
VectorDraw web Library

What is it?
A vector graphics library that is designed to not only open CAD drawings but also display
generic vector objects on any platform that supports the HTML 5 standard, such as
Windows, Android, IOS and Linux. It can be executed in every major web browser
(Chrome, Firefox, Safari, Opera, Dolphin, Boat and more) that supports the use of canvas
and Javascript, without any installation. This means that you can show your work from
many formats like DXF, DWG, DGN, VDML and more (see below for VDS format), on
almost every Computer, Tablet, Smartphone or Laptop out there. VectorDraw web library is
written exclusively in Javascript and runs on the client side, also it contains an object
model similar to that of DXF and .Net VectorDraw Framework components.

What can it do?
VectorDraw web compoment is a revolutionary new project, its features and capabilities
are being increased in a rapid frequency. This means that new functions and possibilities
are added all the time. To this point using the VectorDraw web libary you can demonstrate
drawings in 2D, execute view operations like Panning and Zooming, get specific entities
from the drawing, edit existing and insert new entities to it. Every entity supported by
the .Net VectorDraw components can be displayed without problems, this means that all
supported drawings from our .Net components can be exported to the new web
component in 2D. Also the object format of the new library is very similar to those of DXF
and VectorDraw .Net.

How can I use it?
In order to open a drawing there are only three things needed. First the library's engine
script. This script contains all the needed code in order for the drawing to be displayed in
the screen. This file is the heart of the library and should not be meddled with. To ensure
that it will work properly and that it will offer the level of performance it is designed to, this
script file is offered obfuscated. All the appropriate usability it can offer is described in the
help file, as well as in the sample projects we have created. Also keep in mind that it's
impossible to offer support to a library that is not entirely created by us.
Second an HTML canvas object where all the visible parts of the drawing will be displayed.
Third a specially exported and formatted drawing that contains all the document's data as
well as its different entities and their properties. To export the said document, you simply
need to call the vdDocument.ExportScriptmethod() or use the SaveAs command of
vdfCAD. The exported file will have a .vds suffix.
Additionally you'll find the commands.js file. In this script file, many commands are
implemented by us in order to help you use the library. If you open this file, you'll notice
that all the methods and variables are not obfuscated at all, their names are intact. That
way we want to encourage you to modify as you see fit the included code in order to best
fit it to your needs.
Developers with prior knowledge of Javascript will have no problem catching up to the
component's logic. However, developers with small experience in web programming will
also find it extremely easy to work with this library, since it requires no more that a few
basic HTML and Javascript commands in order to effectively operate.

How to use VectorDraw web Framework in an HTML page?
Since the library uses the canvas HTML object in order to display its functionality, it is safe
to assume that most scenarios of the library's usage will be in an HTML page. To
implement such a solution is very easy. First create a new HTML page with the default
tags.

• Add a canvas object and a button. We'll assign the opening of the document
on the Click event of the button. You don't have to set width and height to the
canvas since these will be set later.
• Then we need to tell the page where it will find the VD web library. That can
be achieved with the following command.
<script type="text/javascript" src='<name of script>.js'></script>
In order for this to work you have to make sure that the script is stored in the same directory
as the .html file, using the same filename that you are using in the command above.
• Next we'll
assign the opening
operation to the
button's onClick
event. This can be
done very easily
by editing the
button tag inside
the HTML page
like this
<button
onclick="vdmanager
.vdrawObject('myCa
nvas').SelectDocum
ent('<document
filename>')">
Open
</button>
The document
filename is the
name of the file
exported from
the .Net VD
component. Make

sure to include all the files that were exported in the same directory as the
.html file.

The final step is to bind the canvas object with our library. What we are doing is instructing
the library to display its data on this specific canvas object. This can be done whenever we
want in our page, but in this example we'll create a new Javascript function that will run

whenever we open the page (on body's
OnLoad event). Inside the said function we'll
write this.
vdmanager.AttachCanvas('myCanvas', 640,
480);
The AttachCanvas function will resize the
canvas object to whatever you have set as
parameters here. Keep also in mind that the
vdmanager object is defined inside the
library's script, so you can call it right away.
If you did all of the above steps and run
the .html file with a web browser you'll see a
black square and a button on the side. Click
on the button and the drawing you have
exported will appear.
You did it! Your drawing and all its properties
are now displayed using just a web browser!

<!DOCTYPE html>
<html lang="en">
<head>
 <title>main</title>
 <script type="text/javascript" src='vdWebControl.js'></script>
 <script type="text/Javascript">
 function vdrawInitPageLoad() {
 vdmanager.AttachCanvas('myCanvas', 640, 480);
 var vdcanvas = vdmanager.vdrawObject('myCanvas');
 }
 </script>
</head>

<body onload="vdrawInitPageLoad()">
 <div>
 <header>
 <h1>VD web control</h1>
 </header>
 <div>

 < canvas id = "myCanvas" ></ canvas >

<button
onclick="vdmanager.vdrawObject('myCanvas').SelectDocument('vddocument.vds')
">
 Open
 </button>

 </div>
 </div>
</body>
</html>

You can now see your drawing, as well as Pan, Zoomin or Zoomout. You can also double
click and set the zoom to the document's extents. Vectordraw web library is designed to be
fully customizable. In that direction, our mouse and touch events are internally
implemented, but their functionality can be easily overriden. That way you can either use
our implementation of these events, or define them yourself. In order to do so, we'll need
to see how to add an event listener to one of the library's events and add some code to it.
This can be done quite easily.

• Add an event listener to the event you need to handle. Go to the
vdrawInitPageLoad function we created earlier (this one runs whenever you load
the page) and add this command.

vdcanvas.vdmousemove = _vdmousemove;
• Now add a new label element in your html page like this:

<label id="info3"></label>
This label will be used to display the cursor's position when inside the component.
_vdmousemove is the function that will handle how the library will operate once this event
is invoked.

• Finally, before running the example we need to define the vdmousemove function.
Go inside the <script> tag you have already created and write this code.

function _vdmousemove(e) {
 e.Cancel = true;

 if (e.mousebutton == 3) return; //right button
 if (e.mousebutton == 0) {
 e.target.canvas.style.cursor = "crosshair";
 e.target.canvas.title = "";
 var entity = GetEntityFromPoint(e.xPix, e.yPix);
 if (entity != null && entity._t != undefined) {
 e.target.canvas.style.cursor = "pointer";
 e.target.canvas.title = e.target.Fig_codeToString(entity._t) + " :

" + entity.HandleId.toString();
 }
 info3.innerHTML = e.x.toString() + " , " + e.y.toString();
 return;
 }
 if (e.prevPos != null) {
 var dx = e.xPix - e.prevPos[0], dy = e.yPix - e.prevPos[1];
 e.target.scroll(dx, dy, e.target.GetDefaultTimeOutMilliseconds());
 }
 }

If everything was written as expected when moving the cursor around the drawing you'll
see that the label displays the position of the mouse and when you stop over an entity, a
tooltip shows with a small text. Additionally you can Pan the drawing. You can Pan the
drawing by pressing the Left or Middle button and moving the mouse around. Let's see
what exactly happens in the above function.
First you need to know what parameters the e object contains. You can find a
comprehensive list of all the events and their properties at the .chm help file distributed
with this “getting started” tutorial. For now we only need a few of these properties.
e.mousebutton returns the mouse button that is pressed during the invoking of this event.
If the property is 3 that means that the right button was pressed, so the function ends. If no
button was pressed, then the property has the value of 0. In that case we change the
cursor to the crosshair. We do that by editing this property e.target.canvas.style.cursor.
The target property contains the vdrawobject. This object contains most of the functionality,
in regard to handling of the library. For example, the open events we are handling are
inside this object.

Finally we get the dx and dy of the Pan action. These two numbers show the distance our
cursor has moved since the last time the event was invoked, allowing us to know how
much we need to pan our drawing. To do that we call the e.target.scroll function with the x
and y distance as parameters. The third parameter defines how soon after the scroll the
library will redraw its contents, in milliseconds.
Similarly to the vdmousemove event you can implement every other event. Refer to the
.chm help file for a full list of available events. You can also get many ideas on how to use
our library by trying out many existing sample projects in our website
http://www.vdraw.com/javascript-examples/vectordraw-javascript-samples/ .

http://www.vdraw.com/javascript-examples/vectordraw-javascript-samples/

How do I add a new file extension or MIME type in IIS7?
In order to be able to load .vds documents in IIS you neead a MIME type for a new file
extension. MIME types are created in IIS and allow different file extensions to work in a
Web browser.

1.Log into your server through Remote Desktop Connection (optional).
2.Click Start, Programs, Administrative Tools, and select Internet Information Services (IIS)
Manager
3.Click the server name. Under the IIS header, there is an icon MIME Types. Double-click
the MIME Types icon to open the feature

4.On the right-hand sidebar of the feature, click Add where you can add a MIME type

5.Enter the appropriate information:

• Extension – the .vds file type extension.
• MIME type - the type of file this extension refers to (view a list of common MIME

types).
6.Click OK

