you plan to support Hebrew and Arabic
markets.

•	 Printing–Check for print-preview and printing support.

•	 Automated testing–Automated testing is typically
implemented using HP Quick Test Professional or
Microsoft’s Coded UI support in Visual Studio.NET
2010. Check with the control vendor to ensure
that they support test automation issues as part
of their support system.

Syncfusion, Inc. | 2501 Aerial Center Pkwy, Suite 200 | Morrisville, NC 27560 USA | 1.888.9DOTNET | 1.919.481.1974 | www.syncfusion.com

